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Brief History

Statement of the problem

Let R be a real closed field and S ⊂ Rk a semi-algebraic
set defined by a quantifier-free Boolean formula with atoms
of the form P > 0, P < 0, P = 0 for P ∈ P ⊂ R[X1, . . . , Xk ].
We call S a P-semi-algebraic set. If, instead, the Boolean
formula has atoms of the form P = 0, P ≥ 0, P ≤ 0, P ∈ P,
and additionally contains no negation, then we will call S a
P-closed semi-algebraic set.

The sum of the Betti numbers of S is bounded by O(sd)k ,
where s = #(P) and d = maxP∈P deg(P).

Even though the Betti numbers of S are bounded singly
exponentially in k , there is no singly exponential algorithm
for computing the Betti numbers of S.
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Previous Work

Doubly exponential algorithms (with complexity (sd)2O(k)
)

for computing all the Betti numbers are known, since it is
possible to obtain a triangulation of S in doubly exponential
time using cylindrical algebraic decomposition
(Collins,Schwartz-Sharir).

Algorithms with single exponential complexity are known
only for the problems of testing emptiness, computing the
zero-th Betti number (i.e. the number of semi-algebraically
connected components of S) the Euler-Poincaré
characteristic of S, as well as the dimension of S.
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Digression on Morse Theory

The Critical Point Method

Using infinitesimal perturbation to deform a given algebraic
set to a basic, closed semi-algebraic set with smooth
boundary, which has the same homotopy type.

Compute the critical points (as well as the index of the
Hessian at these points) efficiently, making use of the
particular structure of the deformation.

Use Morse theory to compute the Euler-Poincaré
characteristic.
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Morse Lemma A

Lemma (Morse lemma A)

Let [a, b]be an interval containing no critical value of π. Then
Z(Q, Rk )[a,b] is homeomorphic to Z(Q, Rk )a × [a, b] and
Z(Q, Rk )≤a is homotopy equivalent to Z(Q, Rk )≤b.
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Morse Lemma B

Lemma (Morse lemma B)

Let Z(Q, Rk ) be a non-singular bounded algebraic hypersurface
such that the projection π to the X1-axis is a Morse function.
Let p be a non-degenerate critical point of π of index λ and
such that π(p) = c.
Then, for all sufficiently small ε > 0, the set Z(Q, Rk )≤c+ε has
the homotopy type of the union of Z(Q, Rk )≤c−ε with a ball of
dimension k − 1 − λ, attached along its boundary .
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Example of the torus

p1 p2 p3 p4

v1 v2 v3 v4

X1- axis

Figure: Critical values for the smooth torus in R
3.
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Applications: Euler-Poincaré Characteristics of Sign Conditions

Computing the Euler-Poincaré characteristic of a
bounded algebraic set

Let Q ∈ D[X1, . . . , Xk ], Z(Q, Rk ) ⊂ B(0, 1/c) for some
0 < c ≤ 1, c ∈ D.

Gk (d , c) = cd (X d
1 + · · · + X d

k + X 2
2 + · · · + X 2

k ) − (2k − 1),

Def(Q2, d , c, ζ) = ζGk(d , c) + (1 − ζ)Q2,

and

Def+(Q2, d , c, ζ) = Def(Q2, d , c, ζ) + X 2
k+1.
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Computing the Euler-Poincaré characteristic of a
bounded algebraic set (cont.)

Cr(Q2, d , c, ζ) =
{

Def(Q2, d , c, ζ),
∂Def(Q2, d , c, ζ)

∂X2
, . . . ,

∂Def(Q2, d , c, ζ)

∂Xk

}

,

Cr+(Q2, d , c, ζ) =
{

Def+(Q2, d , c, ζ),
∂Def+(Q2, d , c, ζ)

∂X2
, . . . ,

∂Def+(Q2, d , c, ζ)

∂Xk
, 2Xk+1

}

.

Cr(Q2, d , c, ζ) as well as Cr+(Q2, d , c, ζ) are both (very nearly)
Grobner bases.
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Algorithm for a bounded algebraic set

ALGORITHM (EULER-POINCARÉ CHARACTERISTIC OF A

BOUNDED ALGEBRAIC SET)

Input : Q ∈ D[X1, . . . , Xk ] with Z(Q, Rk ) ⊂ B(0, 1/c).

Output : χ(Z(Q, Rk )).

Procedure : Compute the characteristic polynomial of the
matrices

H1 =

[

∂2Def(Q2, ζ, d , c)

∂Xi∂Xj

]

2≤i ,j≤k

H2 =

[

∂2Def+(Q2, d , c, ζ)

∂Xi∂Xj

]

2≤i ,j≤k+1

.
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Algorithm for a bounded algebraic set

Compute the signature σ(H1) (respectively σ(H2)), of the matrix
H1 (respectively H2) at the real roots of Cr(Q2, d , c, ζ)
(respectively Cr+(Q2, d , c, ζ)).
For i from 0 to k − 1 let,

`i := #{x ∈ Z(Cr(Q2, d , c, ζ), C〈ζ〉k ) |
k − 1 + σ(H1(x))

2
= i}.

For i from 0 to k , let

mi := #{x ∈ Z(Cr+(Q2, d , c, ζ), C〈ζ〉k+1) |
k + σ(H2(x))

2
= i}.

Output

χ(Z(Q, Rk )) =
1
2

(

k−1
∑

i=0

(−1)k−1−i`i +

k
∑

i=0

(−1)k−imi

)

.
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Algorithm for a general algebraic set

ALGORITHM (EULER-POINCARÉ CHARACTERISTIC OF AN

ALGEBRAIC SET)

Input : Q ∈ D[X1, . . . , Xk ].

Output : χ(Z(Q, Rk )).

Procedure : Let

Q1 = Q2 + (ε2(X 2
1 + . . . + X 2

k ) − 1)2.

and

Q2 = Q2 + (ε2(X 2
1 + . . . + X 2

k+1) − 1)2.
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Applications: Euler-Poincaré Characteristics of Sign Conditions

Algorithm for a general algebraic set

ALGORITHM (EULER-POINCARÉ CHARACTERISTIC OF AN

ALGEBRAIC SET)

Using previous Algorithm (Euler-Poincaré
Characteristic of a Bounded Algebraic Set)
compute χ(Z(Q1, R〈ε〉k )) and χ(Z(Q2, R〈ε〉k+1)).

Output,

χ(Z(Q, Rk )) =
1
2

(χ(Z(Q2, R〈ε〉k+1))−χ(Z(Q1, R〈ε〉k ))).
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Euler-Poincaré Queries

Given S a locally closed semi-algebraic set contained in Z , we
denote by χ(S) the Euler-Poincaré characteristic of S. Given
P ∈ R[X1, . . . , Xk ], we denote

R(P = 0, S) = {x ∈ S | P(x) = 0},

R(P > 0, S) = {x ∈ S | P(x) > 0},

R(P > 0, S) = {x ∈ S | P(x) < 0},

and χ(P = 0, S), χ(P > 0, S), χ(P < 0, S) the Euler-Poincaré
characteristics of the corresponding sets The
Euler-Poincaré-query of P for S is

EQ(P, S) = χ(P > 0, S) − χ(P < 0, S).
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Euler-Poincaré of sign conditions

Let P = P1, . . . , Ps be a finite list of polynomials in
R[X1, . . . , Xk ].
Let Q ∈ R[X1, . . . , Xk ], Z = Z(Q, Rk ). We denote as usual by
Sign(P, Z ) the list of σ ∈ {0, 1,−1}P such that R(σ, Z ) is
non-empty. We denote by χ(P, Z ) the list of Euler-Poincaré
characteristics χ(σ, Z ) = χ(R(σ, Z )) for σ ∈ Sign(P, Z ).
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Applications: Euler-Poincaré Characteristics of Sign Conditions

Algorithm for Computing Euler-Poincaré of sign
conditions

Same as that of B-K-R sign determination algorithm,
except we we compute Euler-Poincaré characteristics of
realizations of sign conditions rather than cardinalities of
sign conditions on a finite set, using the notion of
Euler-Poincaré-query rather than that of Sturm-query.

Complexity:

sk ′+1O(d)k + sk ′

((k ′ log2(s) + k log2(d))d)O(k).
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What is a roadmap ?

Let S be a semi-algebraic set. We denote by π the projection
on the X1-axis and set

Sx = {y ∈ Rk−1 | (x , y) ∈ S}.

A roadmap for S is a semi-algebraic set M of dimension at
most one contained in S which satisfies the following roadmap
conditions:

RM1 For every semi-algebraically connected
component D of S, D ∩ M is semi-algebraically
connected.

RM2 For every x ∈ R and for every
semi-algebraically connected component D ′ of Sx ,
D′ ∩ M 6= ∅.
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Pseudo-critical values

Definition

An X1-pseudo-critical point on Z(Q, Rk ) is the limζ of an
X1-critical point on Z(Def(Q, d̄ , c, ζ), R〈ζ〉k ).
An X1-pseudo-critical value on Z(Q, Rk ) is the projection to
the X1-axis of an X1-pseudo-critical point on Z(Q, Rk ) .
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Pseudo-critical values

Z(Q, R2)

Z(Def(Q, d̄, c, ζ), R2)

Pseudo-critical values

X1

X2

Figure: Pseudo-critical values of an algebraic set in R2
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Proposition

Let Z(Q, Rk ) be a bounded algebraic set and S a
semi-algebraically connected component of Z(Q, Rk )[a,b]. If
v ∈ (a, b) and [a, b] \ {v} contains no X1-pseudo-critical value
on Z(Q, Rk ), then Sv is semi-algebraically connected.
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Proposition

Let Z(Q, Rk ) be a bounded algebraic set and let S be a
semi-algebraically connected component of Z(Q, Rk )[a,b]. If
S[a,b) is not semi-algebraically connected, then b is an
X1-pseudo-critical value of Z(Q, Rk ).
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Roadmap of a bounded Z(Q, Rk) containing finite
N ⊂ Z(Q, Rk).

We first construct X2-pseudo-critical points on Z(Q, Rk ) in
a parametric way along the X1-axis. This results in curve
segments and their endpoints on Z(Q, Rk ).

Since these curves and their endpoints include, for every
x ∈ R, the X2−pseudo-critical points of Z(Q, Rk )x , they
meet every connected component of Z(Q, Rk )x . Thus the
set of curve segments and their endpoints already satisfy
RM2.

We add additional curve segments to ensure that M is
connected by recursing in certain distinguished
hyperplanes defined by X1 = z for distinguished values z.
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Roadmap of a bounded Z(Q, Rk)

The set of distinguished values is the union of the
X1-pseudo-critical values, the first coordinates of the input
points N and the first coordinates of the endpoints of the
curve segments. The input points, the endpoints of the
curve segments and the intersections of the curve
segments with the distinguished hyperplanes define the
set of distinguished points .
We then repeat this construction in each each
distinguished hyperplane Hi defined by X1 = vi with input
Q(vi , X2, . . . , Xk ) and the distinguished points in Ni .
The process is iterated until for

I = (i1, . . . , ik−2), 1 ≤ i1 ≤ `, . . . , 1 ≤ ik−2 ≤ `(i1, . . . , ik−3),

we have distinguished values

vI,1 < . . . < vI,`(I)

along the Xk−1 axis with corresponding sets of curve
segments and sets of distinguished points with the
required incidences between them.
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Complexity Analysis and open problem

T (d , k) = dO(k) + dO(k)T (d , k − 1)

= dO(k2).

Question: Can this be improved to d O(k) ?

Remark: Using Crofton’s formula from integral geometry
this also shows that any two points in a connected
component of a real algebraic variety of defined by
polynomials of degree d contained in the unit ball can be
connected by a semi-algebraic path of length d O(k2). Can
this be improved to dO(k) also ?
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