Efficient Algorithms for Computing Betti Numbers of Semi-algebraic Sets :3

Saugata Basu
School of Mathematics
Georgia Tech

Nov 24, 2005/ Minicourse (Advanced)/ IHP

Outline

(9) Introduction

- Recall from last lecture
- Main Result
(2) Algebraic Topological Preliminaries
- Generalized Mayer-Vietoris Sequence
- Double Complexes and Spectral Sequences
- Mayer-Vietoris Spectral Sequence
(3) Double complexes associated to certain coverings
- Inductive Construction of a Double Complex

Outline

(9) Introduction

- Recall from last lecture
- Main Result

2) Algebraic Topological Preliminaries

- Generalized Mayer-Vietoris Sequence
- Double Complexes and Spectral Sequences
- Mayer-Vietoris Spectral Sequence
(3) Double complexes associated to certain coverings
- Inductive Construction of a Double Complex

Singly Exponential Covering

Theorem

There exists an algorithm that takes as input the description of a \mathcal{P}-closed semi-algebraic set $S \subset R^{k}$, and outputs a covering of S by a family of subsets of S which are closed and contractible. The complexity of the algorithm, as well as the complexity of the covering, is

$$
(s d)^{k^{O(1)}}
$$

where $s=\#(\mathcal{P})$ and $d=\max _{P \in \mathcal{P}} \operatorname{deg}(P)$.

Outline

(9) Introduction

- Recall from last lecture
- Main Result
(2) Algebraic Topological Preliminaries
- Generalized Mayer-Vietoris Sequence
- Double Complexes and Spectral Sequences
- Mayer-Vietoris Spectral Sequence
(3) Double complexes associated to certain coverings
- Inductive Construction of a Double Complex

Main Theorem

Theorem

There exists an algorithm that takes as input the description of a \mathcal{P}-semi-algebraic set $S \subset \mathrm{R}^{k}$, and outputs $b_{0}(S), \ldots, b_{\ell}(S)$. The complexity of the algorithm is

$$
(s d)^{k^{O(\ell)}}
$$

where $s=\#(\mathcal{P})$ and $d=\max _{P \in \mathcal{P}} \operatorname{deg}(P)$.

Main Ingredients

- The first ingredient is a result discussed in the previous lecture, which enables us to compute a singly exponential sized covering of the given closed and bounded semi-algebraic set, consisting of closed, contractible semi-algebraic sets, in single exponential time. The number and the degrees of the polynomials used to define the sets in this covering are also bounded singly exponentially.
- The second ingredient is an algorithm which uses the covering algorithm recursively and computes in singly exponential time a complex whose homology groups are isomorphic to the first ℓ homology groups of the input set. This complex is of singly exponential size for fixed

Main Ingredients

- The first ingredient is a result discussed in the previous lecture, which enables us to compute a singly exponential sized covering of the given closed and bounded semi-algebraic set, consisting of closed, contractible semi-algebraic sets, in single exponential time. The number and the degrees of the polynomials used to define the sets in this covering are also bounded singly exponentially.
- The second ingredient is an algorithm which uses the covering algorithm recursively and computes in singly exponential time a complex whose homology groups are isomorphic to the first ℓ homology groups of the input set. This complex is of singly exponential size for fixed ℓ.

Outline

(1)
 Introduction

- Recall from last lecture - Main Result
(2) Algebraic Topological Preliminaries
- Generalized Mayer-Vietoris Sequence
- Double Complexes and Spectral Sequences
- Mayer-Vietoris Spectral Sequence
(3) Double complexes associated to certain coverings
- Inductive Construction of a Double Complex

Mayer-Vietoris exact sequence

- Let A_{1}, \ldots, A_{n} be subcomplexes of a finite simplicial complex A such that $A=A_{1} \cup \cdots \cup A_{n}$. Let $C^{i}(A)$ denote the R-vector space of i co-chains of A, and $C^{*}(A)=\oplus_{i} C^{i}(A)$.
- We will denote by $A_{\alpha_{0}, \ldots, \alpha_{p}}$ the subcomplex $A_{\alpha_{0}} \cap \cdots \cap A_{\alpha_{p}}$.
- The following sequence of homomorphisms is exact.

Mayer-Vietoris exact sequence

- Let A_{1}, \ldots, A_{n} be subcomplexes of a finite simplicial complex A such that $A=A_{1} \cup \cdots \cup A_{n}$. Let $C^{i}(A)$ denote the R-vector space of i co-chains of A, and $C^{*}(A)=\oplus_{i} C^{i}(A)$.
- We will denote by $A_{\alpha_{0}, \ldots, \alpha_{\rho}}$ the subcomplex $A_{\alpha_{0}} \cap \cdots \cap A_{\alpha_{p}}$.
- The following sequence of homomorphisms is exact.

Mayer-Vietoris exact sequence

- Let A_{1}, \ldots, A_{n} be subcomplexes of a finite simplicial complex A such that $A=A_{1} \cup \cdots \cup A_{n}$. Let $C^{i}(A)$ denote the R-vector space of i co-chains of A, and $C^{*}(A)=\oplus_{i} C^{i}(A)$.
- We will denote by $A_{\alpha_{0}, \ldots, \alpha_{\rho}}$ the subcomplex $A_{\alpha_{0}} \cap \cdots \cap A_{\alpha_{p}}$.
- The following sequence of homomorphisms is exact.

$$
\begin{aligned}
0 \longrightarrow \\
C^{*}(A) \xrightarrow{r} \prod_{\alpha_{0}} C^{*}\left(A_{\alpha_{0}}\right) \xrightarrow{\delta} \prod_{\alpha_{0}<\alpha_{1}} C^{*}\left(A_{\alpha_{0}, \alpha_{1}}\right) \\
\cdots \xrightarrow{\delta} \prod_{\alpha_{0}<\cdots<\alpha_{p}} C^{*}\left(A_{\alpha_{0}, \ldots, \alpha_{p}}\right) \cdots \xrightarrow{\delta} \prod_{\alpha_{0}<\cdots<\alpha_{p+1}} C^{*}\left(A_{\alpha_{0}, \ldots, \alpha_{p+1}}\right) \cdots \xrightarrow{\delta} \cdot
\end{aligned}
$$

Mayer-Vietoris Double Complex

Outline

Introduction

- Recall from last lecture
- Main Result
(2) Algebraic Topological Preliminaries
- Generalized Mayer-Vietoris Sequence
- Double Complexes and Spectral Sequences
- Mayer-Vietoris Spectral Sequence
(3) Double complexes associated to certain coverings
- Inductive Construction of a Double Complex

Double Complex

The Associated Total Complex

Spectral Sequences of a Double Complex

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials

Spectral Sequences of a Double Complex

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials $\left(E_{r}, d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right)$,

Spectral Sequences of a Double Complex

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials $\left(E_{r}, d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right)$,
- $E_{r+1}=H\left(E_{r}, d_{r}\right)$,

Spectral Sequences of a Double Complex

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials $\left(E_{r}, d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right)$,
- $E_{r+1}=H\left(E_{r}, d_{r}\right)$,
- $E_{\infty}=H^{*}$ (Associated Total Complex).

Spectral Sequence

Efficient Algorithms for Computing Betti Numbers

Two Spectral Sequences

- There are two spectral sequences associated with $\mathcal{M}^{p, q}$ both converging to $H_{D}^{*}(\mathcal{M})$. The first terms of these are:

Two Spectral Sequences

- There are two spectral sequences associated with $\mathcal{M}^{p, q}$ both converging to $H_{D}^{*}(\mathcal{M})$. The first terms of these are:
0

$$
' E_{1}=H_{\delta}(\mathcal{M}),{ }^{\prime} E_{2}=H_{d} H_{\delta}(\mathcal{M})
$$

Two Spectral Sequences

- There are two spectral sequences associated with $\mathcal{M}^{p, q}$ both converging to $H_{D}^{*}(\mathcal{M})$. The first terms of these are:

0

$$
{ }^{\prime} E_{1}=H_{\delta}(\mathcal{M}),{ }^{\prime} E_{2}=H_{d} H_{\delta}(\mathcal{M})
$$

$$
{ }^{\prime} E_{1}=H_{d}(\mathcal{M}),{ }^{\prime \prime} E_{2}=H_{\delta} H_{d}(\mathcal{M})
$$

Homomorphisms of Double Complexes

Given two (first quadrant) double complexes, $C^{\bullet \bullet \bullet}$ and $\bar{C}^{\bullet \bullet \bullet}$, a homomorphism of double complexes,

$$
\phi: C^{\bullet \bullet \bullet} \longrightarrow \bar{C}^{\bullet \bullet \bullet}
$$

is a collection of homomorphisms, $\phi^{p, q}: C^{p, q} \longrightarrow \bar{C}^{p, q}$, such that the following diagrams commute.

$$
\begin{array}{lll}
C^{p, q} & \xrightarrow{\delta} & C^{p+1, q} \\
\downarrow^{\downarrow} \phi^{p, q} & & \downarrow \phi^{p+1, q} \\
\bar{C}^{p, q} & \xrightarrow{\delta} & \bar{C}^{p+1, q} \\
C^{p, q} & \xrightarrow{d} & C^{p, q+1} \\
\downarrow^{p, q} & & \\
\bar{C}^{p, q} & \xrightarrow{d} & \phi^{p, q+1} \\
\bar{C}^{p, q+1}
\end{array}
$$

Comparison Theorem

Proposition

A homomorphism of double complexes,

induces homomorphisms, ' $\phi_{s}:{ }^{\prime} E_{s} \longrightarrow ' \bar{E}_{s}$ (respectively, " $\phi_{s}:$ " $E_{s} \longrightarrow " \bar{E}_{s}$) between the associated spectral sequences. If' ϕ_{s} (respectively, " ϕ_{s}) is an isomorphism for some $s \geq 1$, then ${ }^{\prime} E_{r}^{p, q}$ and ${ }^{\prime} \bar{E}_{r}^{p, q}$ (repectively, " $E_{r}^{p, q}$ and " $\bar{E}_{r}^{p, q}$) are isomorphic for all $r \geq s$. In particular, the induced homomorphism,

$$
\phi: \operatorname{Tot}^{\bullet}\left(C^{\bullet, \bullet}\right) \rightarrow \operatorname{Tot}^{\bullet}\left(\bar{C}^{\bullet \bullet \bullet}\right)
$$

is a quasi-isomorphism.

Outline

(1) Introduction
 - Recall from last lecture
 - Main Result

(2) Algebraic Topological Preliminaries

- Generalized Mayer-Vietoris Sequence
- Double Complexes and Spectral Sequences
- Mayer-Vietoris Spectral Sequence
(3) Double complexes associated to certain coverings
- Inductive Construction of a Double Complex

' E_{1}

$$
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
C^{3}(A) & 0 & 0 \\
C^{2}(A) & 0 & 0 \\
C^{1}(A) & 0 & 0 \\
C^{0}(A) & 0 & 0
\end{array}
$$

${ }^{\prime} E_{2}$

$$
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
H^{3}(A) & 0 & 0 \\
H^{2}(A) & 0 & 0 \\
H^{1}(A) & 0 & 0 \\
H^{0}(A) & 0 & 0
\end{array}
$$

${ }^{\prime \prime} E_{1}$

$$
\begin{array}{lll}
\prod_{\alpha_{0}} H^{3}\left(A_{\alpha_{0}}\right) & \prod_{\alpha_{0}<\alpha_{1}} H^{3}\left(A_{\alpha_{0}, \alpha_{1}}\right) & \prod_{\alpha_{0}<\alpha_{1}<\alpha_{2}} H^{3}\left(A_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right) \\
\prod_{\alpha_{0}} H^{2}\left(A_{\alpha_{0}}\right) & \prod_{\alpha_{0}<\alpha_{1}} H^{2}\left(A_{\alpha_{0}, \alpha_{1}}\right) & \prod_{\alpha_{0}<\alpha_{1}<\alpha_{2}} H^{2}\left(A_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right) \\
\prod_{\alpha_{0}} H^{1}\left(A_{\alpha_{0}}\right) & \prod_{\alpha_{0}<\alpha_{1}} H^{1}\left(A_{\alpha_{0}, \alpha_{1}}\right) & \prod_{\alpha_{0}<\alpha_{1}<\alpha_{2}} H^{1}\left(A_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right) \\
\prod_{\alpha_{0}} H^{0}\left(A_{\alpha_{0}}\right) & \prod_{\alpha_{0}<\alpha_{1}} H^{0}\left(A_{\alpha_{0}, \alpha_{1}}\right) & \prod_{\alpha_{0}<\alpha_{1}<\alpha_{2}} H^{0}\left(A_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right)
\end{array}
$$

" E_{1} in this case

$$
\begin{aligned}
& \Pi_{a_{0}<\alpha_{1}} H^{3}\left(A_{\alpha_{0}, \alpha_{1}}\right) \quad \Pi_{\alpha_{0}<\alpha_{1}<\alpha_{2}} H^{3}\left(A_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right) \\
& 0 \quad \Pi_{o_{0}<\alpha_{1}} H^{2}\left(A_{\alpha_{0}, \alpha_{1}}\right) \quad \Pi_{\alpha_{0}<\alpha_{1}<\alpha_{2}} H^{2}\left(A_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right) \\
& 0 \quad \Pi_{a_{0}<\alpha_{1}} H^{1}\left(A_{\alpha_{0}, \alpha_{1}}\right) \quad \Pi_{a_{0}<\alpha_{1}<\alpha_{2}} H^{1}\left(A_{a_{0}, \alpha_{1}, \alpha_{2}}\right) \\
& \Pi_{\alpha_{0}} H^{0}\left(A_{\alpha_{0}}\right) \quad \prod_{\alpha_{0}<\alpha_{1}} H^{0}\left(A_{\alpha_{0}, \alpha_{1}}\right) \quad \prod_{\alpha_{0}<\alpha_{1}<\alpha_{2}} H^{0}\left(A_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right)
\end{aligned}
$$

Convergence of the Mayer-Vietoris Spectral Sequence

The following proposition is classical and follows from the exactness of the generalized Mayer-Vietoris sequence.

Proposition

The spectral sequences, ${ }^{\prime} E_{r},{ }^{\prime \prime} E_{r}$, associated to $\mathcal{N}{ }^{\bullet \bullet \bullet}(A)$ converge to $H^{*}(A, \mathbb{Q})$ and thus,

$$
H^{*}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{N}^{\bullet \bullet \bullet}(A)\right)\right) \cong H^{*}(A, \mathbb{Q}) .
$$

Moreover, the homomorphism $\psi: C^{\bullet}(A) \rightarrow \operatorname{Tot}^{\bullet}\left(\mathcal{N}^{\bullet \bullet \bullet}(A)\right)$ induced by the homomorphism r (in the generalized Mayer-Vietoris sequence) is a quasi-isomorphism.

Admssible Subsets

- Consider a fixed family of polynomials, $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, as well as a fixed \mathcal{P}-closed and bounded semi-algebraic set, $S \subset \mathrm{R}^{k}$. We also fix a number, $\ell, 0 \leq \ell \leq k$.
- We identify certain closed and bounded semi-algebraic subsets of S (which we call the admissible subsets of S) We associate to each admissible subset $X \subset S$, its level denoted level (X), with level $(S)=0$.
- For each such admissible subset, $X \subset S$, we define a double complex, $\mathcal{M}^{\bullet \bullet}(X)$, such that

Admssible Subsets

- Consider a fixed family of polynomials, $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, as well as a fixed \mathcal{P}-closed and bounded semi-algebraic set, $S \subset \mathrm{R}^{k}$. We also fix a number, $\ell, 0 \leq \ell \leq k$.
- We identify certain closed and bounded semi-algebraic subsets of S (which we call the admissible subsets of S). We associate to each admissible subset $X \subset S$, its level denoted level (X), with level $(S)=0$.
- For each such admissible subset, $X \subset S$, we define a double complex, $\mathcal{M}^{\bullet \bullet}(X)$, such that

Admssible Subsets

- Consider a fixed family of polynomials, $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, as well as a fixed \mathcal{P}-closed and bounded semi-algebraic set, $S \subset \mathrm{R}^{k}$. We also fix a number, $\ell, 0 \leq \ell \leq k$.
- We identify certain closed and bounded semi-algebraic subsets of S (which we call the admissible subsets of S). We associate to each admissible subset $X \subset S$, its level denoted level (X), with level $(S)=0$.
- For each such admissible subset, $X \subset S$, we define a double complex, $\mathcal{M}^{\bullet \bullet}(X)$, such that

$$
H^{i}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{M}^{\bullet \bullet}(X)\right)\right) \cong H^{i}(X, \mathbb{Q}), 0 \leq i \leq \ell-\operatorname{level}(X)
$$

Main Idea

- If the sets occuring in the covering of X are all acyclic, then the first column of the Mayer-Vietoris double complex is zero except at the first row.
- In order to compute $b_{0}(X), \ldots, b_{\ell-l e v e l}(X)(X)$, it suffices to compute a suitable truncation of the Mayer-Vietoris double complex.
- However, we do not know how to efficiently compute (even the truncated) Mayer-Vietoris double complex.
- However making use of the covering construction recursively, we are able to compute another double complex, $\mathcal{M}^{\bullet \bullet}(X)$, which has much smaller size but whose associated total complex is quasi-isomorphic to the truncated Mayer-Vietoris double complex.

Main Idea

- If the sets occuring in the covering of X are all acyclic, then the first column of the Mayer-Vietoris double complex is zero except at the first row.
- In order to compute $b_{0}(X), \ldots, b_{\ell-\operatorname{level}(X)}(X)$, it suffices to compute a suitable truncation of the Mayer-Vietoris double complex.
- However, we do not know how to efficiently compute (even the truncated) Mayer-Vietoris double complex.
- However making use of the covering construction recursively, we are able to compute another double complex, $\mathcal{M}^{\bullet \bullet}(X)$, which has much smaller size but whose associated total complex is quasi-isomorphic to the truncated Mayer-Vietoris double complex.

Main Idea

- If the sets occuring in the covering of X are all acyclic, then the first column of the Mayer-Vietoris double complex is zero except at the first row.
- In order to compute $b_{0}(X), \ldots, b_{\ell-\operatorname{level}(X)}(X)$, it suffices to compute a suitable truncation of the Mayer-Vietoris double complex.
- However, we do not know how to efficiently compute (even the truncated) Mayer-Vietoris double complex.
- However, making use of the covering construction recursively, we are able to compute another double complex, $\mathcal{M}^{\bullet \bullet}(X)$, which has much smaller size but whose associated total complex is quasi-isomorphic to the truncated Mayer-Vietoris double complex.

Main Idea

- If the sets occuring in the covering of X are all acyclic, then the first column of the Mayer-Vietoris double complex is zero except at the first row.
- In order to compute $b_{0}(X), \ldots, b_{\ell-\operatorname{level}(X)}(X)$, it suffices to compute a suitable truncation of the Mayer-Vietoris double complex.
- However, we do not know how to efficiently compute (even the truncated) Mayer-Vietoris double complex.
- However, making use of the covering construction recursively, we are able to compute another double complex, $\mathcal{M}^{\bullet \bullet}(X)$, which has much smaller size but whose associated total complex is quasi-isomorphic to the truncated Mayer-Vietoris double complex.

Admissible Sets

- Given any closed and bounded semi-algebraic set $X \subset \mathrm{R}^{k}$, we will denote by $\mathcal{C}^{\prime}(X)$, a fixed covering of X by a finite family of closed, bounded and acyclic semi-algebraic sets.
- We have that, $V \subset X$ for each $V \in C^{\prime}(X)$ and

an ancestor of V_{J} and X an ancestor of all the V_{i} 's. We will transitively close the ancestor relation.

Admissible Sets

- Given any closed and bounded semi-algebraic set $X \subset \mathrm{R}^{k}$, we will denote by $\mathcal{C}^{\prime}(X)$, a fixed covering of X by a finite family of closed, bounded and acyclic semi-algebraic sets.
- We have that, $V \subset X$ for each $V \in \mathcal{C}^{\prime}(X)$ and
$X=\cup_{V \in \mathcal{C}^{\prime}(X)} V$. We will index the sets in $\mathcal{C}^{\prime}(X)$ as
$V_{1}, \ldots, V_{n_{X}}$ where $n_{X}=\# \mathcal{C}^{\prime}(X)$, and for
$1 \leq \alpha_{0}<\cdots<\alpha_{p} \leq n_{X}$, we will denote
$V_{\alpha_{0}, \ldots, \alpha_{p}}=\bigcap V_{\alpha_{i}}$. For $I \subset J \subset\left\{1, \ldots, n_{X}\right\}$ we will call V_{I} $0 \leq i \leq p$
an ancestor of V_{J} and X an ancestor of all the V_{i} 's. We will transitively close the ancestor relation.

Admissible Sets (cont.)

- We now associate to certain closed semi-algebraic subsets X of S (which we call the admissible subsets of S), a covering, $\mathcal{C}(X)$, of X by closed, bounded, acyclic semi-algebraic sets, obtained by enlarging the covering $\mathcal{C}^{\prime}(X)$.
The set S itself is admissible of level 0 and $\mathcal{C}(S)=\mathcal{C}^{\prime}(S)$ All intersections of the sets in $\mathcal{C}(S)$ taken upto $\ell+2$ at a time are admissible and have level 1.

Admissible Sets (cont.)

- We now associate to certain closed semi-algebraic subsets X of S (which we call the admissible subsets of S), a covering, $\mathcal{C}(X)$, of X by closed, bounded, acyclic semi-algebraic sets, obtained by enlarging the covering $\mathcal{C}^{\prime}(X)$.
- The set S itself is admissible of level 0 and $\mathcal{C}(S)=\mathcal{C}^{\prime}(S)$. All intersections of the sets in $\mathcal{C}(S)$ taken upto $\ell+2$ at a time are admissible and have level 1.

Admissible Sets (cont.)

- The admissible subsets of S are the smallest family of subsets of S containing the above sets and satisfying the following. For any admissible subset $X \subset S$ at level i, we define $\mathcal{C}(X)$ as follows. Let $\left\{Y_{1}, \ldots, Y_{N}\right\}$ be the set of admissible sets which are ancestors of X. Then,

$$
\mathcal{C}(X)=\bigcup_{U_{i} \in \mathcal{C}\left(Y_{i}\right), 1 \leq i \leq N} \mathcal{C}^{\prime}\left(U_{1} \cap \cdots \cap U_{N} \cap X\right)
$$

All intersections of the sets in $\mathcal{C}(X)$ taken at most $\ell-i+2$ at a time are admissible, have level $i+1$, and have X as an ancestor. For $I \subset J \subset\left\{1, \ldots, n_{X}\right\}, V_{I}$ is an ancestor of V_{J} and X is an ancestor of all the V_{i} 's. Moreover, for $V \in \mathcal{C}^{\prime}\left(U_{1} \cap \cdots \cap U_{N} \cap X\right)$, each U_{i} is an ancestor of V. This clearly implies that each $V \in \mathcal{C}(X)$ has a unique ancestor ineach $\mathcal{C}\left(Y_{i}\right)$ (namely, U_{i}).

Complexity of computing $\mathcal{C}^{\prime}(X)$

We have a procedure (recall last lecture) for computing $\mathcal{C}^{\prime}(X)$, for any given \mathcal{P}^{\prime}-closed and bounded semi-algebraic set, X, such that the number and the degrees of the polynomials appearing in the output of this procedure is bounded by $(m D)^{K^{(1)}}$. where $\# \mathcal{P}^{\prime}=m$ and $\operatorname{deg}(P) \leq D$, for $P \in \mathcal{P}^{\prime}$.

Complexity of computing $\mathcal{C}^{\prime}(X)$

Proposition

Let $S \subset \mathrm{R}^{k}$ be a \mathcal{P}-closed semi-algebraic set, where $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ is a family of s polynomials of degree at most d. Then the number of admissible sets, the number of polynomials used to define them, the degrees of these polynomials, are all bounded by $(s d)^{k^{0(\ell)}}$.

Complexity of computing $\mathcal{C}^{\prime}(X)$

Proposition

Let $S \subset \mathrm{R}^{k}$ be a \mathcal{P}-closed semi-algebraic set, where $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$ is a family of s polynomials of degree at most d. Then the number of admissible sets, the number of polynomials used to define them, the degrees of these polynomials, are all bounded by $(s d)^{k^{0(\ell)}}$.

Proof.

By induction on level (X).

Outline

(1) Introduction

- Recall from last lecture
- Main Result

2) Algebraic Topological Preliminaries

- Generalized Mayer-Vietoris Sequence
- Double Complexes and Spectral Sequences
- Mayer-Vietoris Spectral Sequence
(3) Double complexes associated to certain coverings
- Inductive Construction of a Double Complex

Double complex Associated to an Admissible Set

Given the different coverings described above, we now associate to each admissible set $X \subset S$ a double complex, $\mathcal{M}^{\bullet \bullet}(X)$, satisfying the following:
(1)

$$
\begin{equation*}
H^{i}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{M}^{\bullet, \bullet}(X)\right), \mathbb{Q}\right) \cong H^{i}(X, \mathbb{Q}), \text { for } 0 \leq i \leq \ell-\operatorname{level}(X) \tag{1}
\end{equation*}
$$

(2) For every admissible set Y, such that X is an ancestor of Y, and level $(X)=\operatorname{level}(Y)$, a restriction homomorphism: $r_{X, Y}: \mathcal{M}^{\bullet}, \bullet(X) \rightarrow \mathcal{M}^{\bullet \bullet}(Y)$, which induces the restriction homomorphisms between the cohomology groups:

Double complex Associated to an Admissible Set

Given the different coverings described above, we now associate to each admissible set $X \subset S$ a double complex, $\mathcal{M}^{\bullet \bullet} \cdot(X)$, satisfying the following:
(1)

$$
\begin{equation*}
H^{i}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{M}^{\bullet \bullet}(X)\right), \mathbb{Q}\right) \cong H^{i}(X, \mathbb{Q}), \text { for } 0 \leq i \leq \ell-\operatorname{level}(X) . \tag{1}
\end{equation*}
$$

(2) For every admissible set Y, such that X is an ancestor of Y, and level $(X)=\operatorname{level}(Y)$, a restriction homomorphism: $r_{X, Y}: \mathcal{M}^{\bullet \bullet}(X) \rightarrow \mathcal{M}^{\bullet \bullet}(Y)$, which induces the restriction homomorphisms between the cohomology groups:

$$
r: H^{i}(X, \mathbb{Q}) \rightarrow H^{i}(Y, \mathbb{Q})
$$

for $0 \leq i \leq \ell-\operatorname{level}(X)$ via the isomorphisms in (1).

Construction of $\mathcal{M}^{\bullet \bullet}(X)$

We now describe the construction of the double complex $\mathcal{M}^{\bullet \bullet}(X)$ and prove that it has the properties stated above. The double complex $\mathcal{M}^{\bullet \bullet} \bullet(X)$ is constructed inductively using induction on level (X) :
The base case is when level $(X)=\ell$. In this case the double complex, $\mathcal{M}^{\bullet \bullet}(X)$ is defined by:

$$
\begin{aligned}
& \mathcal{M}^{0,0}(X)=\oplus_{U_{\alpha_{0}} \in \mathcal{C}(X)} C^{0}\left(U_{\alpha_{0}}\right), \\
& \mathcal{M}^{1,0}(X)=\bigoplus_{U_{\alpha_{0}}, U_{\alpha_{1}} \in \mathcal{C}(X), \alpha_{0}<\alpha_{1}} C^{0}\left(U_{\alpha_{0}, \alpha_{1}}\right), \\
& \mathcal{M}^{p, q}(X)=0, \text { if } q>0 \text { or } p>1 .
\end{aligned}
$$

Here $C^{0}(Y)$ is the \mathbb{Q}-vector space of \mathbb{Q} valued locally constant functions on Y.

Diagramatically

Definition of the restriction homomorphism

For every admissible set Y, such that X is an ancestor of Y, and level $(X)=\operatorname{level}(Y)=\ell$, we define $r_{X, Y}: \mathcal{M}^{0,0}(X) \rightarrow \mathcal{M}^{0,0}(Y)$, as follows. Recall that, $\mathcal{M}^{0,0}(X)=\bigoplus C^{0}(U)$, and $\mathcal{M}^{0,0}(Y)=\bigoplus C^{0}(V)$. $U \in \mathcal{C}(X)$
Also, by definition of $\mathcal{C}(Y)$, we have that for each $V \in \mathcal{C}(Y)$ there is a unique $U \in \mathcal{C}(X)$ (which we will denote by $a(V)$) such that U is an ancestor of V.
For $x \in \mathcal{M}^{0,0}(X)$ and $V \in \mathcal{C}(Y)$ we define,

$$
r_{X, Y}(x) v=x_{a(v)} \mid v .
$$

We define $r_{X, Y}: \mathcal{M}^{1,0}(X) \rightarrow \mathcal{M}^{1,0}(Y)$, in a similar manner. More precisely, for $x \in \mathcal{M}^{0,0}(X)$ and $V, V^{\prime} \in \mathcal{C}(Y)$, we define

$$
r_{X, Y}(x)_{v, v^{\prime}}=x_{a(v), a\left(v^{\prime}\right)} \mid v \cap v^{\prime}
$$

The inductive step

In general the $\mathcal{M}^{p, q}(X)$ are defined as follows using induction on level (X) and with $n=\ell-\operatorname{level}(X)+1$.

$$
\begin{array}{ll}
\mathcal{M}^{0,0}(X)=\oplus U_{\alpha_{0}} \in \mathcal{C}(X) C^{0}\left(U_{\alpha_{0}}\right), & 0<q, \\
\mathcal{M}^{0, q}(X)=0, & 0<p, 0<p+q \leq \\
\mathcal{M}^{p, q}(X)=\oplus_{\alpha_{0}<\cdots<\alpha_{\rho}, U_{\alpha_{i}} \in \mathcal{C}(X)} \operatorname{Tot}^{q}\left(\mathcal{M}^{\bullet \bullet \bullet}\left(U_{\alpha_{0}, \ldots, \alpha_{p}}\right)\right), & \text { else. } \\
\mathcal{M}^{p, q}(X)=0, &
\end{array}
$$

Diagrammatically

$0 \longrightarrow \oplus_{\alpha_{0}<\alpha_{1}} \operatorname{Tot}^{n-2}\left(\mathcal{M}^{\bullet \bullet}\left(U_{\alpha_{0}, \alpha_{1}}\right)\right) \stackrel{\delta}{\rightarrow} \oplus_{\alpha_{0}<\alpha_{1}<\alpha_{2}} \operatorname{Tot}^{n-2}\left(\mathcal{M}^{\bullet \bullet} \cdot\left(U_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right)\right) \cdots$

$0 \longrightarrow \oplus \alpha_{0}<\alpha_{1} \operatorname{Tot}^{1}\left(\mathcal{M}^{\bullet \bullet}\left(U_{\alpha_{0}, \alpha_{1}}\right)\right) \xrightarrow{\delta} \oplus_{\alpha_{0}<\alpha_{1}<\alpha_{2}} \operatorname{Tot}^{1}\left(\mathcal{M}^{\bullet} \bullet \bullet\left(U_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right)\right) \cdots$
$\dagger d \quad 4 d$
$\alpha_{0} \in \mathcal{C}_{X} C^{0}\left(U_{\alpha_{0}}\right) \xrightarrow{\delta} \oplus \alpha_{0}<\alpha_{1} \operatorname{Tot}^{0}\left(\mathcal{M}^{\bullet \bullet \bullet}\left(U_{\alpha_{0}, \alpha_{1}}\right)\right) \xrightarrow{\delta} \oplus \alpha_{0}<\alpha_{1}<\alpha_{2} \operatorname{Tot}^{0}\left(\mathcal{M}^{\bullet} \cdot \bullet\left(U_{\alpha_{0}, \alpha_{1}, \alpha_{2}}\right)\right) \cdots \oplus \alpha_{0}<\cdots<\alpha_{n} \operatorname{Tot}^{0}($.

Key proposition

Proposition

For each admissible subset $X \subset S$ the double complex $\mathcal{M}^{\bullet \bullet}(X)$ satisfies the following properties:

> (2) For every admissible set Y, such that X is an ancestor of Y, and level $(X)=\operatorname{level}(Y)$, the homomorphism, $r_{X, Y}: \mathcal{M}^{\bullet \bullet}(X) \rightarrow \mathcal{M}^{\bullet \bullet}(Y)$ induces the restriction homomorphisms between the cohomology groups:

Key proposition

Proposition

For each admissible subset $X \subset S$ the double complex $\mathcal{M}^{\bullet \bullet}(X)$ satisfies the following properties:
(1) $H^{i}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{M}^{\bullet \bullet}(X)\right), \mathbb{Q}\right) \cong H^{i}(X, \mathbb{Q})$ for $0 \leq i \leq \ell-\operatorname{level}(X)$.
(2) For every admissible set Y, such that X is an ancestor of Y, and $\operatorname{level}(X)=\operatorname{level}(Y)$, the homomorphism, $r_{X, Y}: \mathcal{M}^{\bullet \bullet}(X) \rightarrow \mathcal{M}^{\bullet \bullet}(Y)$ induces the restriction homomorphisms between the cohomology groups:

Key proposition

Proposition

For each admissible subset $X \subset S$ the double complex $\mathcal{M}^{\bullet \bullet}(X)$ satisfies the following properties:
(1) $H^{i}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{M}^{\bullet \bullet}(X)\right), \mathbb{Q}\right) \cong H^{i}(X, \mathbb{Q})$ for $0 \leq i \leq \ell-\operatorname{level}(X)$.
(2) For every admissible set Y, such that X is an ancestor of Y, and $\operatorname{level}(X)=\operatorname{level}(Y)$, the homomorphism, $r_{X, Y}: \mathcal{M}^{\bullet \bullet}(X) \rightarrow \mathcal{M}^{\bullet \bullet}(Y)$ induces the restriction homomorphisms between the cohomology groups:

$$
r: H^{i}(X, \mathbb{Q}) \rightarrow H^{i}(Y, \mathbb{Q})
$$

for $0 \leq i \leq \ell-\operatorname{level}(X)$ via the isomorphisms in (1).

Proof Idea

Proof.

The proof is by induction on level (X). If level $(X)=\ell$ then the proposition is clear. Otherwise, by induction we can assume that the proposition is true for all admissilbe sets of the form, $U_{\alpha_{0}, \ldots, \alpha_{\rho}}$ with $U_{\alpha_{i}} \in \mathcal{C}(X)$. Thus, the p-th column of the complex, $\mathcal{M}^{\bullet \bullet}(X)$, is the direct sum of the complexes,

$$
\begin{gathered}
\operatorname{Tot}^{n-p}\left(\mathcal{M}^{\bullet, \bullet}\left(U_{\alpha_{0}, \ldots, \alpha_{p}}\right)\right) \\
\vdots \\
\operatorname{Tot}^{1}\left(\mathcal{M}^{\bullet, \bullet}\left(U_{\alpha_{0}}, \ldots, \alpha_{p}\right)\right) \\
\\
\operatorname{Tot}^{0}\left(\mathcal{M}^{\bullet}, \bullet\left(U_{\alpha_{0}, \ldots, \alpha_{p}}\right)\right)
\end{gathered}
$$

Proof (cont.)

Proof.

By induction hypothesis,
$H^{i}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{M}^{\bullet \bullet}\left(U_{\alpha_{0}, \ldots, \alpha_{p}}\right)\right)\right) \cong H^{i}\left(U_{\alpha_{0}, \ldots, \alpha_{p}}\right)$. Moreover, the homomorphism,
$r_{U_{\alpha_{0}, \ldots, \alpha_{p}}, U_{\alpha_{0}, \ldots, \alpha_{p+1}}}: \mathcal{M}^{\bullet \bullet}\left(U_{\alpha_{0}, \ldots, \alpha_{p}}\right) \rightarrow \mathcal{M}^{\bullet \bullet}\left(U_{\alpha_{0}, \ldots, \alpha_{p+1}}\right)$, induces the restriction homomorphisms between the cohomology groups:

$$
r: H^{i}\left(U_{\alpha_{0}, \ldots, \alpha_{p}}, \mathbb{Q}\right) \rightarrow H^{i}\left(U_{\alpha_{0}, \ldots, \alpha_{p+1}}, \mathbb{Q}\right)
$$

The proposition follows from comparing the spectral sequence of $\mathcal{M}^{\bullet \bullet}(X)$ with that of the truncated Mayer-Vietoris double complex associated to the covering, $\mathcal{C}(X)$, of X, which are isomorphic from the ' E_{1} term onwards.

