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Basic Semi-algebraic Sets Defined By Quadratic
Inequalities

Let R be a real closed field and let S ⊂ Rk be a basic,
closed semi-algebraic set defined by P1 ≥ 0, . . . ,Ps ≥ 0,
with deg(Pi) ≤ 2.
Such sets are in fact quite general, since every
semi-algebraic set can be defined by (quantified) formulas
involving only quadratic polynomials (at the cost of
increasing the number of variables and the size of the
formula). Moreover, as in the case of general
semi-algebraic sets, the Betti numbers of such sets can be
exponentially large. For example, the set S ⊂ Rk defined
by X1(X1 − 1) ≥ 0, . . . ,Xk (Xk − 1) ≥ 0, has b0(S) = 2k .
It is NP-hard to decide whether such a set is empty

Saugata Basu Efficient Algorithms for Computing Betti Numbers



Bounds
Algorithmic Results

Techniques
Projections

Main Open Questions

Basic Semi-algebraic Sets Defined By Quadratic
Inequalities

Let R be a real closed field and let S ⊂ Rk be a basic,
closed semi-algebraic set defined by P1 ≥ 0, . . . ,Ps ≥ 0,
with deg(Pi) ≤ 2.
Such sets are in fact quite general, since every
semi-algebraic set can be defined by (quantified) formulas
involving only quadratic polynomials (at the cost of
increasing the number of variables and the size of the
formula). Moreover, as in the case of general
semi-algebraic sets, the Betti numbers of such sets can be
exponentially large. For example, the set S ⊂ Rk defined
by X1(X1 − 1) ≥ 0, . . . ,Xk (Xk − 1) ≥ 0, has b0(S) = 2k .
It is NP-hard to decide whether such a set is empty

Saugata Basu Efficient Algorithms for Computing Betti Numbers



Bounds
Algorithmic Results

Techniques
Projections

Main Open Questions

Basic Semi-algebraic Sets Defined By Quadratic
Inequalities

Let R be a real closed field and let S ⊂ Rk be a basic,
closed semi-algebraic set defined by P1 ≥ 0, . . . ,Ps ≥ 0,
with deg(Pi) ≤ 2.
Such sets are in fact quite general, since every
semi-algebraic set can be defined by (quantified) formulas
involving only quadratic polynomials (at the cost of
increasing the number of variables and the size of the
formula). Moreover, as in the case of general
semi-algebraic sets, the Betti numbers of such sets can be
exponentially large. For example, the set S ⊂ Rk defined
by X1(X1 − 1) ≥ 0, . . . ,Xk (Xk − 1) ≥ 0, has b0(S) = 2k .
It is NP-hard to decide whether such a set is empty

Saugata Basu Efficient Algorithms for Computing Betti Numbers



Bounds
Algorithmic Results

Techniques
Projections

Main Open Questions

Bounds on Betti Numbers of Sets Defined by
Quadratic Inequalities

Theorem (B. 2003)

Let ` be any fixed number and R a real closed field. Let S ⊂ Rk

be defined by P1 ≥ 0, . . . ,Ps ≥ 0, with deg(Pi) ≤ 2. Then,

bk−`(S) ≤
(

s
`

)
kO(`).
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Features of the bound

For fixed ` ≥ 0 this gives a polynomial bound on the
highest ` Betti numbers of S (which could possibly be
non-zero).

Similar bounds do not hold for sets defined by polynomials
of degree greater than two. For instance, the set defined
by the single quartic equation,

∑k
i=1 X 2

i (Xi − 1)2 − ε = 0,
will have bk−1 = 2k , for small enough ε > 0.
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Bounds on the Projection

Theorem (with T.Zell, 2005)

Let R be a real closed field and let S ⊂ Rk+m be a bounded
basic semi-algebraic set defined by P1 ≥ 0, . . . ,P` ≥ 0, with
Pi ∈ R[X1, . . . ,Xk ,Y1, . . . ,Ym],deg(Pi) ≤ 2, 1 ≤ i ≤ `. Let
π : Rk+m → Rm be the projection onto the last m coordinates.
For any q > 0, 0 ≤ q ≤ k,

q∑
i=0

bi(π(S)) ≤ (k + m)O(q`).
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Computing the Euler-Poincaré Characteristic

Theorem (B. 2005)

For any fixed ` > 0, we have an algorithm which given a set of `
polynomials, P = {P1, . . . ,P`} ⊂ R[X1, . . . ,Xk ], with
deg(Pi) ≤ 2,1 ≤ i ≤ `, computes the Euler-Poincaré
characteristic, χ(S), where S is the set defined by
P1 ≤ 0, . . . ,P` ≤ 0. The complexity of the algorithm is

kO(`).
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Betti Numbers

For any fixed ` > 0, we have an algorithm which given a set
of s polynomials, P = {P1, . . . ,Ps} ⊂ R[X1, . . . ,Xk ], with
deg(Pi) ≤ 2,1 ≤ i ≤ s, computes bk−1(S), . . . ,bk−`(S),
where S is the set defined by P1 ≥ 0, . . . ,Ps ≥ 0. The
complexity of the algorithm is s`+2k2O(`)

.

(with T. Zell) For fixed ` and q, there exists an algorithm for
computing the first q Betti numbers of π(S) in the case
where S ⊂ Rk+m is a bounded basic semi-algebraic set
defined by P1 ≥ 0, . . . ,P` ≥ 0, with
Pi ∈ R[X1, . . . ,Xk ,Y1, . . . ,Ym],deg(Pi) ≤ 2, 1 ≤ i ≤ `. The
complexity of the algorithm is (k + m)2O(q`)

.
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Inclusion-Exclusion Property

Let P = {P1, . . . ,P`} ⊂ R[X0,X1, . . . ,Xk ] be a set of
homogeneous quadratic polynomials, and let S be the basic
closed semi-algebraic set defined on the unit sphere,
Sk ⊂ Rk+1, by the inequalities,

P1 ≤ 0, . . . ,P` ≤ 0.

We denote by Si the subset of Sk defined by Pi ≤ 0. Then,
S = ∩`

i=1Si . For J ⊂ {1, . . . , `}, we denote by SJ = ∪j∈JSj .

χ(S) =
∑

J⊂{1,...,`}

(−1)#(J)+1χ(SJ).

Thus, in order to compute χ(S) it suffices to compute χ(SJ) for
each J ⊂ {1, . . . , `}. Note that each SJ is a union of the sets Sj

for j ∈ J.
Saugata Basu Efficient Algorithms for Computing Betti Numbers
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Topology of unions

For quadratic forms P1, . . . ,Ps, we denote by
P = (P1, . . . ,Ps) : Rk+1 → Rs, the map defined by the
polynomials P1, . . . ,Ps.
Let A = ∪P∈P{x ∈ Sk | P(x) ≤ 0}. and
Ω = {ω ∈ Rs | |ω| = 1, ωi ≤ 0,1 ≤ i ≤ s}.
For ω ∈ Ω let ωP =

∑s
i=1 ωiPi . and let

B = {(ω, x) | ω ∈ Ω, x ∈ Sk and ωP(x) ≥ 0}.

B

	�
�

�
�

φ1
@

@
@

@

φ2

R

Ω Sk
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Property of φ2

Proposition (Agrachev)

The map φ2 gives a homotopy equivalence between B and
φ2(B) = A.
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Proof

Proof.

We first prove that φ2(B) = A. If x ∈ A, then there exists some
i ,1 ≤ i ≤ s, such that Pi(x) ≤ 0. Then for ω = (−δ1,i , . . . ,−δs,i)
(where δij = 1 if i = j , and 0 otherwise), we see that (ω, x) ∈ B.
Conversely, if x ∈ φ2(B), then there exists ω = (ω1, . . . , ωs) ∈ Ω
such that,

∑s
i=1 ωiPi(x) ≥ 0. Since, ωi ≤ 0,1 ≤ i ≤ s, and not

all ωi = 0, this implies that Pi(x) ≤ 0 for some i ,1 ≤ i ≤ s. This
shows that x ∈ A.
For x ∈ φ2(B), the fibre
φ−1

2 (x) = {(ω, x) | ω ∈ Ω such that ωP(x) ≥ 0}, is a non-empty
subset of Ω defined by a single linear inequality. From convexity
considerations, all such fibres can clearly be retracted to their
center of mass continuously.
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Property of φ1

We denote by Ωj = {ω ∈ Ω | λj(ωP) ≥ 0}, where λj(ωP)
is the j-th eigenvalue of ωP.

for ω ∈ Ωj \ Ωj−1, the fiber φ−1
1 (ω) is homotopy equivalent

to a (k − j)-dimensional sphere.

It follows that the Leray spectral sequence of the map φ1

(converging to the cohomology H∗(B) ∼= H∗(A)), has as its
E2 terms,

Epq
2 = Hp(Ωk−q,Ωk−q−1). (1)
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Euler-Poincaré Characteristic of unions

χ(A) = χBM(A) =
∑k+1

j=0 χ
BM(Ωj \ Ωj−1)(1 + (−1)(k−j)).

Let Z = (Z1, . . . ,Zs) be variables and let M(Z ) be the
symmetric matrix corresponding to the quadratic form
Z · P = Z1P1 + · · ·+ ZsPs. The entries of M(Z ) depend
linearly on Z . Let,

F (Z ,T ) = det(M(Z ) + T · Ik+1) = T k+1 + CkT k + · · ·+ C0,

where each Ci ∈ R[Z1, . . . ,Zs] is a polynomial of degree at
most k + 1. It follows from Descarte’s rule of signs that for
any z ∈ Ω, index(zP) is equal to the number of sign
variations in the sequence C0(z), . . . ,Ck (z),+1.
Additivity of the (Borel-Moore) Euler-Poincaré
characteristic gives, χ(A) = χBM(A) =∑

σ∈SIGN(C,Ω) χ
BM(R(σ,Ω)) · (1 + (−1)(k−n(σ))).
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Main Ideas

Consider S as the intersection of the individual sets, Si

defined by Pi ≥ 0.

The top dimensional homology groups of S are isomorphic
to those of the total complex associated to a suitable
truncation of the Mayer-Vietoris double complex.

The terms appearing in the truncated complex depend on
the unions of the Si ’s taken at most `+ 2 at a time. There
are at most

∑`+2
j=1

(s
j

)
= O(s`+2) such sets.

Moreover, for such semi-algebraic sets we are able to
compute in polynomial (in k ) time a complex, whose
homology groups are isomorphic to those of the given sets.
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Generalized Mayer-Vietoris Exact Sequence

Proposition

Let A = A1 ∩ · · · ∩ An and Aα0,...,αp denote the union,
Aα0 ∪ · · · ∪ Aαp . The following sequence is exact.

0 −→ C•(A)
i−→

⊕
α0

C•(Aα0)
δ−→

⊕
α0<α1

C•(Aα0,α1)
δ−→ · · ·

δ−→
⊕

α0<···<αp

C•(Aα0,...,αp)
δ−→

⊕
α0<···<αp+1

C•(Aα0,...,αp+1)
δ−→ · · · ,

where i is induced by inclusion and the connecting
homomorphisms δ are defined as follows:
for c ∈ ⊕α0<···<αpC•(Aα0,...,αp),
(δc)α0,...,αp+1 =

∑
0≤i≤p+1(−1)icα0,...,α̂i ,...,αp+1 .
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Mayer-Vietoris Double Complex

0 0 0??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck (Aα0 )
δ−→ ⊕α0<α1 Ck (Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck (Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−1(Aα0 )
δ−→ ⊕α0<α1 Ck−1(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−1(Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−2(Aα0 )
δ−→ ⊕α0<α1 Ck−2(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−2(Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−3(Aα0 )
δ−→ ⊕α0<α1 Ck−3(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−3(Aα0,α1,α2 )??y∂
??y∂

??y∂

.

.

.
.
.
.

.

.

.
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The Associated Total Complex

The i-th homology group of A, Hi(A) is isomorphic to the
i-th homology group of the associated total complex of the
double complex described above.
For 0 ≤ i ≤ k ,

Hi(A) ∼= H i(Tot•(N •,•)).

Moreover, if we denote by N •,•
` the truncated complex

defined by,

N p,q
` = N p,q, 0 ≤ p + k − q ≤ `+ 1,

= 0, otherwise,

then it is clear that,

Hi(A) ∼= H i(Tot•(N •,•
` )), k − ` ≤ i ≤ k . (2)
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Computing a quasi-isomorphic complex

We cannot hope to compute even the truncated complex
N •,•

` since we do not know how to compute triangulations
efficiently.
We overcome this problem by computing another double
complex D•,•

` , such that there exists a homomorphism of
double complexes,

ψ : D•,•
` → N •,•

` ,

which induces an isomorphism between the E1 terms of
the spectral sequences associated to the double
complexes D•,•

` and N •,•
` .

This implies that,

H∗(Tot•(N •,•
` )) ∼= H∗(Tot•(D•,•

` )).
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Cohomological Descent

Let, X ⊂ Rm and Y ⊂ Rn be open semi-algebraic sets, and
let f : X → Y be a semi-algebraic, continuous surjection,
which is also an open mapping (it takes open sets to open
sets).

We denote by W i
f (X ) the (i + 1)-fold fibered product of X

over f , that is,
W i

f (X ) = {(x0, . . . , xi) ∈ X i+1 | f (x0) = · · · = f (xi)}.
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Descent Spectral Sequence

We have an exact sequence analogous to the
Mayer-Vietoris exact sequence.

0 −→ C̄•(Y )
f∗−→ C̄•(W 0

f (X ))
δ0

−→ C̄•(W 1
f (X ))

δ1

−→ · · · C̄•(W p
f (X ))

δp

−→ C̄•(W p+1
f (X ))

δp+1

−→ · · ·
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Idea behind the algorithm

Notice that the fibered product of q sets each defined by `
quadatic inequalities in k + m variables is defined by q`
quadratic inequalities in qk + m variables.

Using the polynomial time algorithm described previously
for computing a complex whose cohomology groups are
isomorphic to those of a given semi-algebraic set defined
by a constant number of quadratic inequalities,we are able
to construct a certain double complex, whose associated
total complex is quasi-isomorphic to (implying having
isomorphic homology groups) a suitable truncation of the
one obtained from the cohomological descent spectral
sequence mentioned above. This complex is of much
smaller size and can be computed in polynomial time.
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Open Problems

Single exponential algorithm for computing triangulation (or
even stratification) of semi-algebraic sets ?

Single exponential time algorithm for computing all the
Betti numbers of semi-algebraic sets ?

Algorithm for deciding connectivity of a given algebraic set
whose complexity is dO(k) (instead of dO(k2)) ?

Algorithm for deciding connectivity of semi-algebraic sets
defined by ` quadratic inequalities in time kO(`) (instead of
k2O(`)

)?
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