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1. Introduction

Over the last twenty years there has been a lot of work on bounding the topo-
logical complexity (measured in terms of their Betti numbers) of several different
classes of subsets of Rk – most notably semi-algebraic and semi-Pfaffian sets. The
usual setting for proving these bounds is as follows. One considers a semi-algebraic
(or semi-Pfaffian) set S ⊂ Rk defined by a Boolean formula whose atoms consists
of P > 0, P = 0, P < 0, P ∈ P, where P is a set of polynomials (resp. Pfaffian
functions) of degrees bounded by a parameter (resp. whose Pfaffian complexity
is bounded by certain parameters) and #P = n. It is possible to obtain bounds
on the Betti numbers of S in terms of n, k and the parameters bounding the
complexity of the functions in P.

1.1. Known Bounds in the Semi-algebraic and Semi-Pfaffian cases. In
the semi-algebraic case, if we assume that the degrees of the polynomials in P are
bounded by d, and denoting by bi(S) the i-th Betti number of S, then it is shown
in [6] that,

∑
i≥0 bi(S) ≤ n2kO(d)k.

A similar bound is also shown for semi-Pfaffian sets [6].
In another direction, we also have reasonably tight bounds on the sum of the

Betti numbers of the realizations of all realizable sign conditions of the family P.
A sign condition on P is an element of {0, 1,−1}P , and the realization of a sign
condition σ is the set, R(σ) = {x ∈ Rk | sign(P (x)) = σ(P ),∀P ∈ P}. It is
shown in [3] that,

∑
σ∈{0,1,−1}P bi(R(σ)) ≤

∑k−i
j=0

(
n
j

)
4jd(2d−1)k−1 = nk−iO(d)k.

2. New Results

Notice that the above bounds are products of two quantities – one that depends
only on n (and k), and another part which is independent of n, but depends on
the parameters controlling the complexity of individual elements of P (such as
degrees of polynomials in the semi-algebraic case, or the degrees and the length of
the Pfaffian chain defining the functions in the Pfaffian case). It is customary to
refer to the first part as the combinatorial part of the complexity, and the latter
as the algebraic (or Pfaffian) part.

While understanding the algebraic part of the complexity is a very important
problem, in several applications, most notably in discrete and computational ge-
ometry, it is the combinatorial part of the complexity that is of primary interest
(the algebraic part is assumed to be bounded by a constant). The motivation
behind this point of view is the following. In problems in discrete and compu-
tational geometry, one typically encounters arrangements of a large number of
objects in Rk (for some fixed k), where each object is of “constant description
complexity” (for example, defined by a polynomial inequality of degree bounded
by a constant). Thus, it is the number of objects that constitutes the important
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parameter, and the algebraic complexity of the individual objects are thought of
as small constants. It is this second setting that is our primary interest in this
paper.

The main results of this paper generalize (combinatorial parts of) the above
mentioned bounds to sets which are definable in an arbitrary o-minimal structure
over a real closed field R. The proofs of the theorems stated below, as well as
several other results, can be found in the full paper [2].

2.1. Admissible Sets. We now define the sets that will play the role of objects
of “constant description complexity”.

Definition 2.1. Let S(R) be an o-minimal structure on a real closed field R and
let T ⊂ Rk+` be a definable set. Let π1 : Rk+` → Rk (resp. π2 : Rk+` → R`), be
the projections onto the first k (resp. last `) co-ordinates.

We will call a subset S of Rk to be a (T, π1, π2)-set if S = π1(π−1
2 (y) ∩ T ) for

some y ∈ R`, and when the context is clear we will denote Ty = π1(π−1
2 (y) ∩ T ).

In this paper, we will consider finite families of (T, π1, π2)-sets, where T is some
fixed definable set for each such family, and we will call a family of (T, π1, π2)-sets
to be a (T, π1, π2)-family. We refer to a finite (T, π1, π2)-family as an arrangement
of (T, π1, π2)-sets.

Definition 2.2. Let A = {S1, . . . , Sn}, such that each Si ⊂ Rk is a (T, π1, π2)-set.
For I ⊂ {1, . . . , n}, we letA(I) denote the set

⋂
i∈I⊂[1...n]

Si ∩
⋂

j∈[1...n]\I

Rk \ Sj , and

we will call such a set to be a basic A-set. We will denote by, C(A), the set of
non-empty connected components of all basic A-sets.

For any definable set X ⊂ Rk, we let bi(X) denote the i-th Betti number of X,
and we let b(X) denote

∑k
i=0 bi(X). We define the topological complexity of an

arrangement A of (T, π1, π2)-sets to be the number
∑

D∈C(A)

∑k
i=0 bi(D).

2.2. Combinatorial and Topological Complexity of Arrangements. We
have the following theorems.

Theorem 2.3. Let S(R) be an o-minimal structure over a real closed field R and
let T ⊂ Rk+` be a closed definable set. Then, there exists a constant C = C(T ) > 0
depending only on T , such that for any (T, π1, π2)-family A = {S1, . . . , Sn} of
subsets of Rk the following holds.

(1) For every i, 0 ≤ i ≤ k,
∑

D∈C(A) bi(D) ≤ C · nk−i. In particular, the
combinatorial complexity of A, which is equal to

∑
D∈C(A) b0(D), is at

most C · nk.
(2) The topological complexity of any m cells in the arrangement A is bounded

by m + C · nk−1.

Theorem 2.4 (Topological Complexity of Projections). Let S(R) be an o-minimal
structure, and let T ⊂ Rk+` be a definable, closed and bounded set. Let k = k1 +k2

and let π3 : Rk → Rk2 denote the projection map on the last k2 co-ordinates. Then,
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there exists a constant C = C(T ) > 0 such that for any (T, π1, π2)-family, A, with

|A| = n, and an A-closed set S ⊂ Rk,
k2∑

i=0

bi(π3(S)) ≤ C · n(k1+1)k2 .

2.3. Cylindrical Definable Cell Decompositions. The fact that given any
finite family A of definable subsets of Rk, there exists a Cylindrical Definable Cell
Decomposition (cdcd for short) of Rk adapted to A is classical (see [4, 5]). We
prove a quantitative version of this result. Such quantitative versions are known in
the semi-algebraic as well as semi-Pfaffian categories, but is missing in the general
o-minimal setting.

Theorem 2.5 (Quantitative cylindrical definable cell decomposition). Let S(R)
be an o-minimal structure over a real closed field R, and let T ⊂ Rk+` be a closed
definable set. Then, there exist constants C1, C2 > 0 depending only on T , and
definable sets, {Ti}i∈I , Ti ⊂ Rk ×R2(2k−1)·`, depending only on T , with |I| ≤ C1,
such that for any (T, π1, π2)-family, A = {S1, . . . , Sn} with Si = Tyi

,yi ∈ R`, 1 ≤
i ≤ n, some sub-collection of the sets

π≤k
k+2(2k−1)·`

(
π>k

k+2(2k−1)·`
−1

(yi1 , . . . ,yi2(2k−1)
) ∩ Ti

)
,

i ∈ I, 1 ≤ i1, . . . , i2(2k−1) ≤ n,

form a cdcd of Rk compatible with A. Moreover, the cdcd has at most C2 ·n2(2k−1)

cells.

2.4. Application. We end with an application which generalizes a Ramsey-type
result due to Alon et al. [1] from the class of semi-algebraic sets of constant
description complexity to (T, π1, π2)-families.

Theorem 2.6. Let S(R) be an o-minimal structure over a real closed field R,
and let F be a closed definable subset of R` × R`. Then, there exists a constant
1 > ε = ε(F ) > 0, depending only on F , such that for any set of n points, F =
{y1, . . . ,yn ∈ R`} there exists two subfamilies F1,F2 ⊂ F , with |F1|, |F2| ≥ εn
and either, for all yi ∈ F1 and yj ∈ F2, (yi,yj) ∈ F , or for no yi ∈ F1 and
yj ∈ F2, (yi,yj) ∈ F .
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