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Semi-algebraic Sets and their Betti numbers

The basic objects of real algebraic geometry are
semi-algebraic sets. Subsets of Rk defined by a formula
involving a finite number of polynomial equalities and
inequalities. A basic semi-algebraic set is one defined by a
conjunction of weak inequalities of the form P ≥ 0.

We will denote by bi(S) the i-th Betti number of S.

The sum of the Betti numbers of S is bounded by (sd)O(k),
where s = #(P) and d = maxP∈P deg(P).

Even though the Betti numbers are bounded singly
exponentially in k, there is no known algorithm with single
exponential complexity for computing them.
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Some Motivations

Studying topology of real algebraic varieties is an
important mathematical problem.

Semi-algebraic sets occur as configuration spaces in
applications. Computing topological information of such
spaces is important.

Studying certain questions in quantitative real algebraic
geometry. For instance, existence of single exponential
sized triangulations.

Recent work in complexity theory on the real version of
counting complexity classes.

Some ideas may be useful in designing algorithms for
computing homology groups in other contexts.
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Previous Work

Doubly exponential algorithms (with complexity (sd)2O(k)
)

for computing all the Betti numbers are known, since it is
possible to obtain a triangulation of S in doubly exponential
time using cylindrical algebraic decomposition
(Collins,Schwartz-Sharir).

Algorithms with single exponential complexity are known
only for the problems of testing emptiness, computing the
zero-th Betti number (i.e. the number of semi-algebraically
connected components of S) the Euler-Poincaré
characteristic of S, as well as the dimension of S.
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Summary

(with Pollack, Roy) There exists an algorithm that takes as
input the description of a P-semi-algebraic set S ⊂ Rk , and
outputs b1(S). The complexity of the algorithm is

(sd)kO(1)

where s = #(P) and d = maxP∈P deg(P).

For any fixed ` > 0, we can compute b0(S), . . . ,b`(S) with
complexity

(sd)kO(`)
.
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Basic Semi-algebraic Sets Defined By Quadratic
Inequalities

Let R be a real closed field and let S ⊂ Rk be a basic,
closed semi-algebraic set defined by P1 ≥ 0, . . . ,Ps ≥ 0,
with deg(Pi) ≤ 2.

Such sets are in fact quite general, since every
semi-algebraic set can be defined by (quantified) formulas
involving only quadratic polynomials (at the cost of
increasing the number of variables and the size of the
formula). Moreover, as in the case of general
semi-algebraic sets, the Betti numbers of such sets can be
exponentially large. For example, the set S ⊂ Rk defined
by X1(X1 − 1) ≥ 0, . . . ,Xk (Xk − 1) ≥ 0, has b0(S) = 2k .

It is NP-hard to decide whether such a set is empty
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Bounds on Betti Numbers of Sets Defined by
Quadratic Inequalities

Theorem (B. 2003)

Let ` be any fixed number and R a real closed field. Let S ⊂ Rk

be defined by P1 ≥ 0, . . . ,Ps ≥ 0, with deg(Pi) ≤ 2. Then,

bk−`(S) ≤
(

s
`

)
kO(`).
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Features of the bound

For fixed ` ≥ 0 this gives a polynomial bound on the
highest ` Betti numbers of S (which could possibly be
non-zero).

Similar bounds do not hold for sets defined by polynomials
of degree greater than two. For instance, the set defined
by the single quartic equation,

∑k
i=1 X 2

i (Xi − 1)2 − ε = 0,
will have bk−1 = 2k , for small enough ε > 0.
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Bounds on the Projection

Theorem (with T.Zell, 2005)

Let R be a real closed field and let S ⊂ Rk+m be a bounded
basic semi-algebraic set defined by P1 ≥ 0, . . . ,P` ≥ 0, with
Pi ∈ R[X1, . . . ,Xk ,Y1, . . . ,Ym],deg(Pi) ≤ 2, 1 ≤ i ≤ `. Let
π : Rk+m → Rm be the projection onto the last m coordinates.
For any q > 0, 0 ≤ q ≤ k,

q∑
i=0

bi(π(S)) ≤ (k + m)O(q`).
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Main Results in the Quadratic Case

For any fixed ` > 0, we have an algorithm which given a set
of s polynomials, P = {P1, . . . ,Ps} ⊂ R[X1, . . . ,Xk ], with
deg(Pi) ≤ 2,1 ≤ i ≤ s, computes bk−1(S), . . . ,bk−`(S),
where S is the set defined by P1 ≥ 0, . . . ,Ps ≥ 0. The
complexity of the algorithm is s`+2k2O(`)

.

(with Zell) For fixed ` and q, there exists an algorithm for
computing the first q Betti numbers of π(S) in the case
where S ⊂ Rk+m is a bounded basic semi-algebraic set
defined by P1 ≥ 0, . . . ,P` ≥ 0, with
Pi ∈ R[X1, . . . ,Xk ,Y1, . . . ,Ym],deg(Pi) ≤ 2, 1 ≤ i ≤ `. The
complexity of the algorithm is (k + m)2O(q`)

.
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Main Steps in the General Case

First reduce to the closed and bounded case using a
recent construction of Gabrielov and Vorobjov.

Compute using a parametrized version of the connecting
algorithm a covering of the given closed and bounded
semi-algebraic set by closed and bounded sets which are
moreover contractible.

Using the Roadmap Algorithm compute the connected
components of the pairwise and triple-wise intersections of
the elements of the covering and their incidences.
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Result from Algebraic Topology

Proposition

Let A1, . . . ,An be sub-complexes of a finite simplicial complex A
such that A = A1 ∪ · · · ∪ An and each Ai is acyclic, that is
H0(Ai) = Q and Hq(Ai) = 0 for all q > 0. Then,
b1(A) = dim(Ker(δ2))− dim(Im(δ1)), with∏

i

H0(Ai)
δ1−→

∏
i<j

H0(Ai,j)
δ2−→

∏
i<j<`

H0(Ai,j,`)
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Connecting paths

Given a semi-algebraic set S ⊂ Rk , and two points
x , y ∈ S, there exists an algorithm (Roadmap) with single
exponential complexity which can decide whether x and y
are in the same connected component of S and if so output
a semi-algebraic path connecting in S connecting x to y .

Fix a finite set of distinguised points in every connected
component of S and for x ∈ S, let γ(x) denote the
connecting path computed by the algorithm connecting x
to a distinguished point.
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Important Property of Connecting Path

The connecting path γ(x) consists of two consecutive
parts, γ0(x) and Γ1(x). The path γ0(x) is contained in
RM(S) and the path Γ1(x) is contained in Sx1 .

Moreover, Γ1(x) can again be decomposed into two parts,
γ1(x) and Γ2(x) with Γ2(x) contained in Sx̄2 and so on.

If y = (y1, . . . , yk ) ∈ S is another point such that x1 6= y1,
then the images of Γ1(x) and Γ1(y) are disjoint. If the
image of γ0(y) (which is contained in S) follows the same
sequence of curve segments as γ0(x) starting at p, then it
is clear that the images of the paths γ(x) and γ(y) has the
property that they are identical upto a point and they are
disjoint after it.
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Parametrized Paths

Definition

A parametrized path γ is a continuous semi-algebraic mapping
from V ⊂ Rk+1 → Rk , a semi-algebraic continuous function
` : U → [0,+∞), with U = π1...k (V ) ⊂ Rk , and a in Rk , such that

1 V = {(x , t) | x ∈ U,0 ≤ t ≤ `(x)},
2 ∀x ∈ U, γ(x ,0) = a,
3 ∀x ∈ U, γ(x , `(x)) = x ,
4 ∀x ∈ U,∀y ∈ U,∀s ∈ [0, `(x)],∀t ∈ [0, `(y)]

(γ(x , s) = γ(y , t) ⇒ s = t) ,
5 ∀x ∈ U,∀y ∈ U,∀s ∈ [0,min(`(x), `(y))]

(γ(x , s) = γ(y , s) ⇒ ∀t ≤ s, γ(x , t) = γ(y , t)) .
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` : U → [0,+∞), with U = π1...k (V ) ⊂ Rk , and a in Rk , such that

1 V = {(x , t) | x ∈ U,0 ≤ t ≤ `(x)},
2 ∀x ∈ U, γ(x ,0) = a,
3 ∀x ∈ U, γ(x , `(x)) = x ,
4 ∀x ∈ U,∀y ∈ U,∀s ∈ [0, `(x)],∀t ∈ [0, `(y)]

(γ(x , s) = γ(y , t) ⇒ s = t) ,
5 ∀x ∈ U,∀y ∈ U,∀s ∈ [0,min(`(x), `(y))]

(γ(x , s) = γ(y , s) ⇒ ∀t ≤ s, γ(x , t) = γ(y , t)) .
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Useful property of Parametrized Paths

Proposition

Let γ : V → Rk be a parametrized path such that U = π1...k (V )
is closed and bounded. Then, the image of γ is
semi-algebraically contractible.
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Computing Parametrized Paths

Given a closed and bounded semi-algebraic set S ⊂ Rk ,
there exists an algorithm which outputs,

a finite set of t polynomials A ⊂ R[X1, . . . ,Xk ],

for every σ ∈ Sign(A,S), a parametrized path
γσ : Vσ → Rk , with base Uσ = R(σ), such that for each
y ∈ R(σ), Im γσ(y , ·) is a semi-algebraic path which
connects the point y to a distinguished point aσ.

The complexity is single exponential.
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Ensuring Contractibility

For each σ ∈ Sign(A,S), since R(σ,S) is not necessarily
closed and bounded, Im γσ might not be contractible. In order
to ensure contractibility, we restrict the base of γσ to a slightly
smaller set which is closed, using infinitesimals.
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Ensuring the Covering Property

The images of the parametrized paths obtained after
shrinking their bases do not necessarily cover S.

We enlarge them, preserving contractibility, to recover a
covering of S.

It is necessary to use 2t infinitesimals in the shrinking and
enlargement process to work correctly.
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Main Ideas

Consider S as the intersection of the individual sets, Si

defined by Pi ≥ 0.

The top dimensional homology groups of S are isomorphic
to those of the total complex associated to a suitable
truncation of the Mayer-Vietoris double complex.

The terms appearing in the truncated complex depend on
the unions of the Si ’s taken at most `+ 2 at a time. There
are at most

∑`+2
j=1

(s
j

)
= O(s`+2) such sets.

Moreover, for such semi-algebraic sets we are able to
compute in polynomial (in k ) time a complex, whose
homology groups are isomorphic to those of the given sets.
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Generalized Mayer-Vietoris Exact Sequence

Proposition

Let A = A1 ∩ · · · ∩ An and Aα0,...,αp denote the union,
Aα0 ∪ · · · ∪ Aαp . The following sequence is exact.

0 −→ C•(A)
i−→

⊕
α0

C•(Aα0)
δ−→

⊕
α0<α1

C•(Aα0,α1)
δ−→ · · ·

δ−→
⊕

α0<···<αp

C•(Aα0,...,αp)
δ−→

⊕
α0<···<αp+1

C•(Aα0,...,αp+1)
δ−→ · · · ,

where i is induced by inclusion and the connecting
homomorphisms δ are defined as follows:
for c ∈ ⊕α0<···<αpC•(Aα0,...,αp),
(δc)α0,...,αp+1 =

∑
0≤i≤p+1(−1)icα0,...,α̂i ,...,αp+1 .
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Mayer-Vietoris Double Complex

0 0 0??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck (Aα0 )
δ−→ ⊕α0<α1 Ck (Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck (Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−1(Aα0 )
δ−→ ⊕α0<α1 Ck−1(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−1(Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−2(Aα0 )
δ−→ ⊕α0<α1 Ck−2(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−2(Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−3(Aα0 )
δ−→ ⊕α0<α1 Ck−3(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−3(Aα0,α1,α2 )??y∂
??y∂

??y∂

.

.

.
.
.
.

.

.

.
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The Associated Total Complex

The i-th homology group of A, Hi(A) is isomorphic to the
i-th homology group of the associated total complex of the
double complex described above.
For 0 ≤ i ≤ k ,

Hi(A) ∼= H i(Tot•(N •,•)).

Moreover, if we denote by N •,•
` the truncated complex

defined by,

N p,q
` = N p,q, 0 ≤ p + k − q ≤ `+ 1,

= 0, otherwise,

then it is clear that,

Hi(A) ∼= H i(Tot•(N •,•
` )), k − ` ≤ i ≤ k . (1)
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Computing a quasi-isomorphic complex

We cannot hope to compute even the truncated complex
N •,•

` since we do not know how to compute triangulations
efficiently.
We overcome this problem by computing another double
complex D•,•

` , such that there exists a homomorphism of
double complexes,

ψ : D•,•
` → N •,•

` ,

which induces an isomorphism between the E1 terms of
the spectral sequences associated to the double
complexes D•,•

` and N •,•
` .

This implies that,

H∗(Tot•(N •,•
` )) ∼= H∗(Tot•(D•,•

` )).
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Topology of unions

For quadratic forms P1, . . . ,Ps, we denote by
P = (P1, . . . ,Ps) : Rk+1 → Rs, the map defined by the
polynomials P1, . . . ,Ps.

Let A = ∪P∈P{x ∈ Sk | P(x) ≤ 0}. and
Ω = {ω ∈ Rs | |ω| = 1, ωi ≤ 0,1 ≤ i ≤ s}.
For ω ∈ Ω let ωP =

∑s
i=1 ωiPi . and let

B = {(ω, x) | ω ∈ Ω, x ∈ Sk and ωP(x) ≥ 0}.

B

	�
�

�
�

φ1
@

@
@

@

φ2

R

Ω Sk
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Property of φ2

Proposition (Agrachev)

The map φ2 gives a homotopy equivalence between B and
φ2(B) = A.
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Proof

Proof.

We first prove that φ2(B) = A. If x ∈ A, then there exists some
i ,1 ≤ i ≤ s, such that Pi(x) ≤ 0. Then for ω = (−δ1,i , . . . ,−δs,i)
(where δij = 1 if i = j , and 0 otherwise), we see that (ω, x) ∈ B.
Conversely, if x ∈ φ2(B), then there exists ω = (ω1, . . . , ωs) ∈ Ω
such that,

∑s
i=1 ωiPi(x) ≥ 0. Since, ωi ≤ 0,1 ≤ i ≤ s, and not

all ωi = 0, this implies that Pi(x) ≤ 0 for some i ,1 ≤ i ≤ s. This
shows that x ∈ A.
For x ∈ φ2(B), the fibre
φ−1

2 (x) = {(ω, x) | ω ∈ Ω such that ωP(x) ≥ 0}, is a non-empty
subset of Ω defined by a single linear inequality. From convexity
considerations, all such fibres can clearly be retracted to their
center of mass continuously.
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Property of φ1

We denote by Ωj = {ω ∈ Ω | λj(ωP) ≥ 0}, where λj(ωP)
is the j-th eigenvalue of ωP.

for ω ∈ Ωj \ Ωj−1, the fiber φ−1
1 (ω) is homotopy equivalent

to a (k − j)-dimensional sphere.

It follows that the Leray spectral sequence of the map φ1

(converging to the cohomology H∗(B) ∼= H∗(A)), has as its
E2 terms,

Epq
2 = Hp(Ωk−q,Ωk−q−1). (2)

Algorithm follows from an index invariant triangulation of Ω.
Complexity is doubly exponential in `.
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Cohomological Descent

Let, X ⊂ Rm and Y ⊂ Rn be semi-algebraic sets, and let
f : X → Y be a semi-algebraic, continuous surjection,
which is also an open mapping (it takes open sets to open
sets).

We denote by W i
f (X ) the (i + 1)-fold fibered product of X

over f , that is,
W i

f (X ) = {(x0, . . . , xi) ∈ X i+1 | f (x0) = · · · = f (xi)}.
For any semi-algebraic set S, we will denote by C̄•(S) be
the Alexander-Spanier co-chain complex of S.
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Descent Spectral Sequence

We have an exact sequence analogous to the
Mayer-Vietoris exact sequence.

0 −→ C̄•(Y )
f∗−→ C̄•(W 0

f (X ))
δ0

−→ C̄•(W 1
f (X ))

δ1

−→ · · · C̄•(W p
f (X ))

δp

−→ C̄•(W p+1
f (X ))

δp+1

−→ · · ·
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Idea behind the algorithm

Notice that the fibered product of q sets each defined by `
quadatic inequalities is defined by q + ` quadratic
inequalities.

Using the polynomial time algorithm described previously
for computing a complex whose cohomology groups are
isomorphic to those of a given semi-algebraic set defined
by a constant number of quadratic inequalities,we are able
to construct a certain double complex, whose associated
total complex is quasi-isomorphic to (implying having
isomorphic homology groups) a suitable truncation of the
one obtained from the cohomological descent spectral
sequence mentioned above. This complex is of much
smaller size and can be computed in polynomial time.
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