
Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Combinatorial Complexity in O-minimal
Geometry

Saugata Basu

School of Mathematics
Georgia Tech

Seminaire de Geometrie Algebrique Reelle, Rennes, Feb
16, 2007

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Outline

1 Introduction
Some basic results
Combinatorial and Algebraic Complexity

2 Arrangements
3 O-minimal Structures and Admissible Sets

Examples of Admissible Sets
A-sets

4 Results
Bounds on Betti Numbers
Cylindrical Definable Cell Decomposition
Application: Generalization of a Theorem due to Alon et
al.

5 Idea of Proofs

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Outline

1 Introduction
Some basic results
Combinatorial and Algebraic Complexity

2 Arrangements
3 O-minimal Structures and Admissible Sets

Examples of Admissible Sets
A-sets

4 Results
Bounds on Betti Numbers
Cylindrical Definable Cell Decomposition
Application: Generalization of a Theorem due to Alon et
al.

5 Idea of Proofs

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Outline

1 Introduction
Some basic results
Combinatorial and Algebraic Complexity

2 Arrangements
3 O-minimal Structures and Admissible Sets

Examples of Admissible Sets
A-sets

4 Results
Bounds on Betti Numbers
Cylindrical Definable Cell Decomposition
Application: Generalization of a Theorem due to Alon et
al.

5 Idea of Proofs

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Outline

1 Introduction
Some basic results
Combinatorial and Algebraic Complexity

2 Arrangements
3 O-minimal Structures and Admissible Sets

Examples of Admissible Sets
A-sets

4 Results
Bounds on Betti Numbers
Cylindrical Definable Cell Decomposition
Application: Generalization of a Theorem due to Alon et
al.

5 Idea of Proofs

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Outline

1 Introduction
Some basic results
Combinatorial and Algebraic Complexity

2 Arrangements
3 O-minimal Structures and Admissible Sets

Examples of Admissible Sets
A-sets

4 Results
Bounds on Betti Numbers
Cylindrical Definable Cell Decomposition
Application: Generalization of a Theorem due to Alon et
al.

5 Idea of Proofs

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Some basic results
Combinatorial and Algebraic Complexity

Outline

1 Introduction
Some basic results
Combinatorial and Algebraic Complexity

2 Arrangements
3 O-minimal Structures and Admissible Sets

Examples of Admissible Sets
A-sets

4 Results
Bounds on Betti Numbers
Cylindrical Definable Cell Decomposition
Application: Generalization of a Theorem due to Alon et
al.

5 Idea of Proofs

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Some basic results
Combinatorial and Algebraic Complexity

Semi-algebraic Sets and their Betti numbers

Let S ⊂ Rk be defined by a Boolean formula whose atoms
consists of P > 0, P = 0, P < 0, P ∈ P, where P is a set of
polynomials of degrees bounded by a parameter and
#P = n.∑

i≥0

bi(S) ≤n2kO(d)k . (Gabrielov-Vorobjov, 2005)

Bound for sign conditions: (B-Pollack-Roy, 2005)

∑
σ∈{0,1,−1}P

bi(R(σ)) ≤
k−i∑
j=0

(
n
j

)
4jd(2d − 1)k−1 =nk−iO(d)k .
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Combinatorial and Algebraic Complexity

Combinatorial Complexity

Notice that the bounds in the previous page are products
of two quantities – one that depends only on n (and k ), and
another part which is independent of n. We refer to the first
part as the combinatorial part of the complexity, and the
latter as the algebraic part.

While understanding the algebraic part of the complexity is
a very important problem, in several applications, most
notably in discrete and computational geometry, it is the
combinatorial part of the complexity that is of interest (the
algebraic part is assumed to be bounded by a constant).
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Definition of Arrangements

Let A = {S1, . . . , Sn}, with each Si belonging to some
“simple” class of sets.

For I ⊂ {1, . . . , n}, let A(I)denote the set⋂
i∈I⊂[1...n]

Si ∩
⋂

j∈[1...n]\I

Rk \ Sj ,

and it is customary to call a connected component of AI a
cell of the arrangement A and we denote by C(A) the set
of all non-empty cells of the arrangement A.

The cardinality of C(A) is called the combinatorial
complexity of the arrangement A.
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Objects of Bounded Description Complexity

The class of sets usually considered in the study of
arrangements are sets with “bounded description
complexity”. This means that each set in the arrangement
is defined by a first order formula in the language of
ordered fields involving at most a constant number
polynomials whose degrees are also bounded by a
constant.

Additionally, there is often a requirement that the sets be in
“general position”. The precise definition of “general
position” varies with context, but often involves restrictions
such as: the sets in the arrangements are smooth
manifolds, intersecting transversally.
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Examples of Admissible Sets
A-sets

Definition of O-minimal Structures

An o-minimal structure on a real closed field R is a sequence
S(R) = (Sn)n∈N.

1 All algebraic subsets of Rn are in Sn.
2 The class Sn is closed under complementation and finite

unions and intersections.
3 If A ∈ Sm and B ∈ Sn then A× B ∈ Sm+n.
4 If π : Rn+1 → Rn is the projection map on the first n

co-ordinates and A ∈ Sn+1, then π(A) ∈ Sn.
5 The elements of S1 are precisely finite unions of points and

intervals.
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Examples of O-minimal Structures I

Our first example of an o-minimal structure S(R), is the
o-minimal structure over a real closed field R where each
Sn is exactly the class of semi-algebraic subsets of Rn.

Let Sn be the images in Rn under the projection maps
Rn+k → Rn of sets of the form
{(x, y) ∈ Rn+k | P(x, y, ex , ey) = 0}, where P is a real
polynomial in 2(n + k) variables, and ex = (ex1 , . . . , exn)
and ey = (ey1 , . . . , eyk ). We will denote this o-minimal
structure over R by Sexp(R).
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Examples of O-minimal Structures II

Let Sn be the images in Rn under the projection maps
Rn+k → Rn of sets of the form
{(x, y) ∈ Rn+k | P(x, y) = 0}, where P is a restricted
analytic function in 2(n + k) variables.
(A restricted analytic function in N variables is an analytic
function defined on an open neighborhood of [0, 1]N

restricted to [0, 1]N (and extended by 0 outside)).
We will denote this o-minimal structure over R by Sana(R).
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Admissible Sets

Let S(R) be an o-minimal structure on a real closed field R
and let T ⊂ Rk+` be a fixed definable set.

T ⊂ Rk+`

Rk
�

π 1

R`

π
2

-

We will call S of Rk to be a (T , π1, π2)-set if

S = Ty = π1(π
−1
2 (y) ∩ T )

for some y ∈ R`.
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Example I

Let S(R) = Ssa(R) and Let T ⊂ R2k+1 be the semi-algebraic set
defined by

T = {(x1, . . . , xk , a1, . . . , ak , b) | 〈a, x〉 − b = 0}

(where we denote a = (a1, . . . , ak ) and x = (x1, . . . , xk )), and
π1 and π2 are the projections onto the first k and last k + 1
co-ordinates respectively. A (T , π1, π2)-set is clearly a
hyperplane in Rk and vice versa.
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Example II

Let S(R) = Sexp(R) and

T = {(x, y1, . . . , ym, a1, . . . , am) | x, y1, . . . , ym ∈ Rk ,

a1, . . . , am ∈ R, x1, . . . , xk > 0,

m∑
i=0

aixy i = 0},

with π1 : Rk+m(k+1) → Rk and π2 : Rk+m(k+1) → Rm(k+1) be the
projections onto the first k and the last m(k + 1) co-ordinates
respectively. The (T , π1, π2)-sets in this example include
(amongst others) all semi-algebraic sets consisting of
intersections with the positive orthant of all real algebraic sets
defined by a polynomial having at most m monomials (different
sets of monomials are allowed to occur in different
polynomials).
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A-sets I

Let A = {S1, . . . , Sn}, such that each Si ⊂ Rk is a
(T , π1, π2)-set. For I ⊂ {1, . . . , n}, we let A(I) denote the set⋂

i∈I⊂[1...n]

Si ∩
⋂

j∈[1...n]\I

Rk \ Sj , (1)

and we will call such a set to be a basic A-set. We will denote
by, C(A), the set of non-empty connected components of all
basic A-sets.
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A-sets II

We will call definable subsets S ⊂ Rk defined by a Boolean
formula whose atoms are of the form, x ∈ Si , 1 ≤ i ≤ n, a
A-set. A A-set is thus a union of basic A-sets. If T is closed,
and the Boolean formula defining S has no negations, then S is
closed by definition (since each Si is closed) and we call such a
set an A-closed set.
Moreover, if V is any closed definable subset of Rk , and S is an
A-set (resp. A-closed set), then we will call S ∩ V to be an
(A, V )-set (resp. (A, V )-closed set).
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Cylindrical Definable Cell Decomposition
Application: Generalization of a Theorem due to Alon et al.

Bounds on Betti Numbers I

Theorem

Let S(R) be an o-minimal structure over a real closed field R
and let T ⊂ Rk+` be a closed definable set. Then, there exists a
constant C = C(T ) > 0 depending only on T , such that for any
(T , π1, π2)-family A = {S1, . . . , Sn} of subsets of Rk the
following holds. For every i , 0 ≤ i ≤ k,∑

D∈C(A)

bi(D) ≤ C · nk−i .

In particular, the combinatorial complexity of A, is at most
C · nk . The topological complexity of any m cells in the
arrangement A is bounded by m + C · nk−1.
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Lower dimensional

Theorem

Let S(R) be an o-minimal structure over a real closed field R
and let T ⊂ Rk+`, V ⊂ Rk be closed definable sets with
dim(V ) = k ′. Then, there exists a constant C = C(T , V ) > 0
depending only on T and V, such that for any (T , π1, π2)-family,
A = {S1, . . . , Sn}, of subsets of Rk , and for every i , 0 ≤ i ≤ k ′,∑

D∈C(A,V )

bi(D) ≤ C · nk ′−i .

In particular, the combinatorial complexity of A restricted to V ,
is bounded by C · nk ′ .
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Topological Complexity of A-sets

Theorem

Let S(R) be an o-minimal structure over a real closed field R,
and let T ⊂ Rk+`, V ⊂ Rk be closed definable sets with
dim(V ) = k ′. Then, there exists a constant C = C(T , V ) > 0
such that for any (T , π1, π2)-family, A with |A| = n, and an
A-closed set S1 ⊂ Rk , and an A-set S2 ⊂ Rk ,

k ′∑
i=0

bi(S1 ∩ V ) ≤ C · nk ′ and,

k ′∑
i=0

bi(S2 ∩ V ) ≤ C · n2k ′ .
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Topological Complexity of Projections

Theorem (Topological Complexity of Projections)

Let S(R) be an o-minimal structure, and let T ⊂ Rk+` be a
definable, closed and bounded set. Let k = k1 + k2 and let
π3 : Rk → Rk2 denote the projection map on the last k2

co-ordinates.
Then, there exists a constant C = C(T ) > 0 such that for any
(T , π1, π2)-family, A, with |A| = n, and an A-closed set S ⊂ Rk ,

k2∑
i=0

bi(π3(S)) ≤ C · n(k1+1)k2 .

Saugata Basu Combinatorial Complexity in O-minimal Geometry
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Definition of cdcd

A cdcd of Rk is a finite partition of Rk into definable sets (Ci)i∈I

(called the cells of the cdcd) satisfying the following properties.
If k = 1 then a cdcd of R is given by a finite set of points
a1 < · · · < aN and the cells of the cdcd are the singletons {ai}
as well as the open intervals, (∞, a1), (a1, a2), . . . , (aN ,∞).
If k > 1, then a cdcd of Rk is given by a cdcd, (C′

i )i∈I′ , of Rk−1

and for each i ∈ I′, a collection of cells, Ci defined by,

Ci = {φi(C
′
i × Dj) | j ∈ Ji},
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Definition II

where
φi : C′

i × R→ Rk

is a definable homemorphism satisfying π ◦ φ = π, (Dj)j∈Ji is a
cdcd of R, and π : Rk → Rk−1 is the projection map onto the
first k − 1 coordinates. The cdcd of Rk is then given by⋃

i∈I′
Ci .

Given a family of definable subsets A = {S1, . . . , Sn} of Rk , we
say that a cdcd is adapted to A, if each Si is a union of cells of
the given cdcd.
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Quantitative cylindrical definable cell decomposition I

Theorem (Quantitative cylindrical definable cell decomposition)

Let S(R) be an o-minimal structure over a real closed field R,
and let T ⊂ Rk+` be a closed definable set. Then, there exist
constants C1, C2 > 0 depending only on T , and definable sets,

{Ti}i∈I , Ti ⊂ Rk × R2(2k−1)·`,

depending only on T , with |I| ≤ C1, such that for any
(T , π1, π2)-family, A = {S1, . . . , Sn} with
Si = Ty i , y i ∈ R`, 1 ≤ i ≤ n, some sub-collection of the sets
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Quantitative cylindrical definable cell decomposition II

Theorem (Quantitative cylindrical definable cell decomposition)

π≤k
k+2(2k−1)·`

(
π>k

k+2(2k−1)·`
−1

(y i1 , . . . , y i2(2k−1)
) ∩ Ti

)
,

i ∈ I, 1 ≤ i1, . . . , i2(2k−1) ≤ n,

form a cdcd of Rk compatible with A. Moreover, the cdcd has
at most C2 · n2(2k−1) cells.
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Ramsey type theorem

Theorem

Let S(R) be an o-minimal structure over a real closed field R,
and let F be a closed definable subset of R` × R`. Then, there
exists a constant 1 > ε = ε(F ) > 0, depending only on F, such
that for any set of n points,

F = {y1, . . . , yn ∈ R`}

there exists two subfamilies F1,F2 ⊂ F , with |F1|, |F2| ≥ εn
and either,

for all y i ∈ F1 and y j ∈ F2, (y i , y j) ∈ F , or

for no y i ∈ F1 and y j ∈ F2, (y i , y j) ∈ F.
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Interesting corollary

Corollary

Let S(R) be an o-minimal structure over a real closed field R,
and let T ⊂ Rk+` be a closed definable set. Then, there exists a
constant 1 > ε = ε(T ) > 0 depending only on T , such that for
any (T , π1, π2)-family, A = {S1, . . . , Sn}, there exists two
subfamilies A1,A2 ⊂ A, with |A1|, |A2| ≥ εn, and either,

for all Si ∈ A1 and Sj ∈ A2, Si ∩ Sj 6= ∅, or

for all Si ∈ A1 and Sj ∈ A2, Si ∩ Sj = ∅.
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Unions of definable families

Suppose that T1, . . . , Tm ⊂ Rk+` are closed, definable sets,
π1 : Rk+` → Rk and π2 : Rk+` → R` the two projections.

Lemma

For any collection of (Ti , π1, π2) families Ai , 1 ≤ i ≤ m, the
family ∪1≤i≤mAi is a (T ′, π′1, π

′
2) family where,

T ′ =
m⋃

i=1

Ti × {ei} ⊂ Rk+`+m,

with ei the i-th standard basis vector in Rm, and
π′1 : Rk+`+m → Rk and π′2 : Rk+`+m → R`+m, the projections
onto the first k and the last ` + m coordinates respectively.
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Given closed definable sets X ⊂ V ⊂ Rk , and ε > 0, we denote

OT(X , V , ε) = {x ∈ V | dX (x) < ε},

CT(X , V , ε) = {x ∈ V | dX (x) ≤ ε},

BT(X , V , ε) = {x ∈ V | dX (x) = ε},

and finally for ε1 > ε2 > 0 we define

Ann(X , V , ε1, ε2) = {x ∈ V | ε2 < dX (x) < ε1},

Ann(X , V , ε1, ε2) = {x ∈ V | ε2 ≤ dX (x) ≤ ε1}.
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Proposition

Let A = {S1, . . . , Sn} be a collection of closed definable
subsets of Rk and let V ⊂ Rk be a closed, and bounded
definable set. Then, for all sufficiently small 1 � ε1 � ε2 > 0
the following holds. For any connected component, C, of
A(I) ∩ V, I ⊂ [1 . . . n], there exists a connected component, D,
of the definable set, ⋂

1≤i≤n

Ann(Si , ε1, ε2)
c ∩ V

such that D is definably homotopy equivalent to C.
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Proof of Proposition

For all sufficiently small ε1 > 0 and for each connected
component C of A(I) ∩ V , there exists a connected
component D′ of⋂

i∈I

Si ∩
⋂

j∈[1...n]\I

OT(Sj , ε1)
c ∩ V ,

homotopy equivalent to C.
For 0 < ε2 � ε1, and each connected component D′ of⋂
i∈I

Si ∩
⋂

j∈[1...n]\I

OT(Sj , ε1)
c ∩ V , there exists a connected

component D of
⋂
i∈I

CT(Si , ε2) ∩
⋂

j∈[1...n]\I

OT(Sj , ε1)
c ∩ V ,

homotopy equivalent to D′.
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Proof of Proposition (cont).

Now notice that D is connected and contained in the set⋂
1≤i≤n

Ann(Si , ε1, ε2)
c ∩ V .

Let D′′ be the connected component of⋂
1≤i≤n

Ann(Si , ε1, ε2)
c ∩ V

containing D.
We claim that D = D′′, which will prove the proposition.
Suppose D′′ \ D 6= ∅. Let x ∈ D′′ \ D and y any point in D.
Since x /∈ D, either

1 there exists i ∈ I such that x ∈ OT(Si , ε1)
c or

2 there exists i ∈ [1 . . . n] \ I such that x ∈ CT(Si , ε2).
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Proof of Proposition (cont).

Let γ : [0, 1] → D′′ be a definable path with
γ(0) = x, γ(1) = y. and let di : D′′ → R be the definable
continuous function, di(z) = dist(z, Si).

Then, in the first case, di(x) = di(γ(0)) ≥ ε1 and
di(y) = di(γ(1)) < ε2, implying that there exists t ∈ (0, 1)
with ε2 < di(γ(t)) < ε1 implying that
di(γ(t)) 6∈ Ann(Si , ε1, ε2)

c and hence not in D′′ (a
contradiction).
In the second case, di(x) = di(γ(0)) < ε2 and
di(y) = di(γ(1)) ≥ ε1, implying that there exists t ∈ (0, 1)
with ε2 < di(γ(t)) < ε1 again implying that
di(γ(t)) 6∈ Ann(Si , ε1, ε2)

c and hence not in D′′ (a
contradiction).
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Proof of Proposition (cont).
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Proof of Theorem on Topological Complexity

For 1 ≤ i ≤ n, let y i ∈ R` such that

Si = Ty i ,

and let
Ai(ε1, ε2) = Ann(Si , ε1, ε2)

c ∩ V .

Applying Mayer-Vietoris inequalities we have for 0 ≤ i ≤ k ′,

bi(
n⋂

j=1

Aj(ε1, ε2)) ≤ bk ′(V )+
k ′−i∑
j=1

∑
J⊂{1,...,n},#(J)=j

(
bi+j−1(A

J(ε1, ε2)) + bk ′(V )
)

,

where AJ(ε1, ε2) = ∪j∈JAj(ε1, ε2).
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Proof of Theorem on Topological Complexity (cont).

Notice that each Ann(Si , ε1, ε2)
c , 1 ≤ i ≤ n, is a

(Ann(T , ε1, ε2)
c , π1, π2)-set and moreover,

Ann(Si , ε1, ε2)
c = Ty i ∩ Ann(T , ε1, ε2)

c ; 1 ≤ i ≤ n.

For J ⊂ [1 . . . n], we denote

SJ(ε1, ε2) =
⋃
j∈J

Ann(Sj , ε1, ε2)
c .

There are only a finite number (depending on T ) of
topological types amongst SJ(ε1, ε2). Restricting all the
sets to V in the above argument, we obtain that there are
only finitely many (depending on T and V ) of topological
types amongst the sets AJ(ε1, ε2) = SJ(ε1, ε2) ∩ V .
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Proof of Theorem on Topological Complexity (cont).
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Proof of Theorem on topological complexity(cont).

Thus, there exists a constant C(T , V ) such that

C(T , V ) = max
J⊂{1,...,n}

(
bi+j−1(A

J(ε1, ε2)) + bk ′(V )
)

+ bk ′(V ).

It now follows from inequality ?? and Proposition 10 that,∑
D∈C(A,V )

bi(D) ≤ C · nk ′−i .
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Proof of Theorem on topological complexity(cont).
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Proof of Theorem for A-sets

Key proposition:

Proposition

Let A = {S1, . . . , Sn} be a collection of closed definable
subsets of Rk and let V ⊂ Rk be a closed, and bounded
definable set and let S be an (A, V )-closed set. Then, for all
sufficiently small 1 � ε1 � ε2 · · · � εn > 0,

b(S) ≤
∑

D∈C(B,V )

b(D),

where

B =
n⋃

i=1

{Si , BT(Si , εi), OT(Si , 2εi)
c}.
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Proof of Theorem on projections

Notice that for each p, 0 ≤ p ≤ k2, and any A-closed set
S ⊂ Rk1+k2 , W p

π3(S) ⊂ R(p+1)k1+k2 is an Ap-closed set where,

Ap =

p⋃
j=0

Ap,j ,

Ap,j =
n⋃

i=1

{Sp,j
i },

where Sp,j
i ⊂ R(p+1)k1+k2 is defined by,

Sp,j
i = {(x0, . . . , xp, y) | x j ∈ Rk1 , y ∈ Rk2 , (x j , y) ∈ Si}.

and W i
f (X ) = {(x0, . . . , x i) ∈ X i+1 | f (x0) = · · · = f (x i)}.

Saugata Basu Combinatorial Complexity in O-minimal Geometry



Introduction
Arrangements

O-minimal Structures and Admissible Sets
Results

Idea of Proofs

Proof of Theorem on Projections (cont).

Also, note that Ap,j is a (T p,j , πp
1 , πp

2) family, where

T p,j = {(x0, . . . , xp, y, z) | x j ∈ Rk1 , y ∈ Rk2 , z ∈ R`, (x j , y, z) ∈ T ,

for some j , 0 ≤ j ≤ p}.

and πp
1 : R(p+1)k1+k2+` → R(p+1)k1+k2 , and

πp
2 : R(p+1)k1+k2+` → R` are the appropriate projections.

Since each T p,j is determined by T , we have using
previous lemma that Ap is a (T ′, π′1, π

′
2)-family for some

definable T ′ determined by T .
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Since each T p,j is determined by T , we have using
previous lemma that Ap is a (T ′, π′1, π
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2)-family for some
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Proof of Theorem on projections (cont).

Now W p
π3(S) ⊂ R(p+1)k1+k2 is a Ap-closed set and

#Ap = (p + 1)n. Applying previous theorem we get, for each p
and j , 0 ≤ p, j < k2,

bj(W
p
π3

(S)) ≤ C1(T ) · n(p+1)k1+k2

The theorem now follows, since for each q, 0 ≤ q < k2,

bq(π3(S)) ≤
∑

i+j=q

bj(W
i
π3

(S)) ≤ C2(T )·n(q+1)k1+k2 ≤ C(T )·n(k1+1)k2 .
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Proof of Ramsey type Theorem

For each i , 1 ≤ i ≤ n, let

Ai = π≤`
2` (π>`

2`

−1
(y i) ∩ F ),

and G = {Ai | 1 ≤ i ≤ n}. Note that G is a
(R, π≤`

2` , π>`
2` )-family.

We now use the Clarkson-Shor random sampling
technique (using Theorem on cdcd instead of vertical
decomposition). Applying Theorem on quantitative cdcd to
some sub-family G0 ⊂ G of cardinality r , we get a
decomposition of R` into at most Cr2(2`−1) = rO(1)

definable cells, each of them defined by at most
2(2` − 1) = O(1) of the y i ’s.
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Proof of Ramesey type Theorem (cont).

Let τ be a cell of the cdcd of G0 and let G ∈ G. We say that
G crosses τ if G ∩ τ 6= ∅ and τ 6⊂ G. The standard theory
of random sampling now ensures that we can choose G0

such that each cell of the cdcd of G0 is “crossed” by no
more than c1n log r

r elements of G, where c1 is a constant
depending only on F .
For each cell τ of the cdcd of G0, let Gτ denote the set of
elements of G which cross τ and let Fτ = F ∩ τ .
Since the total number of cells in the cdcd of G0 is bounded
by rO(1), there must exist a cell τ such that,

|Fτ | ≥
n

rO(1)
.

Now, every element of G \ Gτ either fully contains τ or is
disjoint from it.
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Proof of Ramesey type Theorem (cont).
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Proof of Ramesey type Theorem (cont).
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of random sampling now ensures that we can choose G0

such that each cell of the cdcd of G0 is “crossed” by no
more than c1n log r

r elements of G, where c1 is a constant
depending only on F .
For each cell τ of the cdcd of G0, let Gτ denote the set of
elements of G which cross τ and let Fτ = F ∩ τ .
Since the total number of cells in the cdcd of G0 is bounded
by rO(1), there must exist a cell τ such that,

|Fτ | ≥
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rO(1)
.

Now, every element of G \ Gτ either fully contains τ or is
disjoint from it.
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Proof of Ramsey type Theorem (cont).

Setting α = 1
rO(1) and β = 1

2(1− c1 log r
r ) we have that there

exists a set F ′ = Fτ of cardinality at least αn, and a subset
G′ of cardinality at least βn such that either each element
of F ′ is contained in every element of G′, or no element of
F ′ is contained in any element of G′.
The proof is complete by taking F1 = F ′, and
F2 = {y i | Ai ∈ G′} and ε = min(α, β).
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