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Semi-algebraic Sets and their Betti numbers

A semi-algebraic set, S ⊂ Rk , is a subset of Rk defined by
a Boolean formula whose atoms are polynomial equalities
and inequalities. If all the polynomials involved belong to
P ⊂ R[X1, . . . ,Xk ], we call S a P-semi-algebraic set.
bi(S) will denote the i-th Betti number of S.
Classical result (though with some modern tweaks)
(Oleinik, Petrovsky, Thom, Milnor, B., Gabrielov-Vorobjov)∑

0≤i≤k

bi(S) ≤ (O(s2d))k

where s = #(P) and d = maxP∈P deg(P).
Even though the Betti numbers are bounded singly
exponentially in k, there is no known algorithm with single
exponential complexity for computing them.
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Some Motivations

Semi-algebraic sets occur as configuration spaces in
applications.
Studying certain questions in quantitative real algebraic
geometry. For instance, existence of single exponential
sized triangulations.
Next step after deciding whether a formula is satisfiable.
Analogous problem in the discrete case, are counting
problems (perhaps generally computing zeta functions of
varieties). Recent work on continuous versions of counting
complexity classes (Burgisser, Cucker, Meer) develops this
analogy more formally.
Some ideas may be useful in designing algorithms for
computing homology groups in other contexts.
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Complexity of Algorithms

Double exponential vs single exponential vs polynomial
time.

Problems that can be solved in single exponential time:
Testing emptiness, deciding connectivity, computing
descriptions of the connected components, computing the
Euler-Poincaré characteristic, computing the dimension of
a given semi-algebraic set.

Problems for which no single exponential time algorithm is
known: Computing the higher Betti numbers, computing
semi-algebraic triangulations, computing semi-algebraic
stratifications.
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Three Main Techniques

It is possible to obtain a semi-algebraic triangulation of S in
doubly exponential time using cylindrical algebraic
decomposition (Collins,Schwartz-Sharir). Thus, algorithms
with doubly exponential complexity ((sd)2O(k)

) is known for
computing all the Betti numbers.
Algorithms with singly exponential complexity are all based
on some version of the critical point method. We do not
obtain full topological information, but enough to test
emptiness, to compute Euler-Poincaré characteristics,
number of connected components etc.
For sets defined by quadratic inequalities, there is a duality
that allows us to exchange the roles of k and s, which can
be exploited in certain situations.
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Results about general semi-algebraic sets

Computing the first Betti number. [B,Pollack,Roy, 2005]

There exists an algorithm that takes as input the description of
a P-semi-algebraic set S ⊂ Rk , and outputs b1(S). The
complexity of the algorithm is (sd)kO(1)

.

Computing the first ` Betti numberd. [B., 2005]

For any fixed ` > 0, we can compute b0(S), . . . ,b`(S) with
complexity (sd)kO(`)

.
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Basic Semi-algebraic Sets Defined By Quadratic
Inequalities

Let S ⊂ Rk be a semi-algebraic set defined by
P1 ≥ 0, . . . ,Ps ≥ 0, with deg(Pi) ≤ 2,1 ≤ i ≤ s.

Such sets are in fact quite general, since every
semi-algebraic set can be defined by (quantified) formulas
involving only quadratic polynomials.

Moreover, as in the case of general semi-algebraic sets,
the Betti numbers of such sets can be exponentially large.
For example, the set S ⊂ Rk defined by
X1(X1 − 1) ≥ 0, . . . ,Xk (Xk − 1) ≥ 0, has b0(S) = 2k .

It is NP-hard to decide whether such a set is empty.
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Bounds on Betti Numbers of Sets Defined by
Quadratic Inequalities

Using prior results of Barvinok and inequalities derived from
Mayer-Vietoris exact sequence,

Theorem (B. 2003)

Let S ⊂ Rk be defined by

P1 ≥ 0, . . . ,Ps ≥ 0, with deg(Pi) ≤ 2,1 ≤ i ≤ s.

Then,

bk−`(S) ≤
(

s
`

)
kO(`).
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Features of the bound

For fixed ` ≥ 0 this gives a polynomial bound on the top `
Betti numbers of S (which could possibly be non-zero).

Similar bounds do not hold for sets defined by polynomials
of degree greater than two. For instance, the set defined
by the single quartic equation,

k∑
i=1

X 2
i (Xi − 1)2 − ε = 0,

will have bk−1 = 2k , for small enough ε > 0.
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Bounds on the Projection

Theorem (B.,Zell, 2005)

Let S ⊂ Rk+m be a bounded semi-algebraic set defined by

P1 ≥ 0, . . . ,Ps ≥ 0, with deg(Pi) ≤ 2,1 ≤ i ≤ `,

with Pi ∈ R[X1, . . . ,Xk ,Y1, . . . ,Ym].
Let π : Rk+m → Rm be the projection onto the last m
coordinates. Then, for any q > 0, 0 ≤ q ≤ k,

q∑
i=0

bi(π(S)) ≤ (k + m)O(q`).
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Results in the Quadratic Case I

Algorithm for deciding emptiness. [Barvinok,1993],
[Grigoriev-Pasechnik, 2004].

There exists an algorithm which given a set of s polynomials,
P = {P1, . . . ,Ps} ⊂ R[X1, . . . ,Xk ], with deg(Pi) ≤ 2,1 ≤ i ≤ s,
decides if S is non-empty, where S is the set defined by
P1 ≥ 0, . . . ,Ps ≥ 0. The complexity of the algorithm is kO(s).

Algorithm for computing the Euler-Poincaré characteristic. [B.,
2005].

There exists an algorithm for computing χ(S) whose complexity
is kO(s).

These algorithms are polynomial time for fixed s (number of
polynomials).
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Results in the Quadratic Case II

Polynomial time algorithm for computing top Betti numbers. [B.,
2005].

We have an algorithm which given a set of s polynomials,
P = {P1, . . . ,Ps} ⊂ R[X1, . . . ,Xk ], with deg(Pi) ≤ 2,1 ≤ i ≤ s,
computes bk−1(S), . . . ,bk−`(S), where S is the set defined by
P1 ≥ 0, . . . ,Ps ≥ 0. The complexity of the algorithm is

`+2∑
i=0

(
s
i

)
k2O(min(`,s))

= s`+2k2O(`)
.
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Results in the Quadratic Case III

Projections of sets defined by few quadratic inequalities.
[B.,Zell, 2005].

For fixed ` and q, there exists an algorithm for computing the
first q Betti numbers of π(S) where S ⊂ Rk+m is a bounded
basic semi-algebraic set defined by P1 ≥ 0, . . . ,P` ≥ 0, with
Pi ∈ R[X1, . . . ,Xk ,Y1, . . . ,Ym],deg(Pi) ≤ 2, 1 ≤ i ≤ `. The
complexity of the algorithm is

(k + m)2O(q`)
.
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Main Steps in the General Case

First reduce to the closed and bounded case using a
recent construction of Gabrielov and Vorobjov.

Instead of computing a triangulation (which we do not
know how to do in single exponential time), we compute
with single exponential complexity a family of closed,
bounded and contractible semi-algebraic sets, {X}i∈I such
that, S = ∪i∈IXi .

Using the Roadmap Algorithm compute the connected
components of the pairwise and triple-wise intersections of
the elements of the covering and their inclusion
relationships.
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Result Needed from Algebraic Topology

A simple spectral sequence argument yields:

Proposition

Let A1, . . . ,An be sub-complexes of a finite simplicial complex A
such that A = A1 ∪ · · · ∪ An and each Ai is acyclic. Then,
b1(A) = dim(Ker(δ2))− dim(Im(δ1)), with∏

i

H0(Ai)
δ1−→

∏
i<j

H0(Ai,j)
δ2−→

∏
i<j<`

H0(Ai,j,`)

The homomorphisms δi are induced by generalized restrictions.
Corresponding result needed for computing the higher Betti
numbers is much more complicated.
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Connecting paths

Given a semi-algebraic set S ⊂ Rk , x , y ∈ S, there exists
an algorithm (Roadmap) with single exponential complexity
which can decide whether x and y are in the same
connected component of S and if so output a
semi-algebraic path connecting x to y in S.

Fix a finite set of distinguished points in every connected
component of S and for x ∈ S, let γ(x) denote the
connecting path computed by the algorithm connecting x
to a distinguished point.
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Important Property of Connecting Path

The connecting path γ(x) consists of two consecutive
parts, γ0(x) and Γ1(x). The path γ0(x) is contained in
RM(S) and the path Γ1(x) is contained in Sx1 .

Moreover, Γ1(x) can again be decomposed into two parts,
γ1(x) and Γ2(x) with Γ2(x) contained in Sx1,x2 and so on.

If y = (y1, . . . , yk ) ∈ S is another point such that x1 6= y1,
then the images of Γ1(x) and Γ1(y) are disjoint. If the
image of γ0(y) (which is contained in S) follows the same
sequence of curve segments as γ0(x) starting at p, then
the images of the paths γ(x) and γ(y) has the property that
they are identical upto a point and they are disjoint after it.
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Schematic Picture

Γ1(x)

Γ1(y)

γ0,m(b0,m(y))

γ0,m(b0,m(x))

X1

γ0,m

x

y
γ0,m−1

γ0,m−2

Figure: The connecting path Γ(x)
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Parametrized Paths: Precise Definition

A parametrized path γ is a continuous semi-algebraic mapping,
V ⊂ Rk+1 → Rk , a semi-algebraic continuous function
` : U → [0,+∞), with U = π1...k (V ) ⊂ Rk , and a in Rk , such that

1 V = {(x , t) | x ∈ U,0 ≤ t ≤ `(x)},
2 ∀x ∈ U, γ(x ,0) = a,
3 ∀x ∈ U, γ(x , `(x)) = x ,
4 ∀x ∈ U,∀y ∈ U,∀s ∈ [0, `(x)],∀t ∈ [0, `(y)]

(γ(x , s) = γ(y , t) ⇒ s = t) ,
5 ∀x ∈ U,∀y ∈ U,∀s ∈ [0,min(`(x), `(y))]

(γ(x , s) = γ(y , s) ⇒ ∀t ≤ s, γ(x , t) = γ(y , t)) .
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Figure: A Parametrized Path
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Useful property of Parametrized Paths

Proposition

Let γ : V → Rk be a parametrized path such that U = π1...k (V )
is closed and bounded. Then, the image of γ is
semi-algebraically contractible.

The images of the parametrized paths are the building blocks in
the construction of the covering by contractible sets.
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Main Ideas

Consider S as the intersection of the individual sets, Si

defined by Pi ≥ 0.

The top dimensional homology groups of S are isomorphic
to those of the total complex associated to a suitable
truncation of the Mayer-Vietoris double complex.

The terms appearing in the truncated complex depend on
the unions of the Si ’s taken at most `+ 2 at a time. There
are at most

∑`+2
j=1

(s
j

)
= O(s`+2) such sets.

Moreover, for such semi-algebraic sets we are able to
compute in polynomial (in k ) time a complex, whose
homology groups are isomorphic to those of the given sets.
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Generalized Mayer-Vietoris Exact Sequence

Proposition

Let A = A1 ∩ · · · ∩ An and Aα0,...,αp denote the union,
Aα0 ∪ · · · ∪ Aαp . The following sequence is exact.

0 −→ C•(A)
i−→

⊕
α0

C•(Aα0)
δ−→

⊕
α0<α1

C•(Aα0,α1)
δ−→ · · ·

δ−→
⊕

α0<···<αp

C•(Aα0,...,αp)
δ−→

⊕
α0<···<αp+1

C•(Aα0,...,αp+1)
δ−→ · · · ,

where i is induced by inclusion and the connecting
homomorphisms δ are defined as follows:
for c ∈ ⊕α0<···<αpC•(Aα0,...,αp),
(δc)α0,...,αp+1 =

∑
0≤i≤p+1(−1)icα0,...,α̂i ,...,αp+1 .
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Mayer-Vietoris Double Complex

0 0 0??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck (Aα0 )
δ−→ ⊕α0<α1 Ck (Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck (Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−1(Aα0 )
δ−→ ⊕α0<α1 Ck−1(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−1(Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−2(Aα0 )
δ−→ ⊕α0<α1 Ck−2(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−2(Aα0,α1,α2 )??y∂
??y∂

??y∂

0 −→ ⊕α0 Ck−3(Aα0 )
δ−→ ⊕α0<α1 Ck−3(Aα0,α1 )

δ−→ ⊕α0<α1<α2 Ck−3(Aα0,α1,α2 )??y∂
??y∂

??y∂

.

.

.
.
.
.

.

.

.

Saugata Basu Efficient Algorithms for Computing Betti Numbers



Introduction
Recent Results

Outline of the Methods
Open Problems

General Case
Computing Covering by Contractible sets: Few Words
Quadratic Case
Mayer-Vietoris Exact Sequence
Projections

The Associated Total Complex

The i-th homology group of A, Hi(A) is isomorphic to the
i-th homology group of the associated total complex of the
double complex described above.
For 0 ≤ i ≤ k ,

Hi(A) ∼= H i(Tot•(N •,•)).

Moreover, if we denote by N •,•
` the truncated complex

defined by,

N p,q
` = N p,q, 0 ≤ p ≤ `, k − ` ≤ q ≤ k ,

= 0, otherwise,

then it is clear that,

Hi(A) ∼= H i(Tot•(N •,•
` )), k − ` ≤ i ≤ k .
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Computing a quasi-isomorphic complex

We cannot hope to compute even the truncated complex
N •,•

` since we do not know how to compute triangulations
efficiently.
We overcome this problem by computing another double
complex D•,•

` , such that there exists a homomorphism of
double complexes,

ψ : D•,•
` → N •,•

` ,

which induces an isomorphism between the E1 terms of
the spectral sequences associated to the double
complexes D•,•

` and N •,•
` .

This implies that,

H∗(Tot•(N •,•
` )) ∼= H∗(Tot•(D•,•

` )).
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Topology of Unions

For quadratic forms P1, . . . ,Ps, we denote by
P = (P1, . . . ,Ps) : Rk+1 → Rs, the map defined by the
polynomials P1, . . . ,Ps.
Let A = ∪P∈P{x ∈ Sk | P(x) ≤ 0}, and
Ω = {ω ∈ Ss | ωi ≤ 0,1 ≤ i ≤ s}.
For ω ∈ Ω let ωP =

∑s
i=1 ωiPi , and let

B = {(ω, x) | ω ∈ Ω, x ∈ Sk and ωP(x) ≥ 0}.

B

Ω
�

φ 1

Sk

φ
2

-
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Property of φ2

Proposition (Agrachev)

The map φ2 gives a homotopy equivalence between B and
φ2(B) = A.

Thus, in order to compute a complex quasi-isomorphic to C•(A)
it suffices to construct one quasi-isomorphic to C•(B).
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Property of φ1

Proposition

For ω ∈ Ω, φ−1
1 (ω) is homotopy equivalent to the sphere

Sk−index(ωP), where index(ωP) is the number of negative
eigenvalues of the quadratic form ωP.

Using this Proposition and an index invariant triangulation of Ω,
it is possible to construct a complex quasi-isomorphic to C•(B).
Complexity is doubly exponential in `.
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Cohomological Descent

Let, X ⊂ Rm and Y ⊂ Rn be semi-algebraic sets, and let
f : X → Y be a semi-algebraic, continuous surjection,
which is also an open mapping (it takes open sets to open
sets).

We denote by W i
f (X ) the (i + 1)-fold fibered product of X

over f , that is,
W i

f (X ) = {(x0, . . . , xi) ∈ X i+1 | f (x0) = · · · = f (xi)}.
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Descent Spectral Sequence

Exact sequence analogous to the Mayer-Vietoris exact
sequence.

0 −→ C•(Y )
f∗−→ C•(W 0

f (X))
δ0
−→ C•(W 1

f (X))
δ1
−→ · · · δp−1

−→ C•(W p
f (X))

δp
−→ C•(W p+1

f (X))
δp+1
−→ · · ·

Now consider truncation of the corresponding double complex,
and compute quasi-isomorphic complex using previous result.
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Idea behind the algorithm

Notice that the fibered product of q sets each defined by `
quadatic inequalities is defined by q + ` quadratic
inequalities.

Using the polynomial time algorithm described previously
for computing a complex whose cohomology groups are
isomorphic to those of a given semi-algebraic set defined
by a constant number of quadratic inequalities,we are able
to construct a certain double complex, whose associated
total complex is quasi-isomorphic to a suitable truncation of
the one obtained from the cohomological descent spectral
sequence mentioned above. This complex is of much
smaller size and can be computed in polynomial time.
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1 Single exponential time triangulation ?
2 Best complexity for computing Euler-Poincaré

characteristic, or testing emptiness of an algebraic set V is
dO(k). For computing b0(V ) it is dO(k2) and more generally
for computing b`(V ) is dkO(`)

. Improve this or are the higher
Betti numbers more difficult to compute ?

3 Real analogue of Toda’s theorem ?
4 In view of recent results of D’Acunto and Kurdyka on

bounding geodesic diameters of real algebraic varieties,
can one improve the complexity of computing roadmaps to
dO(k) ?

5 Can one improve the complexities of the algorithms
presented in the quadratic case from k2O(`)

to k `O(1)
or even

kO(`) ?
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