Algorithms for Computing Betti Numbers of Semi-algebraic Sets - Recent Progress and Open Problems.

Saugata Basu

School of Mathematics and College of Computing Georgia Tech

Discrete and Computational Geometry - 20 years later/ Summer Research Conference/ Snowbird, Utah

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

```
Recent Results
- General Case
- Quadratic Case
Outline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
```

Open Problems

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems
(2) Recent Results
- General Case
- Quadratic Case

Outline of the Methods

- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems
(2) Recent Results
- General Case
- Quadratic Case

3 Outline of the Methods

- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems
(2) Recent Results
- General Case
- Quadratic Case

3 Outline of the Methods

- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections

4 Open Problems

Statement of the Problems
Motivation
Complexities of Different Problems

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

Recent Results

- General Case
- Quadratic CaseOutline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Semi-algebraic Sets and their Betti numbers

- A semi-algebraic set, $S \subset \mathrm{R}^{k}$, is a subset of R^{k} defined by a Boolean formula whose atoms are polynomial equalities and inequalities. If all the polynomials involved belong to $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, we call S a \mathcal{P}-semi-algebraic set.

- Classical result (though with some modern tweaks) (Oleinik, Petrovsky, Thom, Milnor, B., Gabrielov-Vorobjov)

- Even though the Betti numbers are bounded singly evnonentially in K there is no known algorithm with single

Semi-algebraic Sets and their Betti numbers

- A semi-algebraic set, $S \subset R^{k}$, is a subset of R^{k} defined by a Boolean formula whose atoms are polynomial equalities and inequalities. If all the polynomials involved belong to $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, we call S a \mathcal{P}-semi-algebraic set.
- $b_{i}(S)$ will denote the i-th Betti number of S.
- Classical result (though with some modern tweaks) (Oleinik, Petrovsky, Thom, Milnor, B., Gabrielov-Vorobjov)

- Even though the Betti numbers are bounded singly evnonentially in K there is no Known aloorithm with single

Semi-algebraic Sets and their Betti numbers

- A semi-algebraic set, $S \subset \mathrm{R}^{k}$, is a subset of R^{k} defined by a Boolean formula whose atoms are polynomial equalities and inequalities. If all the polynomials involved belong to $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, we call S a \mathcal{P}-semi-algebraic set.
- $b_{i}(S)$ will denote the i-th Betti number of S.
- Classical result (though with some modern tweaks) (Oleinik, Petrovsky, Thom, Milnor, B., Gabrielov-Vorobjov)

$$
\sum_{0 \leq i \leq k} b_{i}(S) \leq\left(O\left(s^{2} d\right)\right)^{k}
$$

where $s=\#(\mathcal{P})$ and $d=\max _{\mathcal{P} \in \mathcal{P}} \operatorname{deg}(P)$.

Semi-algebraic Sets and their Betti numbers

- A semi-algebraic set, $S \subset \mathrm{R}^{k}$, is a subset of R^{k} defined by a Boolean formula whose atoms are polynomial equalities and inequalities. If all the polynomials involved belong to $\mathcal{P} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, we call S a \mathcal{P}-semi-algebraic set.
- $b_{i}(S)$ will denote the i-th Betti number of S.
- Classical result (though with some modern tweaks) (Oleinik, Petrovsky, Thom, Milnor, B., Gabrielov-Vorobjov)

$$
\sum_{0 \leq i \leq k} b_{i}(S) \leq\left(O\left(s^{2} d\right)\right)^{k}
$$

where $s=\#(\mathcal{P})$ and $d=\max _{P \in \mathcal{P}} \operatorname{deg}(P)$.

- Even though the Betti numbers are bounded singly exponentially in k, there is no known algorithm with single exponential complexity for computing them.

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

Recent Results

- General Case
- Quadratic Case
(3) Outline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Statement of the Problems

Some Motivations

- Semi-algebraic sets occur as configuration spaces in applications.
- Studying certain questions in quantitative real algebraic geometry. For instance, existence of single exponential sized triangulations.
- Next step after deciding whether a formula is satisfiable. Analogous problem in the discrete case, are counting problems (perhaps generally computing zeta functions of varieties). Recent work on continuous versions of counting complexity classes (Burgisser, Cucker, Meer) develops this analogy more formally.
- Some ideas may be useful in designing algorithms for computing homology groups in other contexts.

Some Motivations

- Semi-algebraic sets occur as configuration spaces in applications.
- Studying certain questions in quantitative real algebraic geometry. For instance, existence of single exponential sized triangulations.
- Next step after deciding whether a formula is satisfiable. Analogous problem in the discrete case, are counting problems (perhaps generally computing zeta functions of varieties). Recent work on continuous versions of counting complexity classes (Burgisser, Cucker, Meer) develops this analogy more formally.
- Some ideas may be useful in designing algorithms for computing homology groups in other contexts.

Some Motivations

- Semi-algebraic sets occur as configuration spaces in applications.
- Studying certain questions in quantitative real algebraic geometry. For instance, existence of single exponential sized triangulations.
- Next step after deciding whether a formula is satisfiable. Analogous problem in the discrete case, are counting problems (perhaps generally computing zeta functions of varieties). Recent work on continuous versions of counting complexity classes (Burgisser, Cucker, Meer) develops this analogy more formally.
- Some ideas may be useful in designing algorithms for

Some Motivations

- Semi-algebraic sets occur as configuration spaces in applications.
- Studying certain questions in quantitative real algebraic geometry. For instance, existence of single exponential sized triangulations.
- Next step after deciding whether a formula is satisfiable. Analogous problem in the discrete case, are counting problems (perhaps generally computing zeta functions of varieties). Recent work on continuous versions of counting complexity classes (Burgisser, Cucker, Meer) develops this analogy more formally.
- Some ideas may be useful in designing algorithms for computing homology groups in other contexts.

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

Recent Results

- General Case
- Quadratic CaseOutline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Statement of the Problems

Complexities of Different Problems

Complexity of Algorithms

- Double exponential vs single exponential vs polynomial time.
- Problems that can be solved in single exponential time: Testing emptiness, deciding connectivity, computing descriptions of the connected components, computing the Euler-Poincaré characteristic, computing the dimension of a given semi-algebraic set.
- Problems for which no single exponential time algorithm is known: Computing the higher Betti numbers, computing semi-algebraic triangulations, computing semi-algebraic stratifications.

Complexity of Algorithms

- Double exponential vs single exponential vs polynomial time.
- Problems that can be solved in single exponential time: Testing emptiness, deciding connectivity, computing descriptions of the connected components, computing the Euler-Poincaré characteristic, computing the dimension of a given semi-algebraic set.
- Problems for which no single exponential time algorithm is
known: Computing the higher Betti numbers, computing semi-algebraic triangulations, computing semi-algebraic stratifications.

Complexity of Algorithms

- Double exponential vs single exponential vs polynomial time.
- Problems that can be solved in single exponential time:

Testing emptiness, deciding connectivity, computing descriptions of the connected components, computing the Euler-Poincaré characteristic, computing the dimension of a given semi-algebraic set.

- Problems for which no single exponential time algorithm is known: Computing the higher Betti numbers, computing semi-algebraic triangulations, computing semi-algebraic stratifications.

Three Main Techniques

- It is possible to obtain a semi-algebraic triangulation of S in doubly exponential time using cylindrical algebraic decomposition (Collins,Schwartz-Sharir). Thus, algorithms with doubly exponential complexity $\left((s d)^{2^{0(k)}}\right)$ is known for computing all the Betti numbers.
- Algorithms with singly exponential complexity are all based
on some version of the critical point method. We do not
obtain full topoloaical information, but enough to test
emptiness, to compute Euler-Poincaré characteristics,
number of connected components etc.
For sets defined by quadratic inequalities, there is a duality that allows us to exchange the roles of k and s, which can be exploited in certain situations.

Three Main Techniques

- It is possible to obtain a semi-algebraic triangulation of S in doubly exponential time using cylindrical algebraic decomposition (Collins,Schwartz-Sharir). Thus, algorithms with doubly exponential complexity $\left((s d)^{20(k)}\right)$ is known for computing all the Betti numbers.
- Algorithms with singly exponential complexity are all based on some version of the critical point method. We do not obtain full topological information, but enough to test emptiness, to compute Euler-Poincaré characteristics, number of connected components etc.

Three Main Techniques

- It is possible to obtain a semi-algebraic triangulation of S in doubly exponential time using cylindrical algebraic decomposition (Collins,Schwartz-Sharir). Thus, algorithms with doubly exponential complexity $\left((s d)^{20(k)}\right)$ is known for computing all the Betti numbers.
- Algorithms with singly exponential complexity are all based on some version of the critical point method. We do not obtain full topological information, but enough to test emptiness, to compute Euler-Poincaré characteristics, number of connected components etc.
- For sets defined by quadratic inequalities, there is a duality that allows us to exchange the roles of k and s, which can be exploited in certain situations.

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems
(2) Recent Results
- General Case
- Quadratic Case
(3) Outline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Results about general semi-algebraic sets

Computing the first Betti number. [B,Pollack,Roy, 2005]
There exists an algorithm that takes as input the description of a \mathcal{P}-semi-algebraic set $S \subset R^{k}$, and outputs $b_{1}(S)$. The complexity of the algorithm is $(s d)^{k^{O(1)}}$.

Computing the first ℓ Betti numberd. [B., 2005

For any fixed $\ell>0$, we can compute $b_{0}(S), \ldots, b_{\ell}(S)$ with complexity (sd)

Results about general semi-algebraic sets

Computing the first Betti number. [B,Pollack,Roy, 2005]
There exists an algorithm that takes as input the description of a \mathcal{P}-semi-algebraic set $S \subset \mathrm{R}^{k}$, and outputs $b_{1}(S)$. The complexity of the algorithm is $(s d)^{k^{O(1)}}$.

Computing the first ℓ Betti numberd. [B., 2005]
For any fixed $\ell>0$, we can compute $b_{0}(S), \ldots, b_{\ell}(S)$ with complexity $(s d)^{k^{0(\ell)}}$.

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

(2) Recent Results

- General Case
- Quadratic CaseOutline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Basic Semi-algebraic Sets Defined By Quadratic Inequalities

- Let $S \subset \mathrm{R}^{k}$ be a semi-algebraic set defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$, with $\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq s$.
- Such sets are in fact quite general, since every semi-algebraic set can be defined by (quantified) formulas involving only quadratic nolynomials.
- Moreover, as in the case of general semi-algebraic sets, the Retti numbers of such sets can be exnonentially large. For example, the set $S \subset R^{k}$ defined by

- It is NP-hard to decide whether such a set is empty.

Basic Semi-algebraic Sets Defined By Quadratic Inequalities

- Let $S \subset \mathrm{R}^{k}$ be a semi-algebraic set defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$, with $\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq s$.
- Such sets are in fact quite general, since every semi-algebraic set can be defined by (quantified) formulas involving only quadratic polynomials.
- Moreover, as in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large. For example, the set $S \subset \mathrm{R}^{k}$ defined by

- It is NP-hard to decide whether such a set is empty.

Basic Semi-algebraic Sets Defined By Quadratic Inequalities

- Let $S \subset \mathrm{R}^{k}$ be a semi-algebraic set defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$, with $\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq s$.
- Such sets are in fact quite general, since every semi-algebraic set can be defined by (quantified) formulas involving only quadratic polynomials.
- Moreover, as in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large.
For example, the set $S \subset \mathrm{R}^{k}$ defined by $X_{1}\left(X_{1}-1\right) \geq 0, \ldots, X_{k}\left(X_{k}-1\right) \geq 0$, has $b_{0}(S)=2^{k}$.
- It is NP-hard to decide whether such a set is empty.

Basic Semi-algebraic Sets Defined By Quadratic Inequalities

- Let $S \subset \mathrm{R}^{k}$ be a semi-algebraic set defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$, with $\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq s$.
- Such sets are in fact quite general, since every semi-algebraic set can be defined by (quantified) formulas involving only quadratic polynomials.
- Moreover, as in the case of general semi-algebraic sets, the Betti numbers of such sets can be exponentially large.
For example, the set $S \subset \mathrm{R}^{k}$ defined by $X_{1}\left(X_{1}-1\right) \geq 0, \ldots, X_{k}\left(X_{k}-1\right) \geq 0$, has $b_{0}(S)=2^{k}$.
- It is NP-hard to decide whether such a set is empty.

Bounds on Betti Numbers of Sets Defined by Quadratic Inequalities

Using prior results of Barvinok and inequalities derived from Mayer-Vietoris exact sequence,

Theorem (B. 2003)

Let $S \subset R^{k}$ be defined by

$$
P_{1} \geq 0, \ldots, P_{s} \geq 0, \text { with } \operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq s
$$

Then,

$$
b_{k-\ell}(S) \leq\binom{ s}{\ell} k^{O(\ell)}
$$

Features of the bound

- For fixed $\ell \geq 0$ this gives a polynomial bound on the top ℓ Betti numbers of S (which could possibly be non-zero).
- Similar bounds do not hold for sets defined by polynomials of degree greater than two. For instance, the set defined by the single quartic equation,

$$
\text { will have } b_{k-1}=2^{k}, \text { for small enough } \varepsilon>0
$$

Features of the bound

- For fixed $\ell \geq 0$ this gives a polynomial bound on the top ℓ Betti numbers of S (which could possibly be non-zero).
- Similar bounds do not hold for sets defined by polynomials of degree greater than two. For instance, the set defined by the single quartic equation,

$$
\sum_{i=1}^{k} X_{i}^{2}\left(X_{i}-1\right)^{2}-\varepsilon=0
$$

will have $b_{k-1}=2^{k}$, for small enough $\varepsilon>0$.

Bounds on the Projection

Theorem (B.,Zell, 2005)

Let $S \subset \mathrm{R}^{k+m}$ be a bounded semi-algebraic set defined by

$$
P_{1} \geq 0, \ldots, P_{s} \geq 0, \text { with } \operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq \ell
$$

with $P_{i} \in \mathrm{R}\left[X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{m}\right]$.
Let $\pi: \mathrm{R}^{k+m} \rightarrow \mathrm{R}^{m}$ be the projection onto the last m coordinates. Then, for any $q>0,0 \leq q \leq k$,

$$
\sum_{i=0}^{q} b_{i}(\pi(S)) \leq(k+m)^{O(q \ell)}
$$

Results in the Quadratic Case I

Algorithm for deciding emptiness. [Barvinok, 1993],
[Grigoriev-Pasechnik, 2004].
There exists an algorithm which given a set of s polynomials, $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with $\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq s$, decides if S is non-empty, where S is the set defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$. The complexity of the algorithm is $k^{O(s)}$.

Agorithm for computing the Euler-Poincaré characteristic. [B. 2005].
 There exists an algorithm for computing $\chi(S)$ whose complexity

These algorithms are polynomial time for fixed s (number of polynomials).

Results in the Quadratic Case I

Algorithm for deciding emptiness. [Barvinok, 1993],
[Grigoriev-Pasechnik, 2004].
There exists an algorithm which given a set of s polynomials,
$\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with $\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq s$, decides if S is non-empty, where S is the set defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$. The complexity of the algorithm is $k^{O(s)}$.

Algorithm for computing the Euler-Poincaré characteristic. [B., 2005].

There exists an algorithm for computing $\chi(S)$ whose complexity is $k^{O(s)}$.

These algorithms are polynomial time for fixed s (number of polynomials).

Results in the Quadratic Case II

Polynomial time algorithm for computing top Betti numbers. [B., 2005].
We have an algorithm which given a set of s polynomials, $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\} \subset \mathrm{R}\left[X_{1}, \ldots, X_{k}\right]$, with $\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq s$, computes $b_{k-1}(S), \ldots, b_{k-\ell}(S)$, where S is the set defined by $P_{1} \geq 0, \ldots, P_{s} \geq 0$. The complexity of the algorithm is

$$
\sum_{i=0}^{\ell+2}\binom{s}{i} k^{2^{O(\min (\ell, s))}}=s^{\ell+2} k^{2 O(\ell)}
$$

Results in the Quadratic Case III

Projections of sets defined by few quadratic inequalities.
[B.,Zell, 2005].
For fixed ℓ and q, there exists an algorithm for computing the first q Betti numbers of $\pi(S)$ where $S \subset \mathrm{R}^{k+m}$ is a bounded basic semi-algebraic set defined by $P_{1} \geq 0, \ldots, P_{\ell} \geq 0$, with $P_{i} \in \mathrm{R}\left[X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{m}\right], \operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq \ell$. The complexity of the algorithm is

$$
(k+m)^{2^{O(q \ell)}} .
$$

Introduction

General Case
Computing Covering by Contractible sets: Few Words Quadratic Case
Mayer-Vietoris Exact Sequence
Projections

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

Recent Results

- General Case
- Quadratic Case
(3) Outline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Introduction Recent Results Outline of the Methods Open Problems

General Case
Computing Covering by Contractible sets: Few Words Quadratic Case
Mayer-Vietoris Exact Sequence
Projections

Main Steps in the General Case

- First reduce to the closed and bounded case using a recent construction of Gabrielov and Vorobjov.
- Instead of computing a triangulation (which we do not know how to do in single exponential time), we compute with single exponential complexity a family of closed, bounded and contractible semi-algebraic sets, $\{X\}_{i \in I}$ such that, $S=\cup_{i \in I} X_{i}$.
- Using the Roadmap Algorithm compute the connected components of the pairwise and triple-wise intersections of the elements of the covering and their inclusion relationships.

Main Steps in the General Case

- First reduce to the closed and bounded case using a recent construction of Gabrielov and Vorobjov.
- Instead of computing a triangulation (which we do not know how to do in single exponential time), we compute with single exponential complexity a family of closed, bounded and contractible semi-algebraic sets, $\{X\}_{i \in I}$ such that, $S=\cup_{i \in I} X_{i}$.
- Using the Roadmap Algorithm compute the connected
components of the pairwise and triple-wise intersections of
the elements of the covering and their inclusion
relationships.

Main Steps in the General Case

- First reduce to the closed and bounded case using a recent construction of Gabrielov and Vorobjov.
- Instead of computing a triangulation (which we do not know how to do in single exponential time), we compute with single exponential complexity a family of closed, bounded and contractible semi-algebraic sets, $\{X\}_{i \in I}$ such that, $S=\cup_{i \in I} X_{i}$.
- Using the Roadmap Algorithm compute the connected components of the pairwise and triple-wise intersections of the elements of the covering and their inclusion relationships.

Result Needed from Algebraic Topology

A simple spectral sequence argument yields:

Proposition

Let A_{1}, \ldots, A_{n} be sub-complexes of a finite simplicial complex A such that $A=A_{1} \cup \cdots \cup A_{n}$ and each A_{i} is acyclic. Then, $b_{1}(A)=\operatorname{dim}\left(\operatorname{Ker}\left(\delta_{2}\right)\right)-\operatorname{dim}\left(\operatorname{Im}\left(\delta_{1}\right)\right)$, with

$$
\prod_{i} H^{0}\left(A_{i}\right) \stackrel{\delta_{1}}{\longrightarrow} \prod_{i<j} H^{0}\left(A_{i, j}\right) \xrightarrow{\delta_{2}} \prod_{i<j<\ell} H^{0}\left(A_{i, j, \ell}\right)
$$

The homomorphisms δ_{i} are induced by generalized restrictions. Corresponding result needed for computing the higher Betti numbers is much more complicated.

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems
- General Case
- Quadratic Case
(3) Outline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections

Open Problems

Connecting paths

- Given a semi-algebraic set $S \subset \mathrm{R}^{k}, x, y \in S$, there exists an algorithm (Roadmap) with single exponential complexity which can decide whether x and y are in the same connected component of S and if so output a semi-algebraic path connecting x to y in S.
- Fix a finite set of distinguished points in every connected component of S and for $x \in S$, let $\gamma(x)$ denote the connecting nath computed by the algorithm connecting x to a distinguished point.

Connecting paths

- Given a semi-algebraic set $S \subset \mathrm{R}^{k}, x, y \in S$, there exists an algorithm (Roadmap) with single exponential complexity which can decide whether x and y are in the same connected component of S and if so output a semi-algebraic path connecting x to y in S.
- Fix a finite set of distinguished points in every connected component of \boldsymbol{S} and for $x \in S$, let $\gamma(x)$ denote the connecting path computed by the algorithm connecting x to a distinguished point.

Introduction Recent Results Outline of the Methods Open Problems

Important Property of Connecting Path

- The connecting path $\gamma(x)$ consists of two consecutive parts, $\gamma_{0}(x)$ and $\Gamma_{1}(x)$. The path $\gamma_{0}(x)$ is contained in $\operatorname{RM}(S)$ and the path $\Gamma_{1}(x)$ is contained in $S_{x_{1}}$.
- Moreover, $\Gamma_{1}(x)$ can again be decomposed into two parts, $\gamma_{1}(x)$ and $\Gamma_{2}(x)$ with $\Gamma_{2}(x)$ contained in $S_{x_{1}, x_{2}}$ and so on.
- If $y=\left(y_{1}, \ldots, y_{k}\right) \in S$ is another point such that $x_{1} \neq y_{1}$, then the images of $\Gamma_{1}(x)$ and $\Gamma_{1}(y)$ are disjoint. If the image of $\gamma_{0}(y)$ (which is contained in S) follows the same sequence of curve segments as $\gamma_{0}(x)$ starting at p, then the images of the paths $\gamma(x)$ and $\gamma(y)$ has the property that they are identical upto a point and they are disjoint after it.

Important Property of Connecting Path

- The connecting path $\gamma(x)$ consists of two consecutive parts, $\gamma_{0}(x)$ and $\Gamma_{1}(x)$. The path $\gamma_{0}(x)$ is contained in $\operatorname{RM}(S)$ and the path $\Gamma_{1}(x)$ is contained in $S_{x_{1}}$.
- Moreover, $\Gamma_{1}(x)$ can again be decomposed into two parts, $\gamma_{1}(x)$ and $\Gamma_{2}(x)$ with $\Gamma_{2}(x)$ contained in $S_{x_{1}, x_{2}}$ and so on.

Important Property of Connecting Path

- The connecting path $\gamma(x)$ consists of two consecutive parts, $\gamma_{0}(x)$ and $\Gamma_{1}(x)$. The path $\gamma_{0}(x)$ is contained in $\operatorname{RM}(S)$ and the path $\Gamma_{1}(x)$ is contained in $S_{x_{1}}$.
- Moreover, $\Gamma_{1}(x)$ can again be decomposed into two parts, $\gamma_{1}(x)$ and $\Gamma_{2}(x)$ with $\Gamma_{2}(x)$ contained in $S_{x_{1}, x_{2}}$ and so on.
- If $y=\left(y_{1}, \ldots, y_{k}\right) \in S$ is another point such that $x_{1} \neq y_{1}$, then the images of $\Gamma_{1}(x)$ and $\Gamma_{1}(y)$ are disjoint. If the image of $\gamma_{0}(y)$ (which is contained in S) follows the same sequence of curve segments as $\gamma_{0}(x)$ starting at p, then the images of the paths $\gamma(x)$ and $\gamma(y)$ has the property that they are identical upto a point and they are disjoint after it.

Computing Covering by Contractible sets: Few Words

Mayer-Vietoris Exact Sequence
Projections

Schematic Picture

Figure: The connecting path $\Gamma(x)$

Introduction Recent Results

Parametrized Paths: Precise Definition

A parametrized path γ is a continuous semi-algebraic mapping, $V \subset \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{k}$, a semi-algebraic continuous function $\ell: U \rightarrow[0,+\infty)$, with $U=\pi_{1 \ldots k}(V) \subset \mathrm{R}^{k}$, and a in R^{k}, such that
(1) $V=\{(x, t) \mid x \in U, 0 \leq t \leq \ell(x)\}$,

Introduction Recent Results

Parametrized Paths: Precise Definition

A parametrized path γ is a continuous semi-algebraic mapping, $V \subset \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{k}$, a semi-algebraic continuous function $\ell: U \rightarrow[0,+\infty)$, with $U=\pi_{1 \ldots k}(V) \subset \mathrm{R}^{k}$, and a in R^{k}, such that
(1) $V=\{(x, t) \mid x \in U, 0 \leq t \leq \ell(x)\}$,
(2) $\forall x \in U, \gamma(x, 0)=a$, (8) $\forall x \in U$,

Introduction Recent Results

Parametrized Paths: Precise Definition

A parametrized path γ is a continuous semi-algebraic mapping, $V \subset \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{k}$, a semi-algebraic continuous function $\ell: U \rightarrow[0,+\infty)$, with $U=\pi_{1 \ldots k}(V) \subset \mathrm{R}^{k}$, and a in R^{k}, such that
(1) $V=\{(x, t) \mid x \in U, 0 \leq t \leq \ell(x)\}$,
(2) $\forall x \in U, \gamma(x, 0)=a$,
(3) $\forall x \in U, \gamma(x, \ell(x))=x$,

Introduction Recent Results

Parametrized Paths: Precise Definition

A parametrized path γ is a continuous semi-algebraic mapping, $V \subset \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{k}$, a semi-algebraic continuous function
$\ell: U \rightarrow[0,+\infty)$, with $U=\pi_{1 \ldots k}(V) \subset \mathrm{R}^{k}$, and a in R^{k}, such that
(1) $V=\{(x, t) \mid x \in U, 0 \leq t \leq \ell(x)\}$,
(2) $\forall x \in U, \gamma(x, 0)=a$,
(3) $\forall x \in U, \gamma(x, \ell(x))=x$,
(9) $\forall x \in U, \forall y \in U, \forall s \in[0, \ell(x)], \forall t \in[0, \ell(y)]$ $(\gamma(x, s)=\gamma(y, t) \Rightarrow s=t)$,

Introduction Recent Results

Parametrized Paths: Precise Definition

A parametrized path γ is a continuous semi-algebraic mapping,
$V \subset \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{k}$, a semi-algebraic continuous function
$\ell: U \rightarrow[0,+\infty)$, with $U=\pi_{1 \ldots k}(V) \subset \mathrm{R}^{k}$, and a in R^{k}, such that
(1) $V=\{(x, t) \mid x \in U, 0 \leq t \leq \ell(x)\}$,
(2) $\forall x \in U, \gamma(x, 0)=a$,
(3) $\forall x \in U, \gamma(x, \ell(x))=x$,
(1) $\forall x \in U, \forall y \in U, \forall s \in[0, \ell(x)], \forall t \in[0, \ell(y)]$
$(\gamma(x, s)=\gamma(y, t) \Rightarrow s=t)$,
(0) $\forall x \in U, \forall y \in U, \forall s \in[0, \min (\ell(x), \ell(y))]$ $(\gamma(x, s)=\gamma(y, s) \Rightarrow \forall t \leq s, \gamma(x, t)=\gamma(y, t))$.

Introduction Recent Results
Outline of the Methods
Open Problems

Computing Covering by Contractible sets: Few Words

Quadratic Case

Mayer-Vietoris Exact Sequence
Projections

Schematic Picture

Figure: A Parametrized Path

Useful property of Parametrized Paths

Proposition

Let $\gamma: V \rightarrow R^{k}$ be a parametrized path such that $U=\pi_{1 \ldots k}(V)$ is closed and bounded. Then, the image of γ is semi-algebraically contractible.

The images of the parametrized paths are the building blocks in the construction of the covering by contractible sets.

Introduction

Computing Covering by Contractible sets: Few Words Quadratic Case
Mayer-Vietoris Exact Sequence
Projections

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

Recent Results

- General Case
- Quadratic Case
(3) Outline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Introduction Recent Results Outline of the Methods Open Problems

Main Ideas

- Consider S as the intersection of the individual sets, S_{i} defined by $P_{i} \geq 0$.
- The top dimensional homology groups of S are isomorphic to those of the total complex associated to a suitable truncation of the Mayer-Vietoris double complex. The terms appearing in the truncated complex depend on the unions of the S_{i} 's taken at most $\ell+2$ at a time. There are at most $\sum_{j=1}^{\ell+2}\binom{s}{j}=O\left(s^{\ell+2}\right)$ such sets.
- Moreover, for such semi-algebraic sets we are able to compute in polynomial (in k) time a complex, whose homology groups are isomorphic to those of the given sets.

Main Ideas

- Consider S as the intersection of the individual sets, S_{i} defined by $P_{i} \geq 0$.
- The top dimensional homology groups of S are isomorphic to those of the total complex associated to a suitable truncation of the Mayer-Vietoris double complex.
- The terms appearing in the truncated complex depend on the unions of the S_{i} 's taken at most $\ell+2$ at a time. There are at most $\sum_{i=1}^{\ell+2}\binom{s}{i}=O\left(s^{\ell+2}\right)$ such sets.
- Moreover, for such semi-algebraic sets we are able to compute in polynomial (in k) time a complex, whose homology groups are isomorphic to those of the given sets.

Main Ideas

- Consider S as the intersection of the individual sets, S_{i} defined by $P_{i} \geq 0$.
- The top dimensional homology groups of S are isomorphic to those of the total complex associated to a suitable truncation of the Mayer-Vietoris double complex.
- The terms appearing in the truncated complex depend on the unions of the S_{i} 's taken at most $\ell+2$ at a time. There are at most $\sum_{j=1}^{\ell+2}\binom{s}{j}=O\left(s^{\ell+2}\right)$ such sets.
- Moreover, for such semi-algebraic sets we are able to compute in polynomial (in k) time a complex, whose homology groups are isomorphic to those of the given sets.

Main Ideas

- Consider S as the intersection of the individual sets, S_{i} defined by $P_{i} \geq 0$.
- The top dimensional homology groups of S are isomorphic to those of the total complex associated to a suitable truncation of the Mayer-Vietoris double complex.
- The terms appearing in the truncated complex depend on the unions of the S_{i} 's taken at most $\ell+2$ at a time. There are at most $\sum_{j=1}^{\ell+2}\binom{s}{j}=O\left(s^{\ell+2}\right)$ such sets.
- Moreover, for such semi-algebraic sets we are able to compute in polynomial (in k) time a complex, whose homology groups are isomorphic to those of the given sets.

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

Recent Results

- General Case
- Quadratic Case
(3) Outline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Generalized Mayer-Vietoris Exact Sequence

Proposition

Let $A=A_{1} \cap \cdots \cap A_{n}$ and $A^{\alpha_{0}, \ldots, \alpha_{\rho}}$ denote the union, $A_{\alpha_{0}} \cup \cdots \cup A_{\alpha_{\rho}}$. The following sequence is exact.

$$
\begin{gathered}
0 \longrightarrow C_{\bullet}(A) \xrightarrow{i} \bigoplus_{\alpha_{0}} C_{\bullet}\left(A^{\alpha_{0}}\right) \stackrel{\delta}{\longrightarrow} \bigoplus_{\alpha_{0}<\alpha_{1}} C_{\bullet}\left(A^{\alpha_{0}, \alpha_{1}}\right) \stackrel{\delta}{\longrightarrow} \cdots \\
\stackrel{\delta}{\longrightarrow} C_{\bullet}\left(A^{\alpha_{0}, \ldots, \alpha_{p}}\right) \stackrel{\delta}{\longrightarrow} C_{\bullet}\left(A^{\alpha_{0}, \ldots, \alpha_{p+1}}\right) \xrightarrow{\delta} \cdots,
\end{gathered}
$$

where i is induced by inclusion and the connecting homomorphisms δ are defined as follows:
for $\boldsymbol{c} \in \oplus_{\alpha_{0}<\cdots<\alpha_{p}} \boldsymbol{C}_{\bullet}\left(\boldsymbol{A}^{\alpha_{0}, \ldots, \alpha_{p}}\right)$,
$(\delta c)_{\alpha_{0}, \ldots, \alpha_{p+1}}=\sum_{0 \leq i \leq p+1}(-1)^{i} c_{\alpha_{0}, \ldots, \hat{\alpha}_{i}, \ldots, \alpha_{p+1}}$.

Introduction Recent Results
Outline of the Methods Open Problems

General Case
Computing Covering by Contractible sets: Few Words Quadratic Case
Mayer-Vietoris Exact Sequence
Projections

Mayer-Vietoris Double Complex

Introduction Recent Results

The Associated Total Complex

- The i-th homology group of $A, H_{i}(A)$ is isomorphic to the i-th homology group of the associated total complex of the double complex described above.

Moreover, if we denote by $\mathcal{N}_{\ell}^{\bullet, \bullet}$ the truncated complex defined by,

0
otherwise
then it is clear that,

The Associated Total Complex

- The i-th homology group of $A, H_{i}(A)$ is isomorphic to the i-th homology group of the associated total complex of the double complex described above.
- For $0 \leq i \leq k$,

$$
H_{i}(A) \cong H^{i}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{N}^{\bullet, \bullet}\right)\right) .
$$

Moreover, if we denote by $\mathcal{N}_{\ell}^{\bullet, \bullet}$ the truncated complex defined by,

$$
\begin{aligned}
\mathcal{N}_{\ell}^{p, q} & =\mathcal{N}^{p, q}, \quad 0 \leq p \leq \ell, \quad k-\ell \leq q \leq k, \\
& =0,
\end{aligned}
$$

then it is clear that,

$$
H_{i}(A) \cong H^{i}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{N}_{\ell}^{\bullet \bullet \bullet}\right)\right), \quad k-\ell \leq i \leq k .
$$

Computing a quasi-isomorphic complex

- We cannot hope to compute even the truncated complex $\mathcal{N}_{\ell}^{\bullet \bullet \bullet}$ since we do not know how to compute triangulations efficiently.
- We overcome this problem by computing another double complex $\mathcal{D}_{\ell}^{\bullet, \bullet}$, such that there exists a homomorphism of double complexes,
which induces an isomorphism between the E_{1} terms of the spectral sequences associated to the double complexes $\mathcal{D}_{\ell}^{\bullet, \bullet}$ and $\mathcal{N}_{\ell}^{\bullet, \bullet}$.
- This implies that,

Computing a quasi-isomorphic complex

- We cannot hope to compute even the truncated complex $\mathcal{N}_{\ell}^{\bullet, \bullet}$ since we do not know how to compute triangulations efficiently.
- We overcome this problem by computing another double complex $\mathcal{D}_{\ell}^{\bullet, \bullet}$, such that there exists a homomorphism of double complexes,

$$
\psi: \mathcal{D}_{\ell}^{\bullet, \bullet} \rightarrow \mathcal{N}_{\ell}^{\bullet, \bullet},
$$

which induces an isomorphism between the E_{1} terms of the spectral sequences associated to the double complexes $\mathcal{D}_{\ell}^{\bullet, \bullet}$ and $\mathcal{N}_{\ell}^{\bullet, \bullet}$.

- This implies that,

Computing a quasi-isomorphic complex

- We cannot hope to compute even the truncated complex $\mathcal{N}_{\ell}^{\bullet, \bullet}$ since we do not know how to compute triangulations efficiently.
- We overcome this problem by computing another double complex $\mathcal{D}_{\ell}^{\bullet, \bullet}$, such that there exists a homomorphism of double complexes,

$$
\psi: \mathcal{D}_{\ell}^{\bullet, \bullet} \rightarrow \mathcal{N}_{\ell}^{\bullet, \bullet},
$$

which induces an isomorphism between the E_{1} terms of the spectral sequences associated to the double complexes $\mathcal{D}_{\ell}^{\bullet, \bullet}$ and $\mathcal{N}_{\ell}^{\bullet, \bullet}$.

- This implies that,

$$
H^{*}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{N}_{\ell}^{\bullet \bullet \bullet}\right)\right) \cong H^{*}\left(\operatorname{Tot}^{\bullet}\left(\mathcal{D}_{\ell}^{\bullet \bullet \bullet}\right)\right)
$$

Introduction Recent Results
Outline of the Methods
Open Problems

Topology of Unions

- For quadratic forms P_{1}, \ldots, P_{s}, we denote by $P=\left(P_{1}, \ldots, P_{s}\right): \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{s}$, the map defined by the polynomials P_{1}, \ldots, P_{s}.

Introduction Recent Results
Outline of the Methods
Open Problems

Topology of Unions

- For quadratic forms P_{1}, \ldots, P_{s}, we denote by $P=\left(P_{1}, \ldots, P_{s}\right): \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{s}$, the map defined by the polynomials P_{1}, \ldots, P_{s}.
- Let $A=\cup_{P \in \mathcal{P}}\left\{x \in \mathbf{S}^{k} \mid P(x) \leq 0\right\}$, and $\Omega=\left\{\omega \in \mathbf{S}^{s} \mid \omega_{i} \leq 0,1 \leq i \leq s\right\}$.
- For $\omega \in \Omega$ let $\omega P=\sum_{i=1}^{s} \omega_{i} P_{i}$, and let

Introduction Recent Results
Outline of the Methods
Open Problems

Topology of Unions

- For quadratic forms P_{1}, \ldots, P_{s}, we denote by
$P=\left(P_{1}, \ldots, P_{s}\right): \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{s}$, the map defined by the polynomials P_{1}, \ldots, P_{s}.
- Let $A=\cup_{P \in \mathcal{P}}\left\{x \in \mathbf{S}^{k} \mid P(x) \leq 0\right\}$, and $\Omega=\left\{\omega \in \mathbf{S}^{s} \mid \omega_{i} \leq 0,1 \leq i \leq s\right\}$.
- For $\omega \in \Omega$ let $\omega P=\sum_{i=1}^{s} \omega_{i} P_{i}$, and let
$B=\left\{(\omega, x) \mid \omega \in \Omega, x \in \mathbf{S}^{k}\right.$ and $\left.\omega P(x) \geq 0\right\}$.

Introduction Recent Results
Outline of the Methods
Open Problems

Topology of Unions

- For quadratic forms P_{1}, \ldots, P_{s}, we denote by
$P=\left(P_{1}, \ldots, P_{s}\right): \mathrm{R}^{k+1} \rightarrow \mathrm{R}^{s}$, the map defined by the polynomials P_{1}, \ldots, P_{s}.
- Let $A=\cup_{P \in \mathcal{P}}\left\{x \in \mathbf{S}^{k} \mid P(x) \leq 0\right\}$, and $\Omega=\left\{\omega \in \mathbf{S}^{s} \mid \omega_{i} \leq 0,1 \leq i \leq s\right\}$.
- For $\omega \in \Omega$ let $\omega P=\sum_{i=1}^{s} \omega_{i} P_{i}$, and let
$B=\left\{(\omega, x) \mid \omega \in \Omega, x \in \mathbf{S}^{k}\right.$ and $\left.\omega P(x) \geq 0\right\}$.

Property of ϕ_{2}

Proposition (Agrachev)

The map ϕ_{2} gives a homotopy equivalence between B and $\phi_{2}(B)=A$.

Thus, in order to compute a complex quasi-isomorphic to $C_{0}(A)$ it suffices to construct one quasi-isomorphic to $C_{\bullet}(B)$.

Property of ϕ_{1}

Proposition

For $\omega \in \Omega, \phi_{1}^{-1}(\omega)$ is homotopy equivalent to the sphere $\mathbf{S}^{k-\operatorname{index}(\omega P)}$, where index (ωP) is the number of negative eigenvalues of the quadratic form ωP.

Using this Proposition and an index invariant triangulation of Ω, it is possible to construct a complex quasi-isomorphic to $C_{0}(B)$. Complexity is doubly exponential in ℓ.

Outline

(1) Introduction

- Statement of the Problems
- Motivation
- Complexities of Different Problems

Recent Results

- General Case
- Quadratic Case
(3) Outline of the Methods
- General Case
- Computing Covering by Contractible sets: Few Words
- Quadratic Case
- Mayer-Vietoris Exact Sequence
- Projections
(4) Open Problems

Introduction Recent Results
Outline of the Methods
Open Problems

Cohomological Descent

- Let, $X \subset \mathrm{R}^{m}$ and $Y \subset \mathrm{R}^{n}$ be semi-algebraic sets, and let $f: X \rightarrow Y$ be a semi-algebraic, continuous surjection, which is also an open mapping (it takes open sets to open sets).
- We denote by $W_{f}^{i}(X)$ the $(i+1)$-fold fibered product of X over f, that is,

Introduction Recent Results
Outline of the Methods
Open Problems

Cohomological Descent

- Let, $X \subset \mathrm{R}^{m}$ and $Y \subset \mathrm{R}^{n}$ be semi-algebraic sets, and let $f: X \rightarrow Y$ be a semi-algebraic, continuous surjection, which is also an open mapping (it takes open sets to open sets).
- We denote by $W_{f}^{i}(X)$ the $(i+1)$-fold fibered product of X over f, that is,

$$
W_{f}^{i}(X)=\left\{\left(x_{0}, \ldots, x_{i}\right) \in X^{i+1} \mid f\left(x_{0}\right)=\cdots=f\left(x_{i}\right)\right\} .
$$

Descent Spectral Sequence

Exact sequence analogous to the Mayer-Vietoris exact sequence.

$$
0 \longrightarrow C^{\bullet}(Y) \xrightarrow{f^{*}} c^{\bullet}\left(W_{f}^{0}(X)\right) \xrightarrow{\delta^{0}} c^{\bullet}\left(W_{f}^{1}(X)\right) \xrightarrow{\delta^{1}} \cdots \xrightarrow{\delta^{p-1}} c^{\bullet}\left(W_{f}^{p}(X)\right) \xrightarrow{\delta^{p}} c^{\bullet}\left(W_{f}^{p+1}(X)\right) \xrightarrow{\delta^{p+1}} \cdots
$$

Now consider truncation of the corresponding double complex, and compute quasi-isomorphic complex using previous result.

Introduction Recent Results Outline of the Methods Open Problems

Idea behind the algorithm

- Notice that the fibered product of q sets each defined by ℓ quadatic inequalities is defined by $q+\ell$ quadratic inequalities.
Using the polynomial time algorithm described previously for computing a complex whose cohomology groups are isomorphic to those of a given semi-algebraic set defined by a constant number of quadratic inequalities, we are able to construct a certain double complex, whose associated total complex is quasi-isomorphic to a suitable truncation of the one obtained from the cohomological descent spectral sequence mentioned above. This complex is of much smaller size and can be computed in polynomial time.

Idea behind the algorithm

- Notice that the fibered product of q sets each defined by ℓ quadatic inequalities is defined by $q+\ell$ quadratic inequalities.
- Using the polynomial time algorithm described previously for computing a complex whose cohomology groups are isomorphic to those of a given semi-algebraic set defined by a constant number of quadratic inequalities, we are able to construct a certain double complex, whose associated total complex is quasi-isomorphic to a suitable truncation of the one obtained from the cohomological descent spectral sequence mentioned above. This complex is of much smaller size and can be computed in polynomial time.
(1) Single exponential time triangulation?
(2) Best complexity for computing Euler-Poincaré characteristic, or testing emptiness of an algebraic set V is $d^{O(k)}$. For computing $b_{0}(V)$ it is $d^{O\left(k^{2}\right)}$ and more generally for computing $b_{\ell}(V)$ is $d^{k^{(\ell)}}$. Improve this or are the higher Betti numbers more difficult to compute ?
(3) Real analogue of Toda's theorem ?
(9) In view of recent results of D'Acunto and Kurdyka on bounding geodesic diameters of real algebraic varieties, can one improve the complexity of computing roadmaps to $d^{O(k)}$?
(6) Can one improve the complexities of the algorithms presented in the quadratic case from $k^{2^{O(\ell)}}$ to $k^{\ell^{(1)}}$ or even $k^{O(\ell)}$?
(1) Single exponential time triangulation?
(2) Best complexity for computing Euler-Poincaré characteristic, or testing emptiness of an algebraic set V is $d^{O(k)}$. For computing $b_{0}(V)$ it is $d^{O\left(k^{2}\right)}$ and more generally for computing $b_{\ell}(V)$ is $d^{k^{0(\ell)}}$. Improve this or are the higher Betti numbers more difficult to compute ?
Real analogue of Toda's theorem?
© In view of recent results of D'Acunto and Kurdyka on bounding geodesic diameters of real algebraic varieties, can one improve the complexity of computing roadmaps to $d^{O(k)}$?
(6) Can one improve the complexities of the algorithms presented in the quadratic case from $k^{2(e)}$ to $k^{\ell o(1)}$ or even
(1) Single exponential time triangulation?
(2) Best complexity for computing Euler-Poincaré characteristic, or testing emptiness of an algebraic set V is $d^{O(k)}$. For computing $b_{0}(V)$ it is $d^{O\left(k^{2}\right)}$ and more generally for computing $b_{\ell}(V)$ is $d^{k^{0(\ell)}}$. Improve this or are the higher Betti numbers more difficult to compute ?
© Real analogue of Toda's theorem ?
In view of recent results of D'Acunto and Kurdyka on
bounding geodesic diameters of real algebraic varieties,
can one improve the complexity of computing roadmaps to
$a^{\prime O(k)}$?
(3) Can one improve the complexities of the algorithms
presented in the quadratic case from $k^{2(\ell)}$ to $k^{\ell(1)}$ or even
(1) Single exponential time triangulation?
(2) Best complexity for computing Euler-Poincaré characteristic, or testing emptiness of an algebraic set V is $d^{O(k)}$. For computing $b_{0}(V)$ it is $d^{O\left(k^{2}\right)}$ and more generally for computing $b_{\ell}(V)$ is $d^{k^{0(\ell)}}$. Improve this or are the higher Betti numbers more difficult to compute ?
(Real analogue of Toda's theorem?
(1) In view of recent results of D'Acunto and Kurdyka on bounding geodesic diameters of real algebraic varieties, can one improve the complexity of computing roadmaps to $d^{0(k)}$?
(3) Can one improve the complexities of the algorithms presented in the quadratic case from $k^{2(\ell)}$ to $k^{\ell(1)}$ or even
(1) Single exponential time triangulation?
(2) Best complexity for computing Euler-Poincaré characteristic, or testing emptiness of an algebraic set V is $d^{O(k)}$. For computing $b_{0}(V)$ it is $d^{O\left(k^{2}\right)}$ and more generally for computing $b_{\ell}(V)$ is $d^{k^{0(\ell)}}$. Improve this or are the higher Betti numbers more difficult to compute ?
(Real analogue of Toda's theorem ?
(0) In view of recent results of D'Acunto and Kurdyka on bounding geodesic diameters of real algebraic varieties, can one improve the complexity of computing roadmaps to $d^{O(k)}$?
(3) Can one improve the complexities of the algorithms presented in the quadratic case from $k^{20()}$ to $k^{\ell(1)}$ or even $k^{O(\ell)}$?

