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e They arise as configurations spaces (in robotic motion
planning, molecular chemistry etc.), CAD models and
many other applications in computational geometry.
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e By topological complexity of a set S we will mean the
sum of all its Betti numbers, 3;(S) = rankH;(X).

e Intuitively 3;(S) measures the number of “-
dimensional” holes in S.

e 3y(S) is the number of connected components.

e For the hollow torus T C R3 By(T) = 1,6(T) =
2762(T) = 1.
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Oleinik and Petrovsky (1949) Thom (1964) and Milnor
(1965) proved that the sum of the Betti numbers of a
semi-algebraic set S C R*, defined by

P>0,...,F, >0,

deg(P;) <d,1 <1 <n,
Is bounded by
(O(nd))".
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e What if the intersections are not acyclic but have
bounded topology ?



Theorem 1. Let S C R"* be the set defined by the
disjunction of n inequalities,

T hen,



Theorem 2. Let S C R"* be the set defined by the
conjunction of n inequalities,

deg(P;) < d,1 <1 <n.

T hen,
B:(S) < n"O(d)".
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e Can be topologically quite complicated. If S is defined
by
Xl(Xl — 1) > Oaan(Xk -~ 1) > 07

then clearly 3y(S) = 2* (exponential in the dimension).



Theorem 3. Let ¢ be any fixed number and let S C R¥
be defined by

P>0,....,P,>0
with deg(P;) < 2. Then,

Br_(S) < n'kPW.

Note that this bound is polynomial in the dimension.



Let A, B C R* be compact semi-algebraic sets.
Mayer-Vietoris exact sequence:

0— Hk_l(AﬂB) — Hk_l(A)@Hk_l(B) — Hk_l(AUB) —

H, s(AnB)—---— H;.\1(AUB) - H(ANB) —
H;(A)@® HB) — Hi(AUB) — ---



Lemma 4. Let Sy,...,S, C RF be compact semi-
algebraic sets, such that,

Zﬂz‘(sz'l U---uUS;,) < M,

foralll1 <iy <--- <1y <n,l<k—1i (that is the sum of
the Betti numbers of the union of any ¢ of the sets for all
¢ <k —1is bounded by M ). Let S = Ni<;j<,S;. Then,

62(5) < nk_iM.






Let T; = Ni<i<;S;. Hence, T;, = S. Recall the
Mayer-Vietoris exact sequence of homologies:

0— Hyp 1(T,-1NS,) = Hi1(Th—1) & Hi—1(5,)

— Hy 1(T,-1US,) — Hy_o(T,_1NS,) — - -
7 ’H—l(Tn—l U Sn) — H’i(Tn—l M Sn) >
H{(T,_1) ® H;(S,) — Hi(T,_.1US,) — - -
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o _1US, = ﬂlgign_l(si U Sn) The n—1 sets S; U .S,
satisfies the assumption on at most (k—%—1)-ary unions
and we can apply the induction hypothesis.

e Thus, we have that £;(S) < (n — 1)* 1M + (n —
VI M + M < nb~iM.



Lemma 5. Let Si,...,S, C R* be compact semi-
algebraic sets, such that,

Zﬂz‘(sil N---NS;,) < M,

for all 1 S il S s e S ig S n,€ S 1+1. Let S = UlSanSj.
Then,
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d, and | < k. Let S be the set defined by the conjunction
of the inequalities P, > 0. Let S be bounded. Then,

> 3i(8) = O(d)".



Lemma 6. Let P,...,P, € R Xy,...,X}|, deg(P;) <
d, and | < k. Let S be the set defined by the conjunction
of the inequalities P, > 0. Let S be bounded. Then,

> 3i(8) = O(d)".

Lemma 7. Let P,...,P, € R Xq,..., X, deg(P;) <
d, and | < k. Let S be the set defined by the disjunction
of the inequalities P, > 0. Then, > . 3:(S) = O(d)*.



