Different Bounds on the Different Betti Numbers of Semi-algebraic Sets

Saugata Basu

School of Mathematics \&
College of Computing
Georgia Institute of Technology.

Semi-algebraic Sets

- Subsets of R^{k} defined by a formula involving a finite number of polynomial equalities and inequalities.

Semi-algebraic Sets

- Subsets of R^{k} defined by a formula involving a finite number of polynomial equalities and inequalities.
- A basic semi-algebraic set is one defined by a conjunction of weak inequalities of the form $P \geq 0$.

Semi-algebraic Sets

- Subsets of R^{k} defined by a formula involving a finite number of polynomial equalities and inequalities.
- A basic semi-algebraic set is one defined by a conjunction of weak inequalities of the form $P \geq 0$.
- They arise as configurations spaces (in robotic motion planning, molecular chemistry etc.), CAD models and many other applications in computational geometry.

Topological Complexity

- By topological complexity of a set S we will mean the sum of all its Betti numbers, $\beta_{i}(S)=\operatorname{rank} H_{i}(X)$.

Topological Complexity

- By topological complexity of a set S we will mean the sum of all its Betti numbers, $\beta_{i}(S)=\operatorname{rank} H_{i}(X)$.
- Intuitively $\beta_{i}(S)$ measures the number of " i dimensional" holes in S.

Topological Complexity

- By topological complexity of a set S we will mean the sum of all its Betti numbers, $\beta_{i}(S)=\operatorname{rank} H_{i}(X)$.
- Intuitively $\beta_{i}(S)$ measures the number of " i dimensional" holes in S.
- $\beta_{0}(S)$ is the number of connected components.
- For the hollow torus $T \subset R^{3}, \beta_{0}(T)=1, \beta_{1}(T)=$ $2, \beta_{2}(T)=1$.

Uses of topological complexity

- As a measure "computational difficulty" of semialgebraic sets. e.g. lower bounds for membership testing in terms of the sum of the Betti numbers (Yao et al.)

Uses of topological complexity

- As a measure "computational difficulty" of semialgebraic sets. e.g. lower bounds for membership testing in terms of the sum of the Betti numbers (Yao et al.)
- In studying the complexity of arrangements in computational geometry.

Uses of topological complexity

- As a measure "computational difficulty" of semialgebraic sets. e.g. lower bounds for membership testing in terms of the sum of the Betti numbers (Yao et al.)
- In studying the complexity of arrangements in computational geometry.

Arrangements in Computational Geometry

Figure 1: An arrangement of circles in the plane.

Topological Complexity and Combinatorial Complexity

- The combinatorial complexity of arrangements and their substructures have been long studied by computational geometers.

Topological Complexity and Combinatorial Complexity

- The combinatorial complexity of arrangements and their substructures have been long studied by computational geometers.
- In the most general setting the objects are semi-algebraic sets of constant description complexity.

Topological Complexity and Combinatorial Complexity

- The combinatorial complexity of arrangements and their substructures have been long studied by computational geometers.
- In the most general setting the objects are semi-algebraic sets of constant description complexity.
- In many cases, tight bounds are known.

Topological Complexity and Combinatorial Complexity

- The combinatorial complexity of arrangements and their substructures have been long studied by computational geometers.
- In the most general setting the objects are semi-algebraic sets of constant description complexity.
- In many cases, tight bounds are known.

Bounding Combinatorial Complexity of Arrangements

- One charges certain combinatorial features to the topological complexity. The challenge is then to bound somehow the number of remaining cells that cannot be charged this way.

Bounding Combinatorial Complexity of

Arrangements

- One charges certain combinatorial features to the topological complexity. The challenge is then to bound somehow the number of remaining cells that cannot be charged this way.
- Fairly tight bounds are now known on the combinatorial complexity of single cells, zones etc.

Bounding Combinatorial Complexity of

Arrangements

- One charges certain combinatorial features to the topological complexity. The challenge is then to bound somehow the number of remaining cells that cannot be charged this way.
- Fairly tight bounds are now known on the combinatorial complexity of single cells, zones etc.

Topological Complexity of Semi-Algebraic

Sets

Oleinik and Petrovsky (1949) Thom (1964) and Milnor (1965) proved that the sum of the Betti numbers of a semi-algebraic set $S \subset R^{k}$, defined by

$$
\begin{gathered}
P_{1} \geq 0, \ldots, P_{n} \geq 0 \\
\operatorname{deg}\left(P_{i}\right) \leq d, 1 \leq i \leq n
\end{gathered}
$$

is bounded by

$$
(O(n d))^{k}
$$

The Nerve Complex

Figure 2: The nerve complex of a union of disks

Different bounds for different Betti numbers

- Consider the union of n convex sets in R^{k}. The nerve lemma gives us a bound on the individual Betti numbers of the union.

Different bounds for different Betti

 numbers- Consider the union of n convex sets in R^{k}. The nerve lemma gives us a bound on the individual Betti numbers of the union.
- The homology groups of the union is isomorphic to the homology groups of the nerve complex. The nerve complex has n vertices and thus the i-th Betti number is bounded by $\binom{n}{i+1}$.

Different bounds for different Betti

 numbers- Consider the union of n convex sets in R^{k}. The nerve lemma gives us a bound on the individual Betti numbers of the union.
- The homology groups of the union is isomorphic to the homology groups of the nerve complex. The nerve complex has n vertices and thus the i-th Betti number is bounded by $\binom{n}{i+1}$.
- What if the intersections are not acyclic but have bounded topology?

Betti numbers for union

Theorem 1. Let $S \subset R^{k}$ be the set defined by the disjunction of n inequalities,

$$
\begin{gathered}
P_{1} \geq 0, \ldots, P_{n} \geq 0 \\
\operatorname{deg}\left(P_{i}\right) \leq d, 1 \leq i \leq n
\end{gathered}
$$

Then,

$$
\beta_{i}(S) \leq n^{i+1} O(d)^{k}
$$

Betti numbers for intersections

Theorem 2. Let $S \subset R^{k}$ be the set defined by the conjunction of n inequalities,

$$
\begin{gathered}
P_{1} \geq 0, \ldots, P_{n} \geq 0 \\
\operatorname{deg}\left(P_{i}\right) \leq d, 1 \leq i \leq n .
\end{gathered}
$$

Then,

$$
\beta_{i}(S) \leq n^{k-i} O(d)^{k}
$$

Sets defined by Quadratic Inequalities

- Let $S \subset R^{k}$ be defined by

$$
\begin{gathered}
P_{1} \geq 0, \cdots, P_{n} \geq 0 \\
\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq n .
\end{gathered}
$$

Sets defined by Quadratic Inequalities

- Let $S \subset R^{k}$ be defined by

$$
\begin{gathered}
P_{1} \geq 0, \cdots, P_{n} \geq 0, \\
\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq n .
\end{gathered}
$$

- They arise in many applications e.g. as the configuration space of sets of points with pair-wise distance constraints.

Sets defined by Quadratic Inequalities

- Let $S \subset R^{k}$ be defined by

$$
\begin{gathered}
P_{1} \geq 0, \cdots, P_{n} \geq 0, \\
\operatorname{deg}\left(P_{i}\right) \leq 2,1 \leq i \leq n .
\end{gathered}
$$

- They arise in many applications e.g. as the configuration space of sets of points with pair-wise distance constraints.
- Can be topologically quite complicated. If S is defined by

$$
X_{1}\left(X_{1}-1\right) \geq 0, \ldots, X_{k}\left(X_{k}-1\right) \geq 0
$$

then clearly $\beta_{0}(S)=2^{k}$ (exponential in the dimension).

But

Theorem 3. Let ℓ be any fixed number and let $S \subset R^{k}$ be defined by

$$
P_{1} \geq 0, \ldots, P_{n} \geq 0
$$

with $\operatorname{deg}\left(P_{i}\right) \leq 2$. Then,

$$
\beta_{k-\ell}(S) \leq n^{\ell} k^{O(\ell)}
$$

Note that this bound is polynomial in the dimension.

Ideas behind the proofs:

Let $A, B \subset R^{k}$ be compact semi-algebraic sets.
Mayer-Vietoris exact sequence:

$$
\begin{gathered}
0 \rightarrow H_{k-1}(A \cap B) \rightarrow H_{k-1}(A) \oplus H_{k-1}(B) \rightarrow H_{k-1}(A \cup B) \rightarrow \\
H_{k-2}(A \cap B) \rightarrow \cdots \rightarrow H_{i+1}(A \cup B) \rightarrow H_{i}(A \cap B) \rightarrow \\
H_{i}(A) \oplus H(B) \rightarrow H_{i}(A \cup B) \rightarrow \cdots
\end{gathered}
$$

A preliminary lemma

Lemma 4. Let $S_{1}, \ldots, S_{n} \subset R^{k}$ be compact semialgebraic sets, such that,

$$
\sum_{i} \beta_{i}\left(S_{i_{1}} \cup \cdots \cup S_{i_{e}}\right) \leq M
$$

for all $1 \leq i_{1} \leq \cdots \leq i_{\ell} \leq n, \ell \leq k-i$ (that is the sum of the Betti numbers of the union of any ℓ of the sets for all $\ell \leq k-i$ is bounded by M). Let $S=\cap_{1 \leq j \leq n} S_{j}$. Then,

$$
\beta_{i}(S) \leq n^{k-i} M .
$$

Proof:

Let $T_{j}=\cap_{1 \leq i \leq j} S_{i}$. Hence, $T_{n}=S$.

Proof:

Let $T_{j}=\cap_{1 \leq i \leq j} S_{i}$. Hence, $T_{n}=S$. Recall the Mayer-Vietoris exact sequence of homologies:

$$
\begin{gathered}
0 \rightarrow H_{k-1}\left(T_{n-1} \cap S_{n}\right) \rightarrow H_{k-1}\left(T_{n-1}\right) \oplus H_{k-1}\left(S_{n}\right) \\
\rightarrow H_{k-1}\left(T_{n-1} \cup S_{n}\right) \rightarrow H_{k-2}\left(T_{n-1} \cap S_{n}\right) \rightarrow \cdots \\
\quad \rightarrow H_{i+1}\left(T_{n-1} \cup S_{n}\right) \rightarrow H_{i}\left(T_{n-1} \cap S_{n}\right) \rightarrow \\
\\
H_{i}\left(T_{n-1}\right) \oplus H_{i}\left(S_{n}\right) \rightarrow H_{i}\left(T_{n-1} \cup S_{n}\right) \rightarrow \cdots
\end{gathered}
$$

Proof (cont):

- $\beta_{k-1}\left(T_{n}\right)=\beta_{k-1}\left(T_{n-1} \cap S_{n}\right) \leq \beta_{k-1}\left(T_{n-1}\right)+\beta_{k-1}\left(S_{n}\right)$. Unwinding the first term of right hand side we obtain that $\beta_{k-1}(S) \leq n M$.

Proof (cont):

- $\beta_{k-1}\left(T_{n}\right)=\beta_{k-1}\left(T_{n-1} \cap S_{n}\right) \leq \beta_{k-1}\left(T_{n-1}\right)+\beta_{k-1}\left(S_{n}\right)$. Unwinding the first term of right hand side we obtain that $\beta_{k-1}(S) \leq n M$.
- Again from the Mayer-Vietoris sequence we get that,

$$
\beta_{i}(S) \leq \beta_{i+1}\left(T_{n-1} \cup S_{n}\right)+\beta_{i}\left(T_{n-1}\right)+\beta_{i}\left(S_{n}\right)
$$

Proof (cont):

- $\beta_{k-1}\left(T_{n}\right)=\beta_{k-1}\left(T_{n-1} \cap S_{n}\right) \leq \beta_{k-1}\left(T_{n-1}\right)+\beta_{k-1}\left(S_{n}\right)$. Unwinding the first term of right hand side we obtain that $\beta_{k-1}(S) \leq n M$.
- Again from the Mayer-Vietoris sequence we get that,

$$
\beta_{i}(S) \leq \beta_{i+1}\left(T_{n-1} \cup S_{n}\right)+\beta_{i}\left(T_{n-1}\right)+\beta_{i}\left(S_{n}\right)
$$

- $T_{n-1} \cup S_{n}=\cap_{1 \leq i \leq n-1}\left(S_{i} \cup S_{n}\right)$. The $n-1$ sets $S_{i} \cup S_{n}$ satisfies the assumption on at most ($k-i-1$)-ary unions and we can apply the induction hypothesis.
- $T_{n-1} \cup S_{n}=\cap_{1 \leq i \leq n-1}\left(S_{i} \cup S_{n}\right)$. The $n-1$ sets $S_{i} \cup S_{n}$ satisfies the assumption on at most $(k-i-1)$-ary unions and we can apply the induction hypothesis.
- Thus, we have that $\beta_{i}(S) \leq(n-1)^{k-i-1} M+(n-$ 1) ${ }^{k-i} M+M \leq n^{k-i} M$.

Dual lemma

Lemma 5. Let $S_{1}, \ldots, S_{n} \subset R^{k}$ be compact semialgebraic sets, such that,

$$
\sum_{i} \beta_{i}\left(S_{i_{1}} \cap \cdots \cap S_{i_{\ell}}\right) \leq M,
$$

for all $1 \leq i_{1} \leq \cdots \leq i_{\ell} \leq n, \ell \leq i+1$. Let $S=\cup_{1 \leq j \leq n} S_{j}$. Then,

$$
\beta_{i}(S) \leq n^{i+1} M .
$$

Sets defined by few inequalities:

Lemma 6. Let $P_{1}, \ldots, P_{l} \in R\left[X_{1}, \ldots, X_{k}\right], \operatorname{deg}\left(P_{i}\right) \leq$ d, and $l \leq k$. Let S be the set defined by the conjunction of the inequalities $P_{i} \geq 0$. Let S be bounded. Then, $\sum_{i} \beta_{i}(S)=O(d)^{k}$.

Sets defined by few inequalities:

Lemma 6. Let $P_{1}, \ldots, P_{l} \in R\left[X_{1}, \ldots, X_{k}\right], \operatorname{deg}\left(P_{i}\right) \leq$ d, and $l \leq k$. Let S be the set defined by the conjunction of the inequalities $P_{i} \geq 0$. Let S be bounded. Then, $\sum_{i} \beta_{i}(S)=O(d)^{k}$.

Lemma 7. Let $P_{1}, \ldots, P_{l} \in R\left[X_{1}, \ldots, X_{k}\right], \operatorname{deg}\left(P_{i}\right) \leq$ d, and $l \leq k$. Let S be the set defined by the disjunction of the inequalities $P_{i} \geq 0$. Then, $\sum_{i} \beta_{i}(S)=O(d)^{k}$.

