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Semi-algebraic Sets

• Subsets of Rk defined by a formula involving a finite

number of polynomial equalities and inequalities.

• A basic semi-algebraic set is one defined by a conjunction

of weak inequalities of the form P ≥ 0.

• They arise as configurations spaces (in robotic motion

planning, molecular chemistry etc.), CAD models and

many other applications in computational geometry.
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Topological Complexity

• By topological complexity of a set S we will mean the

sum of all its Betti numbers, βi(S) = rankHi(X).

• Intuitively βi(S) measures the number of “i-

dimensional” holes in S.

• β0(S) is the number of connected components.

• For the hollow torus T ⊂ R3, β0(T ) = 1, β1(T ) =
2, β2(T ) = 1.
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Arrangements in Computational Geometry

Figure 1: An arrangement of circles in the plane.
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Topological Complexity of Semi-Algebraic
Sets

Oleinik and Petrovsky (1949) Thom (1964) and Milnor

(1965) proved that the sum of the Betti numbers of a

semi-algebraic set S ⊂ Rk, defined by

P1 ≥ 0, . . . , Pn ≥ 0,

deg(Pi) ≤ d, 1 ≤ i ≤ n,
is bounded by

(O(nd))k.
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The Nerve Complex

Figure 2: The nerve complex of a union of disks
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• What if the intersections are not acyclic but have

bounded topology ?
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Betti numbers for union

Theorem 1. Let S ⊂ Rk be the set defined by the

disjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0,

deg(Pi) ≤ d, 1 ≤ i ≤ n.
Then,

βi(S) ≤ ni+1O(d)k.
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Betti numbers for intersections

Theorem 2. Let S ⊂ Rk be the set defined by the

conjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0,

deg(Pi) ≤ d, 1 ≤ i ≤ n.
Then,

βi(S) ≤ nk−iO(d)k.
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• Can be topologically quite complicated. If S is defined

by

X1(X1 − 1) ≥ 0, . . . , Xk(Xk − 1) ≥ 0,
then clearly β0(S) = 2k (exponential in the dimension).
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But ...

Theorem 3. Let ` be any fixed number and let S ⊂ Rk

be defined by

P1 ≥ 0, . . . , Pn ≥ 0
with deg(Pi) ≤ 2. Then,

βk−`(S) ≤ n`kO(`).

Note that this bound is polynomial in the dimension.
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Ideas behind the proofs:

Let A,B ⊂ Rk be compact semi-algebraic sets.

Mayer-Vietoris exact sequence:

0→ Hk−1(A∩B)→ Hk−1(A)⊕Hk−1(B)→ Hk−1(A∪B)→

Hk−2(A ∩B)→ · · · → Hi+1(A ∪B)→ Hi(A ∩B)→
Hi(A)⊕H(B)→ Hi(A ∪B)→ · · ·
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A preliminary lemma

Lemma 4. Let S1, . . . , Sn ⊂ Rk be compact semi-

algebraic sets, such that,∑
i

βi(Si1 ∪ · · · ∪ Si`) ≤M,

for all 1 ≤ i1 ≤ · · · ≤ i` ≤ n, ` ≤ k− i (that is the sum of

the Betti numbers of the union of any ` of the sets for all

` ≤ k − i is bounded by M). Let S = ∩1≤j≤nSj. Then,

βi(S) ≤ nk−iM.
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Proof:

Let Tj = ∩1≤i≤jSi. Hence, Tn = S.
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Proof:

Let Tj = ∩1≤i≤jSi. Hence, Tn = S. Recall the

Mayer-Vietoris exact sequence of homologies:

0→ Hk−1(Tn−1 ∩ Sn)→ Hk−1(Tn−1)⊕Hk−1(Sn)

→ Hk−1(Tn−1 ∪ Sn)→ Hk−2(Tn−1 ∩ Sn)→ · · ·
→ Hi+1(Tn−1 ∪ Sn)→ Hi(Tn−1 ∩ Sn)→
Hi(Tn−1)⊕Hi(Sn)→ Hi(Tn−1 ∪ Sn)→ · · ·
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Proof (cont):

• βk−1(Tn) = βk−1(Tn−1 ∩ Sn) ≤ βk−1(Tn−1) + βk−1(Sn).
Unwinding the first term of right hand side we obtain

that βk−1(S) ≤ nM.
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• Tn−1 ∪ Sn = ∩1≤i≤n−1(Si ∪ Sn). The n− 1 sets Si ∪ Sn
satisfies the assumption on at most (k−i−1)-ary unions

and we can apply the induction hypothesis.
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• Tn−1 ∪ Sn = ∩1≤i≤n−1(Si ∪ Sn). The n− 1 sets Si ∪ Sn
satisfies the assumption on at most (k−i−1)-ary unions

and we can apply the induction hypothesis.

• Thus, we have that βi(S) ≤ (n − 1)k−i−1M + (n −
1)k−iM +M ≤ nk−iM.
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Dual lemma

Lemma 5. Let S1, . . . , Sn ⊂ Rk be compact semi-

algebraic sets, such that,∑
i

βi(Si1 ∩ · · · ∩ Si`) ≤M,

for all 1 ≤ i1 ≤ · · · ≤ i` ≤ n, ` ≤ i+1. Let S = ∪1≤j≤nSj.

Then,

βi(S) ≤ ni+1M.



23

Sets defined by few inequalities:

Lemma 6. Let P1, . . . , Pl ∈ R[X1, . . . , Xk], deg(Pi) ≤
d, and l ≤ k. Let S be the set defined by the conjunction

of the inequalities Pi ≥ 0. Let S be bounded. Then,∑
i βi(S) = O(d)k.
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Lemma 7. Let P1, . . . , Pl ∈ R[X1, . . . , Xk], deg(Pi) ≤
d, and l ≤ k. Let S be the set defined by the disjunction

of the inequalities Pi ≥ 0. Then,
∑

i βi(S) = O(d)k.


