Computing the Betti Numbers of Arrangements

Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

An arrangement in \mathbb{R}^k is a collection of n objects in \mathbb{R}^k each of constant description complexity.

An arrangement in \mathbb{R}^k is a collection of n objects in \mathbb{R}^k each of constant description complexity.

• Arrangements of lines in the plane, or more generally hyperplanes in \mathbb{R}^k .

An arrangement in \mathbb{R}^k is a collection of n objects in \mathbb{R}^k each of constant description complexity.

- Arrangements of lines in the plane, or more generally hyperplanes in \mathbb{R}^k .
- Arrangements of balls or simplices in \mathbb{R}^k .

An arrangement in \mathbb{R}^k is a collection of n objects in \mathbb{R}^k each of constant description complexity.

- Arrangements of lines in the plane, or more generally hyperplanes in \mathbb{R}^k .
- Arrangements of balls or simplices in \mathbb{R}^k .
- Arrangements of semi-algebraic objects in R^k, each defined by a fixed number of polynomials of constant degree.

Arrangements of lines in the \mathbb{R}^2

Arrangement of circles in \mathbb{R}^2

Arrangement of tori in \mathbb{R}^3

• Topology of arrangements can be very complicated.

- Topology of arrangements can be very complicated.
- An important measure of the topological complexity of a set S are the Betti numbers. $\beta_i(S)$.
- β_i(S) is the rank of the Hⁱ(S) (the *i*-th co-homology group of S).

- Topology of arrangements can be very complicated.
- An important measure of the topological complexity of a set S are the Betti numbers. $\beta_i(S)$.
- $\beta_i(S)$ is the rank of the $H^i(S)$ (the *i*-th co-homology group of S).
- $\beta_0(S) =$ the number of connected components.

Topology of the Torus

Let T be the hollow torus.

Topology of the Torus

Let T be the hollow torus.

- $\beta_0(T) = 1$
- $\beta_1(T) = 2$

- $\beta_0(T) = 1$
- $\beta_1(T) = 2$
- $\beta_2(T) = 1$

- $\beta_0(T) = 1$
- $\beta_1(T) = 2$
- $\beta_2(T) = 1$
- $\beta_i(T) = 0, i > 2.$

 Schwartz and Sharir, in their seminal papers on the Piano Mover's Problem (Motion Planning).

- Schwartz and Sharir, in their seminal papers on the Piano Mover's Problem (Motion Planning).
- Computing the Betti numbers of arrangements of balls by Edelsbrunner et al (Molecular Biology).

- Schwartz and Sharir, in their seminal papers on the Piano Mover's Problem (Motion Planning).
- Computing the Betti numbers of arrangements of balls by Edelsbrunner et al (Molecular Biology).
- Computing the Betti numbers of triangulated manifolds (Edelsbrunner, Dey, Guha et al).

Complexity of Algorithms

Complexity of Algorithms

 In computational geometry it is customary to study the *combinatorial complexity* of algorithms. The dependence on the degree is considered to be a constant.

Complexity of Algorithms

 In computational geometry it is customary to study the *combinatorial complexity* of algorithms. The dependence on the degree is considered to be a constant.

• We only count the number of algebraic operations and ignore the cost of doing linear algebra.

Two Approaches

Two Approaches

Global vs Local

First Approach (Global): Using Triangulations

First Approach (Global): Using Triangulations

Triangulation via Cylindrical Algebraic Decomposition

Computing Betti Numbers using Global Triangulations

• Compact semi-algebraic sets are finitely triangulable.

Computing Betti Numbers using Global Triangulations

- Compact semi-algebraic sets are finitely triangulable.
- First triangulate the arrangement using *Cylindrical* algebraic decomposition and then compute the Betti numbers of the corresponding simplicial complex.
- But ...

Computing Betti Numbers using Global Triangulations

- Compact semi-algebraic sets are finitely triangulable.
- First triangulate the arrangement using *Cylindrical* algebraic decomposition and then compute the Betti numbers of the corresponding simplicial complex.
- But ... CAD produces $O(n^{2^k})$ simplices in the worst case.

Second Approach (Local): Using the Nerve Complex

15

Second Approach (Local): Using the Nerve Complex

 If the sets have the special property that all their nonempty intersections are contractible we can use the *nerve lemma* (Leray, Folkman).

Second Approach (Local): Using the Nerve Complex

- If the sets have the special property that all their nonempty intersections are contractible we can use the *nerve lemma* (Leray, Folkman).
- The homology groups of the union are then isomorphic to the homology groups of a combinatorially defined complex called the *nerve complex*.

The Nerve Complex

Figure 1: The nerve complex of a union of disks

Computing the Betti Numbers via the Nerve Complex (local algorithm)

• The nerve complex has *n* vertices, one vertex for each set in the union, and a simplex for each *non-empty* intersection among the sets.

Computing the Betti Numbers via the Nerve Complex (local algorithm)

- The nerve complex has *n* vertices, one vertex for each set in the union, and a simplex for each *non-empty* intersection among the sets.
- Thus, the $(\ell + 1)$ -skeleton of the nerve complex can be computed by testing for non-emptiness of each of the possible $\sum_{1 \le j \le \ell+2} {n \choose j} = O(n^{\ell+2})$ at most $(\ell + 2)$ -ary intersections among the n given sets.

 If the sets are such that the topology of the "small" intersections are controlled, then

- If the sets are such that the topology of the "small" intersections are controlled, then
- we can use the Leray spectral sequence as a substitute for the nerve lemma.

- If the sets are such that the topology of the "small" intersections are controlled, then
- we can use the Leray spectral sequence as a substitute for the nerve lemma.
- This approach produced the first non-trivial bounds on the *individual* Betti numbers of arrangements rather than their sum (B, 2001).

Main Result

Theorem 1. Let $S_1, \ldots, S_n \subset \mathbb{R}^k$ be compact semialgebraic sets of constant description complexity and let $S = \bigcup_{1 \leq i \leq n} S_i$, and $0 \leq \ell \leq k - 1$. Then, there is an algorithm to compute $\beta_0(S), \ldots, \beta_\ell(S)$, whose complexity is $O(n^{\ell+2})$.

Complexes and Spectral Sequences

A crash course in homological algebra.

Double Complex

The Associated Total Complex

 A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials $(E_r, d_r: E_r^{p,q} \rightarrow E_r^{p+r,q-r+1}),$

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials $(E_r, d_r: E_r^{p,q} \rightarrow E_r^{p+r,q-r+1}),$
- $E_{r+1} = H(E_r, d_r),$

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials $(E_r, d_r: E_r^{p,q} \rightarrow E_r^{p+r,q-r+1}),$
- $E_{r+1} = H(E_r, d_r),$
- $E_{\infty} = H^*$ (Associated Total Complex).

Figure 2: The differentials d_r in the spectral sequence (E_r,d_r)

Let A₁,..., A_n be sub-complexes of a finite simplicial complex A such that A = A₁ ∪ · · · ∪ A_n.

- Let A_1, \ldots, A_n be sub-complexes of a finite simplicial complex A such that $A = A_1 \cup \cdots \cup A_n$.
- Let $C^{i}(A)$ denote the \mathbb{R} -vector space of i co-chains of A, and $C^{*}(A) = \bigoplus_{i} C^{i}(A)$.

- Let A_1, \ldots, A_n be sub-complexes of a finite simplicial complex A such that $A = A_1 \cup \cdots \cup A_n$.
- Let $C^{i}(A)$ denote the \mathbb{R} -vector space of i co-chains of A, and $C^{*}(A) = \bigoplus_{i} C^{i}(A)$.
- Denote by $A_{\alpha_0,\ldots,\alpha_p}$ the sub-complex $A_{\alpha_0} \cap \cdots \cap A_{\alpha_p}$.

• Compute the spectral sequence (E_r, d_r) of the Mayer-Vietoris double complex.

- Compute the spectral sequence (E_r, d_r) of the Mayer-Vietoris double complex.
- In order to compute $\beta_\ell,$ we only need to compute upto $E_{\ell+2}.$

- Compute the spectral sequence (E_r, d_r) of the Mayer-Vietoris double complex.
- In order to compute β_{ℓ} , we only need to compute upto $E_{\ell+2}$. But the punchline is that:

- Compute the spectral sequence (E_r, d_r) of the Mayer-Vietoris double complex.
- In order to compute β_{ℓ} , we only need to compute upto $E_{\ell+2}$. But the punchline is that:
- In order to compute the differentials d_r, 1 ≤ r ≤ ℓ + 1,
 it suffices to have independent triangulations of the different unions taken ℓ + 2 at a time.

 For instance, it should be intuitively clear that in order to compute β₀(∪_iS_i) it suffices to triangulate pairs.

Open Problems

 Same idea is applicable as a divide-and-conquer tool for computing the homology of arbitrary simplicial complexes, given a covering. What kind of efficiency do we derive ?

Open Problems

- Same idea is applicable as a divide-and-conquer tool for computing the homology of arbitrary simplicial complexes, given a covering. What kind of efficiency do we derive ?
- Truly polynomial time algorithms for computing the highest Betti numbers of sets defined by quadratic inequalities ?

Open Problems

- Same idea is applicable as a divide-and-conquer tool for computing the homology of arbitrary simplicial complexes, given a covering. What kind of efficiency do we derive ?
- Truly polynomial time algorithms for computing the highest Betti numbers of sets defined by quadratic inequalities ?

 To what extent does topological simplicity aid algorithms in computational geometry ?

- To what extent does topological simplicity aid algorithms in computational geometry ?
- Other applications of spectral sequences, possibly in the theory of distributed computing ?