Computing the Betti Numbers of Arrangements

Saugata Basu

School of Mathematics \&
College of Computing
Georgia Institute of Technology.

Arrangements in Computational Geometry

An arrangement in \mathbb{R}^{k} is a collection of n objects in \mathbb{R}^{k} each of constant description complexity.

Arrangements in Computational Geometry

An arrangement in \mathbb{R}^{k} is a collection of n objects in \mathbb{R}^{k} each of constant description complexity.

- Arrangements of lines in the plane, or more generally hyperplanes in \mathbb{R}^{k}.

Arrangements in Computational Geometry

An arrangement in \mathbb{R}^{k} is a collection of n objects in \mathbb{R}^{k} each of constant description complexity.

- Arrangements of lines in the plane, or more generally hyperplanes in \mathbb{R}^{k}.
- Arrangements of balls or simplices in \mathbb{R}^{k}.

Arrangements in Computational Geometry

An arrangement in \mathbb{R}^{k} is a collection of n objects in \mathbb{R}^{k} each of constant description complexity.

- Arrangements of lines in the plane, or more generally hyperplanes in \mathbb{R}^{k}.
- Arrangements of balls or simplices in \mathbb{R}^{k}.
- Arrangements of semi-algebraic objects in \mathbb{R}^{k}, each defined by a fixed number of polynomials of constant degree.

Arrangements of lines in the \mathbb{R}^{2}

Arrangement of circles in \mathbb{R}^{2}

Arrangement of tori in \mathbb{R}^{3}

Topology of Arrangements

Topology of Arrangements

- Topology of arrangements can be very complicated.

Topology of Arrangements

- Topology of arrangements can be very complicated.
- An important measure of the topological complexity of a set S are the Betti numbers. $\beta_{i}(S)$.
- $\beta_{i}(S)$ is the rank of the $H^{i}(S)$ (the i-th co-homology group of S).

Topology of Arrangements

- Topology of arrangements can be very complicated.
- An important measure of the topological complexity of a set S are the Betti numbers. $\beta_{i}(S)$.
- $\beta_{i}(S)$ is the rank of the $H^{i}(S)$ (the i-th co-homology group of S).
- $\beta_{0}(S)=$ the number of connected components.

Topology of the Torus

Let T be the hollow torus.

Topology of the Torus

Let T be the hollow torus.

Betti Numbers of the Torus

Betti Numbers of the Torus

- $\beta_{0}(T)=1$

Betti Numbers of the Torus

- $\beta_{0}(T)=1$
- $\beta_{1}(T)=2$

Betti Numbers of the Torus

- $\beta_{0}(T)=1$
- $\beta_{1}(T)=2$
- $\beta_{2}(T)=1$

Betti Numbers of the Torus

- $\beta_{0}(T)=1$
- $\beta_{1}(T)=2$
- $\beta_{2}(T)=1$
- $\beta_{i}(T)=0, i>2$.

Computing the Betti Numbers: Previous Work

Computing the Betti Numbers: Previous Work

- Schwartz and Sharir, in their seminal papers on the Piano Mover's Problem (Motion Planning).

Computing the Betti Numbers: Previous Work

- Schwartz and Sharir, in their seminal papers on the Piano Mover's Problem (Motion Planning).
- Computing the Betti numbers of arrangements of balls by Edelsbrunner et al (Molecular Biology).

Computing the Betti Numbers: Previous Work

- Schwartz and Sharir, in their seminal papers on the Piano Mover's Problem (Motion Planning).
- Computing the Betti numbers of arrangements of balls by Edelsbrunner et al (Molecular Biology).
- Computing the Betti numbers of triangulated manifolds (Edelsbrunner, Dey, Guha et al).

Complexity of Algorithms

Complexity of Algorithms

- In computational geometry it is customary to study the combinatorial complexity of algorithms. The dependence on the degree is considered to be a constant.

Complexity of Algorithms

- In computational geometry it is customary to study the combinatorial complexity of algorithms. The dependence on the degree is considered to be a constant.
- We only count the number of algebraic operations and ignore the cost of doing linear algebra.

Two Approaches

Two Approaches

Global
VS
Local

First Approach (Global): Using Triangulations

First Approach (Global): Using Triangulations

Triangulation via Cylindrical Algebraic Decomposition

Computing Betti Numbers using Global Triangulations

- Compact semi-algebraic sets are finitely triangulable.

Computing Betti Numbers using Global Triangulations

- Compact semi-algebraic sets are finitely triangulable.
- First triangulate the arrangement using Cylindrical algebraic decomposition and then compute the Betti numbers of the corresponding simplicial complex.
- But ...

Computing Betti Numbers using Global Triangulations

- Compact semi-algebraic sets are finitely triangulable.
- First triangulate the arrangement using Cylindrical algebraic decomposition and then compute the Betti numbers of the corresponding simplicial complex.
- But ... CAD produces $O\left(n^{2^{k}}\right)$ simplices in the worst case.

Second Approach (Local): Using the Nerve Complex

Second Approach (Local): Using the Nerve Complex

- If the sets have the special property that all their nonempty intersections are contractible we can use the nerve lemma (Leray, Folkman).

Second Approach (Local): Using the Nerve Complex

- If the sets have the special property that all their nonempty intersections are contractible we can use the nerve lemma (Leray, Folkman).
- The homology groups of the union are then isomorphic to the homology groups of a combinatorially defined complex called the nerve complex.

The Nerve Complex

Figure 1: The nerve complex of a union of disks

Computing the Betti Numbers via the Nerve Complex (local algorithm)

- The nerve complex has n vertices, one vertex for each set in the union, and a simplex for each non-empty intersection among the sets.

Computing the Betti Numbers via the Nerve Complex (local algorithm)

- The nerve complex has n vertices, one vertex for each set in the union, and a simplex for each non-empty intersection among the sets.
- Thus, the $(\ell+1)$-skeleton of the nerve complex can be computed by testing for non-emptiness of each of the possible $\sum_{1 \leq j \leq \ell+2}\binom{n}{j}=O\left(n^{\ell+2}\right)$ at most $(\ell+2)$-ary intersections among the n given sets.

What if the sets are not special ?

What if the sets are not special ?

- If the sets are such that the topology of the "small" intersections are controlled, then

What if the sets are not special ?

- If the sets are such that the topology of the "small" intersections are controlled, then
- we can use the Leray spectral sequence as a substitute for the nerve lemma.

What if the sets are not special ?

- If the sets are such that the topology of the "small" intersections are controlled, then
- we can use the Leray spectral sequence as a substitute for the nerve lemma.
- This approach produced the first non-trivial bounds on the individual Betti numbers of arrangements rather than their sum $(B, 2001)$.

Main Result

Theorem 1. Let $S_{1}, \ldots, S_{n} \subset \mathbb{R}^{k}$ be compact semialgebraic sets of constant description complexity and let $S=\cup_{1 \leq i \leq n} S_{i}$, and $0 \leq \ell \leq k-1$. Then, there is an algorithm to compute $\beta_{0}(S), \ldots, \beta_{\ell}(S)$, whose complexity is $O\left(n^{\ell+2}\right)$.

Complexes and Spectral Sequences

A crash course in homological algebra.

Double Complex

The Associated Total Complex

Spectral Sequence

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,

Spectral Sequence

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials

$$
\left(E_{r}, d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right),
$$

Spectral Sequence

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials

$$
\left(E_{r}, d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right),
$$

- $E_{r+1}=H\left(E_{r}, d_{r}\right)$,

Spectral Sequence

- A sequence of vector spaces progressively approximating the homology of the total complex. More precisely,
- a sequence of bi-graded vector spaces and differentials

$$
\left(E_{r}, d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right),
$$

- $E_{r+1}=H\left(E_{r}, d_{r}\right)$,
- $E_{\infty}=H^{*}($ Associated Total Complex).

Spectral Sequence

Figure 2: The differentials d_{r} in the spectral sequence $\left(E_{r}, d_{r}\right)$

The Mayer-Vietoris Double Complex I

The Mayer-Vietoris Double Complex I

- Let A_{1}, \ldots, A_{n} be sub-complexes of a finite simplicial complex A such that $A=A_{1} \cup \cdots \cup A_{n}$.

The Mayer-Vietoris Double Complex I

- Let A_{1}, \ldots, A_{n} be sub-complexes of a finite simplicial complex A such that $A=A_{1} \cup \cdots \cup A_{n}$.
- Let $C^{i}(A)$ denote the \mathbb{R}-vector space of i co-chains of A, and $C^{*}(A)=\oplus_{i} C^{i}(A)$.

The Mayer-Vietoris Double Complex I

- Let A_{1}, \ldots, A_{n} be sub-complexes of a finite simplicial complex A such that $A=A_{1} \cup \cdots \cup A_{n}$.
- Let $C^{i}(A)$ denote the \mathbb{R}-vector space of i co-chains of A, and $C^{*}(A)=\oplus_{i} C^{i}(A)$.
- Denote by $A_{\alpha_{0}, \ldots, \alpha_{p}}$ the sub-complex $A_{\alpha_{0}} \cap \cdots \cap A_{\alpha_{p}}$.

The Mayer-Vietoris Double Complex II

The Algorithm

The Algorithm

- Compute the spectral sequence $\left(E_{r}, d_{r}\right)$ of the MayerVietoris double complex.

The Algorithm

- Compute the spectral sequence $\left(E_{r}, d_{r}\right)$ of the MayerVietoris double complex.
- In order to compute β_{ℓ}, we only need to compute upto $E_{\ell+2}$.

The Algorithm

- Compute the spectral sequence $\left(E_{r}, d_{r}\right)$ of the MayerVietoris double complex.
- In order to compute β_{ℓ}, we only need to compute upto $E_{\ell+2}$. But the punchline is that:

The Algorithm

- Compute the spectral sequence $\left(E_{r}, d_{r}\right)$ of the MayerVietoris double complex.
- In order to compute β_{ℓ}, we only need to compute upto $E_{\ell+2}$. But the punchline is that:
- In order to compute the differentials $d_{r}, 1 \leq r \leq \ell+1$, it suffices to have independent triangulations of the different unions taken $\ell+2$ at a time.
- For instance, it should be intuitively clear that in order to compute $\beta_{0}\left(\cup_{i} S_{i}\right)$ it suffices to triangulate pairs.

Open Problems

- Same idea is applicable as a divide-and-conquer tool for computing the homology of arbitrary simplicial complexes, given a covering. What kind of efficiency do we derive ?

Open Problems

- Same idea is applicable as a divide-and-conquer tool for computing the homology of arbitrary simplicial complexes, given a covering. What kind of efficiency do we derive ?
- Truly polynomial time algorithms for computing the highest Betti numbers of sets defined by quadratic inequalities ?

Open Problems

- Same idea is applicable as a divide-and-conquer tool for computing the homology of arbitrary simplicial complexes, given a covering. What kind of efficiency do we derive ?
- Truly polynomial time algorithms for computing the highest Betti numbers of sets defined by quadratic inequalities ?
- To what extent does topological simplicity aid algorithms in computational geometry ?
- To what extent does topological simplicity aid algorithms in computational geometry ?
- Other applications of spectral sequences, possibly in the theory of distributed computing ?

