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Introduction: Three problems

1. Plan the motion of a robot with several degrees of

freedom, amidst obstacles.

2. Find the possible geometric conformations of a molecule

given the bond lengths and bond angles.

3. Given two ordered sets of n points in the plane, is it

possible to change the first set continuously into the

second maintaining the order type.
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Semi-algebraic Sets

• Subsets of Rk defined by a formula involving a finite

number of polynomial equalities and inequalities.
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Semi-algebraic Sets

• Subsets of Rk defined by a formula involving a finite

number of polynomial equalities and inequalities.

• A basic semi-algebraic set is one defined by a conjunction

of weak inequalities of the form P ≥ 0.

• They arise as configurations spaces (in robotic motion

planning, molecular chemistry etc.), CAD models and

many other applications in computational geometry.



4

Basic Properties of Semi-algebraic Sets

• Closed under union, intersection, complementation and

projection.

• Most sets in Rk that arise in practice can be closely

approximated by semi-algebraic sets (witness splines).

• Compact semi-algebraic sets are finitely triangulable.

• First order theory of the reals is decidable.
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The Important Algorithmic Problems

Given a description of a semi-algebraic set S ⊂ Rk:

1. given two points x, y ∈ S, decide if they are in the

same connected component of S and if so output a

semi-algebraic path in S joining them,

2. compute semi-algebraic descriptions of the connected

components of S,

3. compute topological invariants of S, e.g. its Euler

characteristic, homology groups etc.
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Outline of the talk

1. Algorithms.

(a) Deciding connectivity questions.

2. Quantitative bounds on the complexity of semi-algebraic

sets.

(a) Bounds on Betti numbers.

(b) Complexity of single cells and connections to

computational geometry.
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Complexity of Algorithms

The complexity of an algorithm is measured in terms of

the following three parameters:

• the number of polynomials, n, used to define the input

semi-algebraic set S,

• the maximum degree, d, of these polynomials and

• the number of variables, k.
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Analogy with Semi-linear Geometry

• Consider the special case when all the input polynomials

are linear and thus the given set is semi-linear.

• Algorithms for computing properties of semi-linear sets

are widely studied in computational geometry.

• Typically, the complexities of these algorithms are of

the order of O(nk) where n is the number of linear

polynomials in the input.
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• Motivates designing algorithms for semi-algebraic sets

such that the combinatorial complexity (the part

depending on n) matches that for the corresponding

semi-linear problem.

• In the semi-algebraic case there is usually an additional

algebraic overhead – algebraic complexity – of the order

of dO(k) or dO(k2).
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Cylindrical Algebraic Decomposition

• Introduced by Collins (1976). Used by Schwartz and

Sharir for solving the piano-mover’s problem.

• Complexity is (nd)2O(k)
(doubly exponential) because of

iterated projections.
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Connectivity via Roadmaps

A roadmap of S, R(S), is a semi-algebraic set of

dimension at most one, satisfying

1. for every semi-algebraically connected component C

of S, C ∩ R(S) is non-empty and semi-algebraically

connected.

2. for every x ∈ R, and for every semi-algebraically

connected component C ′ of Sx, C ′∩R(S) is not empty.
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Brief History

Grigor’ev-Vorobjov, Canny, Gournay-Risler, Heintz-Roy-

Solerno.

B-Pollack-Roy, (1995) We give an algorithm to solve

both problems for semi-algebraic set restricted to a

variety of dimension k′ in time,

nk′+1dO(k2).
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How to compute the roadmap ?

In case of a compact, smooth algebraic hypersurface S

one can obtain the roadmap by:

1. Follow the X2-extremal points in the X1 direction.

2. Recurse at certain special slices corresponding to the

critical values of the projection map onto the X1 co-

ordinate.
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Example: Smooth torus in R3
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Critical  slices

Sweep direction

Extra points in the recursive call

Extra points in the input
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Representing points

In our algorithms, whenever we compute a point

x = (x1, . . . , xk)

what we actually compute is :

1. A univariate polynomial f(t).

2. A root, say α, of f which is characterized by f and the

sign vector

(sign(f(α)), sign(f ′(α)), . . . , sign(f (deg(f)−1)(α))).
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3. k + 1 polynomials g0(t), . . . , gk(t), such that

xi =
gi(α)
g0(α)

, 1 ≤ i ≤ k.
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How to compute the roadmap ? (cont)

For a general algebraic set Z(Q) one can obtain the

roadmap by:

1. Parametrizing a procedure for computing a set of points

guaranteed to meet every connected component of an

algebraic set, treating X1 as a parameter.

2. Recurse at certain special slices corresponding to the

pseudo-critical values.
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Pseudo critical values
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Pseudo  critical values
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How to compute the roadmap ? (cont)

For a general semi-algebraic set S we obtain the

roadmap by:

1. Make perturbations such that no k of the input

polynomials have a common real zero.

2. Computing roadmaps for all possible non-empty

algebraic sets.

3. Recurse at certain special slices corresponding to the

special values.
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Connections with Computational
Geometry: Arrangements

1. Arrangement of n lines in R2.

• Total combinatorial complexity : O(n2).
• Combinatorial complexity of a single cell : O(n).

2. Arrangement of n hyperplanes in Rk.

• Total combinatorial complexity : O(nk).
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• Combinatorial complexity of a single cell : O(nbk
2c).

(Consequence of the Upper Bound Theorem).
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Arrangements of Surface Patches

• Each surface patch Si is a closed semi-algebraic set

contained in a hypersurface Z(Qi) and defined by a

first-order quantifier-free formula involving a family of

polynomials, {Pi,1, . . . , Pi,r}.

• A cell is a maximal connected subset of the intersection

of a fixed (possibly empty) subset of surface patches

that avoids all other surface patches.
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• The combinatorial complexity of an `-dimensional cell

C is the number of cells of dimension less than ` which

are contained in the relative boundary of C.
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Arrangement of circles in the plane
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Known Results

1. For k = 2:

• Complexity of the whole arrangement : O(n2).
• Complexity of a single cell : O(nα(n)). (Guibas,

Sharir, Sifrony).

2. For k = 3:

• Complexity of the whole arrangement : O(n3).
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• Complexity of a single cell : O(n2+ε). (Halperin and

Sharir).

3. Conjecture: Combinatorial complexity of a single cell is

bounded by O(nk−1α(n)).
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Topological Complexity of Semi-algebraic
Sets

• An important measure of the topological complexity of

a set S are the Betti numbers βi(S).

• Intuitively, βi(S) measures the number of i-dimensional

holes in S.

• For example, if T is topologically a hollow torus, then

β0(T ) = 1, β1(T ) = 2, β2(T ) = 1, βi(T ) = 0, i > 2,
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• As a measure “computational difficulty” of semi-

algebraic sets. e.g. lower bounds for membership

testing in terms of the sum of the Betti numbers (Yao
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Topological Complexity of Semi-Algebraic
Sets

Oleinik and Petrovsky (1949) Thom (1964) and Milnor

(1965) proved that the sum of the Betti numbers of a

semi-algebraic set S ⊂ Rk, defined by

P1 ≥ 0, . . . , Pn ≥ 0,

deg(Pi) ≤ d, 1 ≤ i ≤ n,

is bounded by

(O(nd))k.

This bound is tight as β0(S) could be as large.
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What about a single connected
component?

• Oleinik-Petrovsky-Thom-Milnor technique does not give

anything better.
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• It is easy to construct a basic semi-algebraic set such

that it has one connected component whose other Betti

numbers sum to Ω(nd)k−1.

• Let

Pi = (X2
k + L2

i,1) · · · (X2
k + L2

i,bd/2c)− ε,

where the Lij ∈ R[X1, . . . , Xk−1] are generic linear

polynomials and ε > 0 and sufficiently small. The set

S defined by P1 ≥ 0, . . . , Ps ≥ 0 has one connected

component with
∑

i βi(S) = Ω(nd)k−1.
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New Results

Theorem 1. (B98) Let C be a k-dimensional cell in

an arrangement of n surface patches S1, . . . , Sn in Rk.

Then the combinatorial complexity of C is bounded by

O(nk−1+ε) for every ε > 0.
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New Results

Theorem 2. (B98) Let C1, . . . , Cm ⊂ Rk be m different

connected components of a basic semi-algebraic set

defined by P1 ≥ 0, . . . , Pn ≥ 0, with the degrees of

the polynomials Pi bounded by d. Then
∑

i,j βi(Cj) is

bounded by m +
(

n
k−1

)
O(d)k.

• Proof used Morse theory for stratified spaces.
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Different Bounds for Different Betti
Numbers

• Consider the union of n compact, convex, s.a. sets in

Rk. The nerve lemma gives us a bound on the individual

Betti numbers of the union.
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.
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• What if the intersections are not acyclic but have

bounded topology ?
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The Nerve Complex

Figure 1: The nerve complex of a union of disks
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Betti numbers for union

Theorem 3. Let S ⊂ Rk be the set defined by the

disjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0,

deg(Pi) ≤ d, 1 ≤ i ≤ n.

Then,

βi(S) ≤
(

n

i + 1

)
O(d)k.
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Betti numbers for intersections

Theorem 4. Let S ⊂ Rk be the set defined by the

conjunction of n inequalities,

P1 ≥ 0, . . . , Pn ≥ 0,

deg(Pi) ≤ d, 1 ≤ i ≤ n.

Then,

βi(S) ≤
(

n

k − i

)
O(d)k.
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Sets defined by Quadratic Inequalities

• Let S ⊂ Rk be defined by

P1 ≥ 0, · · · , Pn ≥ 0,

deg(Pi) ≤ 2, 1 ≤ i ≤ n.
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• Can be topologically quite complicated. If S is defined

by

X1(X1 − 1) ≥ 0, . . . , Xk(Xk − 1) ≥ 0,

then clearly β0(S) = 2k (exponential in the dimension).
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But ...

Theorem 5. Let ` be any fixed number and let S ⊂ Rk

be defined by

P1 ≥ 0, . . . , Pn ≥ 0
with deg(Pi) ≤ 2. Then,

βk−`(S) ≤ n`kO(`).

Note that this bound is polynomial in the dimension.
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One word about the proofs

The proofs use the spectral sequence associated with the

Mayer-Vietoris double complex.


