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1. Plan the motion of a robot with several degrees of
freedom, amidst obstacles.

2. Find the possible geometric conformations of a molecule
given the bond lengths and bond angles.

3. Given two ordered sets of n points in the plane, is it
possible to change the first set continuously into the

second maintaining the order type.
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e Subsets of R¥ defined by a formula involving a finite
number of polynomial equalities and inequalities.

e A basic semi-algebraic set is one defined by a conjunction
of weak inequalities of the form P > 0.

e They arise as configurations spaces (in robotic motion
planning, molecular chemistry etc.), CAD models and
many other applications in computational geometry.



e Closed under union, intersection, complementation and
projection.

e Most sets in R" that arise in practice can be closely
approximated by semi-algebraic sets (witness splines).

e Compact semi-algebraic sets are finitely triangulable.

e First order theory of the reals is decidable.



Given a description of a semi-algebraic set S C RF:

1. given two points z,y € S, decide if they are in the
same connected component of S and if so output a
semi-algebraic path in S joining them,

2. compute semi-algebraic descriptions of the connected
components of S,

3. compute topological invariants of S, e.g. its Euler
characteristic, homology groups etc.



1. Algorithms.

(a) Deciding connectivity questions.

2. Quantitative bounds on the complexity of semi-algebraic
sets.

(a) Bounds on Betti numbers.
(b) Complexity of single cells and connections to
computational geometry.



The complexity of an algorithm is measured in terms of
the following three parameters:

e the number of polynomials, n, used to define the input
semi-algebraic set S,

e the maximum degree, d, of these polynomials and

e the number of variables, k.



e Consider the special case when all the input polynomials
are linear and thus the given set is semi-linear.

e Algorithms for computing properties of semi-linear sets
are widely studied in computational geometry.

e Typically, the complexities of these algorithms are of
the order of O(n") where n is the number of linear
polynomials in the input.



e Motivates designing algorithms for semi-algebraic sets
such that the combinatorial complexity (the part
depending on n) matches that for the corresponding
semi-linear problem.

e In the semi-algebraic case there is usually an additional

algebraic overhead — algebraic complexity — of the order
of d°®) or dO**).



e Introduced by Collins (1976). Used by Schwartz and
Sharir for solving the piano-mover's problem.

5O (k

e Complexity is (nd) ) (doubly exponential) because of

iterated projections.



A roadmap of S, R(S), is a semi-algebraic set of
dimension at most one, satisfying

1. for every semi-algebraically connected component C
of S, C'N R(S) is non-empty and semi-algebraically
connected.

2. for every x € R, and for every semi-algebraically
connected component C’ of S, C"'N R(S) is not empty.



Grigor'ev-Vorobjov, Canny, Gournay-Risler, Heintz-Roy-
Solerno.

B-Pollack-Roy, (1995) We give an algorithm to solve
both problems for semi-algebraic set restricted to a
variety of dimension k' in time,

k' +1 dO(kQ).



In case of a compact, smooth algebraic hypersurface S
one can obtain the roadmap by:

1. Follow the Xo-extremal points in the X; direction.

2. Recurse at certain special slices corresponding to the
critical values of the projection map onto the X; co-
ordinate.
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Example: Smooth torus in R?
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Extra points in the recursive call

| Extra points in the input




In our algorithms, whenever we compute a point
r=(x,...,Tx)

what we actually compute is :

1. A univariate polynomial f(%).

2. A root, say «, of f which is characterized by f and the
sign vector

(sign(f(a)),sign(f'(a)), .. .,sign(f "V (a))).






For a general algebraic set Z(()) one can obtain the
roadmap by:

1. Parametrizing a procedure for computing a set of points
guaranteed to meet every connected component of an
algebraic set, treating X; as a parameter.

2. Recurse at certain special slices corresponding to the
pseudo-critical values.
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Pseudo critical values
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For a general semi-algebraic set S we obtain the
roadmap by:

1. Make perturbations such that no k£ of the input
polynomials have a common real zero.

2. Computing roadmaps for all possible non-empty
algebraic sets.

3. Recurse at certain special slices corresponding to the
special values.



1. Arrangement of n lines in R
e Total combinatorial complexity : O(n?).
e Combinatorial complexity of a single cell : O(n).
2. Arrangement of n hyperplanes in R”.

e Total combinatorial complexity : O(n®).



o Combinatorial complexity of a single cell : O(nl2]).
(Consequence of the Upper Bound Theorem).



e Each surface patch S; is a closed semi-algebraic set
contained in a hypersurface Z(Q);) and defined by a
first-order quantifier-free formula involving a family of
polynomials, {F;1,..., P, }.

e A cell is a maximal connected subset of the intersection
of a fixed (possibly empty) subset of surface patches
that avoids all other surface patches.



e The combinatorial complexity of an /-dimensional cell
C' is the number of cells of dimension less than ¢ which
are contained in the relative boundary of C.



Arrangement of circles in the plane




1. For k = 2:

o Complexity of the whole arrangement : O(n?).
e Complexity of a single cell : O(na(n)). (Guibas,
Sharir, Sifrony).

2. For k = 3:

o Complexity of the whole arrangement : O(n?).



o Complexity of a single cell : O(n*™¢). (Halperin and
Sharir).

3. Conjecture: Combinatorial complexity of a single cell is
bounded by O(n*~1a(n)).



e An important measure of the topological complexity of
a set S are the Betti numbers 3;(5).

e Intuitively, 5;(S) measures the number of ¢-dimensional
holes in S.

e For example, if T' is topologically a hollow torus, then
Bo(T) =1,6(T) =2,6(T) =1,6,(T) = 0,2 > 2,
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Oleinik and Petrovsky (1949) Thom (1964) and Milnor
(1965) proved that the sum of the Betti numbers of a
semi-algebraic set S C R", defined by

P>0,...,F, >0,

deg(P;) <d,1 <1 <n,
Is bounded by
(O(nd))".
This bound is tight as Gy(.5) could be as large.
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e It Is easy to construct a basic semi-algebraic set such
that it has one connected component whose other Betti
numbers sum to Q(nd)" 1.

o Let
Pi= (Xi+Liy) - (Xi+ Ligp) — 6

where the L;; € R[Xy,...,X;_1] are generic linear
polynomials and ¢ > 0 and sufficiently small. The set
S defined by P, > 0,..., P, > 0 has one connected
component with Y. 3;(S) = Q(nd)* .



Theorem 1. (B98) Let C be a k-dimensional cell in
an arrangement of n surface patches Si,...,S, in RF.
Then the combinatorial complexity of C' is bounded by
O(n*=1%¢) for every € > 0.



Theorem 2. (B98) Let C4,...,C,, C R* be m different
connected components of a basic semi-algebraic set
defined by P, > 0,...,FP, > 0, with the degrees of
the polynomials P; bounded by d. Then } ;. Bi(Cj) is
bounded by m + (" ,)O(d)".

e Proof used Morse theory for stratified spaces.
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Betti numbers of the union.

e The homology groups of the union is isomorphic to
the homology groups of the nerve complex. The nerve
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e What if the intersections are not acyclic but have
bounded topology ?
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The Nerve Complex




Theorem 3. Let S C R"* be the set defined by the
disjunction of n inequalities,

Then,



Theorem 4. Let S C R"* be the set defined by the
conjunction of n inequalities,

Then,



Sets defined by Quadratic Inequalities




o Let S C R” be defined by
P >0,---,P, >0,

deg(P;) < 2,1 <7< n.

e They arise in many applications e.g. as the configuration
space of sets of points with pair-wise distance
constraints etc.
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e Can be topologically quite complicated. If S is defined
by
Xl(Xl — 1) > Oaan(Xk -~ 1) > 07

then clearly 3y(S) = 2* (exponential in the dimension).



Theorem 5. Let ¢ be any fixed number and let S C R¥
be defined by

P>0,...,P,>0
with deg(P;) < 2. Then,

Br_e(S) < n'kPW.

Note that this bound is polynomial in the dimension.



The proofs use the spectral sequence associated with the
Mayer-Vietoris double complex.



