
Solutions 7

1. Let E = F (α) where α is algebraic over F and of odd degree. Show that E = F (α2).
Solution: Let f ∈ F [X] be the irreducible polynomial of α. The degree of f is odd.
Let f = Xd+fd−1x

d−1 + · · ·+f0, fi ∈ F . Then, αd+fd−1α
d−1 + · · ·+f0 = 0. Separating

the even and odd powers it is easy to see that there exists h, g ∈ F [X] with h monic,
such that, αh(α2) = g(α2). This shows that, α ∈ F (α2) and hence F (α) = F (α2).

2. Let α be a real number such that α4 = 5 and i a square-root of −1.

(a) Prove that Q(iα2) is normal over Q.
Solution: Since, (iα2)2 = −5, Q(iα2) is an extension of degree at most 2, but
since iα2 6∈ Q, it is of degree exactly 2 and all extensions of degree 2 are normal
(justify).

(b) Prove that Q(α + iα) is normal over Q(iα2).
Solution: Again, since (α + iα)2 = 2(iα2), Q(α + iα) is an extension of degree
at most 2 over Q(iα2).

On the other hand (α+iα)4 = −20 and since the polynomial X4+20 is irreducible
(why?) over Q , [Q(α + iα) : Q] ≥ 4 and hence, [Q(α + iα) : Q(iα2)] ≥ 2 and
hence, [Q(α + iα) : Q(iα2)] = 2 and the extension is normal.

(c) Prove that Q(α + iα) is not normal over Q.
Solution: Suppose that Q(α + iα) is a normal extension over Q. Since, α + iα
is a root of X4 + 20 this would imply that X4 + 20 must split in Q(α + iα) and
hence, α− iα ∈ Q(α+ iα). But, this would imply that α, iα, i are all in Q(α+ iα).

This means that Q(α, i) ⊂ Q(α + iα). Since i 6∈ Q(α), and [Q(α) : Q] = 4, this
implies that [Q(α, i) : Q] ≥ 8, which is a contradiction since, [Q(α+ iα) : Q] = 4.
Hence, Suppose that Q(α + iα) is not a normal extension over Q.

3. Let f be a polynomial of degree n with coefficients in a field k. Let L be a splitting
field of f over k. Prove that [L : k] is a divisor of n!.
Solution: We prove this by induction on n. The statement is clearly true when n = 1,
since in this case L = k.

Now, first assume that f is irreducible over k and let α1, . . . , αn be the roots of f in
the algebraic closure of k. Then, f = (X − α1)g(X), where g(X) ∈ k(α1)(X) is of
degree n−1. Now, [k(α1) : k] = n, and [k(α1)(α2, . . . , αn) : k(α1)]|(n−1)! by induction
hypothesis. Hence, [k(α1, . . . , αn) : k] = [k(α1)(α2, . . . , αn) : k(α1)][k(α1) : k]|n!.

If f is not irreducible, let f = gh where g is a polynomial of degree p > 0, and h
a polynomial of degree n − p. Let Lg be the splitting field of g over k, and L the
splitting field of h over Lg. Then, L is the splitting field of f over k, and [L : k] =
[L : Lg][Lg : k]. Now, [Lg : k]!p!, and [L : Lg]|(n− p)! by induction hypothesis. Hence,
[L : k] = [L : Lg][Lg : k]|(n− p)!p! but (n− p)!p!|n!.

4. Let k be a field of characteristic 6= 2, 3. Prove that the following statements are
equivalent:
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(a) Any sum of squares in k is itself a square.

(b) Whenever a cubic polynomial f factors completely in k, so does its derivative f ′.

Solution: (a) ⇒ (b): Let f(X) = (X − a)(X − b)(X − c), with a, b, c ∈ k. Then,
f ′(X) = 3X2− 2(a+ b+ c)X + (ab+ bc+ ca). Consider, the discriminant of f ′ namely,

4(a+ b+ c)2 − 12(ab+ bc+ ca) = 2((a− b)2 + (b− c)2 + (c− a)2).

The righthand side is a sum of square and hence itself a square say d2. Then, f ′(X) =

3(X − 2(a+b+c)+d
6

)(X − 2(a+b+c)−d
6

).

(b)⇒ (a): Let α, β ∈ k. Consider the cubic polynomial, f(X) = (X−α)(X−β)(X+α).
Since, the discriminant of f ′ has to be a square we have that, 2((α− β)2 + (β + α)2 +
(2α)2) = 4(3α2 + β2) is a square. Hence, 3α2 + β2 is square for all α, β ∈ k.

Now, let x, y ∈. Then, x2 + y2 = 3(x2/3) + y2. We claim that, x2/3 is a square.
This is true because, x2/3 = 3(x/3)2 + 02 which is a square as proved earlier. Thus,
x2 + y2 = 3(x2/3) + y2 is a square too. The rest follows by induction on the number
of terms in the sum of squares.

5. Suppose K ⊂ L ⊂ M be fields and L is generated over K by some of the roots of a
polynomial f with coefficients in K. Prove that M is a splitting field of f over K if
and only if M is a splitting field of f over L.
Solution: Very easy.

6. Let k be any finite field and n a positive integer. Prove that there exists an irreducible
polynomial over k of degree n.
Solution: Let k = Fq. Then, there is an algebraic extension Fqn of degree n. The
number of intermediate subfields is finite. Apply the primitive element theorem to
deduce that, Fqn = Fq[θ]. Then, θ has an irreducible polynomial of degree n.

7. Prove that in a finite field any element can be written as a sum of at most two squares.
Solution: Consider the finite field Fq of characteristic 6= 2. Let F 2

q be the set of
squares. Now, for every non-zero x ∈ Fq, x2 = (−x)2 and x2 = y2 ⇒ x = ±y.
Thus, |F 2

q | = (q − 1)/2 + 1 = (q + 1)/2.

Let x ∈ Fq and consider the set of elements, Sx = {x − a2|a ∈ Fq}. Then, |Sx| =
|F 2
q | = (q + 1)/2.

Since, Fq has only q elements, Sx ∩ F 2
q must intersect.

What about characteristic 2 ?

8. Complete the course evaluation form available online at:
www.coursesurvey.gatech.edu (between 6AM and midnight everyday till Dec 6).
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