1. Let $E=F(\alpha)$ where α is algebraic over F and of odd degree. Show that $E=F\left(\alpha^{2}\right)$. Solution: Let $f \in F[X]$ be the irreducible polynomial of α. The degree of f is odd. Let $f=X^{d}+f_{d-1} x^{d-1}+\cdots+f_{0}, f_{i} \in F$. Then, $\alpha^{d}+f_{d-1} \alpha^{d-1}+\cdots+f_{0}=0$. Separating the even and odd powers it is easy to see that there exists $h, g \in F[X]$ with h monic, such that, $\alpha h\left(\alpha^{2}\right)=g\left(\alpha^{2}\right)$. This shows that, $\alpha \in F\left(\alpha^{2}\right)$ and hence $F(\alpha)=F\left(\alpha^{2}\right)$.
2. Let α be a real number such that $\alpha^{4}=5$ and i a square-root of -1 .
(a) Prove that $\mathbb{Q}\left(i \alpha^{2}\right)$ is normal over \mathbb{Q}.

Solution: Since, $\left(i \alpha^{2}\right)^{2}=-5, \mathbb{Q}\left(i \alpha^{2}\right)$ is an extension of degree at most 2 , but since $i \alpha^{2} \notin \mathbb{Q}$, it is of degree exactly 2 and all extensions of degree 2 are normal (justify).
(b) Prove that $\mathbb{Q}(\alpha+i \alpha)$ is normal over $\mathbb{Q}\left(i \alpha^{2}\right)$.

Solution: Again, since $(\alpha+i \alpha)^{2}=2\left(i \alpha^{2}\right), \mathbb{Q}(\alpha+i \alpha)$ is an extension of degree at most 2 over $\mathbb{Q}\left(i \alpha^{2}\right)$.
On the other hand $(\alpha+i \alpha)^{4}=-20$ and since the polynomial $X^{4}+20$ is irreducible (why?) over $\mathbb{Q},[\mathbb{Q}(\alpha+i \alpha): \mathbb{Q}] \geq 4$ and hence, $\left[\mathbb{Q}(\alpha+i \alpha): \mathbb{Q}\left(i \alpha^{2}\right)\right] \geq 2$ and hence, $\left[\mathbb{Q}(\alpha+i \alpha): \mathbb{Q}\left(i \alpha^{2}\right)\right]=2$ and the extension is normal.
(c) Prove that $\mathbb{Q}(\alpha+i \alpha)$ is not normal over \mathbb{Q}.

Solution: Suppose that $\mathbb{Q}(\alpha+i \alpha)$ is a normal extension over \mathbb{Q}. Since, $\alpha+i \alpha$ is a root of $X^{4}+20$ this would imply that $X^{4}+20$ must split in $\mathbb{Q}(\alpha+i \alpha)$ and hence, $\alpha-i \alpha \in \mathbb{Q}(\alpha+i \alpha)$. But, this would imply that $\alpha, i \alpha, i$ are all in $\mathbb{Q}(\alpha+i \alpha)$. This means that $\mathbb{Q}(\alpha, i) \subset \mathbb{Q}(\alpha+i \alpha)$. Since $i \notin \mathbb{Q}(\alpha)$, and $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$, this implies that $[\mathbb{Q}(\alpha, i): \mathbb{Q}] \geq 8$, which is a contradiction since, $[\mathbb{Q}(\alpha+i \alpha): \mathbb{Q}]=4$. Hence, Suppose that $\mathbb{Q}(\alpha+i \alpha)$ is not a normal extension over \mathbb{Q}.
3. Let f be a polynomial of degree n with coefficients in a field k. Let L be a splitting field of f over k. Prove that $[L: k]$ is a divisor of n !.
Solution: We prove this by induction on n. The statement is clearly true when $n=1$, since in this case $L=k$.
Now, first assume that f is irreducible over k and let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f in the algebraic closure of k. Then, $f=\left(X-\alpha_{1}\right) g(X)$, where $g(X) \in k\left(\alpha_{1}\right)(X)$ is of degree $n-1$. Now, $\left[k\left(\alpha_{1}\right): k\right]=n$, and $\left[k\left(\alpha_{1}\right)\left(\alpha_{2}, \ldots, \alpha_{n}\right): k\left(\alpha_{1}\right)\right] \mid(n-1)$! by induction hypothesis. Hence, $\left[k\left(\alpha_{1}, \ldots, \alpha_{n}\right): k\right]=\left[k\left(\alpha_{1}\right)\left(\alpha_{2}, \ldots, \alpha_{n}\right): k\left(\alpha_{1}\right)\right]\left[k\left(\alpha_{1}\right): k\right] \mid n!$.
If f is not irreducible, let $f=g h$ where g is a polynomial of degree $p>0$, and h a polynomial of degree $n-p$. Let L_{g} be the splitting field of g over k, and L the splitting field of h over L_{g}. Then, L is the splitting field of f over k, and $[L: k]=$ $\left[L: L_{g}\right]\left[L_{g}: k\right]$. Now, $\left[L_{g}: k\right]!p!$, and $\left[L: L_{g}\right] \mid(n-p)!$ by induction hypothesis. Hence, $[L: k]=\left[L: L_{g}\right]\left[L_{g}: k\right] \mid(n-p)!p!$ but $(n-p)!p!\mid n!$.
4. Let k be a field of characteristic $\neq 2,3$. Prove that the following statements are equivalent:
(a) Any sum of squares in k is itself a square.
(b) Whenever a cubic polynomial f factors completely in k, so does its derivative f^{\prime}.

Solution: $(\mathrm{a}) \Rightarrow(\mathrm{b})$: Let $f(X)=(X-a)(X-b)(X-c)$, with $a, b, c \in k$. Then, $f^{\prime}(X)=3 X^{2}-2(a+b+c) X+(a b+b c+c a)$. Consider, the discriminant of f^{\prime} namely,

$$
4(a+b+c)^{2}-12(a b+b c+c a)=2\left((a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right)
$$

The righthand side is a sum of square and hence itself a square say d^{2}. Then, $f^{\prime}(X)=$ $3\left(X-\frac{2(a+b+c)+d}{6}\right)\left(X-\frac{2(a+b+c)-d}{6}\right)$.
$(\mathrm{b}) \Rightarrow(\mathrm{a}):$ Let $\alpha, \beta \in k$. Consider the cubic polynomial, $f(X)=(X-\alpha)(X-\beta)(X+\alpha)$. Since, the discriminant of f^{\prime} has to be a square we have that, $2\left((\alpha-\beta)^{2}+(\beta+\alpha)^{2}+\right.$ $\left.(2 \alpha)^{2}\right)=4\left(3 \alpha^{2}+\beta^{2}\right)$ is a square. Hence, $3 \alpha^{2}+\beta^{2}$ is square for all $\alpha, \beta \in k$.
Now, let $x, y \in$. Then, $x^{2}+y^{2}=3\left(x^{2} / 3\right)+y^{2}$. We claim that, $x^{2} / 3$ is a square. This is true because, $x^{2} / 3=3(x / 3)^{2}+0^{2}$ which is a square as proved earlier. Thus, $x^{2}+y^{2}=3\left(x^{2} / 3\right)+y^{2}$ is a square too. The rest follows by induction on the number of terms in the sum of squares.
5. Suppose $K \subset L \subset M$ be fields and L is generated over K by some of the roots of a polynomial f with coefficients in K. Prove that M is a splitting field of f over K if and only if M is a splitting field of f over L.
Solution: Very easy.
6. Let k be any finite field and n a positive integer. Prove that there exists an irreducible polynomial over k of degree n.
Solution: Let $k=F_{q}$. Then, there is an algebraic extension $F_{q^{n}}$ of degree n. The number of intermediate subfields is finite. Apply the primitive element theorem to deduce that, $F_{q^{n}}=F_{q}[\theta]$. Then, θ has an irreducible polynomial of degree n.
7. Prove that in a finite field any element can be written as a sum of at most two squares. Solution: Consider the finite field F_{q} of characteristic $\neq 2$. Let F_{q}^{2} be the set of squares. Now, for every non-zero $x \in F_{q}, x^{2}=(-x)^{2}$ and $x^{2}=y^{2} \Rightarrow x= \pm y$.
Thus, $\left|F_{q}^{2}\right|=(q-1) / 2+1=(q+1) / 2$.
Let $x \in F_{q}$ and consider the set of elements, $S_{x}=\left\{x-a^{2} \mid a \in F_{q}\right\}$. Then, $\left|S_{x}\right|=$ $\left|F_{q}^{2}\right|=(q+1) / 2$.
Since, F_{q} has only q elements, $S_{x} \cap F_{q}^{2}$ must intersect.
What about characteristic 2 ?
8. Complete the course evaluation form available online at:
www.coursesurvey.gatech.edu (between 6AM and midnight everyday till Dec 6).

