
Assignment 4 Solutions James Vanderhyde

1. Problem 22.3-7.
This figure shows a graph with discovery times and finishing times marked.

4/5 2/9 3/8 6/7

1/10

u v

The depth-first search starts at the bottom vertex. Note that there is a u − v path,
d[u] < d[v], but v is not a descendant of u in the DFS tree.

2. Problem 22.3-8.
The example above works as a counterexample for this too. Note d[v] = 6 > 5 = f [u].

3. Problem 22.3-10.
t u v

The depth-first search may start at v, proceed to u, and then to t. Each vertex will be
its own forest and both edges are cross edges. This situation would occur in any graph
that has a vertex such as u, where all the nodes reachable from u are visited before u
and there are no edges back to vertices that can reach u.

4. Problem 22.4-3.
We use depth-first search. The basic idea is to run DFS, but halt as soon an edge back
to an already-visited vertex is found. This way we never check more than |V | edges.
We can fix the DFS-Visit algorithm on page 541 of CLRS by adding an else clause
right after line 7 that says something to the effect of “else immediately halt and output
that there is a cycle.” If the algorithm completes without finding any back edges, then
the graph has no cycle, and there are at most |V | − 1 edges, so O(V + E) = O(V).
Thus we have O(V) in all cases.

5. The number of scalar multiplications needed to multiply two 4× 4 matrices is 7 times
the number needed to multiply two 2 × 2 matrices. The number needed to multiply
two 2× 2 matrices is 7 times the number needed for the 1× 1 case, which is just 1. So
the total is 7 · 7 · 1 = 7lg n = nlg 7 = 49.

1

Assignment 4 Solutions James Vanderhyde

6. We can use Theorem 30.7 to answer this question very easily.

V −1
ω =

1

4


ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3

ω0 ω−2 ω−4 ω−6

ω0 ω−3 ω−6 ω−9

 =


1
4

1
4

1
4

1
4

1
4

−i
4

−1
4

i
4

1
4

−1
4

1
4

−1
4

1
4

i
4

−1
4

−i
4

 .

7. Let C be the result of multiplying the two polynomials A and B. To obtain C using
the FFT, we do the following: 1. Convert A and B to point form yA and yB, using
the divide-and-conquer recursive approach so that the conversion is fast. 2. Multiply
the point forms to get yC . 3. Convert yC back to standard polynomial form using the
inverse FFT (including the multiplication by 1/n).

a = (1, 3, 0, 0)

a[0] = (1, 0)

a[0][0] = (1)
y[0][0] = (1)

a[0][1] = (0)
y[0][1] = (0)

a[1] = (3, 0)

a[1][0] = (3)
y[1][0] = (3)

a[1][1] = (0)
y[1][1] = (0)

y[0] = (1 + 1 · 0, 1− 1 · 0) = (1, 1) y[1] = (3 + 1 · 0, 3− 1 · 0) = (3, 3)

yA = (1 + 1 · 3, 1 + i · 3, 1− 1 · 3, 1− i · 3) = (4, 1 + 3i,−2, 1− 3i)

b = (1,−2, 0, 0)

b[0] = (1, 0)

b[0][0] = (1)
y[0][0] = (1)

b[0][1] = (0)
y[0][1] = (0)

b[1] = (−2, 0)

b[1][0] = (−2)
y[1][0] = (−2)

b[1][1] = (0)
y[1][1] = (0)

y[0] = (1 + 1 · 0, 1− 1 · 0) = (1, 1) y[1] = (−2 + 1 · 0,−2− 1 · 0) = (3, 3)

yB = (1 + 1 · (−2), 1 + i · (−2), 1− 1 · (−2), 1− i · (−2)) = (−1, 1− 2i, 3, 1 + 2i)

yC = yA · yB = (−4, 7 + i,−6, 7− i)

y = (−4, 7 + i,−6, 7− i)

y[0] = (−4,−6)

y[0][0] = (−4)
c[0][0] = (−4)

y[0][1] = (−6)
c[0][1] = (−6)

y[1] = (7 + i, 7− i)

y[1][0] = (7+1)
c[1][0] = (7+1)

y[1][1] = (7−i)
c[1][1] = (7− i)

c[0] = (−4 + 1 · (−6),−4− 1 · (−6))
= (−10, 2)

c[1] = (7 + i + 1 · (7− i), 7 + i− 1 · (7− i))
= (14, 2i)

c = (−10 + 1 · 14, 2 + (−i) · (2i),−10− 1 · 14, 2− (−i) · (2i))/4 = (4, 4,−24, 0)/4

C = 1 + X − 6X2

2

Assignment 4 Solutions James Vanderhyde

8. The recursive FFT algorithm constructs a vector that represents the input polynomial
as a sequence of points. The points are the polynomial evaluated at all the nth roots
of unity. Lines 11–13 use the results of the lemmas in the text to fill in this vector
correctly and efficiently. Basically, the vector is filled in starting at the beginning and
at the middle. It would have worked just as well to eliminate line 12 and run the loop
from k ← 0 to n− 1. Both methods are equivalent because ωω

n/2
n = −ω by Corollary

30.4.

3

