Assignment 5 Solutions James Vanderhyde

1. Problem 31.2-6.

Recall Fy = 0, F» = 1, and Fj1 = Fy + F,_; for k > 2. By the discussion in
the book, EXTENDED-EUCLID(Fj. 1, F) returns (d, z,y), where d = xFy 1 + yFy and
d = ged(Fyyq, Fy). The book also shows ged(Fyyq, Fy) = ged(Fy, Frr1 mod Fy) =
ged(Fg, Fip1 — Fy) = ged(Fg, Fr—1) = ... = ged(2,1) = 1. We will show by induction
that for k > 2, © = £ F;_; and y = FF}. The signs are determined by this: x > 0 and
y < 0 iff k is odd. Clearly EXTENDED-EUCLID(F}, F5) = EXTENDED-EUCLID(1,1) =
(1,0,1) = (1, —F1, F3). Now let (d, z,y) = EXTENDED-EUCLID(Fy 1, Fy) and (d', 2, y') =
EXTENDED-EUCLID(F}, Fi,_1). By induction assume d' = 1, 2’ = FF;_o, v = £F;_;1.
By the algorithm, d = d', * = ¢/, and y = 2/ — /. This implies d = 1, x = £F}_;,
and y = FFy_o—tF;_1 = F(Fr_2+ Fy_1) = FF;. This completes the induction since
k — 1 is even iff k is odd.

2. Problem 31.2-8.

Note lem(a, b) = ab/ ged(a, b), so we can use Euclid’s algorithm to compute the greatest
common divisor to compute the least common multiple of a pair of integers. To com-
pute the least common multiple of a set of integers, we recursively decompose it into
pairs: lem(aq, lem(ag, lem(. .. lem(a,_1,a,)...))). To be sure this works, we have to
prove that lem(ay, ag, . .., a,) = lem(ay, lem(as, ..., a,)). Let m’ = lem(ay, ag, ..., a,)
and m = lem(aq,lem(ag,...,a,)). Then we know a;|m’ for all ¢, and a;|m and
lem(as, ..., a,)|m. The latter implies that all of ay through a, also divides m. Thus
m is a common multiple of ay,as,...,a, and therefore greater than or equal to the
least common multiple, m’. So m > m’. Conversely, we know that m’ is a multiple
of a; through a,. Therefore it is a common multiple of as through a,, which means
lem(as, ..., a,) divides m’ because the least common multiple divides every common
multiple. Thus m’ is a common multiple of a; and lem(as,...,a,), and therefore
m’ > m. Together we have m = m/, so we may break the setwise least common multi-
ple computation into pairwise least common multiple computations. Thus there are a
total of n — 1 multiplications and divisions plus n — 1 calls to Euclid’s algorithm.

3. Problem 31.4-1.

35z =10 (mod 50).
a =35, b=10, n = 50.
d = ged(35,50) =5. d=352"+50y = 2/ =3,y = —2.
xo = 2'(b/d) mod n = 3(10/5) mod 50 = 6.
v = o +i(n/d). i(n/d) = i(50/5) = 10i.

Solutions are 6, 16, 26, 36, 46.

4. Problem 31.5-4.
By Corollary 31.29, f(z) =0 (mod n) iff f(z) =0 (mod n;) for each i. Say f(x) =0

1

Assignment 5 Solutions James Vanderhyde

(mod n;) has r; roots. Since there are r; possibilities for each component to be 0, there
must be []r; possible ways for f(z) to be 0 (mod n).

5. Problem 31.6-1.

Zi =11,2,3,4,5,6,7,8,9,10}.

x |ordyy(z) | indpox

1 0
10
5
5
5
10
10
10
5
2

6. Problem 31.7-1.
=11, ¢ =29, n = pq = 319, e = 3. Note e does not divide n. ¢(n) = 10 - 28 = 280.
d=e! (mod 280) < 3d =1 (mod 280) < 3d =1+ 280x. v =3 = d = 187.
M =100 = P(M) = P(100) = 100° mod 319 = 254.

© 00 1O Ul W N =

CTOY W N O =D o+

—
)

7. Problem 31.7-3.
PA(My)Ps(My) = (Mf mod n)(M§ modn) = M{M§ modn = (M;Ms)* modn =
Pa(M; My).
Input: P4(M), the encrypted message; P4 = (e,n), the public key
Output: M, the decrypted message
1: repeat
2: Pick a random message M’.
3: Encrypt M’ to form P4(M’).
4 Caleulate Py(MM') = Py(M)Ps(M').
5. Decrypt this efficiently with probability 0.01 to get MM’ (mod n).
6: if efficient decryption succeeded then
7 Compute M'~! (mod n).
8 return (MM') (M"Y =M
9: end if
10: until £ iterations
11: return no solution found

Note that M’~! (mod n) exists as long as M’ does not divide n, but n’s only factors
are 1, p, ¢, and n = pq, so M’ will almost always have an inverse. The probability of
success of this algorithm is 1 — (0.99)%, so k = 459 implies there is a greater than 99%
chance of success.

