1. Problem 31.2-6.

Recall $F_1 = 0$, $F_2 = 1$, and $F_{k+1} = F_k + F_{k-1}$ for k > 2. By the discussion in the book, EXTENDED-EUCLID (F_{k+1}, F_k) returns (d, x, y), where $d = xF_{k+1} + yF_k$ and $d = \gcd(F_{k+1}, F_k)$. The book also shows $\gcd(F_{k+1}, F_k) = \gcd(F_k, F_{k+1} \mod F_k) =$ $\gcd(F_k, F_{k+1} - F_k) = \gcd(F_k, F_{k-1}) = \dots = \gcd(2, 1) = 1$. We will show by induction that for $k \ge 2$, $x = \pm F_{k-1}$ and $y = \mp F_k$. The signs are determined by this: x > 0 and y < 0 iff k is odd. Clearly EXTENDED-EUCLID $(F_3, F_2) =$ EXTENDED-EUCLID(1, 1) = $(1, 0, 1) = (1, -F_1, F_2)$. Now let (d, x, y) = EXTENDED-EUCLID (F_{k+1}, F_k) and (d', x', y') =EXTENDED-EUCLID (F_k, F_{k-1}) . By induction assume d' = 1, $x' = \mp F_{k-2}$, $y' = \pm F_{k-1}$. By the algorithm, d = d', x = y', and y = x' - y'. This implies d = 1, $x = \pm F_{k-1}$, and $y = \mp F_{k-2} - \pm F_{k-1} = \mp (F_{k-2} + F_{k-1}) = \mp F_k$. This completes the induction since k - 1 is even iff k is odd.

2. Problem 31.2-8.

Note $\operatorname{lcm}(a, b) = ab/\operatorname{gcd}(a, b)$, so we can use Euclid's algorithm to compute the greatest common divisor to compute the least common multiple of a pair of integers. To compute the least common multiple of a set of integers, we recursively decompose it into pairs: $\operatorname{lcm}(a_1, \operatorname{lcm}(a_2, \operatorname{lcm}(\ldots \operatorname{lcm}(a_{n-1}, a_n) \ldots)))$. To be sure this works, we have to prove that $\operatorname{lcm}(a_1, a_2, \ldots, a_n) = \operatorname{lcm}(a_1, \operatorname{lcm}(a_2, \ldots, a_n))$. Let $m' = \operatorname{lcm}(a_1, a_2, \ldots, a_n)$ and $m = \operatorname{lcm}(a_1, \operatorname{lcm}(a_2, \ldots, a_n))$. Then we know $a_i | m'$ for all i, and $a_1 | m$ and $\operatorname{lcm}(a_2, \ldots, a_n) | m$. The latter implies that all of a_2 through a_n also divides m. Thus m is a common multiple of a_1, a_2, \ldots, a_n and therefore greater than or equal to the least common multiple, m'. So $m \geq m'$. Conversely, we know that m' is a multiple of a_1 through a_n . Therefore it is a common multiple of a_2 through a_n , which means $\operatorname{lcm}(a_2, \ldots, a_n)$ divides m' because the least common multiple divides every common multiple. Thus m' is a common multiple of a_1 and $\operatorname{lcm}(a_2, \ldots, a_n)$, and therefore $m' \geq m$. Together we have m = m', so we may break the setwise least common multiple computation into pairwise least common multiple computations. Thus there are a total of n - 1 multiplications and divisions plus n - 1 calls to Euclid's algorithm.

3. Problem 31.4-1.

$$35x \equiv 10 \pmod{50}.$$

 $a = 35, b = 10, n = 50.$
 $d = \gcd(35, 50) = 5. d = 35x' + 50y' \Rightarrow x' = 3, y' = -2.$
 $x_0 = x'(b/d) \mod n = 3(10/5) \mod 50 = 6.$
 $x_i = x_0 + i(n/d). i(n/d) = i(50/5) = 10i.$

Solutions are 6, 16, 26, 36, 46.

4. Problem 31.5-4. By Corollary 31.29, $f(x) \equiv 0 \pmod{n}$ iff $f(x) \equiv 0 \pmod{n_i}$ for each *i*. Say $f(x) \equiv 0$ (mod n_i) has r_i roots. Since there are r_i possibilities for each component to be 0, there must be $\prod r_i$ possible ways for f(x) to be 0 (mod n).

10}.

5. Problem 31.6-1.

$\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$			
	x	$\operatorname{ord}_{11}(x)$	$\operatorname{ind}_{11,2} x$
	1	1	0
	2	10	1
	3	5	8
	4	5	2
	5	5	4
	6	10	9
	7	10	7
	8	10	3
	9	5	6
	10	2	5

6. Problem 31.7-1.

p = 11, q = 29, n = pq = 319, e = 3. Note e does not divide n. $\phi(n) = 10 \cdot 28 = 280$. $d \equiv e^{-1} \pmod{280} \Leftrightarrow 3d \equiv 1 \pmod{280} \Leftrightarrow 3d = 1 + 280x$. $x = 3 \Rightarrow d = 187$. $M = 100 \Rightarrow P(M) = P(100) = 100^3 \mod 319 = 254$.

7. Problem 31.7-3.

 $P_A(M_1)P_A(M_2) = (M_1^e \mod n)(M_2^e \mod n) = M_1^e M_2^e \mod n = (M_1M_2)^e \mod n = P_A(M_1M_2).$

Input: $P_A(M)$, the encrypted message; $P_A = (e, n)$, the public key **Output:** M, the decrypted message

1: repeat

- 2: Pick a random message M'.
- 3: Encrypt M' to form $P_A(M')$.
- 4: Calculate $P_A(MM') = P_A(M)P_A(M')$.
- 5: Decrypt this efficiently with probability 0.01 to get $MM' \pmod{n}$.
- 6: if efficient decryption succeeded then
- 7: Compute $M'^{-1} \pmod{n}$.
- 8: **return** $(MM')(M'^{-1}) = M$
- 9: end if
- 10: **until** k iterations
- 11: **return** no solution found

Note that $M'^{-1} \pmod{n}$ exists as long as M' does not divide n, but n's only factors are 1, p, q, and n = pq, so M' will almost always have an inverse. The probability of success of this algorithm is $1 - (0.99)^k$, so k = 459 implies there is a greater than 99% chance of success.