
Assignment 5 Solutions James Vanderhyde

1. Problem 31.2-6.
Recall F1 = 0, F2 = 1, and Fk+1 = Fk + Fk−1 for k > 2. By the discussion in
the book, Extended-Euclid(Fk+1, Fk) returns (d, x, y), where d = xFk+1 + yFk and
d = gcd(Fk+1, Fk). The book also shows gcd(Fk+1, Fk) = gcd(Fk, Fk+1 mod Fk) =
gcd(Fk, Fk+1 − Fk) = gcd(Fk, Fk−1) = . . . = gcd(2, 1) = 1. We will show by induction
that for k ≥ 2, x = ±Fk−1 and y = ∓Fk. The signs are determined by this: x > 0 and
y < 0 iff k is odd. Clearly Extended-Euclid(F3, F2) = Extended-Euclid(1, 1) =
(1, 0, 1) = (1,−F1, F2). Now let (d, x, y) = Extended-Euclid(Fk+1, Fk) and (d′, x′, y′) =
Extended-Euclid(Fk, Fk−1). By induction assume d′ = 1, x′ = ∓Fk−2, y′ = ±Fk−1.
By the algorithm, d = d′, x = y′, and y = x′ − y′. This implies d = 1, x = ±Fk−1,
and y = ∓Fk−2−±Fk−1 = ∓(Fk−2 +Fk−1) = ∓Fk. This completes the induction since
k − 1 is even iff k is odd.

2. Problem 31.2-8.
Note lcm(a, b) = ab/ gcd(a, b), so we can use Euclid’s algorithm to compute the greatest
common divisor to compute the least common multiple of a pair of integers. To com-
pute the least common multiple of a set of integers, we recursively decompose it into
pairs: lcm(a1, lcm(a2, lcm(. . . lcm(an−1, an) . . .))). To be sure this works, we have to
prove that lcm(a1, a2, . . . , an) = lcm(a1, lcm(a2, . . . , an)). Let m′ = lcm(a1, a2, . . . , an)
and m = lcm(a1, lcm(a2, . . . , an)). Then we know ai|m′ for all i, and a1|m and
lcm(a2, . . . , an)|m. The latter implies that all of a2 through an also divides m. Thus
m is a common multiple of a1, a2, . . . , an and therefore greater than or equal to the
least common multiple, m′. So m ≥ m′. Conversely, we know that m′ is a multiple
of a1 through an. Therefore it is a common multiple of a2 through an, which means
lcm(a2, . . . , an) divides m′ because the least common multiple divides every common
multiple. Thus m′ is a common multiple of a1 and lcm(a2, . . . , an), and therefore
m′ ≥ m. Together we have m = m′, so we may break the setwise least common multi-
ple computation into pairwise least common multiple computations. Thus there are a
total of n− 1 multiplications and divisions plus n− 1 calls to Euclid’s algorithm.

3. Problem 31.4-1.

35x ≡ 10 (mod 50).

a = 35, b = 10, n = 50.

d = gcd(35, 50) = 5. d = 35x′ + 50y′ ⇒ x′ = 3, y′ = −2.

x0 = x′(b/d) mod n = 3(10/5) mod 50 = 6.

xi = x0 + i(n/d). i(n/d) = i(50/5) = 10i.

Solutions are 6, 16, 26, 36, 46.

4. Problem 31.5-4.
By Corollary 31.29, f(x) ≡ 0 (mod n) iff f(x) ≡ 0 (mod ni) for each i. Say f(x) ≡ 0

1

Assignment 5 Solutions James Vanderhyde

(mod ni) has ri roots. Since there are ri possibilities for each component to be 0, there
must be

∏
ri possible ways for f(x) to be 0 (mod n).

5. Problem 31.6-1.
ZZ∗

11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
x ord11(x) ind11,2 x
1 1 0
2 10 1
3 5 8
4 5 2
5 5 4
6 10 9
7 10 7
8 10 3
9 5 6
10 2 5

6. Problem 31.7-1.
p = 11, q = 29, n = pq = 319, e = 3. Note e does not divide n. φ(n) = 10 · 28 = 280.
d ≡ e−1 (mod 280) ⇐ 3d ≡ 1 (mod 280) ⇐ 3d = 1 + 280x. x = 3 ⇒ d = 187.
M = 100 ⇒ P (M) = P (100) = 1003 mod 319 = 254.

7. Problem 31.7-3.
PA(M1)PA(M2) = (M e

1 mod n)(M e
2 mod n) = M e

1M
e
2 mod n = (M1M2)

e mod n =
PA(M1M2).

Input: PA(M), the encrypted message; PA = (e, n), the public key
Output: M , the decrypted message
1: repeat
2: Pick a random message M ′.
3: Encrypt M ′ to form PA(M ′).
4: Calculate PA(MM ′) = PA(M)PA(M ′).
5: Decrypt this efficiently with probability 0.01 to get MM ′ (mod n).
6: if efficient decryption succeeded then
7: Compute M ′−1 (mod n).
8: return (MM ′)(M ′−1) = M
9: end if

10: until k iterations
11: return no solution found

Note that M ′−1 (mod n) exists as long as M ′ does not divide n, but n’s only factors
are 1, p, q, and n = pq, so M ′ will almost always have an inverse. The probability of
success of this algorithm is 1− (0.99)k, so k = 459 implies there is a greater than 99%
chance of success.

2

