ASSIGNMENT 5. DUE IN CLASS OCT 13, 2017.

- 1. (a) Let $\phi: G \to H$ be a group homomorphism, and suppose that G is abelian. Prove that $\phi(G)$ is an abelian subgroup of H. (That is the homomorphic image of an abelian group is an abelian group).
 - (b) Give an example of a non-trivial (i.e. not mapping everything to the identity) of group homomorphism $\phi: G \to H$ of an abelian group G to a non-abelian group H.
 - (c) Give an example of a non-trivial (i.e. not mapping everything to the identity) of group homomorphism $\phi: G \to H$ of a non-abelian group G to an abelian group H.
- 2. Which of the following are normal subgroups? Justify your answer in each case.
 - (a) The subgroup $4\mathbb{Z}$ of the group \mathbb{Z} .
 - (b) The center (refer to a previous assignment) of a group G.
 - (c) The subgroup $\{e, \rho\}$ of the dihedral group D_8 .
 - (d) The subgroup $\{e, \sigma, \sigma^2, \sigma^3\}$ of the dihedral group D_8 .
 - (e) The subgroup $SL(2,\mathbb{R})$ of the group $GL(2,\mathbb{R})$.
- 3. Let G be a group, and let $\operatorname{Aut}(G)$ be the set of all isomorphisms $\phi: G \to G$ (we call such isomorphisms "automorphisms of G").
 - (a) Prove that Aut(G) is a group under the binary operation of composition.
 - (b) Now consider the group Z_n (the cyclic group of order n). We say that an element $x \in Z_n$ is a generator of Z_n if o(x) = n. How many generators does Z_{10} have?
 - (c) Prove that any automorphism of Z_n must map a generator to another generator.
 - (d) What is the order of the group $Aut(Z_{10})$?
 - (e) Identify the group $Aut(Z_{10})$ (from the list of groups discussed in class).
 - (f) Make a guess about the group $Aut(Z_n)$ for general n?
 - (g) Justify your guess i.e. formulate and prove a theorem.