10.5 The Indeterminate Form 0/0

We know that

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

provided

$$\lim_{x\to c} f(x)$$
 and $\lim_{x\to c} g(x)$ exist

and

$$\lim_{x \to c} g\left(x\right) \neq 0.$$

In this section, we come up with rules to deal with the case where

$$\lim_{x \to c} g\left(x\right) = 0.$$

Wherever necessary, we assume that f and g have derivatives that are continuous near c.

Theorem 10.5.1 L'Hospitals' Rule for form 0/0 (page 611 of SHE, 9th edn.)

Suppose that

$$\lim_{x \to c} f(x) = 0$$

and

$$\lim_{x\to c}g\left(x\right) =0.$$

Ιf

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L,$$

then also

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Remarks

(a) In other words,

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)},$$

provided the limit on the right involving the derivatives exists (as a finite real number, or ∞ , or $-\infty$).

- (b) We only apply this rule when both $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} g(x) = 0$. It is not (in general) true when these conditions are violated. So we first check whether we need l'Hospital, and then differentiate the numerator f and denominator g, and try compute the limit of f'/g'.
- (c) Exactly the same rule works when

 $\lim_{x \to c}$

is replaced by

$$\lim_{x \to \infty} \text{ or } \lim_{x \to -\infty} \text{ or } \lim_{x \to c-} \text{ or } \lim_{x \to c+}.$$

(d) The proof uses the Cauchy Mean Value Theorem, see SHE, page 613. Here we do only

Proof of Theorem 10.5.1 in a special case

We assume that c=0 and that f' and g' exist and are continuous in an open interval containing 0, and that $g'(0) \neq 0$. Then f and g are continuous at 0, and

$$f(0) = \lim_{x \to 0} f(x) = 0;$$

 $g(0) = \lim_{x \to 0} g(x) = 0.$

By the Mean Value Theorem, we can write for some a between 0 and x

$$f(x) - f(0) = f'(a)(x - 0)$$

and similarly, for some b between 0 and x,

$$g(x) - g(0) = g'(b)(x - 0).$$

If x is close enough to 0, then g'(b) will be close to g'(0) (by continuity of g') and so $g'(b) \neq 0$. Then as f(0) = g(0) = 0, this gives

$$\frac{f\left(x\right)}{g\left(x\right)} = \frac{f'\left(a\right)x}{g'\left(b\right)x} = \frac{f'\left(a\right)}{g'\left(b\right)}.$$

Now as $x \to 0$, both $a, b \to 0$, and the assumed continuity of f', g' gives

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{f'(a)}{g'(b)}$$

$$= \frac{f'(0)}{g'(0)}$$

$$= \lim_{x \to 0} \frac{f'(x)}{g'(x)}.$$

Example 1

Find

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\pi - 2x}.$$

Solution

Here

$$f\left(x\right) = \cos x$$

and

$$\lim_{x \to \frac{\pi}{2}} \cos x = \cos \frac{\pi}{2} = 0;$$

while

$$g\left(x\right) = \pi - 2x$$

and

$$\lim_{x \to \frac{\pi}{2}} (\pi - 2x) = \pi - 2\left(\frac{\pi}{2}\right) = 0.$$

We try l"Hospital:

$$\lim_{x \to \frac{\pi}{2}} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{\pi}{2}} \frac{-\sin x}{-2}$$
$$= \frac{1}{2} \lim_{x \to \frac{\pi}{2}} \sin x$$
$$= \frac{1}{2} \sin \frac{\pi}{2} = \frac{1}{2}.$$

Then also

$$\lim_{x \to \frac{\pi}{2}} \frac{f\left(x\right)}{g\left(x\right)} = \frac{1}{2},$$

that is,

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\pi - 2x} = \frac{1}{2}.$$

Example 2

Find

$$\lim_{x \to 0+} \frac{x}{\sin\sqrt{x}}.$$

Solution

Here

$$f(x) = x$$
 and $g(x) = \sin \sqrt{x}$

so

$$\lim_{x\to 0+} f(x) = 0 \text{ and } \lim_{x\to 0+} g(x) = 0.$$

So we try l"Hospital:

$$\lim_{x \to 0+} \frac{f'(x)}{g'(x)} = \lim_{x \to 0+} \frac{1}{(\cos\sqrt{x})\frac{1}{2\sqrt{x}}}$$
$$= \lim_{x \to 0+} \frac{2\sqrt{x}}{\cos\sqrt{x}}$$
$$= \frac{2(0)}{\cos 0} = 0.$$

Then also

$$\lim_{x \to 0+} \frac{f(x)}{g(x)} = 0$$

that is,

$$\lim_{x \to 0+} \frac{x}{\sin\sqrt{x}} = 0.$$

Important Remark

We have already said you must check that BOTH $\lim_{x\to 0+} f(x) = 0$ and $\lim_{x\to 0+} g(x) = 0$. Here is an example of what can go wrong when one of these is violated. Consider

$$\lim_{x \to 0} \frac{x}{\cos x - \sin x} = \frac{0}{1 - 0} = 0.$$

Here

$$f(x) = x \to 0, x \to 0$$

but

$$g(x) = \cos x - \sin x \to 1, x \to 0.$$

If we try to apply l"Hospital, then we see

$$\frac{f'\left(x\right)}{g'\left(x\right)} = \frac{1}{-\sin x - \cos x} \to \frac{1}{-1 - 0} = -1, x \to 0.$$

Thus in this case,

$$\lim_{x \to 0} \frac{f(x)}{g(x)} \neq \lim_{x \to 0} \frac{f'(x)}{g'(x)}.$$

Example 3 Sometimes apply l'Hospital repeatedly

Let F have two continuous derivatives at a (thus F'' exists and F'' is continuous at a). Prove that

$$\lim_{x\to 0}\frac{F\left(a+x\right)-2F\left(a\right)+F\left(a-x\right)}{x^{2}}=F''\left(a\right).$$

Solution

We have here as $x \to 0$, that the numerator f satisfies

$$f(x) = F(a+x) - 2F(a) + F(a-x)$$

 $\to F(a) - 2F(a) + F(a) = 0.$

Also the denominator g satisfies

$$q(x) = x^2 \rightarrow 0 \text{ as } x \rightarrow 0.$$

So we try l"Hospital:

$$\frac{f'\left(x\right)}{g'\left(x\right)} = \frac{F'\left(a+x\right) \cdot 1 - 0 + F'\left(a-x\right)\left(-1\right)}{2x}$$
$$= \frac{F'\left(a+x\right) - F'\left(a-x\right)}{2x}.$$

By l"Hospital,

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$$
$$= \lim_{x \to 0} \frac{F'(a+x) - F'(a-x)}{2x}$$

if this limit exists. But

$$\lim_{x \to 0} (F'(a+x) - F'(a-x)) = F'(a) - F'(a) = 0$$

and

$$\lim_{x \to 0} (2x) = 0.$$

So we try l'Hospital again:

$$\frac{f''(x)}{g''(x)} = \frac{F''(a+x)(1) - F''(a-x)(-1)}{2}$$

$$\to \frac{F''(a) + F''(a)}{2} = F''(a) \text{ as } x \to 0.$$

Then l'Hospital tells us that

$$\lim_{x\to 0}\frac{f\left(x\right)}{g\left(x\right)}=\lim_{x\to 0}\frac{f'\left(x\right)}{g'\left(x\right)}=\lim_{x\to 0}\frac{f''\left(x\right)}{g''\left(x\right)}=F''\left(a\right),$$

that is

$$\lim_{x\to 0}\frac{F\left(a+x\right)-2F\left(a\right)+F\left(a-x\right)}{x^{2}}=F''\left(a\right).$$

Example 4

Find

$$\lim_{n\to\infty}\frac{e^{2/n}-1}{1/n}.$$

Solution

Replace the integer variable n by a real variable x. Thus we try to compute

$$\lim_{x \to \infty} \frac{e^{2/x} - 1}{1/x}.$$

Here

$$f(x) = e^{2/x} - 1$$

$$\rightarrow e^{0} - 1 = 0 \text{ as } x \rightarrow \infty$$

while

$$g(x) = 1/x \to 0 \text{ as } x \to \infty.$$

So apply l'Hospital:

$$\frac{f'(x)}{g'(x)} = \frac{e^{2/x} \left(-2/x^2\right)}{\left(-1/x^2\right)}$$
$$= 2e^{2/x}$$

so

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} 2e^{2/x} = 2e^0 = 2.$$

By l'Hospital,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 2,$$

that is,

$$\lim_{x \to \infty} \frac{e^{2/x} - 1}{1/x} = 2$$

and hence

$$\lim_{n \to \infty} \frac{e^{2/n} - 1}{1/n} = 2.$$

10.6 The Indeterminate Form ∞/∞ ; Other Indeterminate Forms

We now consider

$$\lim_{x \to c} \frac{f\left(x\right)}{g\left(x\right)},$$

where

$$\lim_{x \to c} f(x) = \infty = \lim_{x \to c} g(x)$$

and other indeterminate forms.

Theorem 10.6.1 L'Hospitals' Rule for form 0/0 (page 616 of SHE, 9th edn.)

Suppose that

$$\lim_{x \to c} f(x) = \infty$$

and

$$\lim_{x \to c} g\left(x\right) = \infty.$$

If

$$\lim_{x\to c}\frac{f'\left(x\right)}{g'\left(x\right)}=L,$$

then also

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Remarks

(a) In other words,

$$\lim_{x\to c}\frac{f\left(x\right)}{g\left(x\right)}=\lim_{x\to c}\frac{f'\left(x\right)}{g'\left(x\right)},$$

provided the limit on the right involving the derivatives exists (as a finite real number, or ∞ , or $-\infty$).

(b) We only apply this rule when both $\lim_{x\to c} f(x) = \infty$ and $\lim_{x\to c} g(x) = \infty$. It is not (in general) true when these conditions are violated. So we first check whether we need l'Hospital, and then differentiate the numerator f and denominator g, and try compute the limit of f'/g'.

(c) Exactly the same rule works when

$$\lim_{x\to c}$$

is replaced by

$$\lim_{x \to \infty} \text{ or } \lim_{x \to -\infty} \text{ or } \lim_{x \to c-} \text{ or } \lim_{x \to c+}$$

Example 1

Let $\alpha > 0$. Show that

$$\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} = 0.$$

Solution

Here as $x \to \infty$,

$$f\left(x\right) = \ln x \to \infty$$

and

$$g(x) = x^{\alpha} \to \infty.$$

So try l"Hospital:

$$\frac{f'\left(x\right)}{g'\left(x\right)} = \frac{1/x}{\alpha x^{\alpha-1}} = \frac{1}{\alpha x^{\alpha}}$$

and hence

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{1}{\alpha x^{\alpha}} = 0.$$

By l"Hospital,

$$\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

Example 2 Repeated application

Let $k \geq 1$. Show that

$$\lim_{x \to \infty} \frac{x^k}{e^x} = 0.$$

Solution

Here as $x \to \infty$,

$$f(x) = x^k \to \infty$$

and

$$g(x) = e^x \to \infty$$
.

So try l"Hospital:

$$\frac{f'\left(x\right)}{g'\left(x\right)} = \frac{kx^{k-1}}{e^x}$$

but if k>1, still both $x^{k-1}\to\infty$ and $e^x\to\infty$ as $x\to\infty$. So we keep applying l"Hospital:

$$\lim_{x \to \infty} \frac{x^k}{e^x} = \lim_{x \to \infty} \frac{kx^{k-1}}{e^x}$$

$$= \lim_{x \to \infty} \frac{k(k-1)x^{k-2}}{e^x}$$

$$= \lim_{x \to \infty} \frac{k(k-1)(k-2)...1}{e^x}$$

$$= \lim_{x \to \infty} \frac{1}{e^x} = 0.$$

Other Indeterminate Forms (A) Indeterminates of the Form $0 \cdot \infty$ (page 617 of SHE)

$$\lim_{x \to c} f(x) = 0 \text{ and } \lim_{x \to c} g(x) = \infty,$$

then we don't know what is

$$\lim_{x\to c}f\left(x\right) \cdot g\left(x\right) ,$$

or if it exists. It could be finite or infinite:

Example

If

$$f(x) = x^2$$
 and $g(x) = \frac{1}{x^3}$

then

$$\lim_{x\to 0} f(x) = 0 \text{ and } \lim_{x\to 0} g(x) = \infty$$

while

$$\lim_{x\to 0}f\left(x\right)g\left(x\right)=\lim_{x\to 0}x^{2}\frac{1}{x^{3}}=\lim_{x\to 0}\frac{1}{x}=\infty.$$

On the other hand if

$$f(x) = x^2$$
 and $g(x) = \frac{1}{x}$

then

$$\lim_{x\to 0} f\left(x\right) = 0 \text{ and } \lim_{x\to 0} g\left(x\right) = \infty$$

while

$$\lim_{x \to 0} f(x) g(x) = \lim_{x \to 0} x^{2} \frac{1}{x} = \lim_{x \to 0} x = 0.$$

So how do we cope with this type of limit, called an indeterminate of form $0 \cdot \infty$? We normally write it in the form

$$f \cdot g = \frac{f}{1/g} \text{ (form } \frac{0}{0}\text{)}$$

Οľ

$$f \cdot g = \frac{g}{1/f} \text{ (form } \frac{\infty}{\infty}\text{)}$$

and then apply the version of l"Hospital that we've already used. We have to choose the form that keeps the derivatives simple!.

Example

Find

$$\lim_{x\to 0+} \sqrt{x} \ln x$$

Solution

This has form

$$\lim_{x\to0+}f\left(x\right) g\left(x\right)$$

where as $x \to 0+$,

$$f\left(x\right) =\sqrt{x}\rightarrow 0,$$

and

$$g(x) = \ln x \to -\infty.$$

So we rewrite

$$\sqrt{x}\ln x = \frac{\ln x}{1/\sqrt{x}},$$

which has the form $\frac{-\infty}{\infty}$, since as $x \to 0+$,

$$\ln x \to -\infty$$
 and $1/\sqrt{x} \to \infty$.

So try l"Hospital:

$$\lim_{x \to 0+} \sqrt{x} \ln x = \lim_{x \to 0+} \frac{\ln x}{1/\sqrt{x}}$$

$$= \lim_{x \to 0+} \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (1/\sqrt{x})}$$

$$= \lim_{x \to 0+} \frac{1/x}{-\frac{1}{2}x^{-3/2}}$$

$$= \lim_{x \to 0+} (-2) x^{1/2} = 0.$$

Remarks

(a) We could have tried to write

$$\sqrt{x}\ln x = \frac{\sqrt{x}}{1/\ln x},$$

which has form $\frac{0}{0}$, but then the derivatives of $1/\ln x$ get worse and worse, with powers of $\ln x$ appearing. So when doing the types of limits, we always try to ensure that the derivatives are going to simplify things.

(b) Similarly, if $\alpha > 0$,

$$\lim_{x \to 0+} x^{\alpha} \ln x = 0.$$

(B) Indeterminates of the Form $\infty - \infty$ (page 618 of SHE)

$$\lim_{x\to c} f(x) = \infty$$
 and $\lim_{x\to c} g(x) = \infty$,

we do not know what is

$$\lim_{x\to c} \left(f\left(x\right) - g\left(x\right)\right).$$

This is an indeterminate of the form $\infty - \infty$. We can often convert these to ratios (that is, quotients).

Example

Find

$$\lim_{x \to \frac{\pi}{2} -} (\tan x - \sec x).$$

Solution

Here as $x \to \frac{\pi}{2}$,

$$\tan x = \frac{\sin x}{\cos x} \to \infty$$
 and $\sec x = \frac{1}{\cos x} \to \infty$.

So we write

$$\tan x - \sec x = \frac{\sin x}{\cos x} - \frac{1}{\cos x}$$
$$= \frac{\sin x - 1}{\cos x}.$$

Here as $x \to \frac{\pi}{2}$,

$$\sin x - 1 \to 0$$
 and $\cos x \to 0$,

so we have the form $\frac{0}{0}$. By l'Hospital,

$$\lim_{x \to \frac{\pi}{2}^{-}} (\tan x - \sec x) = \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sin x - 1}{\cos x}$$

$$= \lim_{x \to \frac{\pi}{2}^{-}} \frac{\frac{d}{dx} [\sin x - 1]}{\frac{d}{dx} [\cos x]}$$

$$= \lim_{x \to \frac{\pi}{2}^{-}} \frac{\cos x}{-\sin x}$$

$$= \frac{0}{-1} = 0.$$

(C) Indeterminates of the Form 0° or 1^{∞} or ∞° (page 619 of SHE)

In these types of limits, we have $f(x)^{g(x)}$ for some functions f and g. We can take logs:

 $\ln f(x)^{g(x)} = g(x) \ln f(x)$

and try use our previous methods. Then afterwards, we take exponentials, since

$$f(x)^{g(x)} = \exp\left(\ln f(x)^{g(x)}\right)$$
$$= \exp\left(g(x)\ln f(x)\right).$$

Since exp is continuous, we then use

$$\lim_{x \to c} f(x)^{g(x)} = \lim_{x \to c} \exp(g(x) \ln f(x))$$
$$= \exp\left(\lim_{x \to c} g(x) \ln f(x)\right),$$

if the limit inside the exp exists.

Example 1 Form 0^0

Show that

$$\lim_{x \to 0+} x^x = 1.$$

Solution

Here we have $f(x)^{g(x)}$ with $f(x) = g(x) = x \to 0$ as $x \to 0+$. So take logs:

$$\ln x^x = x \ln x,$$

and this has form $0 \cdot (-\infty)$. So we proceed as for limits of the form $0 \cdot \infty$. Write

$$x \ln x = \frac{\ln x}{1/x}$$

giving form $\frac{-\infty}{\infty}$, to which we apply l"Hospital:

$$\lim_{x \to 0+} x \ln x = \lim_{x \to 0+} \frac{\ln x}{1/x}$$

$$= \lim_{x \to 0+} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} 1/x}$$

$$= \lim_{x \to 0+} \frac{1/x}{-1/x^2}$$

$$= \lim_{x \to 0+} (-x) = 0.$$

Now we go back and take exponentials:

$$\lim_{x \to 0+} x^x = \lim_{x \to 0+} \exp\left(\ln x^x\right)$$
$$= \exp\left(\lim_{x \to 0+} x \ln x\right)$$
$$= \exp\left(0\right) = 1.$$

Example Form ∞^0

Find

$$\lim_{x \to \infty} (1+x)^{1/\sqrt{x}}.$$

Solution

Here

$$\lim_{x \to \infty} (1+x) = \infty$$

and

$$\lim_{x \to \infty} 1/\sqrt{x} = 0,$$

so our limit has the form ∞^0 . So we take log's:

$$\ln (1+x)^{1/\sqrt{x}} = (1/\sqrt{x}) \ln (1+x)$$
$$= \frac{\ln (1+x)}{\sqrt{x}}.$$

This now has from $\frac{\infty}{\infty}$. So we try l"Hospital:

$$\lim_{x \to \infty} \frac{\ln(1+x)}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{d}{dx} \ln(1+x)}{\frac{d}{dx}\sqrt{x}}$$

$$= \lim_{x \to \infty} \frac{\left(\frac{1}{1+x}\right)}{\left(\frac{1}{2\sqrt{x}}\right)}$$

$$= \lim_{x \to \infty} \frac{2\sqrt{x}}{1+x}.$$

Again this has form $\frac{\infty}{\infty}$, so try l"Hospital again: we continue this as

$$= \lim_{x \to \infty} \frac{\frac{d}{dx} (2\sqrt{x})}{\frac{d}{dx} (1+x)}$$

$$= \lim_{x \to \infty} \frac{\left(\frac{1}{\sqrt{x}}\right)}{1}$$

$$= \lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0.$$

Thus, we have shown

$$\lim_{x \to \infty} \ln \left(1 + x\right)^{1/\sqrt{x}} = \lim_{x \to \infty} \frac{\ln \left(1 + x\right)}{\sqrt{x}} = 0.$$

Now go back and take exponentials:

$$\lim_{x \to \infty} (1+x)^{1/\sqrt{x}} = \lim_{x \to \infty} \exp\left(\ln(1+x)^{1/\sqrt{x}}\right)$$
$$= \exp\left(\lim_{x \to \infty} \ln(1+x)^{1/\sqrt{x}}\right)$$
$$= \exp(0) = 1.$$