11.1 Infinite Series

Sigma. Notation

Let 09,1, 0s,... denote numbers. We write
n
Zﬂ-k for ag +ay + ag + ... + an.
k=0

Thus we first read below the sigma sign ¥, and see k = 0. We read above the

sigma sign and see n. Then we substitute k = 0,k = 1,..., in gz, stopping at

k = n. We add all the az. The term % is called the index of summation.
More generally, if n > m, we write

”
Z ay for am + Gma1 + Cmi2 + - + 0.

k=m

Note that & is a "dummy variable“; We could use 2, 7,£ and so on. Thus also

k3
Za.j = @ + Omtr + Oy 2 o H G

j=m

'Rules for Sigma

(1) The Sigma of the Sum is the Sum of the Sigmas

n- n n
Z(ak-*}*bk) =Zﬂk+Zbk
k=0

k=0 k=0

Proof

S (ak+b) = (20+b)+ (61 +b) + o+ (@0 +bn)
k=0

= (ap+ @1+ . +an)+ (bo + by + ... +by)

n n
= zak-{-Zbk.

k=0 k=0

(II) We can pull a constant outside a sigma sign:

zn:(mzk) =23

n
Of.
k=0 k=0
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The key issue here is that the 2 does not depend on the index % of summation.
More generally, if C' is a real number,

Z (Car) = CZ k.
k=0

k=0

Proof

Z (Cax) = (Cap+Cay+...4+Cay)
k=0

= C{ao+e1+...+65)
= Cz&k.
k=0

(IIT) Sometimes we change the index of summation: for example,

ki3
Eak = aztazs-+..+a,
k=3
n—3
= D 0545
F=0

(IV) Sometimes we add a term that does not depend on the index of
summation: for example,

™
Yi=1+1+1+..+1l=n
k=0 n-&-l:imes
Meore generally, if C is a constant,

"
Y C=C+C+C+..+C=(n—m+1)C.

k=m

n times

Infinite Series

We can add 3 or 100 numbers. Can we add infinitely many? Suppose we have
real numbers

ag,01,402, ... -

‘We can add more and more of these:
0
80 =@ = Z L
k=0
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1
Si=apt+m zZak;
k=0
2

sp=ap+a1+ap =Y ax
k=0

n
8y, == ag + @y +a2+...+an=2ak.
k=0

We call s,, the nth partial sum, and we call {s,} the sequence of partial
sums.

Definition 11.1.1 (Page 635 of SHE)

(1) We call
Do
k=0

an infinite series.
(I) If {s,}, the sequence of partial sums, converges to a finite limit I, then we
say that the series

o0
Za,k converges to L.
k=0

We call L the sum of the series in this case.
(II) Xf {s,} diverges, we say that the series

[es]
E oy diverges.
k=0

Example 1
Test

o 1
g(k+1)(k+2)

for convergence.
Solution
‘We use partial fractions:
1 _ 1 1
(E+1){(k+2) k+1 k42
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50

=~ 1
;( E+1)(k+2)

Sn
S S [N
Za|E+17 k+2
S PR Y R Y U R L SN U 0 O O S
- 2 273 327 m n+1 ntl nt2
1
= -0z
Then

lim 8, = lim (1—L) 1.

B G0 n— 00 nn+2

That, is, the sertes

converges to 1,

Z (k +1) (k+2)
or, we write

Z(k+1)(k+2)

‘Alternative Method, using Sigma notation

= s
— E+1 k+2
n

n
- E Zk+2
Z n+1 1
- k=0k+1 i+l

(index change § = k-1 in second sum)
1 1
= _+Zk+1 < j+1 n+2
T
- n+2
Now proceed as before.

" Telescopic Series
The sum s,, is above is an example of a telescopic series: if f is a function



defined on the integers,

S U (R = F (b )] = £ () — F (n+1).

k=

That is, the sum on the left telescopes down to just two terms.

Example
Investigate convergence of the infinite series
o0
S (-1)*
=0
Solution
Here
0
30 = Z (-1)* =1
k=0
1
5 = Z(—l)k =1+(-1)=0;
k=0
2
s2 = Y (~)f=1-1+1=1
k=0
3
55 = Y (-1)f=1-1+1-1=0.
k=0
We see thaf

o = 1, 7m even;
7710, modd.

Then {s,} diverges, so the series ¥ ;. (~1)F diverges.

The Geometric Series

The sequence {1,z,2%,...} = {z"} is called a geometric progression.
now investigate convergence of the geometric series

ol
e
k=0
Recall that
j#] < 1= lim 2" =0

=00
and
|z| > 1= {«"} is unbounded.
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Theorem 11.1.2 (Page 637 of SHE) Geometric Series
(i) If jz| < 1, then > >, =* converges and

o

1
D=

k=0

(i) ¥ |#| = 1, then Y =, z* diverges.
Proof
The nth partial sum is

ki3
F: =Zx"’ =14+z+z+...+z"
k=0
Multiply by z :

zs, = z(l+z+z*+..+2")
z4+z% + 25+ .. 2™

Then
Sp — LSy
= (l+z+22+. . +2") - (z+22+22 + .. +2")
1 — gn+L ‘
That is

Sp{l—z)=1—z""!
or,as longas £ £ 1,
1 — gntl 1
=T @
This is the familiar formula for a finite geometric series. Now we consider two
subcases:

(D |z] <1
Here
w1
m s, = & 127"
— 00 n—o0 ] -
_1-0 1
T 1z 1-=z

So in this case, the series converges to 3.
() |z] > 1
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x=1
Here

n+l
Sp = El
k=0

= 14+1+1+..+1

7+l times
= n+1—o00,n— 00

So for & = 1 the geometric series diverges.
x=-1 :
Here

Sn = Z(_l)k
k=0

1, neven;

- { 0, nodd.

as in the example above. So {3, } diverges and the series diverges.
|z]>1
Here from (1),
1— gl
SO

is unbounded as 1 — oo, since {z™} is. So the series diverges. W

Example
Take z = § :

Some Basic Results

Theorem 11.1.4 (Page 639 of SHE)
(1) The Series of The Sum is the Sum of the Series
I

[+0] oo
E a converges and E by, converges,
k=0 k=0

then

o
Z (ag + bx) converges
k=0
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and
oo 2] o0
St =Y a3 b
k=0 k=0 k=0

(2) Can Pull a Constant out from a Series

if @ is a real number and

E @y COnverges,

k=0
then
oo
Z (cay) converges
k=0
and
oo o0
Z (ear) = aZak.
k=0 k=0
Example

Here we have used our result for geometric series,

o0

sz = ——1—,[:13! <L

— 1—=zx

Theorem 11.1.5 (page 640 of SHE) .
I o
D o
k=0

converges, then

lm ap = 0.
k—ro0
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Proof
As usual, let
Sn=Gp+a1+0e2+ ...+ Cn

denote the nth partial sum. Observe that
8p — 8pe1 = O
By definition of convergence,
Jmon=1,

where L is the sum of the series, that is,
o0
L= Eak.
k=0
But then as n — o0, both s, and s, converge to L, so
im a, = Im (Sn — Sn,——l)
O

n—roo
= L-L=0.
n

It follows that if oz, = 0 as k& — o0, then the series cannot converge:

Theorem 11.1.6 (Page 640 of SHE) Basic Divergence Test
If

ar = 0ask— 00

then o
Zak diverges.
k=0
Example
Does
(—1)" —— converge?
— kE+1
"~ Solution
We see that here &
={-1)F—=— k>o0.
Now
Hm |ag] = lim L
koo k= koo k+1
‘ k
im ——t
k00 k {1+ 1)
1 1
R T
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{(You could also do this using I’ Hospital's rule, showing

&

=1.
oo+ 1 )
Then

ap-»0as k —oco
80

Z a = Z (-1 diverges.
) k41

k=0



