11.2 The Integral and Compari-
son Tests

In this section, we assume that all the terms a; in our series are nonnegaiive.
Note that then
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That is, as n gets bigger, s, should also. More precisely, {s,} is a nondecreasing
sequence. 'Then there are only two possible behaviors for the sequence of partial
sums: Either {5,} is bounded above and then converges to a finite limit. Or,
{8n} diverges to infinity. Thus:

Theorem 11.2.1 (Page 643 of SHE)
Let ax > 0,k > 0. Then

o0
E @2 converges
k=0

iff the sequence {s,} of partial sums is bounded.

Now we can use improper integrals to study convergence of series:

Theorem 11.2.2 The Integral Test ( Fog9 G)-’-;LM? SHE)

Let f be continuous, positive and decreasing on {1,00). Then

i F (k) converges iff f ” f (z) dz converges.
1

k=1

Idea of Proof
From the diagram
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and more generally, for k > 1,

E+1
fE)-12 f@de>f(k+1)-L
&

Add these inequalities for £ = 1,2,..n:
FO+F@+...+ f(n)

2 3 741
f f(:r:)da:+f f(:c)da:+...+j " @) do
1 2 n
2 fQ+F@)+-+fn+1).

v

That is ' 1
Sﬂzf f(:ﬂ)d’b‘zsn.;_]_—f(l). (1)

If the sequence {s,} of partial sums is bounded {above}, the same will be true

of the sequence
{[ 1@a}

and then as this is increasing,

exists and is finite. Since f is decreasing, we can deduce that

flmf(z)dnblgn;f:f(w)dw

exists and is finite. That is, the improper integral

-/1 ” f (z) dz converges.

Conversely, {1) shows that if the improper integral converges then the sequence
{3n+1} is bounded above, so the same will be true of {s,}. Then by Theorem
11.21.1, the series converges. Il

Remark
We could also sum from % = 2 or 3 or some other index. Thus we can also use
the integral test in the form

f: f (k) converges iff f - f (z) dz converges,
k=3 3

provided of course f is continuons, positive, decreasing on [3, 00).




Example 11.2.4 (page 646 of SHE) The p—Series Converges ifp>1
Let p > 0. Show that the p-series

A g ARtk g o m e e mge e

converges iff p > 1.
Solution
We see that the series has the form

- 1
Zf(k) where f (z) = el

k=1

Here f is positive, decreasing, continuous on [1,00). By the integral test, the

series converges iff
oS o0 1
[ flx)dz = f —dx converges.
1 1 @F

In Section 10.7, we saw that this integral converges iff p > 1. So the series
converges iff p > 1.

Remark
An important special caseisp=1:

o0
1 1
E _w_»1+-+1+...diverges.
k=1k 2 3

This seris is called the harmonic series.

Example
For which p > 0 does

converge?
Solution
Here

f(ﬂ«?):W

is positive, continuous, and decreasing in [2,00). (Recall that z and Inz are
positive and increasing there). By the integral test,

E(mky D" f (k) converges
k=2

1) 1 o
— —dr= ]
L T (ln m)p - /; f (E) dx converges
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So test the integral for convergence: let b > 2. We see that (with the substitution
‘u=Inzx)

b 1
e (]
fz z (Inz)? ©
Ind
= / Ldu
in2 UP
)
b Ind
lim —l—pd:n = [im ul-du
b—oo 2 1:(].11.'12) b—co In2 ur

il
—
b8
2|

F

which converges iff p > 1. So,

e 1
/2 W(im converges iff p > 1

and hence

' ;ﬂm converges iff p > 1.

Some Remarks on Notation
(i) Let 7 > 0. Note that

o0 o0 .
Zak converges iff Zak converges.
k=0 k=34

This is because the second series omits only finitely many terms included in the
first, and we see that we are excluding

i-1
Zak =ag+a+az+..+a;-1.
k=0

Then the difference between partial sums for the two series is this fixed number;
and consequently it cannot affect convergence. It does affect the value, of course.
i-1

In fact,
o0 oo

Zak——Zak :Zak =ap+tortaz+..+aj

k=0 k=j k=0 :
provided either series on the left converges.
(ii) Because of this fact, and because we are often interested in convergence of
the series, rather than the actual value, we sometimes omit the lower and upper
indices of summation. So we write

> o
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instead of
o0
>k
k=j

and talk of )" a;, converging or diverging. The main point to remember is that
3" ay is an abbreviation for

o0

D ak,

k=j

for some J-
(ili} Some property of a sequence {ax} is said to hold for k sufficiently large, if
it holds for all large enough k. For example, we say

1
ap < = for k sufficiently large
if there exists an integer m such that

1
akgﬁforkZm.

Theorem 11.2.5 (page 647 of SHE) Basic Comparison Test
Let for all & sufficiently large,
ap =0

(I) Suppose that
ay < ¢ for k sufficiently large

and
E Cr converges .

Then
Z Ok CONVErges.

(II) Suppose that
ay > dy, for k sufficiently large

and
Z d;. diverges.

Then
}: ay diverges.

Idea of Proof

(1) The partial sums for 3 ¢ will be bounded by Theorem 11.2.1 (because the
series converges). Then the partial sums of ) ax, which are no larger, wilt also
be bounded. By Theorem 11.2.1, 3 ax will converge.

u
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Example
Test

8
Z5k2+3

for convergence.

Solution
The terms look roughly like 3%5 for k suffucuently large. So use
8
= — s — = .
R T OR
Here

Sa=Y gt =g L

converges (it is a constant times the p—series with p = 2). The comparison test

shows that 8 }
Zak = Z ———— converges.
: 5k 4+ 3
Example
Show that
ii
— Ink
diverges.
Solution

The basic idea we use is that In z grows more slowly than z, as * — co, so we
expect 71 to go to O slower than 4. Since 4 diverges (p—series with p = 1),
we then obtain what we need. Let us make this precise: recall from I'Hospital’s
rule that

lim Inz =0
=00
Then _
A% =0
so for sufficiently large k,
| ak |
.k
But then for sufficiently large k,
1 1
Tk k

Here

{p—series with p = 1) so the comparison test shows that
Z L diverges.
Ink
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Sometimes it is easier to compare the terms of two series only for very large
indices &, or even as k — oo, Then the following test proves useful:

Theorem 11.2.6 (p. 649 of SHE) Limit Comparison Test
Let
Z 437 and Z bk
be series with positive terms. Suppose also
lim ak/bk = L,
k—oo
where L is a (finite) positive number. Then

Z ay, converges iff Z by, converges.

Idea of Proof
Let 0 < £ < L. For large enough %,

L—e<a—k<L+€.
by

Then
ag < (L4 &)by,

and so if
Z by, converges,

the ordinary comparison test gives that

Z @y, COLVErges.
|

Example
Test the following series for convergence.

i": 1
3/2 _
P 5k3/2 7
‘Solution
H
ere B 1
ST
"We see that for large k, a; behaves much like
1
5k3/2°
We also know from p—series, that if
1
bk = Ws
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then 1
Z b = Z T converges,

Thus we should compare our "unknown" ay to the known p--series bx. So we
use the limit comparison test:

1 1

Jm onfoe = i o
] k3/2
= M Ry

. k21 L
il (W 5~ 7/&3/2) =57
By the limit comparison test,

Zbk convergent = Zak convergent,

that is

Z —T Converges.

5k /27
-Example
Test for convergence the following series:

> 5vk + 50
2kVE + 18V
Solution
Here
5vVk -+ 50

o = ————————.
* T 2k + 18Vk
We pull out the largest powers of k from the numerator and denominator, to

see what aj, behaves like for k large:

vk [5+50/VE
T e\ 2+18/k

_ 1 (5+50/\/E)

k\ 2+18/k

This suggests that for large k, a) behaves like ; (3). So choose
by = X
hecause we recognize this as the term in a p—series, which we know. Next,

' 11 (5+50/VE 1

. lim ax/by - i ['15 (m)} / [E]

54+50/vk| 5
o] 5

= h
N | 27187k

k—o0
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Since

50

1
Z b, = Z p diverges (p — series with p = 1),

5vVk+50
aj = ——— — diverpes.
D .ZQk\/E+ 1875 e
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11.3 The Root and Ratio Tests

The root and ratio tests are amongst the most powerful tests. They are both .
based on comparing a given series to a geometric series Ewk. Recall that the
geometric series converges for |#] < 1 and diverges for [z} > 1. Observe too that

. ey 1/k _
klgl;lo (zF)"" ==

Theorem 11.3.1 (Page 653 of SHE) The Root Test
Let ar > 0 for all k. Assume that

lim a,lc/k = p.

k—o0

(a) If p < 1, > ax converges.’

DY p>1, 3 oy diverges.

(If p = 1, the test is inconclusive).

Proof

{(a) We assume p < 1. Choose u such that

p< <l
For sufficiently large &, we have

aL/ k <
= Qg < ,uk.
Since |ul =p <1, '

Z ,u"c is a convergent peometric series.
By the comparison test,
Z @ CONVETges.

(b) is similar. B

Remark
We often use the root test when our terms ay are of the form something raised
to a kth power.

Example
Test for convergence

Solution
Here
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By the root test,

Example
Test for convergence

Solution
Here

Recall that

So

- 1/k
lim ak/
k—co

AR TL
— ym (L
. k—oo Ink

— Jim L =0<L

k—oo Ink

k
Zﬂ.k = z ('I—I:ll—k) converges.

klOO
N

klOO
%= 3

%100 1/k
= aff= ( )

E
[ 100/%
3
(k17%) 100
3 .

lim 2% = 1= lim k'/* =1.

T—00

. 1/k
lim ak/
k-0

By the root test, the series’

klOO
Z e = Z 3 converges,

Example 3

Test, for convergence

— 00

o1/ 100
lHm ( ) L

> kk
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Solution
Here

ai/k =k — o0,k — oc.
 That is

pzklim a}c/kzoo>1.
— 00

By the root test, the series diverges.

The root test works well with powers. The rastio test works well with fac-
torials:

Theorem 11.3.2 (Page 654 of SHE) The Ratio Test
Let a; = 0 for all k. Suppose that

. k41
lim ==L A,
k—oo Qg

(a) If A < 1, then 3 ay converges.

(b} If A > 1, then 3" ay diverges.

(If A =1, the test is inconclusive).

Proof

Okne uses the comparison test, showing, very roughly, that ay, is comparable to
P |

Example
Test for convergence
4k
K
Solution
Here
4k
47 E
80
4k+1 4k
/o = [(k T 1)!/5]
k!
- 4(k + 1)
=gt
T TR+
Then 4
klg{.ioakﬂ/ak - kliﬁfoﬁ_l =0<L

By the ratio test, the series converges.
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Example
Test for convergerce

Z (3k)!
100~
Solution
Here
= (3k)!
k= 700k
50
(3(k+ 1), (3k)
e TS WA T
_ (3k+3)! 100
T (3K)! 100k
= (3k+3)(3k+ 23k + ”FI)E
— 00,k — oo,
That is,

lim egy1/or =o0 > 1.
k—oo

By the ratio test, the series diverges.

SUMMARY OF TESTS SO FAR
We have been dealing with series 3 a; with positive terms.
(I} Usually, when a series has terms with powers, e.g.

9k k2
LTI L

but no factorials, we use the root test.
(II) When there are also factorials, e.g.

4k
pE

" we use the ratio test. 7
(III) When the terms have the form of a numerator and denominator with

powers of &, e.g.,
Z k3/2 +9
4k2 4+ Vi

we use the limit comparison test (or comparison test) and compare to a p—series

p3F-2 |
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- 11.4 Absolute, Conditional Con-
vergence

So far we have dealt mainly with series with positive terms. Now we study
series Y az where different terms may have different signs. Very often, we can
reduce this to studying 3 lax|.

Definition Absolute Convergence
If

Z |ax| converges,
then we say that '
Zak converges absolutely.

.The resaon is that this is useful is:

Theorem 11.4.1 (page 657 of SHE) Absolute convergence implies con-

vergence
I

Z|ak§ CONVErges,
then

Zak converges.
Proof
Now

—lax] < ax < |ax|
0 < a + |og] < 2[axl-
By the comprison test, since Y, |ag| converges, also
Z (o + |ar]) converges.
Then

> ax > l(ak + Jax]) = lax]

= 3 fan+lal) =D laxl

is a difference of two convergent series, so Y at converges. Ml

Example

Show that if p > 1,
Z > converges.
k=1
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Solution
Here

_(=1F 1
=% = iaki = 76:-;

As p > 1, we know that

i lax| = i % converges.
k=1

kel
That is,
‘o0 oo (_l)k .
: Z ay = Z = converges absolutely, and so converges.
Remark

‘We shall soon see that for any p > G,

oo -1 k
Z ( kp)
k=1

converges,

even though it does not converge absolutely for p < 1. 'We shall call this condi-

tional convergence: .

Definition Conditional Convergence
Suppose that

E ap converges, -

but
Z |ak| diverges.

Then we say that ) a, converges conditionally.

Theorem 11.4.3 (Page 659 of SHE) Alternating Series Test
Let ap > 0 for & > 0. Assume that
(i) {ax} is a decreasing sequence of positive numbers;

(i)

klgrgo ar = 0.
Then
o0
Z (—1)"c ap COIVErges.
k=0
Remark

We call series of this form alternating series.
Idea of Proof
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The series converges because succesive terms cancel one another, due to opposite
sign. There is a beautiful proof in SHE: Let m > 1, and consider sa.,, the even
order partial sum. We see that -

2m
Yo hfax

= (ao — a1) + (ag - ag) + .k (agm_g — agm_1) + dom.

Sam

Here each term in brackets, namely
ap — @1, G2 — @3;...5 A2m-2  Q2m—1
is positive (recall a; < ag and a3 < ag ete.). So
Sam > 0form > 1.

On the other hand,

3
Somtz = Sam+(—1) mH

Som — @2m4+1 + C2m43 < 52m,

A%m+1 T C2m42

since @om41 > Uomaa. Thus {se,} is a decreasing sequence of positive numbers.
As it is bounded below (by 0), we have

lim s9, = L

mM—o0
for some L > 0. Then also the odd order partial sums converge to the same
limit:

)2’."ﬂ+1

Somp1 = Sam + (-1 a9m+1
= S¥m — AQ2mt+1-
Hence
Hm S9m41 = lim (82m — a2m+1)
M=o M—rCa
= L-0=0L.
Hence
lim s, = L.
Mm—00
[ ]
Example

Let p >-0. Show that

k .
3 (_ 1) conver
E ges.
kp
k=1
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For which p > 0 does it converge absolutely? For which p > 0 does it converge
conditionally?

Solution

Here

co (_l)k
X

has the form

where
1 . ., , .
ar = P is positive, decreasing (as k increases)
and
lim ap — 0.
k—oo

By the alternating series test,

(-n*
kP

NgE

o0
= Z (-1)* a;, converges.
k=1

=
Il

1

We already saw that for p > 1, the series converges absolutely. If p < 1, then

o0 o0 1
,fv‘: |(—1)ch ak| = Z P diverges,
=1

k=1

as it is a p—series, with p < 1. Thus

oo ~1 k
Z( kp)
k=1

converges conditionally for p < 1.

Summary

When you see a series with terms having alternating sign, you can try apply the
alternating series test, provided you can easily check that the terms decrease in
magnitude, and have limit 0. In many cases, however, it is easier to take absolute
values, and test for absolute convergence. If there is absolute convergence, then
there is convergence.
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