11. 5 Taylor Polynomials

(January 13, 2006)

Taylor polynomials are used to approximate functions. Let f be a function

for which |
F1(0), £ (0), £ (0) ..

all exist. Then the constant function
Po (=) = f(0)
has the same value as f at 0. The linear polynomial
| Pi(z)=f(0)+f (0)s
has the same value and first derivative as f at 0. That is,
| Pi (0) = £(0); P} (0) = £/ (0).

Siﬁﬁlarly )

B(2)=F(0)+f O)s+f 0) 5
has the same value and first two derivatives as f at O: .

Py (0)=F(0); P (0) = f'(0); 7' (0) = £ (0).

More generally:

" Definition -
The nth Taylor polynomial for f at 0 is

Pa(e)= 1 O) +F @2+ 1 O 5+ + IO O .

Note that
Pa(0)= f.(O) - PL0) = £ (0);..; P1™ (0) = £ (0).
Example 1
Let
flz)=¢€"
Then 7
f.r (I) — e:c; f” (.’L‘) — em; f(-n.) (:E) = em,
S0

FO)=1f(0)=1.;f0) =1




The nth Taylor polynomial for f is

2

T x
Pn(x)=1+3:+-2—!+...+-m.

7L

Example 2
Let
- f(z) =sinz.
Then
f'{z) = cosu
fflz = —sing;
() = —cosu
- A = sin:r:;
80
fO =6
1O =1
fH (0) o O,
fﬂl (O) = -1
o o=0
Then
Py(z) = 0,
Pi(x) = 0+lr==z

:.32
Pg(ﬂ’:) = 0+1$+0§ =;

z2 3
P3($) = 0+1$+UE—1§=$——-'
$2 ma ﬂ:4
Pa(e) = Olotlg—1g 404 =

It is important to know how close is P, (z) to f (z) :




Theorem 11.5.1 (Taylor’s Theorem, page 667 of SHE, 9th edn.)
Suppose that f has n + 1 continuous derivatives on an open interval I that

contains (. Then for z € 1,

f(z) = Pu(2) + Bn (2),

where

ol

P (z) =f(0)‘_*'f’(0)w+f”(0) 51 o+ (0)%L

and

Ro{z) = ;11_| f; FD () (2 — )" .

Proof for n =10

We see that the given Ry (z) for n =0 is

N YOI § P CIER
= fomf’(t)dt
= [@-F0)
= 1@)-PRoa).
Then
f(z)=Po(z)+ Ro(z). oy

Proof for n=1
We integrate by parts in

Ro(z) =

where

u(t)
so du (t)
and v (t)
so du (t)

S, &

x

T

fr)d
w () dv (£) (2)

@)
fr)dt
t—x

1dt.

(Recall z is fixed in the integral, we integrate with respect to t). Integrating by -




parts in (2) gives

Roe) = [wli- [ v@du)

F@0- 10~ [ “(6—2) £ () e

1 T
= f’(O)x+ﬁf F )z -ty de
*Jo
= [f(0)z+ R (2),
with the notation above. Then substitute in (1):

f(=) = B(z)+Ro(2)
FO)+ [ (0)z+ Ry (2)
Py (z) + Ry ().

i

Proof for n =2
Integrate by parts in

Ri(z) = %[;f”(t)(m—t)ldt

_ % :u(t)dv(t)
where
uw(® = @)
sodu(t) = f"(t)dt
and v(t) = (i;]t—f
sodv(t) = (xz—t)dt.

You do this as an exercise.

Proof for general n

Do this by induction on n, each time integrating by parts in the previous re-
mainder. W

Corollary 11.5.2 {(Lagrange Form of Remainder, page 667 of SHE,
9th edn.)

Suppose that f has n + 1 continuous derivatives on an open interval I that
contains 0. Let « € I. Then

f(z) = Pa(x) + R (),
where

2 i

Pa(@) =1 O+ @+ 0) 5 + -+ O

4




and for some ¢ between 0 and =z,

fO(S) i

R,,,(-TG)_ ( +1)[

Proof (uses Mean Value Theorem for Integrals). B
Remarks

(a) We do not know where ¢is. But we do know that if J is an interval containing
0 and z, and if

FoHD (t)l < MforallteJ

then

M n+1
1R (@) < Gy
However, M will usually depend on n, and we have to be careful to take account
of this! '

(b) We want
lim R, (z) =
N—00
for then
lim P, (x) = f(z).
nN—00
Example 1

Let f(z) = ¥ so that

n

Py (x )-1+:c+—+ Sl

91
By the remark above, if M is a bound on f(*+1 (t) = e’ in an interval J -
containing 0 and z, then e
M
|R'n( )l—( +1)|| ln+1' é ™
C x®

Now the big deal here is that f(*+1) (t) = e* does not depend on n, so we can
just take M to be the largest value of ! in an interval containing 0 and z. Then

s 1
. ntl __
m, (n+1)!| =0
S0
lim R, {z)=
and

T}EEOPTL (SL‘) = f($)7




that is

2 7
JLIEO (1+93+%—+...+%) = e%,
Example 2
Let
f(z)=In(l+2)=f(0)=0.
Here
1
@) = 3 = {0)=1
" — —1 1 -
1@ = g 0=
2
o fﬂf (LU) = (l n z)3 = f.w (0) — 2;
3-2
@) = /0=
_ -1 n—
M@ = ) %‘m)_) = M (0) = (1" (n = 1)L
Then
2 23
P@) = FO)+1 Q)2+ 0) 5+ +IP O
x?  22%  3lz? n1 {(n—1)!
_ 2 .’1:3 $4 el il
= 0“’_?+?_T£+'"+(_1) —.
We want to show that
g B (2) =0

so that

We are going to do this for two ranges of x, separately for z € [0,1] and = €

(-1,0).
Case I: z € [0,1]

Jim Pa (o) = £ (2).

mﬂ-




Here we use the (easier) Lagrange form of the remainder:

R?’i.(m) = f(n+1) (C) (?1+ 1)'
(_1)" 1 $n+1
Tro™ T r 1)

n+l \1l+c '

Here as £ > 0 and ¢ is between x and 0, also ¢ > 0. Then

o4
N
.

Pt

xZ
l+e

<z <1,

S0

Fal = 7 (15 )nﬂ

n+li\l+e
1
n+1

— 0,

as n — co. Thus, as desired,

lim R, {z)}=0,

N0
and hence

lim P, (z) = f(z).
. n—oo

Case II: z € (—1,0) Difficult!
Here the Lagrange form of the remainder does not work and we have to go use
the more difficult integral form of the remainder. Now

nl

Ru(z) = % ]: () (@ — )" dt
1/,

= fn,l A (—l)n m (.’E -_ t)n d'f;
(1Y T {z-2)"
= ) gy (1)




Note that - t—z > 0,1+t >0for ¢ € [2,0), so

z—e — o
Ra@l = |1 [ é%ggﬁd4 v O
T fr—t\" 1
*_ﬂ(r:ﬂ T
Ng—® 1
= fw T+¢| T+t

Ort—z\" 1
— —dt
T+t T+

_ (cnmm)nﬂ L 0_a,

1+ 1+c,

for some ¢, between z and 0, by the Mean Value Theorem for Integrals. Here
|z} <1and < ¢, <0, 50

Cp < Cn |

= nt o <enlzl + |2 = (en +1) 2|

c
o mtlEl g
cp+1
= = <l
xl.
cn+1

Then substituting above, and as 1 4 ¢, > 1+ z,
n 1
| By ()] < [a™*! o7 " on oo

Thus, as desired,

lim R, (z) =0,
n—oo
and hence
Jim P (@) = £ (@).
Summary

For all z € (—1,1],
nh_)n;)lopﬂ (w) = f(x))
that is

. 332 3 zt et T
nan;.lo(;C—*é--l-?“z'-l-...-l—(—l) -a—)—log(l+a:).




Numerical Calculations

{Page 673 of SHE, 9th edn.)
Sometimes we want to know how large n must be to ensure that P, approximates
[ (z) with a given accuracy. For example, how large must n be for

iRy (z)| = |f (2) — Po(=)] £0.017

Or, for a given n, what is the largest error |f () — P, ()|, when = ranges over
(a,b]?

Example

Determine the largest possible error when we use Pg ()} to approximate e® for
z € [0,1].

Solution

From Lagrange’s form for the remainder,

S f(z)—Ps(z) = Rg(z)

1

= ﬁ ™ (C) z’
e -

= -,?I-m ,

for some ¢ between 0 and z. Here as the function e® is increasing, and « € [0, 1]

e < e“':g e® < el

SO -
e e

| |Be (z)] = =" < .
We can now use an estimate for e. One can use a calculator, or just use e < 3.
Then 3 1

<==—— <0
|Rs ()] < 77 = 7ggg < 0-0006

Example.

Estimate €%2 correct to three decimal places.. (This means with an error less
than 0.0005, so that we do not round up the error to the 3rd decimal). Recall
that

z? z"
P, (z)= 1+m+§+...+5
and by the Lagrange form above, with x = 0.2,
1.
(n+1)!

f(-n.+1) (C) Lt

|Ry (z)| <

— 1 ecm'n+1

(n4 1)
1 0.2, nt1
(n——i-l—)!e T .

IA




For €2, we just use the upper bound e! < 3, and then

(0.2)",

3
i 02)] < 73y

We want
3
(n+1)!

We can just calculate the left-hand side until this becomes true:

(0.2)**! < 0.0005. (1)

Z70.3 {0.06-
202y o00d-
302y [0.0002...

co| nof =] =

So we can use n = 3 and

2)2 2)3
14024 02 02

2! 3!
= 1.22133..

P3(0.2)

Remark :
See SHE, page 673, for a slightly different way: one solves for the smallest n

satisfying (1) using inequalities.

10




11.6 Taylor Polynomials in .-.

We can expand functions in Taylor series about points a other than 0. This
involves the numbers f (a}, f' (a), f” (a) ... instead of f(0), f(0), f*(0)... .

Definition
The nth Taylor polynomial of g in powers of  —- a is

32 'n.
Py@) = 9(0) 49 @ (@ -a)+9" @) E5 b g (@ E=2L

Theorem 11.6.1 Taylor’s Theorem (p. 677 of SHE, 9th edn)
Let a € R. Supposé that g has n + 1 continuous derivatives in an open interval
I containing a. Then for z € I,

g(z) = Pn(z) + Bn (2),
where P, is as above and
Boe) = o [ 40 @) (= 0"

Idea of Proof

Let
fl@)=g(z+a).
Then
0y = gla);
) = g¢'(a);

7o = ¢"(e);

So we can apply Taylor’s Theorem for f at 0, and then go back and rewrite
everything in terms of g. B

Example 1
Let
g(z)=2"and a =2.

Expand g in powers of z — 2.
Solution
Asa=2,

2 n
Po(z)=g(2)+d 2)(z-2)+5"(2) (L_z“.& et g™ (2) (x_;!"%)"_

11




Here

P e B o N oo T

Then for n > 3,

P, (z)

8+12(x—2)+12
8+12z—2)+6(x—27+(z—2)°.

2% = g(2) = 8§
322 = ¢ (2) = 12;
6z = g" (2) = 12;
6=g" (2) =6;
0 for n > 4.

z—2)? z—2)
(29 +6! 3!)

In fact, one can use the remainder formula for Ry, () to show that

Ra(z) = ;11_‘/ gD () (z — )" dt =0 for n > 3,

[+

80
P, (z) =g(z) forn >3,
that is, :
8412z —2) +6(@—27+ (z—2)° ==
Example 2
Expand g {z)} = zlnz in powers of z — 1, that is find its nth Taylor polynomial
about a = 1.
Solution
glz) = zlnz=g(1)=0;
g = 1l-hz+z L
= Inz+1=¢{1)=1
g” (m) - :7\' gﬂ' (1) _ 1,
gm’ (IL') = -= = gHI (1) _ —l,
W@ = SO0 =2
3.2
0 (=) = —p =g (1) =3
n(n—2)!
i@ = B )= ) -2z

12




I

g)+g (Y (=-1)+4"(1)

01—+ 8L @y gl

(-1 (z-1)°
]

(z—1)+

13

2
@;_;!1_)_ + o+ g™ (1)
3
n(z=1"
+ ...+ (—1) m

n!

1)”

(o -

x

nl

)"




