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for the two fluids. The proposed scheme employs a scalar-valued auxiliary energy variable
in its formulation, and it satisfies a discrete energy stability property. More importantly,
the scheme is computationally efficient. Within each time step, it computes two copies of
the flow variables (velocity, pressure, phase field function) by solving individually a linear

ii{g?;f;variable algebraic system involving a constant and time-independent coefficient matrix for each of
Implicit scalar auxiliary variable these field variables. The coefficient matrices involved in these linear systems only need
Energy stability to be computed once and can be pre-computed. Additionally, within each time step the
Phase field scheme requires the solution of a nonlinear algebraic equation about a scalar-valued number
Multiphase flows using the Newton’s method. The cost for this nonlinear solver is very low, accounting for

Two-phase flows only a few percent of the total computation time per time step, because this nonlinear

equation is about a scalar number, not a field function. Extensive numerical experiments
have been presented for several two-phase flow problems involving large density ratios
and large viscosity ratios. Comparisons with theory show that the proposed method
produces physically accurate results. Simulations with large time step sizes demonstrate
the stability of computations and verify the robustness of the proposed method. An
implication of this work is that energy-stable schemes for two-phase problems can also
become computationally efficient and competitive, eliminating the need for expensive re-
computations of coefficient matrices, even at large density ratios and viscosity ratios.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

This work concerns the simulation of the dynamics of a mixture of two immiscible incompressible fluids with possibly
very different densities and dynamic viscosities based on the phase field approach. The presence of fluid interfaces, the
associated surface tension, the density contrast and viscosity contrast play an important role in the dynamics of such
systems, and these factors also make such numerical simulations very challenging. Phase field (or diffuse interface) [33,44,
5,29,23,27] is one of the main approaches for dealing with fluid interfaces in the modeling of two-phase systems, along
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with other related methods [30,36,43,37]. It has attracted an increasing interest from the community in the past years, in
part because of its physics-based nature. With this approach the fluid interface is treated to be diffuse, as a thin smooth
transition layer [5]. The state of the system is characterized by, apart from the hydrodynamic variables such as velocity
and pressure, an order parameter (or phase field variable), which varies smoothly within the transition layer and is mostly
uniform in the bulk phases. The evolution of the system is characterized by, apart from the kinetic energy, a free energy
density function, which contains component terms that promote the mixing of the two fluids and also component terms that
tend to separate these fluids. The interplay of these two opposing tendencies determines the dynamic profile of the interface.
The adoption of the free energy in the formulation makes it possible to relate to other thermodynamic variables. Indeed,
with the phase field approach the governing equations of the system can be rigorously derived based on the conservation
laws and thermodynamic principles. Several thermodynamically consistent phase field models are already available in the
literature for two-phase and multiphase flows, see e.g. [29,25,1,42,2,11,28,16,14,34], with various degrees of sophistication
or the observance/violation of other physical principles such as Galilean invariance and reduction consistency. The mass
conservation of the individual fluid components in the system, and the choice of an appropriate form for the free energy
density function, naturally give rise to the Cahn-Hilliard equation in two phases or a system of coupled Cahn-Hilliard type
equations (see e.g. [1,14], among others).

We focus on the numerical approximation and simulation of the governing equations for incompressible two-phase
flows with different densities and viscosities in this work. A computational scientist/engineer interested in such problems
confronts a compromise and needs to balance two seemingly incompatible aspects: the desire to be able to use a larger time
step size (permissible by accuracy), and the computational cost. On the one hand, semi-implicit splitting type schemes (see
e.g. [15,6,9,10,12], among others) induces a very low computational cost per time step, because among other things only
de-coupled linear algebraic systems need to be solved after discretization and these linear systems only involve constant
and time-independent coefficient matrices that can be pre-computed (see [15]), even with large density ratios and viscosity
ratios. The downside of these schemes lies in that they are only conditionally stable and the time step size is restricted by
CFL or related conditions. On the other hand, energy-stable schemes (see e.g. [40,35,21,18,41,20,48,34], among others) can
potentially allow the use of much larger time step sizes in dynamic simulations. The downside lies in that, the computational
cost per time step of these schemes can be very high. Energy-stable schemes often require the solution of coupled nonlinear
algebraic field equations or coupled linear algebraic equations. The linear algebraic systems associated with these schemes
involve time-dependent coefficient matrices, which require frequent re-computations (or at every time step).

Mindful of the strengths and weaknesses of both types of schemes, we would like to consider the following question. Can
we devise an algorithm to combine the strengths of both types of schemes that can achieve unconditional energy stability
and simultaneously require a relatively low computational cost? Summarized in this paper is our attempt to tackle this
question and a numerical scheme that largely achieves this goal.

The current work has drawn inspirations from several previous studies in the literature. In the following we restrict
our review of literature to the energy-stable schemes for the hydrodynamic interactions of two-phase flows with different
densities and viscosities based on the phase field framework. This will leave out those algorithms that are devoted purely to
the phase field such as the Cahn-Hilliard or Allen-Cahn equations [8,4] without hydrodynamic interactions, for which a large
volume of literature exists. Those studies considering only matched densities for the two fluids (see e.g. [3,22,46], among
others) will also be largely left out. In [40] a phase field model based on the combined Navier-Stokes/Allen-Cahn equations
with different densities/viscosities for the two fluids is considered, and several discretely energy-stable schemes of first
order in time are introduced based on projection, Gauge-Uzawa, and pressure stabilization formulations. What is interesting
lies in that all these schemes are linear in nature. They only require the solution of linear, albeit coupled, algebraic equations
for different flow variables after discretization. To accommodate different densities for the two fluids, the authors of [40]
have adopted a reformulation of the inertial term [19] in the Navier-Stokes equation, which as pointed out by [18] might
not be consistent with the phase field equation employed therein. Corresponding schemes for a Navier-Stokes/Cahn-Hilliard
model are presented in [39]. A fractional-step scheme based on a pressure correction-type strategy is developed in [35] for
a phase-field model in which the chemical potential contains a velocity term (see also [28]), together with a generalized
Navier type boundary condition for contact lines [32]. This scheme is linear, and the discrete equations about the phase
field function and the velocity are coupled together. Improved algorithms for the Navier-Stokes/Cahn-Hilliard model are later
developed by [41], in which the discrete phase field equation and the momentum equations are de-coupled thanks to an
extra stabilization term [7] employed for approximating the convection velocity in the Cahn-Hilliard equation. The scheme
is first order in time, and it is unclear whether an analogous second-order stabilization term exists for the approximation of
the convection velocity. In [18] a discretely energy stable scheme for the phase field model of [1] is developed, which gives
rise to a system of nonlinear algebraic equations that couple together all the flow variables. It is interesting to note that
the algorithm developed in [48] for the same phase field model only requires the solution of linear equations and that the
phase-field and momentum equations are de-coupled owing to the same treatment of the discrete convection velocity of the
Cahn-Hilliard equation as in [41]. Two discretely energy stable schemes are described in [21,20] for the quasi-incompressible
Navier-Stokes/Cahn-Hilliard model of [29]. The schemes can preserve the mass conservation on the discrete level, and they
lead to coupled highly-nonlinear algebraic systems after discretization. Numerical schemes for related quasi-incompressible
hydrodynamic phase field models have also been proposed in [16,34,17]. In particular, in [17] the so-called invariant energy
quadratization method has been used to reformulate the phase field equation, and the resultant numerical schemes are
second-order in time, and involve the solution of linear algebraic systems that couple together the different flow variables.
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Apart from the many contributions discussed above, an interesting strategy for formulating energy-stable schemes for
gradient-type dynamical systems (gradient flows) based on certain auxiliary variables has emerged recently [45,38]. The
invariant energy quadratization (IEQ) method [45] introduces an auxiliary field function related to the square root of the
potential free energy density function together with a dynamic equation for this auxiliary variable, and allows one to
reformulate the gradient-flow evolution equation to facilitate schemes for ensuring the energy stability relatively easily. The
scalar auxiliary variable (SAV) method [38] introduces an auxiliary variable, which is a scalar-valued number rather than
a field function, related to the square root of the total potential energy integral, and a dynamic equation about this scalar
variable. Both types of auxiliary variables can simplify the formulation of schemes to achieve energy stability for gradient
flows.

Another recent development that inspires the current work is [26], in which an energy-stable scheme for the incom-
pressible Navier-Stokes equations based on a scalar auxiliary variable related to the total kinetic energy has been developed.
Because the Navier-Stokes equation is not a gradient-type system, the scalar auxiliary variable formulation as developed
in [38] for gradient flows cannot be directly used. Indeed, it is observed that if one reformulates the viscous term in the
Navier-Stokes equation using the auxiliary variable, in a way analogous to the treatment of the dissipation term in the
evolution equation for gradient flows, the simulation results turn out to be very poor. Instead, a viable strategy for Navier-
Stokes equations seems to be to control the convection term with the auxiliary variable. Such a strategy is presented in
[26], which hinges on reformulating the convection-term contribution into a boundary integral in the dynamic equation for
the auxiliary total kinetic energy.

In this paper we build upon the scalar auxiliary variable idea and present an energy-stable scheme for the numerical
approximation of the two-phase governing equations with different densities and viscosities for the two fluids based on
the phase field model of [1]. By introducing a scalar-valued variable related to the total of the kinetic energy and the
potential free energy of the two-phase system, we reformulate the two-phase governing equations into an equivalent form.
By carefully treating the variable-density and variable-viscosity terms, we show that the proposed scheme honors a discrete
energy stability relation. We present an efficient solution algorithm and a procedure for dealing with the integrals of the
unknown field functions. Within each time step, our algorithm only requires the solution of several de-coupled individual
linear algebraic systems, each for an individual field function, together with the solution of a nonlinear algebraic equation
about a scalar-valued number. More importantly, those linear algebraic systems to be solved within a time step each involves
a constant and time-independent coefficient matrix, which only needs to be computed once and can be pre-computed. The
nonlinear algebraic equation involved therein requires Newton iterations in its solution. But its computational cost is very
low, because this equation is about a single scalar number, not a field function. Numerical experiments show that the solution
for the nonlinear equation accounts for around 8% of the total solver time within a time step, and essentially all this time
is spent on computing the coefficients involved in the nonlinear equation in preparation for the Newton method, rather
than in the actual Newton iterations. Because of these attractive properties, our algorithm is computationally very efficient.
We will present a number of numerical experiments to demonstrate the stability of our method at large time step sizes for
two-phase problems.

The new aspects of this work include the following: (i) the energy-stable scheme for the two-phase governing equations
with different densities and viscosities for the two fluids, and (ii) the efficient solution algorithm for implementing the
proposed scheme. The property of our solution algorithm that it involves only linear algebraic systems with constant and
time-independent coefficient matrices, even at large density ratios and viscosity ratios, is particularly attractive, because this
makes the cost low and the method computationally very efficient. To the best of the authors’ knowledge, this is the first
energy-stable scheme which involves only constant and time-independent coefficient matrices for incompressible two-phase
flows with different densities and viscosities for the two fluids.

The rest of this paper is organized as follows. In Section 2, we introduce a scalar-valued auxiliary variable and reformu-
late the two-phase governing equations into an equivalent system employing this variable. Then we present a scheme for
temporal discretization for the reformulated equivalent system, and prove that the scheme satisfies a discrete energy law.
An efficient solution algorithm for implementing the scheme will be presented, and the spatial discretization based on C°
spectral elements will be discussed. In Section 3 we present a few numerical examples of two-phase flows involving large
density ratios and viscosity ratios to demonstrate the accuracy of our method and also its stability at large time step sizes.
Section 4 then concludes the discussions with some closing remarks.

2. Energy-stable scheme for incompressible two-phase flows
2.1. Governing equations

Consider a mixture of two immiscible incompressible fluids contained in some domain € in two or three dimensions,
whose boundary is denoted by 9. Let p; and p, respectively denote the constant densities of the two fluids, and @1 and

2 denote their constant dynamic viscosities. The conservations of mass/momentum and the second law of thermodynamics
for this two-phase system lead to the following coupled system of equations (see e.g. [1,11] for details):

D -
poe + 1 V= —Vp+ V- [uD@)] -1V (V$99) + f(x.0), (1a)
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V.u=0, (1b)
D¢ _,

D =MV +e@.o, (1c)
C=—AV2p +h(p), (1d)

where % = % +u-V is the material derivative, and D(u) = Vu+ VuT. In the above equations, u(x, t) is the velocity, p(x, t)
is the pressure, and f(x,t) is an external body force, where t is time and x is the spatial coordinate and ()T denotes the
transpose of (-). ¢(x,t) denotes the phase field function, —1 < ¢ < 1. The flow regions with ¢ =1 and ¢ = —1 respectively
represent the first and the second fluids. The iso-surface ¢ (x,t) =0 marks the interface between the two fluids at time t.
The function h(¢) in equation (1d) is given by

A A
h(¢) = F'(¢) = F¢(¢2 —1) with F(¢) = W(l —¢%)2, 2)

where 7 is a characteristic length scale of the interface thickness, and F(¢) is the potential free energy density (double-well
function) of the system. C in the above equations denotes the chemical potential, satisfying the relation C = % where
W is the free energy of the system given by W = fQ [%qu Vo + F(d))]. A is the mixing energy density coefficient and is
related to the surface tension by [49]

= 2\/5 77,

where o is the interface surface tension and is assumed to be a constant. m > 0 is the mobility of the interface, and is
assumed to be a constant in the current paper. The density p and the dynamic viscosity u of the two-phase mixture are
related to the phase field function by

p1+p2  P1—pP2 H1+p2 1 — Y2

A (3)

= s = . 4

p () 5 T3 ¢ ke st ¢ (4)
In equation (1a), J is given by

~ . 1

J(@ = JoVC=JoV(=AV?¢+h(@), with Jo=—2(p1 = p2)m. (5)
Note that J and p given above satisfy the following relation

Dp ~

—=-V-]. 6

o J (6)

g(x,t) in equation (1c) is a prescribed source term for the purpose of numerical testing only, and will be set to g =0 in
actual simulations.

To facilitate subsequent development of the unconditionally energy-stable scheme, we transform equation (1a) into an
equivalent form:

Du -
pﬁ—k]~Vu:—VP+V-[uD(u)]—i—CVc[)—i—f(x,t), (7)

where P =p + %de - V¢ + F(¢) is an effective pressure and we have used the following identity

1
V- (V¢Ve) = EV(V¢ V) + (V2p)V.
It can be shown that the system consisting of equations (1a)-(1d), with f =0 and g =0, satisfies the following energy law
(assuming that all boundary flux terms vanish),
d

A1 w2y Ave. __ [ 2_/ :
= bpm|+2V¢V¢+H@]_ /2”V” mvc - ve. 8)
Q Q Q

Equations (7), (1b)-(1d) are to be supplemented by appropriate boundary and initial conditions for the velocity and the
phase field function. We assume the following boundary conditions:
ulyo = wx, ), 9)
n-Volsg =da(x, 1), (10)
n-V(V’$)lag =dp(x, 1), (11)
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and the initial conditions:

u(x,0) =ujp(x), (12)
o (x,0) = din(x). (13)

In the above equations d, and dj are prescribed source terms for the purpose of numerical testing only, and will be set to
dy, =0 and dp =0 in actual simulations. The boundary conditions (10) and (11) with d; =0 and d, = 0 correspond to a
solid-wall boundary of neutral wettability, i.e. contact angle is 90° when the fluid interface intersects the wall. u;,(x) and
¢in(x) are the initial velocity and phase field distributions.

2.2. Reformulated equivalent system of equations

To derive the energy-stable scheme for the system (7), (1b)-(1d), we introduce a shifted energy consisting of the kinetic
energy and the potential free energy component as follows,

1
E(t)=/[§p|u|2+F(¢)]dQ+Co (14)
Q

where Cg is a chosen constant such that E(t) > 0 for all t > 0. Note that E(t) is a scalar-valued number, not a field function.
Define an auxiliary variable

R(t) = VE®. (15)

With the help of the identities
Du D Dp /1 ,
—u= —(=|u
o i 1= pe(5ou) = p (51P)
- ~ ~ /1
(J-Vu)-u=V~(5|u| 1)-v-J(5up) (16)
V(5 o) =v- (3 plufn) - (v -u)_ plui?
2,0 = 2/0 2,0
and the equations (1b) and (6), we can obtain that

%(%mmz) - p% ut(Jova) u-v. (%]mﬂ) -v. (%p|u|2u). (17)

Thus, taking the derivative of R(t) leads to

2Rd—R:d—E—/a[ plul® +F(¢)]

dt dt J ot
(18)
=/[p(38—'t‘+u-w)+]-w]~ /h(¢)——/(n w) pluf’ —f(n 1)—|u|
Q Q 02

where n is the outward-pointing unit vector normal to the boundary 92, and we have used equation (17), integration by
part, and the divergence theorem. It is crucial to note that both E(t) and R(t) are scalar-valued variables depending only on
t, and the fact that
RE)
VE()
In light of equation (19), we can re-write the system consisting of equations (7), (1b)-(1d) into the following equivalent
form

(19)

P+ j%[,ou-Vu—i—fVu—V,u-D(u)—i— (1 - %)VP—F(M—V,H,O)V X V x u]
(20)
- —%vp + unpV2u+CVé + f,
V.u=0, (21)
9 + RO 4. V¢ =mViC+g, (22)

at  JE@®
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o2 _ R(t)
c= w¢>+s(¢> ¢>+M

2Rd—R:/,oa—u-u—/CV¢-u+ RO [evp.ut S0 /h(¢)aa—f
Q

h(e), (23)

dt ot JED NG
Q Q Q
+ RO {pu.Vu+]~Vu—vM.D(u)+(1—ﬁ)vp+(u—vmp)vaXu].u
JE©O £0
“ ) (24)
2
—|—/ {V -[uD@)] + (% — 1)VP — VmpV u} -u
Q
1 , 1 N
—5/<n-u>p|u| ‘5/("")'"' .

Q2 Q2

To obtain equations (20) and (24), we have used equation (1b) and the identities

V- [uDW)] = pu[Viu + V(V-w)]+ Vu- D),
Vu=v(V-u)—VxVxu,

and have added/subtracted appropriate terms such as %VP, vmpeV2u, S¢, and CV¢ - u. In these equations, pg is a constant

given by 0o = min(p1, 02), Vm is a chosen constant satisfying vy, > % max <ﬂ ﬁ), and S is a chosen non-negative constant

P1° P2
satisfying a condition to be specified later in equation (57).
The original system consisting of equations (7), (1b)-(1d), (9)-(13) is equivalent to the reformulated system consisting of
equations (20)-(24), together with the boundary conditions (9)-(11), and the initial conditions (12)-(13), supplemented by
an extra initial condition for R(t), i.e.

RO = ( [ [Pl + Fom e+ o) (25)

Q

In the reformulated system, the dynamic variables are u(x,t), P(x,t), ¢ (x,t) and R(t). Note that E(t) is computed by equa-
tion (14). We next focus on this reformulated equivalent system of equations, and present an unconditionally energy-stable
scheme for approximating this system.

2.3. Formulation of numerical scheme

Let n > 0 denote the time step index, and (-)" denote the variable (-) at time step n. Let J (J =1 or 2) denote the
temporal order of accuracy of the scheme. We set

¢° =i, u=upn, R°=R(0), (26)
where R(0) is given in equation (25). Define a scalar-valued variable £"+1
R+l

Given (¢, u, P,R) at time step n and previous time steps, we compute (¢"*1 u™1 pr+l Ri+1y through the following
scheme

%-n-&-l — (27)

n+1_ﬁ

ﬁn+l (VOu ) + gTH*l 15ﬂ+1N —
At
An+1 (28)
_p VP 4y, gt V2l ontly gt 4 et

0o

V. un+1 — O, (29)

1 2
Yool — ¢ ET (L vt i) =yt g gt (30)

At
= _av2entl 4 S(¢n+1 _ ¢*,n+1) 4 M (g, (31)
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1_p 1_ 4
opnt1 Y0t TR VOR " / sn+1 you"+ —u) Lyt _/Cn+1 (u"+1 -Vq§n+l)

Q

€n+1/Cn+1( weH Lyt n+1 §n+1/h(¢* n+1))’0¢ i $n+1/pn+1N u

Q (32)

1
+/ {Vﬂn+1 D@ + (% _ ])Vpn+1 + (- vmﬁ”H)Vzu”H} !
0

Q

1 1 ~
_ 5/(n.un+1)/§n+1|un+1|2 _ 5/(,1_ ]n+l)|u”+1|2,

a0 a0
u" 1 =w™! on 9Q, (33)
1 1

n-Ve"t' =dit! on 9Q (34)
n-V(V2¢") =d!*! on 3. (35)

The symbols in the above equations are defined as follows. In equations (28) and (32)

n+1
n

N=Q+ ( vm)V X V x w1 (36)

ph+1

and

Q= Q(([b"“,u*'”*l) =yt oyt jn+1 RV V/l”“ 'D(u*,nJr])

on+1 on+1
. p p (37)
+ (__ _ _)VP*,n+1.
pn+1 00
In equation (27), E™! is given by (see equation (14))
1
En+1 :f |:5'6n+l|u1‘l+1|2 4 F(¢n+1)j| dQ + Co. (38)

In these equations, ¢"*! is a J-order approximation of ¢ to be specified later in equation (66), and 5"t!, i"*! and jr
are given by

S = p(@™Yy, At = (gt jn+1 —J@™): (39)

see equations (4) (5). Let x denote a generic variable. Then in equations (28)-(32), ﬁ(yo)(”le — X) represents an approxi-

mation of 2% ‘ with the J-th order backward differentiation formula (BDF), with 3 and X given by
N X, Jj=1, 1, Jj=1,
= {ZX Lol J=2; V"‘[z/z, J=2. (40)
x*"*1 denotes a J-th order explicit approximation of x"*! given by
*,n+1 _ Xnv ] =1,
X _{ZXH_Xn_l’ ]=2 (41)

It should be noted that the different approximations for various terms in equations (32), (28) and (30) are crucial. They
are to ensure a discrete energy stability property (see Section 2.4), and simultaneously allow an implementation in which
the resultant linear algebraic systems involve only constant and time-independent coefficient matrices after discretization.

2.4. Discrete energy law

Our numerical scheme satisfies a discrete energy stability property, and thus can be potentially favorable for long-time
simulations. More specifically, the following discrete energy law holds:

Theorem 2.1. In the absence of the external force f™*! and source term g"+!, and with zero boundary conditions w™t! =0, dg“ =
dg“ =0, the scheme consisting of equations (27)-(35) satisfies the following property:
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1 _
STH-] _ gn — _DTH-l _ ifﬂn+] ”D(un—H)”Z _/‘m|vcﬂ+1|2,
Q Q
where E" is a discrete energy

o |2 VST IP 4 R IR,
8" = 9" 12 + g (V9" 12 + 19912 + 7 (IR"2 + |R="2),
and D"t is the discrete dissipation

ol {%Hzp"“ — Q"I + A IV — VN 4 LR — R, J=1,

’

J=1
I=2,

S A 1
E”(anrl _ ¢*,n+l ”Z + m”V¢n+1 _ V¢*,ﬂ+1 ”2 + m|Rn+l _ R*,n+1 |2’ J —2.

(43)

(44)

. . . 1 . 1 . Y q)”‘H 7q§ . 2 .
Proof. Multiplying equation (28) by u™*!, equation (30) by C**!, and equation (31) by — =%, and taking the L* inner

product lead to

/pn-&-l (VUuH-H — ﬁ) gt / ,5“+1N- ut
At
Q Q

sn+1
=/[_ ot v prt +vm,6"+1V2u”+1} Lyl +/Cn+1 (un—H .Vd‘)n-H)_i_/fn-&-] Lyl
Lo
Q

Q
Yo" — ¢ n+1 n+1 n+1 (4,041 *,n+1 n+192 ~n+1 n+1-n+1
I g [ e et vt ) =m [ ¢V 4 [ ghen,
Q

Q Q

At At
Q

)= [
Q
S n+1 A R S .
¢ — Yoo o+l = /v2¢n+1 (o™ — $) — E/(¢n+l — ) (o™ — §)
Q

Q0

n+1_q§

_entl #,141 Yo
& /h(¢ )7At .

Summing up the three equations in (45) and the equation (32), we arrive at

iRnJrl (yORn+1 _ &) _ _/Vpn+l Sutt / V. [ﬂn+l,D(un+1)] R +m/C”HV26”H

At
Q Q Q

A ~ S A

+ E V2¢n+1 (y0¢n+] _¢) _ E /(¢ﬂ+1 _ ¢*,n+l)(y0¢n+1 _¢) + / frl+] . un+] +/gn+1cn+l
Q Q Q Q

1 _ 2 1 ~n+1 2
_i/(n.un+l)pn+1|un+l| _5/('1 n )|un+1| .

Q2 Q2

By equation (29), integration by part and the divergence theorem, we obtain that
/Vpn-H L / P”‘H(n-u"H).
Q aQ
Using equation (31) and the boundary conditions (34) and (35), we have
n- VCnJrl — _)Ldgﬂ + S(d2+l _ dz,nJrl) + 5n+1h/(¢*,n+1)dz,n+l on 9%.
With the help of equation (47) and the relations
1
V. [—n+1D utl ] Tuan :f Al D@ty gt = _/ A" D@t 2’
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equation (46) can be transformed into
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where we have used the boundary conditions (33)-(35) and (47)-(48).
Note the following relations for a generic variable y,
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Combining the above relations with equation (50) and letting f"*' =0, g"*!' =0 in Q, and w™*1 =0, di*! =d}*' =0 on
0%, all the boundary terms vanish, and equation (50) is transformed into
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The energy stability result in Theorem 2.1 can be obtained directly from the above equations (51)-(52) by defining the
discrete energy and dissipation in equations (43)-(44). O

Remark 1. Note that in equation (31) an extra zero term, S(¢"t! — 2¢" + ¢~ 1), has been included in the scheme, with S
being a constant (non-negative) satisfying a condition given later in (57). Similar terms can be found in other works from
the literature (see e.g. [40,41], among others) for approximating the Cahn-Hilliard or Allen-Cahn equations, in which such
a term is often referred to as a stabilization term because it is crucial to the proof of stability of those schemes. From the
discussions of this subsection it is evident that this term is not essential to the stability of the current scheme. Theorem 2.1
still holds even when one sets S = 0. The goal for the S term in the current work is to simplify the implementation of
the scheme herein. Inclusion of this term will allow the fourth-order Cahn-Hilliard equation to be reformulated into two
de-coupled Helmholtz-type equations, making its solution simpler. This point will become clearer when discussing the
solution algorithm in the subsequent subsection.
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2.5. Efficient solution algorithm

We next consider how to implement the algorithm represented by the equations (27)-(35). Although E™t1, R**1 as well
as €™ are implicit and E"*! involves the integral of the unknown field functions u"*! and ¢"*! over the domain, the
scheme can be implemented in an efficient way.

Combining equations (31) and (30) leads to
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This equation can be re-written as
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Barring the unknown scalar-valued variable £"*1, equation (54) is a fourth-order equation about ¢"*!, which can be
transformed into two decoupled Helmholtz-type equations (see e.g. [49,15,47]). Basically, by adding/subtracting a term
aV2¢™1 (o denoting a constant to be determined) on the left hand side (LHS), we can transform equation (54) into
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By requiring that o = —W, we obtain
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The chosen constant S must satisfy the above condition. Therefore, equation (56) can be written equivalently as
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where y¥"*1 is an auxiliary variable defined by equation (58b). Note that if the scalar variable €™ is given, equations (58a)
and (58b) are decoupled. One can solve equation (58a) for "1, and then solve equatio