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We focus on the numerical approximation of the Cahn–Hilliard type equations, and present 
a family of second-order unconditionally energy-stable schemes. By reformulating the 
equation into an equivalent system employing a scalar auxiliary variable, we approximate 
the system at the time step (n + θ) (n denoting the time step index and θ is a real-valued 
parameter), and devise a family of corresponding approximations that are second-order 
accurate and unconditionally energy stable. This family of approximations contains the 
often-used Crank–Nicolson scheme and the second-order backward differentiation formula 
as particular cases. We further develop two efficient solution algorithms for the resultant 
discrete system of equations to overcome the difficulty caused by the unknown scalar 
auxiliary variable. Within each time step, our method requires only the solution of either 
four de-coupled individual Helmholtz type equations, or two separate individual systems 
with each system consisting of two coupled Helmholtz type equations. All the resultant 
linear algebraic systems involve only constant and time-independent coefficient matrices 
that can be pre-computed. A number of numerical examples are presented to demonstrate 
the performance of the family of schemes developed herein. We note that this family of 
second-order approximations can be readily applied to devise energy-stable schemes for 
other types of gradient flows when combined with the auxiliary variable approaches.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Diffuse interface or phase field approach [2,30,29,42,36,31] has become one of the main techniques for modeling and 
simulating two-phase and multiphase problems involving fluid interfaces and the effect of surface tensions. Cahn–Hilliard 
type equations [6] are one of the commonly encountered equations in such models for describing the evolution of the phase 
field functions. Indeed, with an appropriate free energy density form, the mass balance equations for the individual fluid 
components in a multicomponent mixture will reduce to the Cahn–Hilliard type equations [23,22,1,8,11]. Devising efficient 
numerical schemes for Cahn–Hilliard equations therefore has crucial implications to two-phase and multiphase problems, 
and this has attracted a sustained interest from the community [37,40,5].

Nonlinearity and high spatial order (fourth order) are the main issues encountered when numerically solving the Cahn–
Hilliard equations. The interfacial thickness scale parameter, when small, also exacts high mesh resolutions in numerical 
simulations. The energy stability property of a numerical scheme, when the computational cost is manageable, is a desir-
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able feature for solving the Cahn–Hilliard equations. While other types (e.g. conditionally stable, semi-implicit) of schemes 
for the Cahn–Hilliard equation also exist in the literature (see e.g. [3,42,12,9,21,10], among others), in what follows we will 
focus on the energy-stable schemes in the review of literature.

The nonlinearity of Cahn–Hilliard equation is induced by the potential free energy density function. Ensuring discrete 
energy stability in a numerical scheme hinges on the treatment of the nonlinear term. Based on the strategies for treating 
the nonlinear term, existing energy stable schemes for the Cahn–Hilliard equations can be broadly classified into two cate-
gories: nonlinear schemes and linear schemes. Nonlinear schemes (see e.g. [14,19,18,27,32,17,39,24]) entail the solution of 
a system of nonlinear algebraic equations within a time step after discretization. Convex splitting of the potential energy 
term and its variants are a popular approach to treat the nonlinear term in this category [15,16]. Other treatments include 
the midpoint approximation [14,28], specially designed quadrature formulas [20], and Taylor expansion approximations [27]
of the potential term, among others. On the other hand, linear schemes (see e.g. [34,21,41,33]) involve only the solution 
of a system of linear algebraic equations after discretization, thanks to certain special treatment of the nonlinear term or 
the introduction of certain auxiliary variables. Adding a stabilization term that is equivalent to zero while using a poten-
tial energy with bounded second derivative and treating the nonlinear term explicitly [34,21] is a widely used technique 
in this category. Using a Lagrange multiplier [4,21] is another technique to derive unconditionally energy-stable schemes 
for the Cahn–Hilliard equation. The invariant energy quadratization (IEQ) [41] is a general technique that generalizes the 
Lagrange multiplier approach and can be applied to a large class of free energy forms. IEQ introduces an auxiliary field 
function related to the square root of the potential free energy density function together with a dynamic equation for this 
auxiliary variable, and allows one to devise schemes to ensure the energy stability relatively easily. The IEQ method gives 
rise to a system of linear algebraic equations involving time-dependent coefficient matrices after discretization. A further 
development of the auxiliary variable strategy is introduced in [33] very recently, in which an auxiliary variable, which is a 
scalar value rather than a field function, related to the square root of the total potential energy integral has been employed. 
The scalar auxiliary variable (SAV) method retains the main advantage of IEQ, and further can lead to a constant coefficient 
matrix for the resultant linear algebraic system of equations after discretization.

In the current work we focus on the numerical approximation of the Cahn–Hilliard equation, reformulated using the 
scalar auxiliary variable approach. We present a family of second-order accurate linear schemes for the system, and show 
that this family of schemes is unconditionally energy-stable. This family of approximations contains the Crank–Nicolson 
scheme (or trapezoidal rule) and the second-order backward differentiation formula (BDF2) as particular cases. The key idea 
of the schemes lies in enforcing the system of equations at the time step (n + θ), where n is the time step index and θ is 
a real-valued parameter ( 1

2 � θ � 3
2 ), and then devising appropriate corresponding approximations at (n + θ) with second-

order accuracy that guarantee the energy stability of the system. We further present two efficient solution algorithms for 
the discretized system of equations to overcome the numerical difficulty induced by the unknown scalar auxiliary variable. 
Within each time step, the overall method requires the computation of four de-coupled individual Helmholtz type equa-
tions with one solution algorithm, and the computation of two separate individual systems with each consisting of two 
coupled Helmholtz type equations for the other solution procedure. All equations with these solution algorithms involve 
only constant coefficient matrices that can be pre-computed.

The new aspects of this paper include the following: (i) the family of second-order accurate energy-stable schemes, and 
(ii) the efficient solution algorithms for the discrete system resulting from the Cahn–Hilliard type equations.

While we only consider the numerical approximation of the Cahn–Hilliard equation in this work, we would like to point 
out that the family of second-order energy-stable approximations herein are general, and are readily applicable to other 
types of equations resulting from gradient flows for designing energy-stable schemes when combined with the IEQ or SAV 
strategy.

The rest of this paper is structured as follows. In Section 2 we discuss the SAV reformulation of the Cahn–Hilliard 
equation, and present the family of second-order energy-stable approximations of the reformulated system of equations. 
We will also present two solution algorithms for the discretized equations and the implementation of these algorithms 
based on the C0-continuous spectral element method for spatial discretizations. In Section 3 we test the performance of 
the algorithms using several representative numerical examples, and demonstrate numerically the stability of computations 
with large time step sizes. Section 4 concludes the presentation with some closing remarks. The Appendices A and B provide 
proofs for the energy stability and another property of the presented family of schemes.

2. A family of second-order energy-stable schemes

2.1. Cahn–Hilliard equation, boundary conditions, and transformed system

Consider a domain � in two or three dimensions, whose boundary is denoted by ∂�, and the Cahn–Hilliard equation [6]
with a source term within this domain:

∂φ

∂t
= m∇2

[
−λ∇2φ + h(φ)

]
+ g(x, t) (1)

where φ(x, t) (φ ∈ [−1, 1]) is the phase field function, m > 0 is the mobility and assumed to be a constant in this work, and 
x and t denote the spatial coordinates and time. g(x, t) is a prescribed source term for the purpose of numerical testing (for 
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convergence rates) only, and will be set to g(x, t) = 0 in actual simulations. λ is the mixing energy density coefficient and 
is related to other physical parameters, e.g. for two-phase flow problems it is given by (see [42]) λ = 3

2
√

2
ση, where σ is 

the surface tension and η is the characteristic interfacial thickness. The nonlinear term h(φ) is given by h(φ) = dF (φ)
dφ

, where 
F (φ) is the potential free energy density function of the system. A double-well potential is often used for F (φ), in the form 
F (φ) = λ

4η2 (φ2 − 1)2, and this form will be used for the numerical tests in Section 3.

We consider the wall-type boundary with a neutral wettability (i.e. 900 contact angle) for ∂�, characterized by the 
following boundary conditions [25,43,7]

n · ∇
[
−λ∇2φ + h(φ)

]
= ga(x, t), on ∂� (2a)

n · ∇φ = gb(x, t), on ∂� (2b)

where n is the outward-pointing unit vector normal to ∂�. ga(x, t) and gb(x, t) are prescribed source terms for the purpose 
of numerical testing only, and will be set to ga = 0 and gb = 0 in actual simulations.

The system consisting of the equation (1) and the boundary conditions (2a) and (2b), with g = 0, ga = 0 and gb = 0, 
satisfies the following energy balance equation:

∂

∂t

∫
�

(
λ

2
∇φ · ∇φ + F (φ)

)
= −m

∫
�

∣∣∣∇ [−λ∇2φ + h(φ)
]∣∣∣2 . (3)

This system is to be supplemented by the following initial condition

φ(x,0) = φin(x) (4)

where φin(x) denotes the initial phase field distribution.
We next reformulate this system of equations and boundary conditions into a modified equivalent system, by introducing 

an auxiliary variable associated with the total potential energy in a way similar to [33]. Define the total potential free energy 
E(t) by

E(t) = E[φ] = C0 +
∫
�

F (φ) (5)

where C0 is a chosen constant such that E(t) > 0 for all 0 � t � T (T denoting the period of time to find the solution for). 
For all the numerical experiments presented in the current work we employ C0 = 0 in the simulations. It is important to 
note that E[φ] as defined above is a scalar value, not a field function. We define an auxiliary variable r(t) by

r(t) =√E(t). (6)

Then r(t) satisfies the dynamic equation

dr

dt
= 1

2
√

E[φ]
∫
�

h(φ)
∂φ

∂t
. (7)

We re-write the Cahn–Hilliard equation (1) into an equivalent form

∂φ

∂t
= m∇2H+ g, (8a)

H = −λ∇2φ + r(t)√
E[φ]h(φ), (8b)

where the definition (6) has been used. The boundary conditions (2a) is also re-written into an equivalent form

n · ∇
[
−λ∇2φ + r(t)√

E[φ]h(φ)

]
= ga, on ∂�, (9a)

The system consisting of equations (8a)–(8b) and (7), the boundary conditions (9a) and (2b), and the initial conditions 
of (4) and the following

r(0) =√E[φin] =
⎡
⎣∫

�

F (φin) + C0

⎤
⎦

1/2

, (10)

is equivalent to the original system consisting of equations (1), (2a)–(2b) and (4).
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2.2. A family of second-order energy-stable approximations

We focus on the numerical approximation of the reformulated equivalent system consisting of equations (8a)–(8b) and 
(7), the boundary conditions (9a) and (2b), and the initial conditions (4) and (10). We present a family of second-order 
energy-stable schemes for this system that allows for very efficient implementations.

Let n � 0 denote the time step index, and (·)n represent the variable (·) at time step n, corresponding to the time 
t = n	t , where 	t is the time step size.

Let θ ( 1
2 � θ � 3

2 ) denote a real-valued parameter. We approximate the variables at time step (n + θ) (corresponding to 
time (n + θ)	t) as follows with a scheme of second-order accuracy in time (χ denoting a generic variable below),

∂χ

∂t

∣∣∣∣
n+θ

= 1

	t

[(
θ + 1

2

)
χn+1 − 2θχn +

(
θ − 1

2

)
χn−1

]
, (11a)

χn+θ =
[
θ

(
5

2
− θ

)
− 1

2

]
χn+1 + 2(1 − θ)2χn +

(
θ − 1

2

)
(1 − θ)χn−1, (11b)

χ̄n+θ = (1 + θ)χn − θχn−1. (11c)

In the above χn+θ and χ̄n+θ are respectively an implicit and an explicit approximation of χ at time step (n + θ). The 
2nd-order temporal accuracy of these approximations can be verified by Taylor expansions in a straightforward fashion. The 
approximation (11a) is not new, and it has been studied in previous works (see e.g. [38]). The approximation (11b) seems 
to have not been explored before to the best of our knowledge. This approximation is critical to the energy stability of the 
current family of schemes, due to the following property:

χn+θ

[(
θ + 1

2

)
χn+1 − 2θχn +

(
θ − 1

2

)
χn−1

]

= 1

2
θ

(
θ − 1

2

)
(3 − 2θ)

∣∣χn+1 − 2χn + χn−1
∣∣2 + 1

2

(
3

2
− θ

)(∣∣χn+1
∣∣2 − ∣∣χn

∣∣2)

+ 1

2

(
θ − 1

2

)(∣∣2χn+1 − χn
∣∣2 − ∣∣2χn − χn−1

∣∣2) .

(12)

This property can be verified by elementary manipulations. The family of approximations given by (11a)–(11c) contains the 
often-used 2nd-order backward differentiation formula (or BDF2, corresponding to θ = 1) and the Crank–Nicolson approxi-
mation (corresponding to θ = 1/2).

Given (φn, rn), we compute (φn+1, rn+1) by enforcing the system consisting of (7)–(9a) and (2b) at time step (n + θ) and 
using the above approximations (11a)–(11c), as follows,(

θ + 1
2

)
φn+1 − 2θφn + (θ − 1

2

)
φn−1

	t
= m∇2Hn+θ + gn+θ , (13a)

Hn+θ = −λ∇2φn+θ + S(φn+1 − 2φn + φn−1) + rn+θ√
E[φ̄n+θ ]

h(φ̄n+θ ), (13b)

(
θ + 1

2

)
rn+1 − 2θrn + (θ − 1

2

)
rn−1

	t
=
∫
�

h(φ̄n+θ )

2
√

E[φ̄n+θ ]

(
θ + 1

2

)
φn+1 − 2θφn + (θ − 1

2

)
φn−1

	t
, (13c)

n · ∇Hn+θ = gn+θ
a , on ∂�, (13d)

n · ∇φn+θ = gn+θ
b , on ∂�. (13e)

In the above discrete equation (13b), note that we have included an extra term, S(φn+1 − 2φn + φn−1), where S � 0 is a 
chosen constant, which, depending on the solution algorithm in the implementation, may need to satisfy a condition to 
be specified later in Section 2.3.1. Because φn+1 − 2φn + φn−1 = O(	t)2, this extra term does not spoil the second-order 
accuracy of the overall scheme. In the above equations the variables φn+θ , φ̄n+θ , and rn+θ are given by the equations (11b)
and (11c). gn+θ , gn+θ

a and gn+θ
b are the prescribed functions g(x, t), ga(x, t) and gb(x, t) evaluated at time t = (n + θ)	t , 

respectively.
The above scheme has the following property:

Theorem 2.1. The scheme consisting of equations (13a)–(13e), in the absence of the source terms (i.e. g = 0, ga = 0 and gb = 0), 
satisfies the discrete energy balance equation for 1 � θ � 3 and S � 0,
2 2
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W n+1 − W n + θ

(
θ − 1

2

)
(3 − 2θ)

(
|rn+1 − 2rn + rn−1|2

+
∫
�

λ

2

∣∣∇φn+1 − 2∇φn + ∇φn−1
∣∣2
⎞
⎠+ θ S

∫
�

∣∣φn+1 − 2φn + φn−1
∣∣2

= −m	t

∫
�

∣∣∇Hn+θ
∣∣2

(14)

where

W n =
(

3

2
− θ

)⎛⎝|rn|2 +
∫
�

λ

2

∣∣∇φn
∣∣2
⎞
⎠+

(
θ − 1

2

)⎛⎝∣∣2rn − rn−1
∣∣2 +

∫
�

λ

2

∣∣2∇φn − ∇φn−1
∣∣2
⎞
⎠

+ S

2

∫
�

∣∣φn − φn−1
∣∣2 .

(15)

A proof of this theorem is provided in the Appendix A.

Remark 1. Based on this theorem the scheme given by equations (13a)–(13e) constitutes a family of unconditionally stable 
algorithms for 1

2 � θ � 3
2 . Note that this energy stability property holds regardless of the specific form of the potential free 

energy density F (φ), as long as it is such that an appropriate constant C0 in (5) can be chosen to ensure E(t) > 0 for 
0 � t � T .

Remark 2. The first term on the right hand side of (12) determines the dissipativeness of the approximations (11a)–(11b). 
The algorithm with θ = 2

3 +
√

7
6 ≈ 1.11 is the most dissipative among this family of approximations, while both θ = 1

2
(Crank–Nicolson) and θ = 3

2 are non-dissipative (energy-conserving). In terms of numerical dissipation, BDF2 (θ = 1) is 
close to, but not as dissipative as, the scheme with θ = 2

3 +
√

7
6 .

Remark 3. The incorporation of the extra zero term, S(φn+1 − 2φn + φn−1), is not necessary for the proof of unconditional 
energy stability of the current family of schemes; see equations (14) and (15). But inclusion of such a term enables a very 
efficient solution procedure through a reformulation of the fourth-order equation into two de-coupled 2nd-order equations; 
see Section 2.3.1 below. Similar terms have been employed in previous works for approximating the phase field Allen–Cahn 
or Cahn–Hilliard equations (see e.g. [34,35], among others), where the magnitude of the second derivative of the double-well 
potential energy is assumed to be bounded from above and this extra term involves a coefficient proportional to this upper 
bound.

Remark 4. While we consider only the Cahn–Hilliard type equations in this work, the application of the family of 2nd-order 
approximations (11a)–(11c) is not limited to this class of equations. They can be readily applied to other types of equations 
describing gradient flows. For example, by combining these approximations and the auxiliary variable approaches of [41,33], 
one can derive a family of energy-stable schemes for a large class of gradient flows.

2.3. Efficient solution algorithm

The scheme represented by equations (13a)–(13e) involves integrals of the unknown field variable φn+1 over the domain 
�. Despite this apparent complication, the formulation allows for simple and very efficient solution algorithms. We present 
two such algorithms below.

2.3.1. De-coupled algorithm
To facilitate subsequent discussions and make the representation more compact, we first introduce several notations (χ

denoting a generic variable):

γ0 = γ0(θ) = θ + 1

2
, ω0 = ω0(θ) = θ

(
5

2
− θ

)
− 1

2
, (16a)

χ̂ = 2θχn −
(

θ − 1

2

)
χn−1, (16b)
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χ̃ = 2(1 − θ)2χn +
(

θ − 1

2

)
(1 − θ)χn−1. (16c)

Then the approximations in (11a) and (11b) can be written as

∂χ

∂t

∣∣∣∣
n+θ

= γ0χ
n+1 − χ̂

	t
, (17a)

χn+θ = ω0χ
n+1 + χ̃ . (17b)

Combining equations (13a) and (13b) leads to

γ0φ
n+1 − φ̂

	t
= m∇2

[
−λ∇2

(
ω0φ

n+1 + φ̃
)

+ S(φn+1 − φ̄n+1) + (ω0rn+1 + r̃
) h(φ̄n+θ )√

E[φ̄n+θ ]

]
+ gn+θ (18)

where γ0 and ω0 are given by (16a), φ̂ is defined by (16b), φ̃ and r̃ are defined by (16c), φ̄n+1 = 2φn − φn−1 based on 
equation (11c), and we have used equations (17a) and (17b). It is important to note that φn+1, φ̂, φ̃, φ̄n+θ , φ̄n+1 are field 
functions, while rn+1, r̃ and E[φ̄n+θ ] are scalar-valued variables. Define

bn = h(φ̄n+θ )√
E[φ̄n+θ ]

, zn+1 =
∫
�

bnφn+1. (19)

Note that bn is a field function, and zn+1 is a scalar-valued variable. Equation (18) is then transformed into

∇2(∇2φn+1) − S

λω0
∇2φn+1 + γ0

λω0m	t
φn+1

= 1

λω0m

[
gn+θ + φ̂

	t

]
− S

λω0
∇2φ̄n+1 − 1

ω0
∇2(∇2φ̃) + ω0rn+1 + r̃

λω0
∇2bn. (20)

Equation (13c) can be written as γ0rn+1 − r̂ = 1
2

∫
�

bn(γ0φ
n+1 − φ̂), from which we get

rn+1 = 1

γ0

⎛
⎝r̂ − 1

2

∫
�

bnφ̂

⎞
⎠+ zn+1

2
(21)

where zn+1 is defined in (19) and involves the unknown field function φn+1. In light of this expression, equation (20) is 
transformed into

∇2(∇2φn+1) − S

λω0
∇2φn+1 + γ0

λω0m	t
φn+1 = Q n + zn+1

2λ
∇2bn, (22)

where

Q n = 1

λω0m

[
gn+θ + φ̂

	t

]
− S

λω0
∇2φ̄n+1 − 1

ω0
∇2(∇2φ̃) +

⎡
⎣ 1

λγ0

⎛
⎝r̂ − 1

2

∫
�

bnφ̂

⎞
⎠+ r̃

λω0

⎤
⎦∇2bn. (23)

Barring the unknown scalar variable zn+1, equation (22) is a fourth-order equation about φn+1. The left-hand-side (LHS) 
of this equation can be reformulated into two de-coupled Helmholtz type equations (see e.g. [42,12,7]). By adding/subtract-
ing a term α∇2φn+1 (α denoting a constant to be determined) on the LHS of (22), we get

∇2
[
∇2φn+1 + αφn+1

]
−
(
α + S

λω0

)⎡⎣∇2φn+1 − γ0

λω0m	t
(
α + S

λω0

)φn+1

⎤
⎦= Q n + zn+1

2λ
∇2bn. (24)

By requiring α = − γ0

λω0m	t
(
α+ S

λω0

) , we can determine the constant α,

α = − S

2λω0

⎡
⎣1 −

√
1 − 4γ0

λω0m	t

(
λω0

S

)2
⎤
⎦ (25)

with the requirement



30 Z. Yang et al. / Journal of Computational Physics 383 (2019) 24–54
S � λω0

√
4γ0

λω0m	t
=
√

4γ0λω0

m	t
. (26)

This is the condition the chosen constant S should satisfy for the solution algorithm in this subsection.
Therefore, equation (24) can be transformed into the following equivalent form

∇2ψn+1 −
(
α + S

λω0

)
ψn+1 = Q n + zn+1

2λ
∇2bn, (27a)

∇2φn+1 + αφn+1 = ψn+1, (27b)

where ψn+1 is an auxiliary field variable defined by (27b). Note that α < 0 and α + S
λω0

> 0 under the condition (26) for 
S . It can also be noted that, if zn+1 is known, then the two equations (27a) and (27b) are not coupled. One can first solve 
(27a) for ψn+1, and then solve (27b) for φn+1. The unknown variable zn+1, which depends on φn+1, causes a complication 
in the solution of this system.

Let us now turn the attention to the boundary conditions. Equation (13e) can be written as

n · ∇φn+1 = 1

ω0

(
gn+θ

b − n · ∇φ̃
)

on ∂�. (28)

Equation (13d) can be re-written as

−λn · ∇
(
ω0∇2φn+1 + ∇2φ̃

)
+ Sn · ∇ (φn+1 − φ̄n+1)+ (ω0rn+1 + r̃

)
n · ∇bn = gn+θ

a , on ∂�. (29)

In light of the equations (27b) and (21), we can transform this equation into

n · ∇ψn+1 =
(
α + S

λω0

)
n · ∇φn+1 − 1

λω0

(
gn+θ

a + Sn · ∇φ̄n+1)− 1

ω0
n · ∇(∇2φ̃)

+
⎡
⎣ r̃

λω0
+ 1

λγ0

⎛
⎝r̂ − 1

2

∫
�

bnφ̂

⎞
⎠+ zn+1

2λ

⎤
⎦n · ∇bn, on ∂�. (30)

Substitute equation (28) into the above equation, and we have the boundary condition about ψn+1:

n · ∇ψn+1 = T n + zn+1

2λ
n · ∇bn, on ∂�, (31)

where

T n =
(
α + S

λω0

)
1

ω0

(
gn+θ

b − n · ∇φ̃
)

− 1

λω0

(
gn+θ

a + Sn · ∇φ̄n+1)

− 1

ω0
n · ∇(∇2φ̃) +

⎡
⎣ r̃

λω0
+ 1

λγ0

⎛
⎝r̂ − 1

2

∫
�

bnφ̂

⎞
⎠
⎤
⎦n · ∇bn. (32)

Therefore, the original system of equations (13a)–(13e) has been reduced to the system consisting of equations 
(27a)–(27b), (31) and (28). After φn+1 is solved from this system, rn+1 can be computed based on equation (21).

To solve the system consisting of equations (27a)–(27b), (31) and (28), it is critical to note that the unknown variable 
zn+1 involved therein is a scalar number, not a field function, and that the equations are linear with respect to φn+1, ψn+1, 
and zn+1. In what follows we present an efficient algorithm for solving this system. We define two sets of field variables, 
(ψn+1

i , φn+1
i ) (i = 1, 2), as follows:

For ψn+1
1 :

∇2ψn+1
1 −

(
α + S

λω0

)
ψn+1

1 = Q n, (33a)

n · ∇ψn+1
1 = T n, on ∂�. (33b)

For φn+1
1 :
∇2φn+1

1 + αφn+1
1 = ψn+1

1 , (34a)

n · ∇φn+1
1 = 1 (

gn+θ
b − n · ∇φ̃

)
, on ∂�. (34b)
ω0
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For ψn+1
2 :

∇2ψn+1
2 −

(
α + S

λω0

)
ψn+1

2 = 1

2λ
∇2bn, (35a)

n · ∇ψn+1
2 = 1

2λ
n · ∇bn, on ∂�. (35b)

For φn+1
2 :

∇2φn+1
2 + αφn+1

2 = ψn+1
2 , (36a)

n · ∇φn+1
2 = 0, on ∂�. (36b)

Then we have the following result.

Theorem 2.2. For given scalar value zn+1 , the following field functions solve the system consisting of equations (27a)–(27b), (31) and 
(28):

ψn+1 = ψn+1
1 + zn+1ψn+1

2 , (37a)

φn+1 = φn+1
1 + zn+1φn+1

2 , (37b)

where (ψn+1
i , φn+1

i ) (i = 1, 2) are given by equations (33a)–(36b).

This theorem can be proved by straightforward substitutions and verifications.
We still need to determine the value for zn+1. Substituting the expression φn+1 in (37b) into the definition for zn+1 in 

(19) results in

zn+1 =
∫
�

bnφn+1
1

1 − ∫
�

bnφn+1
2

. (38)

We have the following result:

Theorem 2.3. The φn+1
2 defined by (35a)–(36b) satisfies the property,∫

�

bnφn+1
2 � 0. (39)

A proof of this theorem is provided in Appendix B. Based on this theorem, zn+1 given by (38) is well defined for any 	t .
Combining the above discussions, we arrive at the de-coupled solution algorithm for solving the system consisting of 

equations (13a)–(13e). Given (φn, rn), we compute (φn+1, ∇2φn+1, rn+1) through the following steps:

(S-1): Solve equations (33a)–(33b) for ψn+1
1 ;

Solve equations (34a)–(34b) for φn+1
1 .

(S-2): Solve equations (35a)–(35b) for ψn+1
2 ;

Solve equations (36a)–(36b) for φn+1
2 .

(S-3): Solve equations (38) for zn+1.
(S-4): Compute ψn+1 and φn+1 based on equations (37a) and (37b), respectively.

Compute ∇2φn+1 as follows in light of equation (27b)

∇2φn+1 = ψn+1 − αφn+1. (40)

(S-5): Compute rn+1 based on equation (21).

Remark 5. This algorithm involves only the solution of four de-coupled Helmholtz type equations within a time step, hence 
the name de-coupled solution algorithm. These Helmholtz equations involve only two distinct coefficient matrices after spa-
tial discretization, and they are both constant coefficient matrices and can be pre-computed. No nonlinear algebraic solver 
is involved in this algorithm. Thanks to these characteristics, the family of second-order energy-stable schemes represented 
by (13a)–(13e) can be implemented in a very efficient fashion.
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Remark 6. This de-coupled solution algorithm requires the chosen constant S to be sufficiently large (satisfying condition 
(26)). The method breaks down if this condition is not satisfied, because in this case the decomposition given by equations 
(33a)–(36b) is no longer valid. This is a restriction of the de-coupled solution algorithm. For a given 	t one can always 
choose a constant S satisfying the condition (26). For a given constant S , if one reduces 	t successively, the de-coupled 
algorithm will no longer work when 	t reaches a small enough value 	tc = 4γ0λω0

mS2 . In this case, one can employ a larger 
constant S in order to perform simulations using the de-coupled solution algorithm for smaller time step sizes. With a range 
of time step size (	t) values one plans to cover in the simulations, it is straightforward to estimate an appropriate constant 
S for these simulations. So this restriction on S is not an issue in practical simulations. Alternatively, one can allow S to 
vary with respect to 	t instead of being a constant in order to use the de-coupled algorithm, e.g. by choosing S as the 
lower bound in condition (26). With this mode of usage, however, note that the temporal convergence rate will not be of 
second order, because S is not a constant. For example, it will be of 3/2-th order if S is always chosen to be the lower 
bound in condition (26). The algorithm presented in the next sub-section (Section 2.3.2) removes this restriction on the 
constant S .

2.3.2. Coupled algorithm
The system (13a)–(13e) can also be solved without the decomposition represented by (27a)–(27b). In this case, Hn+1

and φn+1 are the dynamic variables to solve, and they need to be solved in a coupled fashion. The complication caused by 
the integral of the unknown field function φn+1 over the domain can be dealt with in a way analogous to in the previous 
subsection. The upside is that the constant S can now take any value S � 0. We will refer to this method as the coupled 
algorithm.

More specifically, equation (13a) can be rewritten as

∇2Hn+1 − γ0

mω0	t
φn+1 = − 1

ω0
∇2H̃− 1

mω0

(
φ̂

	t
+ gn+θ

)
, (41)

where H̃ is defined by (16c). In light of equation (21), equation (13b) is transformed into

∇2φn+1 − S

λω0
φn+1 + 1

λ
Hn+1 = − 1

ω0
∇2φ̃ + Rn + zn+1

2λ
bn, (42)

where

Rn = − S

λω0
φ̄ − 1

λω0
H̃ + 1

λγ0

⎛
⎝r̂ − 1

2

∫
�

bnφ̂

⎞
⎠bn + r̃

λω0
bn. (43)

The boundary condition (13d) can be rewritten as

n · ∇Hn+1 = − 1

ω0
n · ∇H̃ + 1

ω0
gn+θ

a . (44)

Analogous to the decoupled algorithm, to solve the system consisting of equations (41)–(42), (21), (44) and (28), we define 
two sets of field variables, (Hn+1

i , φn+1
i ) (i = 1, 2), as follows:

For (Hn+1
1 , φn+1

1 ):

∇2Hn+1
1 − γ0

mω0	t
φn+1

1 = − 1

ω0
∇2H̃− 1

mω0

(
φ̂

	t
+ gn+θ

)
, (45a)

∇2φn+1
1 − S

λω0
φn+1

1 + 1

λ
Hn+1

1 = − 1

ω0
∇2φ̃ + Rn, (45b)

n · ∇Hn+1
1 = 1

ω0

(
gn+θ

a − n · ∇H̃
)

, on ∂�, (45c)

n · ∇φn+1
1 = 1

ω0

(
gn+θ

b − n · ∇φ̃
)

, on ∂�. (45d)

For (Hn+1
2 , φn+1

2 ):

∇2Hn+1
2 − γ0

mω0	t
φn+1

2 = 0, (46a)

∇2φn+1
2 − S

φn+1
2 + 1

Hn+1
2 = 1

bn, (46b)

λω0 λ 2λ
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n · ∇Hn+1
2 = 0, on ∂�, (46c)

n · ∇φn+1
2 = 0, on ∂�. (46d)

Then similar to Theorem 2.2, we have the following result:

Theorem 2.4. For given scalar value zn+1 , the following field functions solve the system consisting of equations (41)–(42), (21), (44)
and (28):

Hn+1 = Hn+1
1 + zn+1Hn+1

2 , (47a)

φn+1 = φn+1
1 + zn+1φn+1

2 , (47b)

where (Hn+1
i , φn+1

i ) (i = 1, 2) are given by equations (45a)–(46d).

It is straightforward to verify that the combination of equations (46a) and (46b) leads to equation (75a) in the Ap-
pendix B, and that the combination of equations (46c) and (46b) gives rise to equation (75b). Therefore, the system 
consisting of equations (46a)–(46d) is equivalent to that consisting of equations (75a), (75b) and (46d). All the results 
from Appendix B apply to the system of (46a)–(46d). We therefore have the following result:

Theorem 2.5. The field function φn+1
2 defined by (46a)–(46d) satisfies the property∫

�

bnφn+1
2 � 0. (48)

In summary, after (Hn+1
i , φn+1

i ) (i = 1, 2) are obtained based on equations (45a)–(46d), zn+1 can be computed by equa-
tion (38). Then Hn+1, φn+1 and rn+1 are given by equations (47a), (47b) and (21), respectively.

Remark 7. With the coupled algorithm the chosen constant S can be any value with S � 0. If the number of degrees of 
freedom in the system is characterized by N , then roughly speaking, with the coupled algorithm one needs to solve two 
separate linear systems within a time step, each involving a 2N × 2N coefficient matrix; see equations (45a)–(46d). On 
the other hand, with the de-coupled algorithm one needs to solve four separate linear systems within a time step, each 
involving an N × N coefficient matrix. The coefficient matrix resulting from the coupled algorithm is non-symmetric, while 
the coefficient matrix from the de-coupled algorithm is symmetric positive definite.

2.4. Implementation with C0 spectral elements

The solution algorithms presented in the previous subsection can be implemented using any commonly-used method for 
the spatial discretization. In the current work we will employ C0 continuous high-order spectral elements [26,44] for spatial 
discretizations. We next consider the implementation of the algorithm using C0 spectral elements. The discussions in this 
subsection without change also apply to implementations using low-order finite elements.

De-coupled algorithm We will first derive the weak forms about (ψn+1
i , φn+1

i ) (i = 1, 2) in the continuous space, and 
then specify the discrete function space for the spectral element approximations. In the process, certain terms involving 
derivatives of order two or higher will be dealt with appropriately so that all quantities involved in the weak formulation 
can be computed directly using C0 elements in the discrete function space.

Let ϕ(x) denote a test function. Taking the L2 inner product between ϕ and the equation (33a) leads to∫
�

∇ψn+1
1 · ∇ϕ +

(
α + S

λω0

)∫
�

ψn+1
1 ϕ = −

∫
�

Q nϕ +
∫
∂�

T nϕ, ∀ϕ, (49)

where we have used integration by part and the equation (33b). By substituting the Q n expression from (23) and T n

expression from (32) into the RHS of the above equation and integration by part, we obtain the weak form about ψn+1
1 ,∫

�

∇ψn+1
1 · ∇ϕ +

(
α + S

λω0

)∫
�

ψn+1
1 ϕ

= − 1

λω0m

∫
�

(
gn+θ + φ̂

	t

)
ϕ − S

λω0

∫
�

∇φ̄n+1 · ∇ϕ − 1

ω0

∫
�

∇
(
∇2φ̃

)
· ∇ϕ − 1

λω0

∫
∂�

gn+θ
a ϕ

+
⎡
⎣ 1

λγ0

⎛
⎝r̂ − 1

2

∫
bnφ̂

⎞
⎠+ r̃

λω0

⎤
⎦∫ ∇bn · ∇ϕ +

(
α + S

λω0

)
1

ω0

∫ (
gn+θ

b − n · ∇φ̃
)
ϕ.

(50)
� � ∂�
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In the above equation note that the term ∇2φ̃ is to be computed by, in light of equation (16c),

∇2φ̃ = 2(1 − θ)2(∇2φn) +
(

θ − 1

2

)
(1 − θ)(∇2φn−1)

= 2(1 − θ)2(ψn − αφn) +
(

θ − 1

2

)
(1 − θ)(ψn−1 − αφn−1)

(51)

where ∇2φn has been computed based on equation (40).
Taking the L2 inner product between ϕ and the equation (34a) and integration by part results in the weak form about 

φn+1
1 : ∫

�

∇φn+1
1 · ∇ϕ − α

∫
�

φn+1
1 ϕ = −

∫
�

ψn+1
1 ϕ + 1

ω0

∫
∂�

(
gn+θ

b − n · ∇φ̃
)
ϕ, ∀ϕ, (52)

where we have use equations (34b).
By taking the L2 inner product between ϕ and the equation (35a) and integration by part, we arrive at the weak form 

about ψn+1
2 ,∫

�

∇ψn+1
2 · ∇ϕ +

(
α + S

λω0

)∫
�

ψn+1
2 ϕ = 1

2λ

∫
�

∇bn · ∇ϕ, ∀ϕ, (53)

where we have used equation (35b). Taking the L2 inner product between ϕ and equation (36a) and integration by part 
leads to the weak form about φn+1

2 ,∫
�

∇φn+1
2 · ∇ϕ − α

∫
�

φn+1
2 ϕ = −

∫
�

ψn+1
2 ϕ, ∀ϕ, (54)

where the equation (36b) has been used.
We discretize the domain � using a mesh of Nel spectral elements. Let K (positive integer) denote the element order, 

which is a measure of the highest polynomial degree in field expansions within an element. Let �h denote the discretized 
domain, and �e

h (1 � e � Nel) denote the element e, �h = ∪Nel
e=1�

e
h . Define function space

Hφ = { v ∈ H1(�h) : v is a polynomial of degree characterized by K on �e
h, for 1 � e � Nel

}
.

Let (·)h denote the discretized version of the variable (·) below. The fully discretized equations for (ψn+1
i , φn+1

i ) (i = 1, 2) 
are the following.

For ψn+1
1h : find ψn+1

1h ∈ Hφ such that

∫
�h

∇ψn+1
1h · ∇ϕh +

(
α + S

λω0

)∫
�h

ψn+1
1h ϕh

= − 1

λω0m

∫
�h

(
gn+θ

h + φ̂h

	t

)
ϕh − S

λω0

∫
�h

∇φ̄n+1
h · ∇ϕh − 1

ω0

∫
�h

∇
(
∇2φ̃h

)
· ∇ϕh

+
⎡
⎢⎣ 1

λγ0

⎛
⎜⎝r̂ − 1

2

∫
�h

bn
hφ̂h

⎞
⎟⎠+ r̃

λω0

⎤
⎥⎦∫

�h

∇bn
h · ∇ϕh

+
(
α + S

λω0

)
1

ω0

∫
∂�h

(
gn+θ

bh − nh · ∇φ̃h

)
ϕh − 1

λω0

∫
∂�h

gn+θ
ah ϕh, ∀ϕh ∈ Hφ,

(55)

where note that ∇2φ̃h is to be computed according to equation (51).

For φn+1
1h : find φn+1

1h ∈ Hφ such that

∫
∇φn+1

1h · ∇ϕh − α

∫
φn+1

1h ϕh = −
∫

ψn+1
1h ϕh + 1

ω0

∫ (
gn+θ

bh − nh · ∇φ̃h

)
ϕh, ∀ϕh ∈ Hφ, (56)
�h �h �h ∂�h
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For ψn+1
2h : find ψn+1

2h ∈ Hφ such that

∫
�h

∇ψn+1
2h · ∇ϕh +

(
α + S

λω0

)∫
�h

ψn+1
2h ϕh = 1

2λ

∫
�h

∇bn
h · ∇ϕh, ∀ϕh ∈ Hφ. (57)

For φn+1
2h : find φn+1

2h ∈ Hφ such that

∫
�h

∇φn+1
2h · ∇ϕh − α

∫
�h

φn+1
2h ϕh = −

∫
�h

ψn+1
2h ϕh, ∀ϕh ∈ Hφ. (58)

The final discretized de-coupled algorithm consists of the following within each time step: (i) Solve equations (55)–(58)
for (ψn+1

i , φn+1
i ) (i = 1, 2), respectively. (ii) Compute zn+1 from equations (38). (iii) Compute ψn+1, φn+1, and rn+1 based 

on equations (37a), (37b), and (21), respectively.

Coupled algorithm Similarly, the weak forms about (Hn+1
i , φn+1

i ) (i = 1, 2) can be obtained by taking the L2 inner product 
between a test function and the equations (45a)–(45b) or (46a)–(46b), respectively, and with integration by part. Corre-
spondingly, the fully discretized equations for (Hn+1

i , φn+1
i ) (i = 1, 2) are given by the following.

For (Hn+1
1h , φn+1

1h ): find Hn+1
1h , φn+1

1h ∈ Hφ such that

∫
�h

∇Hn+1
1h · ∇ϕh + γ0

mω0	t

∫
�h

φn+1
1h ϕh

= 1

ω0m

∫
�h

(
gn+θ

h + φ̂h

	t

)
ϕh − 1

ω0

∫
�h

∇H̃h · ∇ϕh + 1

ω0

∫
∂�h

gn+θ
ah ϕh, ∀ϕh ∈ Hφ, (59)

∫
�h

∇φn+1
1h · ∇ϕh + S

λω0

∫
�h

φn+1
1h ϕh − 1

λ

∫
�h

Hn+1
1h ϕh = − 1

ω0

∫
�h

∇φ̃h · ∇ϕh + S

λω0

∫
�h

φ̄hϕh

+ 1

λω0

∫
�h

H̃hϕh −
⎡
⎢⎣ 1

λγ0

⎛
⎜⎝r̂ − 1

2

∫
�h

bn
hφ̂h

⎞
⎟⎠+ r̃

λω0

⎤
⎥⎦∫

�h

bn
hϕh + 1

ω0

∫
∂�h

gn+θ
bh ϕh, ∀ϕh ∈ Hφ. (60)

For (Hn+1
2h , φn+1

2h ): find Hn+1
2h , φn+1

2h ∈ Hφ such that

∫
�h

∇Hn+1
2h · ∇ϕh + γ0

mω0	t

∫
�h

φn+1
2h ϕh = 0, ∀ϕh ∈ Hφ. (61)

∫
�h

∇φn+1
2h · ∇ϕh + S

λω0

∫
�h

φn+1
2h ϕh − 1

λ

∫
�h

Hn+1
2h ϕh = − 1

2λ

∫
�

bn
hϕh, ∀ϕh ∈ Hφ. (62)

The final discretized coupled algorithm consists of the following within each time step: (i) Solve equations (59)–(62) for 
(Hn+1

i , φn+1
i ) (i = 1, 2), respectively. (ii) Compute zn+1 from equation (38). (iii) Compute Hn+1, φn+1, and rn+1 based on 

equations (47a), (47b), and (21), respectively.

3. Representative numerical examples

In this section we present several example problems in two dimensions to test the performance of the family of energy-
stable schemes developed in the previous section. In the numerical simulations we have non-dimensionalized the physical 
variables, the governing equations, and the boundary conditions. As detailed in previous works (see e.g. [8]), the non-
dimensional form of the governing equations and boundary conditions will remain the same, if the physical variables are 
normalized consistently. Let L denote a length scale, U0 a velocity scale, �0 a density scale, and d (d = 2 or 3) the spatial 
dimension. The normalization constants for consistent non-dimensionalization of different physical variables involved in the 
current work are listed in Table 1.
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Table 1
Normalization constants for consistent non-dimensionalization of physical variables.

Variable Normalization constant Variable Normalization constant

x, η L t, 	t L/U0

φ, φ1, φ2, φin , θ , γ0, ω0, zn+1 1 λ �0U 2
0 L2

m L/(�0U0) h(φ), F (φ), H, S �0U 2
0

g(x) U0/L ga(x) �0U0/L
gb(x) 1/L E[φ], C0 �0U 2

0 Ld

r(t)
√

�0U 2
0 Ld α, ψ1, ψ2, ψ 1/L2

Table 2
Simulation parameter values for convergence tests.

Parameter Value Parameter Value

C0 0 λ 0.01
m 0.01 η 0.1
θ 1/2 ∼ 3/2 	t (varied)

	tmin 1e−4 S
√

4γ0λω0
m	t or

√
4γ0λω0
m	tmin

(decoupled solver)

or 1 (coupled solver)
t0 0.1 t f 0.2 (spatial tests) or 0.3 (temporal tests)
Element order (varied) Elements 2

3.1. Convergence rates

We first use a manufactured analytic solution to the Cahn–Hilliard equation to numerically demonstrate the rates of 
convergence in space and time of the algorithms presented in Section 2.

We consider the domain 0 � x � 2 and −1 � y � 1, and the following solution to the Cahn–Hilliard equation (1) on this 
domain,

φ = cos(πx) cos(π y) sin(t). (63)

The source term g(x, t) in (1) is chosen such that the analytic expression of (63) satisfies (1). The conditions (2a) and 
(2b) are imposed on the domain boundary, and the source terms ga(x, t) and gb(x, t) are chosen such that the analytic 
expression of (63) satisfies (2a) and (2b) on the domain boundary.

We discretize the domain using two equal-sized quadrilateral elements, with the element order and the time step size 
	t varied systematically in the spatial and temporal convergence tests. The algorithms from Section 2 are employed to 
numerically integrate the Cahn–Hilliard equation in time from t = t0 to t = t f . The initial phase field function φin is obtained 
by setting t = t0 in the analytic expression (63). The numerical solution at t = t f is then compared with the analytic solution, 
and various norms of the errors are computed. The values for the simulation parameters are summarized in Table 2 for this 
problem.

To test the spatial convergence rate, we employ a fixed 	t = 0.001, t0 = 0.1 and t f = 0.2, and vary the element order 
systematically between 2 and 20. Then for each element order, the numerical errors of φ in L∞ and L2 norms at t = t f
are obtained. Figs. 1(a) and (c) show these errors as a function of the element order obtained using θ = 3/4 with the 

de-coupled and coupled algorithms, respectively. In this group of tests S =
√

4γ0λω0
m	t for the de-coupled algorithm and S = 1

for the coupled algorithm. We observe an exponential decrease of the numerical errors with increasing element order, and 
a level-off of the error curves beyond element orders 10 and 14, respectively for the decoupled and coupled algorithms, 
due to the saturation of temporal errors. Figs. 1(b) and (d) show the L∞ errors versus the element order obtained using 
the de-coupled and coupled algorithms corresponding several θ values ranging from 1/2 to 3/2. Some differences in the 
saturation error level can be observed with different algorithms. The saturation error is larger for algorithms with larger θ
values.

To test the temporal convergence rate, we employ a fixed element order 20, t0 = 0.1 and t f = 0.3, and vary the time 
step size 	t systematically between 0.1 and 1.953125 × 10−4. For each 	t the numerical errors in different norms are 
computed at t = t f . Figs. 2(a) and (c) show the numerical errors as a function of 	t obtained using the de-coupled and 
coupled algorithms with θ = 3/4, respectively. A second-order convergence rate is observed. In these tests the constant S is 
chosen as S = S0 =

√
4γ0λω0
m	tmin

, where 	tmin = 10−4, with the de-coupled algorithm and S = 1 with the coupled algorithm. 
Figs. 2(b) and (d) show the L∞ errors versus 	t obtained using the two algorithms corresponding to several θ values. 
The errors are generally smaller with a smaller θ value in the algorithm. However, with θ = 1/2 (the lower boundary for 
the θ range, corresponding to the Crank–Nicolson scheme) we observe a weak instability when 	t becomes small for the 
decoupled algorithm, which results in larger errors with the two smallest 	t values in the test. Note that t f is fixed in 
these tests, and a larger number of time steps are computed with a smaller 	t .
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Fig. 1. Spatial convergence tests: (a) L∞ , L2 errors as a function of the element order computed using decoupled algorithm with θ = 0.75. (b) L∞ errors 
as a function of the element order computed using decoupled algorithm corresponding to several θ values. (c) L∞ , L2 errors as a function of the element 
order computed using coupled algorithm with θ = 0.75. (d) L∞ errors as a function of the element order computed using coupled algorithm corresponding 
to several θ values. These results are obtained with a fixed 	t = 0.001.

Fig. 3 demonstrates the effect of the constant S in the algorithms on the numerical errors. Here we plot the L∞ and L2

errors as a function of S/S0, where S0 is given in the previous paragraph, obtained with θ = 3
4 for both the de-coupled and 

coupled algorithms. In this group of tests, we have a fixed t0 = 0.1, t f = 0.2, 	t = 0.001, and the element order 20. The 
two algorithms result in essentially identical error values. The error data are observed to fall onto a straight line, with a 
unit slope. This indicates that as the value for the constant S increases, the numerical errors increase proportionally.

As shown by Fig. 2(b), the scheme with θ = 1
2 (Crank–Nicolson) exhibits a weak instability and is unstable for the 

de-coupled algorithm in long-time simulations. We observe that this instability is also encountered with the other θ values 
in a small neighborhood of θ = 1

2 , approximately θ ∈ [0.5, 0.512]. This is demonstrated by Fig. 4. Fig. 4(a) shows time 
histories of the L∞ error obtained using the de-coupled algorithm with θ = 0.5, 0.51, and 0.75 in a long-time simulation, 
with t0 = 0.1 and t f = 100. Only a window of the first 20 time units is shown here for clarity. The other crucial parameters 

in this group of tests are the time step size 	t = 0.001, element order 20, and the constant S =
√

4γ0λω0
m	t . It is observed 

that the computations with both θ = 0.5 and 0.51 blow up not long into the simulation, while the simulation with θ = 0.75
is long-term stable. We have varied θ systematically and studied the stability of long-time simulations. Fig. 4(b) shows the 
blow-up time, i.e. the time when the computation becomes unstable, as a function of θ . The blow-up time increases as θ
increases from 0.5. Beyond θ = 0.512 the simulation is observed to be long-term stable (With θ = 0.513 e.g. the L∞ error 
is approximately 7.11e−4 at t = 100).

We generally observe a poor performance in the scheme θ = 1
2 (lower boundary of the θ range) in actual simulations. 

While the results produced by the scheme θ = 3
2 (upper boundary of θ ) seem fine with the manufactured solution here, 

numerical tests in later sections reveal that its performance is also poor (but slightly better than θ = 1
2 ) in actual long-time 

simulations. We will further investigate the performance of these two boundary schemes in subsequent sections.
The test results of this section indicate that the family of algorithms presented in Section 2 exhibits a spatial exponential 

convergence rate and a temporal second-order convergence rate.
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Fig. 2. Temporal convergence tests: (a) L∞ , L2 errors as a function of time step size 	t computed using the decoupled algorithm with θ = 0.75. (b) L∞
errors as a function of 	t computed using the decoupled algorithm with various θ values. (c) L∞ , L2 errors as a function of 	t computed using the 
coupled algorithm with θ = 0.75. (d) L∞ errors as a function of 	t computed using the coupled algorithm with various θ values. Results are obtained with 
a fixed element order 20.

Fig. 3. L∞ and L2 errors as a function of S/S0 = (1, 2, 4, 8, 16, 32) with an element order 20 and θ = 0.75 for the de-coupled and coupled algorithms. The 
constant S0 =

√
4γ0λω0
m	tmin

, where 	tmin = 1e−4.
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Fig. 4. (a) Time histories of L∞ error obtained with θ = 0.5, 0.51, 0.75. (b) The blow-up time as a function of θ . Results are obtained using the decoupled 
algorithm with an element order 20, 	t = 0.001, and S =

√
4γ0λω0

m	t .

3.2. Evolution and coalescence of drops

In this section we consider the evolution of a drop and the coalescence of two drops to illustrate the dynamics of the 
Cahn–Hilliard equation and the energy stability of the family of algorithms from Section 2.

Evolution of a drop We first look into the evolution of a material drop under the Cahn–Hilliard dynamics. Consider a 
square domain � = { (x, y) | 0 � x, y � 1 }, and two materials contained in this domain. It is assumed that the evolution of 
the material regions is described by the Cahn–Hilliard equation, and that φ = 1 and −1 correspond to the bulk of the first 
and second materials, respectively. At t = 0, the first material is located in a smaller square region with dimension 2h0 ×2h0
(where h0 = 0.2) around the center of the domain, and the second material fills the rest of the domain. The goal here is to 
study the evolution dynamics of these material regions.

We employ the algorithms from Section 2 to numerically solve the Cahn–Hilliard equation with g(x, t) = 0 in this 
domain. We discretize the domain using 100 quadrilateral elements, with 10 equal-sized elements along both x and y
directions. The boundary conditions (2a) and (2b), with ga = 0 and gb = 0, are imposed on the domain boundaries. The 
initial distribution of the materials is given by

φin(x) = 1

2

[
tanh

x − x0 + h0√
2η

− tanh
x − x0 − h0√

2η

]
·
[

tanh
y − y0 + h0√

2η
− tanh

y − y0 − h0√
2η

]
− 1, (64)

where (x0, y0) = (0.5, 0.5) is the center of the domain. We employ the following (non-dimensional) parameter values for 
this problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η = 0.01, σ = 151.15, C0 = 0, λ = 3

2
√

2
ση, m = 10−6

λ
,

S =
√

4γ0λω0

m	tmin
or

√
4γ0λω0

m	t
(decoupled algorithm); and S = 1 (coupled algorithm),

element order: 12, number of elements: 100,

	tmin = 10−5, 	t varied, θ varied.

(65)

Fig. 5 shows the evolution of the material regions with a temporal sequence of snapshots of the interface (visualized 
by the contour level φ = 0) between the two materials. These results are computed with a time step size 	t = 0.001 and 
the constant S =

√
4γ0λω0

m	t using the decoupled algorithm corresponding to θ = 0.75. The initial square region of the first 
material evolves gradually into a circular region under the Cahn–Hilliard dynamics.

We now look into the performance of the de-coupled algorithm. Fig. 6(a) shows time histories of the potential energy 
E[φ] defined in (5) and the quantity [r(t)]2 computed from equation (7) obtained using the de-coupled algorithm with 
θ = 0.75 and several small time step sizes (	t ranging from 10−5 to 10−3). In this group of tests we have employed a fixed 
S =

√
4γ0λω0
m	tmin

, where 	tmin = 10−5. It can be observed that both E[φ] and [r(t)]2 decrease over time, and they gradually 
level off at a certain level. In particular, we observe that the history curves for E[φ] and [r(t)]2 overlap with one another, 
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Fig. 5. Temporal sequence of snapshots showing the evolution of a drop visualized by the contour level φ = 0. Results are obtained with θ = 0.75 and 
	t = 10−3 using the decoupled algorithm.

Fig. 6. Time histories of E[φ] and [r(t)]2 computed using the decoupled algorithm (θ = 0.75) with (a) S =
√

4γ0λω0
m	tmin

(fixed), (b) S =
√

4γ0λω0
m	t (varied with 

	t), at several small 	t values. Plot (c) compares the time histories obtained with S fixed and varied at 	t = 10−4. In these tests 	tmin = 1e−5.

which indicates that r(t) computed based on equation (7) approximates well the quantity 
√

E[φ] (see equation (6)). Fig. 6(b) 
shows the corresponding time histories for E[φ] and r2(t) obtained using the de-coupled algorithm with the same time step 
size values, but with S taking the lower bound in the condition (26), i.e. S =

√
4γ0λω0

m	t . Since S varies with 	t , theoretically 
the temporal rate of convergence would be of order 3/2 in this group of tests. It is observed that these time history curves 
overlap with one another, suggesting that the computed r2(t) faithfully reflects the evolution of the potential energy of the 
system. We further observe that the simulation results obtained using a fixed S and with S varying with respect to 	t are 
the same, which is demonstrated by a comparison of the E[φ] and r2(t) time histories in Fig. 6(c) obtained with 	t = 10−4

for these two cases. This indicates that with the de-coupled algorithm and small time step sizes, when S is allowed to vary 
with respect to 	t , there is little or no difference in the simulation results when compared with the case with S fixed.
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Fig. 7. Time histories of E[φ], r2(t) and [r(t)]2/E[φ] computed using the decoupled algorithm (θ = 0.75) with (a) S =
√

4γ0λω0
m	tmin

(fixed), and (b) S =
√

4γ0λω0
m	t

(varying with 	t), at several large 	t values.

The energy stable nature of the current algorithms allows the use of large or fairly large time step sizes in the computa-
tions. The behavior of the de-coupled algorithm at several fairly large time step sizes is illustrated in Fig. 7 with θ = 0.75. 
The time steps size ranges from 	t = 0.01 to 	t = 10 in this group of tests. The de-coupled algorithm with S fixed at 

S =
√

4γ0λω0
m	tmin

(	tmin = 1e−2) and with S varied 
(

S =
√

4γ0λω0
m	t

)
with respect to 	t have been tested. Fig. 7(a) compares 

the long-time histories of E[φ] and r2(t) (up to t = 104) obtained with 	t = 0.1 using the de-coupled algorithm with S
fixed and with S varied. With the fixed S , the histories of E[φ] and r2(t) obtained with 	t = 0.1 agree with each other quite 
well (with slight difference), and both are in good agreement with those time histories obtained with smaller 	t values 
(see Fig. 6(a)). On the other hand, with the S varied with respect to 	t , the time histories for E[φ] and r2(t) computed with 
	t = 0.1 exhibit large discrepancies. E[φ] increases initially, and levels off over time around E[φ] ≈ 140. In contrast, r2(t)
decreases sharply initially and then levels off gradually over time around r2(t) ≈ 47. These time histories are quite different, 
both qualitatively and quantitatively, from those obtained using smaller 	t values (see Fig. 6(b)). The discrepancies between 
E[φ] and r2(t) are understandable, because at very large time step sizes we generally cannot expect that the computation 
results will be accurate.

The large difference between r2(t) and E[φ] (with S varied) suggests that in this case r(t) is no longer an accurate 
approximation of 

√
E[φ]. We observe that the ratio r2(t)

E[φ] indeed seems to be a good indicator of the accuracy. It should 
physically take the unit value. When this ratio deviates from the unit value substantially, it suggests that the simulation is 
no longer accurate and the result likely contains significant errors. In Figs. 7(b) and (c) we show long-time histories of the 
ratio r2(t)/E[φ] corresponding to several large 	t values (	t = 0.01 ∼ 10), obtained with S fixed and with S varied with 
respect to 	t in the de-coupled algorithm. We observe that all these simulations are stable, signifying that our algorithms 
can indeed produce stable results at large time step sizes. With S fixed, the ratio r2(t)/E[φ] corresponding to 	t = 0.01 and 
0.1 is very close to 1, while with the even larger time step sizes 	t = 1.0 and 	t = 10 this ratio becomes slightly larger 
than 1 over time. On the other hand, with S varied with 	t , the ratio r2(t)/E[φ] deviates significantly from the unit value 
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Fig. 8. Time histories of E[φ] and [r(t)]2 computed with (a) several small time step sizes, and (b) several large time step sizes. Results are obtained using 
the coupled algorithm with θ = 0.75 and S = 1.

at these time step sizes, except 	t = 0.01. With 	t = 0.1 this ratio attains a value around 0.33, and with 	t = 1.0 and 10
it essentially becomes zero over time. These results suggest that the current schemes are indeed stable at large time step 
sizes. But their accuracy deteriorates with increasing 	t , and with large time step sizes the computed results are generally 
no longer accurate. These results also suggest that the de-coupled algorithm with a fixed S seems to result in more accurate 
simulation results than with S varied with respect to 	t at large time step sizes.

The behavior of the coupled algorithm is illustrated by Fig. 8 with θ = 0.75. Fig. 8(a) shows time histories of E[φ] and 
r2(t) obtained with a range of small time steps sizes (	t = 10−5 ∼ 10−3), and Fig. 8(b) shows long-time histories (up to 
t = 104) of the ratio r2(t)/E[φ] computed with several large time step sizes (	t = 0.01 ∼ 10). These results are computed 
using the coupled algorithm with a constant S = 1. For the range of small 	t , the histories for r2(t) and E[φ] overlap with 
one another, and they are the same as those obtained using the de-coupled algorithm (see Fig. 6(a)). With the range of 
large 	t , the coupled algorithm produces stable results, as is evident from Fig. 8(b). But the accuracy seems to be generally 
worse than that with the de-coupled algorithm. For example, with 	t = 0.01 the coupled algorithm gives rise to a ratio 
r2(t)/E[φ] ≈ 0.2, indicating that the simulation is already inaccurate. In contrast, with the de-coupled algorithm this ratio 
is the unit value (see Fig. 7), indicating that the computed r(t) is an accurate approximation of 

√
E[φ] in those simulations.

Similar behaviors have been observed with the other members of the family of schemes for large 	t values. Fig. 9
demonstrates the performance of the de-coupled and coupled algorithms at large time step sizes using θ = 1.25. Fig. 9(a) is 
a long-time history of E[φ] and r2(t) obtained with 	t = 0.1 using the de-coupled algorithm (with S =

√
4γ0λω0

m	t ) and the 
coupled algorithm (with S = 1). The stability of these simulations is evident. There exists a substantial difference between 
the computed r2(t) and E[φ] values, and this difference is significantly larger with the coupled algorithm. This suggests that 
the simulation results contains significant errors at this 	t and that the errors with the coupled algorithm is much larger. 
Figs. 9(b) and (c) are time histories of the ratio r2(t)/E[φ] obtained with several large time step sizes (	t = 0.01, 0.1, 1, 10) 
using the de-coupled and coupled algorithms with θ = 1.25. We observe similar characteristics in these results to those in 
Figs. 7(b)–(c) and 8(b) corresponding to θ = 0.75. The methods are evidently stable with these large time step sizes.

The value of constant S in the coupled algorithm is observed to have little or no effect on the simulation results. This 
point is demonstrated by Fig. 10, in which the time histories of E[φ] and r2(t) are depicted corresponding to several S
values for two different time step sizes 	t = 10−4 and 	t = 0.01 in the coupled algorithm with θ = 1.25. The difference of 
E[φ] and [r(t)]2 obtained by different S are negligible for both small and large time step sizes. In the following simulations 
we will fix S = 1 for the coupled algorithm.

Among the family of algorithms ( 1
2 � θ � 3

2 ) presented in Section 2, we observe from numerical simulations that the two 
members on the borders, θ = 1

2 and θ = 3
2 , exhibit a performance inferior to the rest of this family. With the manufactured 

solution in Section 3.1 we have already observed that the scheme with θ = 1
2 (and the θ values in a neighborhood of 

1
2 ) encounters difficulties for the de-coupled algorithm in long-time simulations. Numerical tests with the current problem 
reinforce this observation, and additionally reveal difficulties also for the coupled algorithm. Fig. 11 shows the time histories 
of E[φ] corresponding to several small 	t values, ranging from 10−3 to 10−5, computed using the de-coupled and coupled 
algorithms with θ = 1

2 and θ = 3
2 . We observe that for the de-coupled algorithm the computation using θ = 1

2 becomes 
unstable with 	t = 10−3, 10−4 and 10−5, and that using θ = 3

2 it becomes unstable with 	t = 10−3. For the coupled 
algorithm, the computation does not blow up (generating exponentially increasing values). But the computed potential 
energy E[φ] is completely wrong with 	t = 10−4 and 10−3 for both θ = 1

2 and θ = 3
2 . In contrast, with the other members 

of this family of schemes accurate results have been attained with this range of small 	t values; see e.g. Fig. 8(a) for 
θ = 0.75 and Fig. 10(a) for θ = 1.25. There is a possibility that the spatial discretization might be a contributing factor to the 
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Fig. 9. Simulation results obtained with θ = 1.25 and large 	t: (a) Time histories of E[φ] and r2(t) computed with 	t = 0.1. Time histories of [r(t)]2/E[φ]
computed using the de-coupled algorithm (b) and the coupled algorithm (c) with several large time step sizes.

Fig. 10. Time histories of E[φ] and [r(t)]2 computed using the coupled algorithm with θ = 1.25 for several S values: (a) 	t = 1e−4, (b) 	t = 1e−2.
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Fig. 11. Time histories of E[φ] computed using the decoupled and coupled algorithms with (a) θ = 0.5 and (b) θ = 1.5, and various 	t values.

poor performance of θ = 1
2 and 3

2 . Note that the Theorem 2.1 ensures the energy stability of the semi-discretized algorithm 
(discrete in time, continuous in space) given by (13a)–(13e) for θ = 1

2 and θ = 3
2 . It is possible that the fully discretized 

algorithm (in both space and time) may not preserve this energy stability, which may play a role in the instability we have 
observed with the algorithms θ = 1

2 and θ = 3
2 .

Coalescence of two drops We next consider the coalescence of two material drops governed by the Cahn–Hilliard equation. 
The computational domain and the setting follow those for the single-drop case discussed above. The difference lies in the 
initial distribution of the materials. Here we assume that at t = 0 the first material occupies two circular regions that are 
right next to each other and the second material fills the rest of the domain. The two regions of the first material then 
coalesce with each other to form a single drop under the Cahn–Hilliard dynamics. The goal is to illustrate this process using 
the current algorithms.

More specifically, we employ the following initial distribution for the materials

φin(x) = 1 − tanh
|x − x0| − R0√

2η
− tanh

|x − x1| − R0√
2η

, (66)

where x0 = (x0, y0) = (0.3, 0.5) and x1 = (x1, y1) = (0.7, 0.5) are the centers of the circular regions for the first material, 
and R0 = 0.19 is the radius of these circles. In the Cahn–Hilliard equation (1) we set g = 0. The boundary conditions (2a)
and (2b) with ga = 0 and gb = 0 are imposed on the domain boundaries. The other simulation parameters follow those 
given in (65).

The process of coalescence of the two drops is demonstrated in Fig. 12 with a temporal sequence of snapshots of the 
interfaces between the materials (visualized by the contour level φ = 0). These results are computed using the de-coupled 
algorithm with θ = 0.52 and a time step size 	t = 10−3. Fig. 13 shows the time histories of E[φ] and [r(t)]2 computed 
using both the de-coupled and coupled algorithms corresponding to θ = 0.52 and θ = 1.48. The general characteristics for 
these history signals are similar to those for the case with a single drop. Both E[φ] and [r(t)]2 are observed to decrease 
over time, and their history curves essentially overlap with each other.

3.3. Spinodal decomposition

In this section we consider the spinodal decomposition of a homogeneous mixture into two coexisting phases governed 
by the Cahn–Hilliard equation as another test of the algorithms developed herein.

Consider the domain � = { (x, y) | 0 � x, y � 1 }, and a homogeneous mixture of two materials with a random initial 
distribution (see Fig. 14(a)). The evolution of the materials is assumed be described by the Cahn–Hilliard equation (1) with 
g(x, t) = 0, and the goal is to simulate this evolution process.

We simulate this problem using the algorithms from Section 2. The domain is discretized using 100 quadrilateral el-
ements, with 10 uniform elements along both x and y directions. The boundary conditions (2a) and (2b) with ga = 0
and gb = 0 are imposed on the domain boundaries. The initial random distribution of φin(x) is generated using a random 
number generator from the standard library of C language (see Fig. 14(a)). The following simulation parameter values are 
employed for this problem:
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Fig. 12. Temporal sequence of snapshots showing the coalescence of two circular drops. Results are obtained with the decoupled algorithm θ = 0.52.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η = 0.01, λ = 0.001, m = 0.001,

C0 = 0, 	t = 0.001 (or varied),

S =
√

4γ0λω0

m	t
(decoupled algorithm) or 1 (coupled algorithm),

element order: 12, number of elements: 100,

θ = 0.5, 0.75, 1.0, 1.25, 1.5.

(67)

Fig. 14 shows the typical evolution process of the mixture with a temporal sequence of snapshots of the interfaces 
formed between the two phases. The interface is visualized by the contour level φ(x, t) = 0. The lighter regions represent 
the first phase and the darker region represents the second phase. These results are obtained using the de-coupled algorithm 
with θ = 1.25. It can be observed that two phases emerge from the initially homogeneous distribution of the mixture. Over 
time the grains of the two phases become increasingly coarser, and a certain pattern can be observed from the two regions. 
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Fig. 13. Time histories of E[φ] and [r(t)]2 for the coalescence of two drops, computed using the de-coupled and coupled algorithms with (a) θ = 0.52 and 
(b) θ = 1.48.

Fig. 14. Spinodal decomposition: time sequence of snapshots of φ = 0 at (a) t = 0, (b) t = 0.1, (c) t = 0.2, (d) t = 0.5, (e) t = 2, (f) t = 4, (g) t = 7, (h) t = 10. 
Results correspond to θ = 1.25 and 	t = 10−3.

The distributions of the material interfaces at t = 10 obtained with several time step sizes, ranging from 	t = 10−5 to 
	t = 10−2, using the de-couple algorithm with θ = 1.25 are shown in Fig. 15. The distributions computed with 	t = 10−5, 
10−4 and 10−3 are essentially the same. With the larger time step size 	t = 10−2, we can observe some notable difference 
in the material distribution from those obtained using smaller 	t values, suggesting that the simulation is starting to lose 
accuracy notably with this time step size (or larger).

Fig. 16 shows the time histories of the potential free energy E[φ] and the variable [r(t)]2 of the system obtained using 
both the decoupled and coupled algorithms, corresponding to θ = 0.75 and θ = 1.25 with several small time step sizes 
	t = 10−5, 10−4, 10−3. We note that the history curves for E[φ] and [r(t)]2 all overlap with one another with θ = 0.75. 
Those time histories corresponding to θ = 1.25 also overlap with one another essentially, and some difference can be 
discerned in the curve obtained using the coupled algorithm with 	t = 10−3 when compared with the rest.

Similar to the test problems in previous subsections, stable simulation results have been obtained with the current 
method for the spinodal decomposition using fairly large and large time step sizes. Fig. 17 is a demonstration of this point 
using the time histories of E[φ] and r2(t) computed with the de-coupled and coupled algorithms (θ = 0.75) at several large 
or fairly large time step sizes: 	t = 0.01, 0.1, 1 and 10. The long time histories (up to t = 1000) signifies the stability of 
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Fig. 15. Spinodal decomposition: snapshots of material interfaces at t = 10 computed with: (a) 	t = 10−5, (b) 	t = 10−4, (c) 	t = 10−3, (d) 	t = 10−2. 
Results are obtained using the decoupled algorithm with θ = 1.25.

Fig. 16. Time histories of E[φ] and [r(t)]2 for spinoidal decomposition obtained with the schemes (a) θ = 0.75, (b) θ = 1.25 and a range of small time step 
sizes.

simulations. At the large 	t values we can no longer expect the results to be accurate. Indeed, significant differences can 
be noticed between the E[φ] and r2(t) histories corresponding to 	t = 0.1 and larger time step sizes.

The performance of the two members on the boundary of this family of schemes (θ = 1
2 and 3

2 ) is demonstrated by 
Fig. 18 for the spinodal decomposition problem. Here we have plotted the time histories of E[φ] corresponding to θ = 1

2 in 
(a) and θ = 3

2 in (b) obtained with a range of small time step sizes (	t = 10−5, 10−4 and 10−3) using the de-coupled and 
coupled algorithms. We observe similar behaviors with these two schemes to those in previous sections. For the scheme 
θ = 1

2 , simulations using the de-coupled algorithm blow up shortly into the run with all three time step sizes. The coupled 
algorithm does not blow up. But it produces erroneous E[φ] histories with time step sizes 	t = 10−3 and 10−4 (Fig. 18(a)). 
We observe that, shortly into the simulation, the computed E[φ] value with the coupled algorithm abruptly jumps to a 
new higher level and remains a constant at that level throughout the rest of computation. With the smallest 	t = 10−5, 
the de-coupled algorithm produces a reasonable E[φ] signal. The scheme θ = 3

2 exhibits behaviors similar to, and perhaps 
slightly better than, the scheme θ = 1

2 . For θ = 3
2 , the de-coupled algorithm produces reasonable E[φ] histories with 	t =

10−5 and 10−4, and it blows up with 	t = 10−3. On the other hand, the coupled algorithm produces a reasonable E[φ]
history with 	t = 10−5, but gives rise to erroneous E[φ] signals with the larger 	t = 10−4 and 10−3. These results can be 
compared with those produced by other members of this family of schemes (see e.g. Fig. 16). The two boundary schemes 
(θ = 1

2 and 3
2 ), while apparently “energy-conserving” according to equation (12), give rise to simulation results inferior to 

the rest of this family of schemes in practice.
Fig. 19 is a comparison of the accuracy corresponding to several representative θ values among the family of schemes 

developed herein. Here we plot the ratio r2(t)/E[φ] as a function of time obtained with the time step size 	t = 0.02
corresponding to θ = 0.52, 0.75, 1.0, 1.25 and 1.48 in the de-coupled algorithm for the spinodal decomposition problem. 
This ratio should physically be the unit value, and a deviation from the unit value indicates errors in the simulation results. 
The result shows that a larger θ in the scheme results in a consistently larger deviation of the ratio r2(t)/E[φ] from the 
unit value. This suggests that the smaller the θ is the more accurate the scheme tends to be. However, the scheme at 
the lower boundary θ = 1

2 (and those θ values in a small neighborhood of 1
2 ) tends to produce poor results in terms of 

stability and accuracy, as is demonstrated by the test results in this and previous sections. The numerical results from this 
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Fig. 17. Time histories of E[φ] ((a) and (c)) and [r(t)]2 ((b) and (d)) for spinoidal decomposition computed with θ = 0.75 using various time step sizes. 
Results are obtained by the de-coupled algorithm ((a) and (b)) and coupled algorithm ((c) and (d)).

Fig. 18. Time histories of E[φ] for spinoidal decomposition obtained using the de-coupled and coupled algorithms with (a) θ = 0.5, and (b) θ = 1.5.
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Fig. 19. Time histories of [r(t)]2/E[φ] for spinodal decomposition computed using the de-coupled algorithm with various θ values and 	t = 0.02.

and previous sections suggest that in terms of accuracy and stability the best members among this family of energy-stable 
schemes appears to correspond to those θ values close to θ ≈ 0.52.

3.4. Two-phase flow: rising air bubble in water

As another test case, in this section we demonstrate the performance of the method developed herein in the context of 
a two-phase flow solver, and simulate the two-phase flow of an air bubble rising through the water.

Following [12,7], we consider a system consisting of two immiscible incompressible fluids, and combine the Cahn–Hilliard 
equation and the incompressible Navier–Stokes equations with variable density and variable viscosity to model such a 
system; see [12,13] for details. We then combine the family of schemes presented in Section 2 for the Cahn–Hilliard equation 
and the algorithm from [12] for the momentum equations to form an overall method for numerically solving the coupled 
system of Cahn–Hilliard and Navier–Stokes equations. Note that the algorithm for the momentum equation employed here 
is a semi-implicit type scheme and is only conditionally stable [12]. So the overall algorithm for the two-phase flows is not 
energy stable. Only the de-coupled algorithm for the Cahn–Hilliard equation (see Section 2.3.1) has been implemented in 
the two-phase flow solver.

We consider a solid container occupying the domain − L
2 � x � L

2 and 0 � y � 3
2 L, where L = 1 cm (see Fig. 20(a)). 

The container is filled with water, and an air bubble is trapped inside the water. The air bubble is initially circular with a 
diameter 2R0 = 0.5L = 0.5 cm and its center located at x0 = (x0, y0) = (0, 0.5L), and it is held at rest. The container walls 
are assumed to have a neutral wettability (90-degree contact-angle), and the gravity is assumed to point downward. At 
t = 0, the air bubble is released, and starts to rise through the water due to buoyancy. The bubble eventually breaks up on 
the upper wall and forms an air cavity at the top of the container. The goal is to simulate this process.

The physical parameters for the air and water are summarized in Table 3. We choose L as the characteristic length scale, 
the air density as the characteristic density scale �0, and U0 = √

gr0L (gr0 = 1 m/s2) as the characteristic velocity scale. All 
the physical parameters are then normalized according to Table 1.

In the simulations the domain is discretized using 600 quadrilateral elements, with 20 and 30 uniform elements in x
and y directions, respectively. An element order 8 is employed in the simulations. We impose the boundary conditions (2a)
and (2b) with ga = 0 and gb = 0 for the phase field function φ and the no-slip condition for the velocity on the container 
walls. The initial velocity is assumed to be zero, and the initial distribution of the phase field function is given by

φin(x) = − tanh
|x − x0| − R0√

2η
. (68)

The values for the simulation parameters in this problem are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η

L
= 0.01,

σ

�0U 2
0 L

= 604.6 (surface tension), λ = 3

2
√

2
ση,

m

L/(�0U0)
= 10−7

λ/(�0U 2
0 L2)

,

C0 = 0,
	t

L/U0
= 2.5e−5, S =

√
4γ0λω0

m	t
,

element order: 8, number of elements: 600,

θ = 0.75.

(69)

The dynamics of this two-phase flow is illustrated by Fig. 20, in which we have shown a temporal sequence of snapshots 
of the air-water interface in this system. The interface is visualized by the contour level φ(x, t) = 0. As the system is released 
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Fig. 20. Temporal sequence of snapshots of an air bubble (initially circular) rising in water within a solid container, showing the bubble breakup on the 
upper wall and the formation of an air cavity.

Table 3
Physical property values of air and water.

Density [kg/m3]: air – ρ1 = 1.204 water – ρ2 = 998.207
Dynamic viscosity [kg/(m s)]: air – μ1 = 1.78 × 10−5 water – μ2 = 1.002 × 10−3

Surface tension [kg/s2]: air/water – σ = 7.28 × 10−2

Gravity [m/s2]: gr = 9.8

the air bubble rises through the water and experiences significant deformations (Fig. 20(b)–(d)). The bubble exhibits the 
typical shape of a circular “cap” (Fig. 20(b)) when it is still far away from the upper wall. But as the bubble approaches 
the upper wall, its shape is affected by the presence of the wall significantly (Figs. 20(c)–(d)). After the bubble touches 
the upper wall, it traps a layer of water between the wall and its upper side (Fig. 20(e)). The trapped water becomes a 
water drop sitting on the upper wall over time (Fig. 20(g)). The interface formed between the bulk of air and the bulk of 
water moves sideways on the wall, and the air forms a cavity at the top of the container (Figs. 20(f)–(h)). Our method has 
captured this process and the interaction between the air-water interface and the wall.

4. Concluding remarks

In this paper we have developed a family of energy-stable schemes for the Cahn–Hilliard type equations. We start with 
the reformulated system of equations based on the scalar auxiliary variable approach, and approximate this system at time 
step (n + θ), and then develop corresponding numerical approximations that are second-order accurate and unconditionally 
energy stable. This family of approximations contains the often-used Crank–Nicolson scheme and the second-order backward 
differentiation formula as particular cases. We have also developed efficient solution algorithms to overcome the difficulty 
caused by the unknown scalar auxiliary variable in the discrete system of equations resulting from this family of schemes. 
Our overall method only requires the solution of four de-coupled individual Helmholtz type equations with the de-coupled 
algorithm, and the solution of two de-coupled individual systems of equations (with each system consisting of two coupled 
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Helmholtz type equations) with the coupled algorithm within each time step. All the equations involved in the solution 
algorithms only concern constant and time-independent coefficient matrices that can be pre-computed.

Among the family of approximations ( 1
2 � θ � 3

2 ) considered in the current work, the schemes with θ = 1
2 and θ = 3

2

involve zero numerical dissipation, and the rest of the family are numerically dissipative, with θ = 2
3 +

√
7

6 being the most 
dissipative. The two boundary schemes θ = 1

2 and 3
2 , while energy-conserving, exhibit consistently inferior performance 

to the rest of the family of schemes in actual simulations. Both the de-coupled and the coupled algorithms encounter 
difficulties (in terms of stability or accuracy) with these two schemes in actual long-time simulations. Poor performance 
is also observed for schemes with θ in a small neighborhood of 1

2 in long-time simulations. For the rest of this family of 
schemes, stable computations can be achieved with time step sizes ranging from very small to very large values in actual 
long-time simulations, verifying their unconditional energy stability. In terms of their accuracy, numerical tests show that 
the scheme with a smaller θ produces more accurate simulation results. All these results suggest that the best members 
among this family of schemes, in terms of both stability and accuracy, are those with a θ value toward the lower end (close 
to θ ≈ 0.52), but not the lower boundary (θ = 1

2 ).
In the discrete formulation for the Cahn–Hilliard type equations, the incorporation of the extra term S(φn+1 − 2φn +

φn−1), which is equivalent to zero to the second order accuracy in time, is not essential to the unconditional energy stability 
of the current family of schemes. To the coupled solution algorithm for the resultant equations, it is also not essential. But 
to the de-coupled solution algorithm this term is critical, and it enables the reformulation of the fourth-order equation into 
two de-coupled Helmholtz type equations. Tests with the manufactured analytical solution indicate that the numerical error 
associated with this term is proportional to the value of the chosen constant S . Tests with actual simulations, however, 
show that the value of the constant S apparently has little or basically no effect on the actual simulation results.

While the current paper is only concerned with the numerical approximation of the Cahn–Hilliard equation, the family 
of energy-stable approximations herein is readily applicable to other types of equations resulting from gradient flows. When 
combined with the invariant energy quadratization or scalar auxiliary variable approach, they can be readily used to design 
energy-stable schemes for other gradient flows.
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Appendix A. Proof of Theorem 2.1

We note first the following useful relation (χ denoting a generic scalar variable):

(
χn+1 − 2χn + χn−1)[(θ + 1

2

)
χn+1 − 2θχn +

(
θ − 1

2

)
χn−1

]

= θ
∣∣χn+1 − 2χn + χn−1

∣∣2 + 1

2

(∣∣χn+1 − χn
∣∣2 − ∣∣χn − χn−1

∣∣2) . (70)

This relation can be verified by elementary operations.
Assume that g = 0, ga = 0, and gb = 0. Multiply 	tHn+θ to equation (13a) and integrate over �, and we have∫

�

[(
θ + 1

2

)
φn+1 − 2θφn +

(
θ − 1

2

)
φn−1

]
Hn+θ = m	t

∫
�

Hn+θ∇2Hn+θ . (71)

Multiplying 	t ∂φ
∂t

∣∣∣n+θ

to equation (13b) and integrating over � leads to

∫
�

Hn+θ

[(
θ + 1

2

)
φn+1 − 2θφn +

(
θ − 1

2

)
φn−1

]

= −λ

∫
�

∇2φn+θ

[(
θ + 1

2

)
φn+1 − 2θφn +

(
θ − 1

2

)
φn−1

]

+ S

∫
�

(
φn+1 − 2φn + φn−1)[(θ + 1

2

)
φn+1 − 2θφn +

(
θ − 1

2

)
φn−1

]

+ rn+θ√
E[φ̄n+θ ]

∫
�

h(φ̄n+θ )

[(
θ + 1

2

)
φn+1 − 2θφn +

(
θ − 1

2

)
φn−1

]
.

(72)

Multiplying 2rn+θ	t to equation (13c) leads to
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2rn+θ

[(
θ + 1

2

)
rn+1 − 2θrn +

(
θ − 1

2

)
rn−1

]

= rn+θ√
E[φ̄n+θ ]

∫
�

h(φ̄n+θ )

[(
θ + 1

2

)
φn+1 − 2θφn +

(
θ − 1

2

)
φn−1

]
. (73)

Summing up equations (71) and (73), and then subtracting equation (72), results in

2rn+θ

[(
θ + 1

2

)
rn+1 − 2θrn +

(
θ − 1

2

)
rn−1

]

= −m	t

∫
�

∇Hn+θ · ∇Hn+θ − λ

∫
�

∇φn+θ ·
[(

θ + 1

2

)
∇φn+1 − 2θ∇φn +

(
θ − 1

2

)
∇φn−1

]

− S

∫
�

(
φn+1 − 2φn + φn−1)[(θ + 1

2

)
φn+1 − 2θφn +

(
θ − 1

2

)
φn−1

] (74)

where we have performed integration by part on the right-hand-side (RHS) of equation (71) and the first term on the RHS 
of equation (72), and used equations (13b), (13d) and (13e).

Use the relations (70) and (12) to transform the corresponding terms in (74), and then collect related terms, and one 
would arrive at the discrete energy balance equation (14).

Appendix B. Proof of Theorem 2.3

Substituting ψn+1
2 from (36a) into equations (35a) and (35b) leads to

∇2
(
∇2φn+1

2

)
− S

λω0
∇2φn+1

2 + γ0

λω0m	t
φn+1

2 = 1

2λ
∇2bn, (75a)

n · ∇
(
∇2φn+1

2

)
= 1

2λ
n · ∇bn, on ∂�, (75b)

where we have used equation (36b) and the relation α
(
α + S

λω0

)
= − γ0

λω0m	t . The system of equations (75a), (75b) and 
(36b) is equivalent to the system consisting of equations (35a)–(36b). By integrating equation (75a) over the domain �, we 
conclude that φn+1

2 has the property∫
�

φn+1
2 = 0, (76)

where we have used the divergence theorem and the equations (75b) and (36b).
Define function ξ(x) by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇2ξ = φn+1
2 ,

n · ∇ξ = 0, on ∂�,∫
�

ξ = ω0m	t

2γ0

∫
�

bn.

(77)

Let

� = ∇2φn+1
2 − S

λω0
φn+1

2 + γ0

λω0m	t
ξ − 1

2λ
bn. (78)

Then equations (75a), (75b) and (76) are transformed into

∇2� = 0, (79a)

n · ∇� = 0, on ∂�, (79b)∫
�

� = 0, (79c)

where we have used (77) and (36b). So we conclude that � = 0 and
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∇2φn+1
2 − S

λω0
φn+1

2 + γ0

λω0m	t
ξ = 1

2λ
bn. (80)

Taking the L2 inner product between this equation and φn+1
2 and integrating by part, we get

1

2λ

∫
�

bnφn+1
2 = −

∫
�

∣∣∣∇φn+1
2

∣∣∣2 − S

λω0

∫
�

∣∣∣φn+1
2

∣∣∣2 − γ0

λω0m	t

∫
�

|∇ξ |2 � 0, (81)

where we have used the divergence theorem and equation (77).
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