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We present a new energy-stable open boundary condition, and an associated numerical 
algorithm, for simulating incompressible flows with outflow/open boundaries. This open 
boundary condition ensures the energy stability of the system, even when strong vortices 
or backflows occur at the outflow boundary. Under certain situations it can be reduced 
to a form that can be analogized to the usual convective boundary condition. One 
prominent feature of this boundary condition is that it provides a control over the velocity 
on the outflow/open boundary. This is not available with the other energy-stable open 
boundary conditions from previous works. Our numerical algorithm treats the proposed 
open boundary condition based on a rotational velocity-correction type strategy. It gives 
rise to a Robin-type condition for the discrete pressure and a Robin-type condition for 
the discrete velocity on the outflow/open boundary, respectively at the pressure and the 
velocity sub-steps. We present extensive numerical experiments on a canonical wake flow 
and a jet flow in open domain to test the effectiveness and performance of the method 
developed herein. Simulation results are compared with the experimental data as well as 
with other previous simulations to demonstrate the accuracy of the current method. Long-
time simulations are performed for a range of Reynolds numbers, at which strong vortices 
and backflows occur at the outflow/open boundaries. The results show that our method 
is effective in overcoming the backflow instability, and that it allows for the vortices to 
discharge from the domain in a fairly natural fashion even at high Reynolds numbers.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The current work focuses on the outflow/open boundary in incompressible flow simulations and the issue of backflow 
instability, which refers to the commonly-encountered numerical instability associated with strong vortices or backflows at 
the outflow or open boundaries. Extending our efforts on this problem [14,12,18], we strive to develop effective and efficient 
techniques to overcome the backflow instability.

A large class of flow problems involve physically-unbounded domains, such as jets, wakes, boundary layers, and other 
spatially-developing flows. When numerically simulating such problems, one will need to truncate the domain artificially 
to a finite size and impose some open (or outflow) boundary condition (OBC) on the artificial boundary. Open boundary 
conditions are among the most difficult and least understood issues in incompressible flow simulations [28,63], and have 
commanded a sustained interest of the community for decades. Among the large volume of works accumulated so far 
on this problem, the traction-free condition [67,25,19,45,3,63,30,46] and the convective (or radiation) boundary condition 

E-mail address: sdong@purdue.edu.
http://dx.doi.org/10.1016/j.jcp.2015.09.017
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.09.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:sdong@purdue.edu
http://dx.doi.org/10.1016/j.jcp.2015.09.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.09.017&domain=pdf


S. Dong / Journal of Computational Physics 302 (2015) 300–328 301
[65,56,28,42,55,22,62,8] are two of the more commonly used. We refer the reader to [63] for a review of this field up to the 
mid-1990s, and to [57,37,38,34,23,33,54,29,60] for a number of other methods developed by different researchers.

Backflow instability is a commonly encountered issue with outflows or open boundaries at moderate and high Reynolds 
numbers. Simulations have been observed to instantly blow up when strong vortices or backflows occur at the outflow/open 
boundary [13,15,70,26]. As pointed out in [18], a certain amount of backflow at the outflow boundary appears harmless at 
low Reynolds numbers, but when the Reynolds number increases beyond some moderate value, typically several hundred 
to a thousand depending on the geometry (e.g. in the range Re = 300–400 for the flow past a square cylinder in two 
dimensions), this instability becomes a severe issue to numerical simulations. Commonly-used tricks for flow simulations 
such as increasing the grid resolution or decreasing the time step size are observed to not help with this instability [15,18].

For certain flow problems (e.g. bluff-body wakes) one way to circumvent this difficulty is to employ a large computational 
domain and to place the outflow/open boundary far downstream. The idea is to allow for the vortices generated upstream 
to sufficiently dissipate before reaching the outflow boundary. This is feasible and computationally manageable at moderate 
Reynolds numbers. But this strategy does not scale with the Reynolds number [14,18], because the domain size essential for 
numerical stability grows with increasing Reynolds number. As the Reynolds number becomes large, the needed domain size 
for stability can become very substantial. For example, in the three-dimensional direct numerical simulation of the flow past 
a circular cylinder at Reynolds number Re = 10 000 [15], a domain size with a wake region 50 times the cylinder diameter 
in length has been used. Such a large wake region is essential for numerical stability for that Reynolds number, even though 
the far wake (beyond about 10 times the cylinder diameter) is of little or no physical interest and the meshes/computations 
in that far region are essentially wasted.

A far more attractive approach is to devise effective open/outflow boundary conditions to overcome the backflow instabil-
ity. Several such boundary conditions have been studied in the literature. By considering the weak form of the Navier–Stokes
equation and symmetrization of the nonlinear term, Bruneau and Fabrie [6,7] proposed to modify the traction condition by 
a term 1

2 (n · u)−u, where u and n are respectively the velocity and the outward-pointing unit vector normal to the outflow 
boundary, and (n · u)− is defined as n · u if n · u < 0 and is set to zero otherwise. We refer to e.g. [44,20] for applications 
of this boundary condition in later works. A traction condition containing a term (n · u)−u, which is very similar to that 
of [6,7] but without the 1

2 factor, has been employed in [1,50,59,27,36]. Note that a form β(n · u)−u where 0 < β < 1
has also been considered in [50]. By considering the energy balance of the system, we have proposed in [14] a boundary 
condition involving a term 1

2 |u|2n�0(n, u), where |u| is the velocity magnitude and �0(n, u) is a smoothed step function 
about n · u (see Section 2 for definition). While the role of the term �0(n, u) can be compared to that of (n · u)− dis-
cussed above, the form 1

2 |u|2n of the OBC in [14] is very different from those involving (n · u)u of the previous works 
[6,7,1,50,59,27,36]. Another boundary condition developed in [4] employs a penalization of the tangential velocity deriva-
tive to allow for improved energy balance. Very recently we have proposed in [18] a family of open boundary conditions, 
having the characteristic that they all ensure the energy stability of the system even in situations where strong vortices 
of backflows occur at the outflow/open boundary. This family of boundary conditions contains those of [6,1,27,36,14] as 
particular cases, and more importantly provides other new forms of open boundary conditions. Several of those forms have 
been investigated in relative detail in [18].

It is observed that, while some of the above open boundary conditions have existed in the literature for some time, 
their adoption in production flow simulations appears still quite limited. This is perhaps in part owing to the challenge 
associated with the numerical implementation of these boundary conditions. All the aforementioned boundary conditions 
for tackling the backflow instability couple together the velocity and the pressure, and it is not immediately clear how to 
implement them in numerical simulations. This seems to be exacerbated by the fact that, when these boundary conditions 
are originally proposed, for most of them their numerical treatments are not discussed or not adequately discussed, espe-
cially in the context of the commonly-used splitting or fractional-step type schemes for incompressible flow simulations. It 
is noted that in the more recent works [14,18] two splitting-type schemes, respectively based on a velocity-correction type 
strategy [14] and a pressure-correction type strategy [18], are presented to deal with the energy-stable open boundary con-
ditions developed therein. These algorithms de-couple the computations for the pressure and the velocity in the presence 
of open/outflow boundaries.

The objective of the current paper is twofold. First, we present a new energy-stable open boundary condition that is 
effective in overcoming the backflow instability for incompressible flow simulations. This boundary condition involves an 
inertia (velocity time-derivative) term, and can be shown to ensure the energy stability of the system even in the presence of 
backflows or vortices at the open/outflow boundary. It does not belong to the family of open boundary conditions discussed 
in [18]. If no backflow occurs at the outflow boundary, this boundary condition can be reduced to a form that can be 
analogized to the usual convective boundary condition. Hence, we refer to it as the convective-like energy-stable open 
boundary condition. The current open boundary condition has a prominent feature: it provides a control over the velocity 
at the open/outflow boundary. In contrast, the family of energy-stable open boundary conditions from [18] and the other 
aforementioned boundary conditions to address the backflow instability do not provide any control over the velocity at the 
open/outflow boundary. Therefore, as the vortices pass through the outflow/open boundary, the current boundary condition 
can lead to smoother velocity patterns in regions at or near the outflow boundary when compared to that of [18].

Second, we present an efficient numerical algorithm for treating the proposed open boundary condition. Our algorithm 
overall is based on a rotational velocity-correction type splitting approach, and the key issue lies in the numerical treatment 
of the inertia term in the open boundary condition. At the pressure sub-step our scheme leads to a Robin-type condition for 
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the discrete pressure on the outflow boundary, and at the velocity sub-step it leads to a Robin-type condition for the discrete 
velocity on the outflow boundary. In contrast, the algorithms of [14,18] both impose a pressure Dirichlet type condition 
on the outflow boundary at the pressure sub-step and a velocity Neumann type condition on the outflow boundary at 
the velocity sub-step. The current algorithm is simpler to implement with spectral-element (and also finite-element) type 
spatial discretizations, because there is no need for the projection of pressure Dirichlet data on the outflow boundary as 
required by the algorithms of [14,18].

We would like to point out that, by using an idea analogous to that of [18], one can generalize the current open 
boundary condition to a family of convective-like energy-stable open boundary conditions, which will provide other new 
forms of OBCs; see the discussions in Section 2.1 in this regard. The numerical algorithm presented herein with no change 
can be applied together with this family of convective-like energy-stable OBCs.

The novelties of this work lie in two aspects: (i) the convective-like energy-stable open boundary condition, and (ii) the 
numerical algorithm for treating the proposed open boundary condition. The rotational velocity-correction scheme for 
discretizing the Navier–Stokes equations employed here has also subtle differences than that of [14] in the numerical ap-
proximations of various terms, although both can be classified as velocity-correction type schemes.

The open boundary condition and the numerical algorithm developed herein have been implemented and tested using 
high-order C0 spectral elements for spatial discretizations [64,41,75]. The implementations discussed in the paper without 
change can also be used for finite element discretizations. It should be noted that the open boundary condition and the 
numerical algorithm are general and are not confined to a particular spatial discretization technique. They can also be 
implemented using other spatial discretization methods.

2. Convective-like energy-stable OBC and algorithm

2.1. Convective-like energy-stable open boundary condition

Consider a domain � in two or three dimensions, and an incompressible flow contained within this domain. Let ∂�

denote the boundary of the domain �. This flow problem is then described by the following incompressible Navier–Stokes
equations in non-dimensional form:

∂u

∂t
+ u · ∇u + ∇p − ν∇2u = f, (1a)

∇ · u = 0, (1b)

where u(x, t) and p(x, t) are respectively the normalized velocity and pressure fields, f(x, t) is an external body force, and x
and t are the spatial coordinate and time. The constant ν denotes the normalized viscosity, ν = 1

Re , where Re is the Reynolds 
number defined by appropriately choosing a length scale and a velocity scale.

We assume that the domain boundary ∂� consists of two types:

∂� = ∂�d ∪ ∂�o, ∂�d ∩ ∂�o = ∅. (2)

In the above ∂�d denotes the Dirichlet boundary, on which the velocity is given

u = w(x, t), on ∂�d (3)

where w is the boundary velocity. On the other hand, on ∂�o neither the velocity u nor the pressure p is known. We refer 
to ∂�o as the open (or outflow) boundary. How to deal with ∂�o in numerical simulations is the focus of the current work.

We propose the following boundary condition for the open boundary:

νD0
∂u

∂t
− pn + νn · ∇u − 1

2

[
|u|2 n + (n · u)u

]
�0(n,u) = fb(x, t), on ∂�o. (4)

In the above equation, n is the outward-pointing unit vector normal to the boundary ∂�o . D0 is a chosen non-negative 
constant (D0 � 0), which has been normalized by 1

U0
(U0 denoting the characteristic velocity scale) and is non-dimensional. 

fb is a prescribed vector function on ∂�o for the purpose of numerical testing only, and it is set to fb = 0 in actual 
simulations. �0(n, u) is a smoothed step function about (n · u) given by [14],

�0(n,u) = 1

2

(
1 − tanh

n · u

δU0

)
(5)

where δ > 0 is a non-dimensional positive constant that is sufficiently small. As discussed in [14], δ controls the sharpness 
of the smoothed step function, and it is sharper if δ is smaller, and that the simulation result is not sensitive to δ when it 
is sufficiently small. As δ → 0, �0(n, u) approaches the step function, that is,

lim �0(n,u) = �s0(n,u) =
{

1, if n · u < 0,

0, otherwise.
(6)
δ→0
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A prominent characteristic of the open boundary condition (4) is the inertia term ∂u
∂t involved therein. One can note that 

for D0 = 0 the inertia term vanishes and the boundary condition (4) will be reduced to the so-called boundary condition 
“OBC-C” that has been studied in [18]. In the current work we concentrate on the cases with D0 > 0.

The open boundary condition (4), with fb = 0 and when δ is sufficiently small, ensures the energy stability of the system. 
To illustrate this point, we look into the energy balance equation for the system consisting of (1a) and (1b):

∂

∂t

∫
�

1

2
|u|2 = −ν

∫
�

‖∇u‖2 +
∫
�

f · u +
∫

∂�d

(
n · T · u − 1

2
|u|2 n · u

)

+
∫

∂�o

(
n · T · u − 1

2
|u|2 n · u

)
, (7)

where T = −pI + ν∇u and I denotes the identity tensor. We assume that fb = 0 in (4) and δ → 0 in �0(n, u). Then by 
employing the condition (4) on ∂�o , the last surface integral on the right hand side of (7) becomes∫

∂�o

(
n · T · u − 1

2
|u|2 n · u

)

= − ∂

∂t

∫
∂�o

νD0
1

2
|u|2 +

∫
∂�o

1

2
|u|2 (n · u) [2�s0(n,u) − 1]

= − ∂

∂t

∫
∂�o

νD0
1

2
|u|2 −

∫
∂�o

1

2
|u|2 |n · u| , as δ → 0. (8)

It then follows that the energy balance equation can be transformed into

∂

∂t

⎛
⎜⎝∫

�

1

2
|u|2 + νD0

∫
∂�o

1

2
|u|2

⎞
⎟⎠

= −ν

∫
�

‖∇u‖2 +
∫
�

f · u +
∫

∂�d

(
n · T · u − 1

2
|u|2 n · u

)
−

∫
∂�o

1

2
|u|2 |n · u| , as δ → 0. (9)

Therefore, the open boundary condition given by (4), when fb = 0 and δ is sufficiently small, ensures the energy stability 
of the system (in the absence of external forces), even if strong vortices or backflows occur (i.e. n · u < 0) on the open 
boundary ∂�o . Note that, because the velocity u is given on ∂�d , the surface integral term on ∂�d in equation (9) will not 
pose a numerical instability issue.

It is instructive to compare the energy balance equations for the current open boundary condition and for the open 
boundary conditions introduced in [18]. Let us assume for now that there is no external body force f and that u = 0

on the Dirichlet boundary ∂�d . Then equation (9) implies that the sum 
(∫

�
1
2 |u|2 + νD0

∫
∂�o

1
2 |u|2

)
will not increase 

over time. For D0 > 0, the energy balance relation provides an upper bound for the total energy 
∫
�

1
2 |u|2 and for the 

quantity 
∫
∂�o

1
2 |u|2 with the current open boundary condition. This provides a control over the velocity u on the outflow 

boundary ∂�o . On the other hand, with the open boundary conditions from [18], the energy balance equation involves only 
the total energy, and there is no control over the velocity on the outflow boundary. This is a key difference between the 
current open boundary condition and those from [18]. Thanks to this characteristic, the current open boundary condition 
can lead to qualitatively smoother velocity patterns at/near the outflow boundary as vortices pass through. This point will 
be illustrated in Section 3 using numerical simulations.

In addition to the open boundary condition (4), we will also consider the following boundary condition,

νD0
∂u

∂t
− pn + νn · ∇u = 0, on ∂�o, (10)

or equivalently for D0 > 0

∂u

∂t
+ 1

D0

∂u

∂n
= 1

νD0
pn, on ∂�o. (11)

The difference between this boundary condition and (4) lies in that this boundary condition does not ensure the energy 
stability when backflow occurs on the open boundary ∂�o . In contrast, the condition (4) ensures the energy stability even in 
the presence of backflows at the open boundary. Note that for D0 = 0 the condition (10) will be reduced to the traction-free 
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boundary condition. One also notes that Equation (11) is reminiscent of the usual convective boundary condition (together 
with p = 0),⎧⎨

⎩
∂u

∂t
+ Uc

∂u

∂n
= 0, on ∂�o

p = 0, on ∂�o

(12)

where Uc denotes a convection velocity. Because of this resemblance to the convective boundary condition we will refer to 
the boundary condition (4) as a convective-like energy-stable open boundary condition.

The analogy between the current boundary condition and the usual convective boundary condition suggests that in the 
boundary condition (4) the parameter 1

D0
plays the role of a convection velocity scale at the outflow boundary. Different 

choices for the convection velocity in the usual convective boundary condition have been considered in a number of studies 
(see e.g. [63,8]), which can provide a guide for the choice of D0 in the boundary condition (4). For a given flow problem, 
one can first perform a preliminary simulation using the boundary condition (4) with D0 = 0 to obtain an estimate of the 
convection velocity scale Uc > 0 at the outflow boundary, and then carry out the actual simulation by setting D0 = 1

Uc

in (4). Our numerical experiments in Section 3 indicate that the difference in the D0 values has very little or no effect on 
the computed global flow quantities such as the force coefficients. The main effect of D0 appears to be on the qualitative 
flow characteristics local to the outflow boundary. An improved estimate of the convection velocity (and hence an improved 
D0 value in (4)) will allow the vortices or other flow features to discharge from the domain more smoothly and in a more 
natural fashion. We will look into the effects of D0 value in the open boundary condition (4) in more detail in Section 3.

Let us briefly discuss the physical meanings of the boundary conditions (4) (assuming fb = 0 and δ → 0), (10) and (11). 
These boundary conditions represent some generalized stress balance, or equivalently a Newton’s law-like relation on the 
outflow/open boundary. As discussed in [18,14], the terms (−pn + νn · ∇u) can be considered as the fluid stress acting on 
∂�o , and the terms 1

2 |u|2n and 1
2 (n ·u)u denote two different forms of effective stresses induced by the kinetic energy influx 

into the domain through ∂�o in regions where backflow occurs. On the other hand, the term νD0
∂u
∂t can be considered as an 

effective stress associated with the fluid acceleration. In dimensional form this term can be written as μD̃0
∂u
∂t =

(
μD̃0
ρ

)
ρ ∂u

∂t , 

where μ and ρ are respectively the fluid dynamic viscosity and density, D̃0 denotes the dimensional form of D0, and 
(

μD̃0
ρ

)
represents a length scale. Therefore, the boundary condition (4) imposes a relation between the total of the above stresses 
and the fluid acceleration on the outflow boundary, which is reminiscent of the Newton’s second law. On the other hand, in 
the boundary conditions (10) and (11) the effective stress associated with the kinetic energy influx is not considered when 
this relation is imposed.

Remarks By employing an idea similar to that of [18], we can come up with other forms of convective-like energy-stable 
open boundary conditions. We briefly mention several of them below:

νD0
∂u

∂t
− pn + νn · ∇u − [(n · u)u] �0(n,u) = 0, on ∂�o; (13a)

νD0
∂u

∂t
− pn + νn · ∇u −

[
|u|2 n

]
�0(n,u) = 0, on ∂�o; (13b)

νD0
∂u

∂t
− pn + νn · ∇u −

[
1

2
(n · u)u

]
�0(n,u) = 0, on ∂�o; (13c)

νD0
∂u

∂t
− pn + νn · ∇u −

[
1

2
|u|2 n

]
�0(n,u) = 0, on ∂�o; (13d)

νD0
∂u

∂t
− pn + νn · ∇u − 1

4

[
|u|2 n + (n · u)u

]
�0(n,u) = 0, on ∂�o. (13e)

We would also like to mention the following more general form (analogous to [18]), which contains the boundary condi-
tion (4) and those represented by (13a)–(13e) as particular cases,

νD0
∂u

∂t
− pn + νn · ∇u −

[
(θ + α2)

1

2
|u|2 n + (1 − θ + α1)

1

2
(n · u)u

]
�0(n,u) = 0, on ∂�o, (14)

where θ , α1 and α2 are constants satisfying the conditions

0 � θ � 1, α1 � 0, α2 � 0. (15)

Note that the general form (14) ensures the energy stability of the system as δ → 0. In this case the energy balance relation 
is given by the following expression,
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∂

∂t

⎛
⎜⎝∫

�

1

2
|u|2 + νD0

∫
∂�o

1

2
|u|2

⎞
⎟⎠

= −ν

∫
�

‖∇u‖2 +
∫
�

f · u +
∫

∂�d

(
n · T · u − 1

2
|u|2 n · u

)

+
∫

∂�o

1

2
|u|2 (n · u) [(1 + α1 + α2)�s0(n · u) − 1]

� −ν

∫
�

‖∇u‖2 +
∫
�

f · u +
∫

∂�d

(
n · T · u − 1

2
|u|2 n · u

)
, as δ → 0. (16)

Apart from the boundary conditions discussed above, we impose the following initial condition for the velocity,

u(x, t = 0) = uin(x), (17)

where uin is the initial velocity field satisfying equation (1b) and compatible with the boundary condition (3) on ∂�d at 
t = 0.

2.2. Algorithm formulation

The equations (1a) and (1b), the boundary condition (3) on ∂�d , and the boundary condition (4) on ∂�o , as well as the 
initial condition (17), together constitute the system that need to be solved in numerical simulations.

We next present an algorithm for numerically simulating this system, with emphasis on the numerical treatment of the 
open boundary condition (4). Let

E(n,u) = 1

2

[
|u|2 n + (n · u)u

]
�0(n,u), (18)

and we re-write equation (4) into a more compact form,

νD0
∂u

∂t
− pn + νn · ∇u − E(n,u) = fb. (19)

We will concentrate on the algorithm and implementation for D0 > 0 in (19) in this and the next subsections. In Section 2.4
we will briefly discuss how to deal with the case D0 = 0, when the current open boundary condition is reduced to a form 
already studied in [18].

Let n � 0 denote the time step index, and (·)n denote (·) at time step n. Define u0 = uin . Then, given un we compute 
(pn+1, un+1) in a de-coupled fashion as follows:
For pn+1:

γ0ũn+1 − û

�t
+ u∗,n+1 · ∇u∗,n+1 + ∇pn+1 + ν∇ × ∇ × u∗,n+1 = fn+1 (20a)

∇ · ũn+1 = 0 (20b)

n · ũn+1 = n · wn+1, on ∂�d (20c)

νD0
γ0ũn+1 − û

�t
· n − pn+1 + νn · ∇u∗,n+1 · n − n · E(n,u∗,n+1) = fn+1

b · n, on ∂�o (20d)

For un+1:
γ0un+1 − γ0ũn+1

�t
− ν∇2un+1 = ν∇ × ∇ × u∗,n+1 (21a)

un+1 = wn+1, on ∂�d (21b)

νD0
γ0un+1 − û

�t
− pn+1n + νn · ∇un+1 − E(n,u∗,n+1) + ν

(
∇ · u∗,n+1

)
n = fn+1

b , on ∂�o. (21c)

In the above equations, �t is the time step size, n is the outward-pointing unit vector normal to the boundary, and ũn+1 is 
an auxiliary variable approximating un+1. Let J ( J = 1 or 2) denote the temporal order of accuracy of the algorithm. Then 
u∗,n+1 is a J -th order explicit approximation of un+1 given by
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u∗,n+1 =
{

un, J = 1,

2un − un−1, J = 2.
(22)

The expressions 1
�t (γ0un+1 − û) and 1

�t (γ0ũn+1 − û) are approximations of ∂u
∂t

∣∣n+1
by a J -th order backward differentiation 

formula, and û and γ0 are given by

û =
{

un, J = 1,

2un − 1
2 un−1, J = 2,

γ0 =
{

1, J = 1,
3
2 , J = 2.

(23)

Note that E(n, u) is given by (18).
One can observe that the overall structure of the above algorithm represents a rotational velocity-correction type strategy 

(see [32,16,17,14]) for de-coupling the computations of the pressure and velocity. While both belong to velocity correction-
type schemes, the scheme here is somewhat different from the one of [14]. Note that in the pressure sub-step we have 
approximated all terms at time step (n + 1) with the current scheme (see equation (20a)). In contrast, in [14] the viscous 
and the nonlinear terms are approximated at time step n rather than at (n + 1) in the pressure sub-step, and correspond-
ingly some correction terms are incorporated in the subsequent velocity sub-step. The current treatment of various terms is 
observed to yield smaller pressure errors and comparable velocity errors compared to that of [14].

The inertia term νD0
∂u
∂t in the boundary condition (19) demands some care in the temporal discretization. The discrete 

equation (20d) in the pressure sub-step stems from an inner product between the directional vector n and the open bound-
ary condition (19) on the outflow boundary ∂�o . Note that the ∂u

∂t term and the pressure term have been treated implicitly 
in (20d), and in particular that ∂u

∂t is approximated using ũn+1 (instead of un+1) here in this discrete equation. This point 
is crucial, and it effectively leads to a Robin-type condition for the pressure pn+1 on ∂�o because of the equation (20a). 
An explicit treatment of the ∂u

∂t term in (20d) would seem more attractive and would result in a Dirichlet type condition 
for pn+1 on ∂�o , just like in the scheme of [14]. This treatment however does not work, and is observed to be unstable 
unless D0 is very small. At the velocity sub-step, in the discrete equation (21c) on ∂�o we have treated the terms ∂u

∂t and 
n · ∇u implicitly, and note that ∂u

∂t is approximated using un+1 here. These numerical treatments give rise to a Robin-type 
condition for the discrete velocity un+1 on ∂�o , noting that in (21c) pn+1 is already explicitly known from the pressure 
sub-step. Note also that in the discrete equation (21c) an extra term ν(∇ · u)n has been incorporated in the formulation.

We would like to point out that the algorithmic formulation given by (20a)–(21c) can be used together with the general 
form of convective-like energy-stable open boundary condition (14), by setting E(n, u) in the algorithm as follows

E(n,u) =
[
(θ + α2)

1

2
|u|2 n + (1 − θ + α1)

1

2
(n · u)u

]
�0(n,u). (24)

2.3. Implementation with C0 spectral elements

We employ C0-continuous high-order spectral elements [64,41,75] for spatial discretizations in the current work. Let us 
next look into how to implement the algorithm, given by (20a)–(21c), using C0 spectral elements. The discussions in this 
subsection with no change also apply to C0 finite element implementations.

As noted in several previous works [16,17,10,14,11], the complication in the implementation with C0 elements stems 
from the high-order derivative terms such as ∇ × ∇ × u involved in this type of algorithm, because such terms cannot be 
directly computed in the discrete function space of C0 elements. We can eliminate such complications by looking into the 
weak forms of the algorithm. In addition, we will eliminate the auxiliary velocity ũn+1 from the final form of the algorithm.

We first formulate the weak forms of the algorithm in the spatially continuous space. Let q(x) denote a test function. By 
taking the L2 inner product between ∇q and equation (20a) and integrating by part, we have∫

�

∇pn+1 · ∇q + γ0

�t

∫
∂�o

n · ũn+1q =
∫
�

Gn+1 · ∇q − ν

∫
∂�d∪∂�o

n × ω∗,n+1 · ∇q

− γ0

�t

∫
∂�d

n · wn+1q, ∀q, (25)

where ω = ∇ × u is the vorticity,

Gn+1 = fn+1 + û

�t
− u∗,n+1 · ∇u∗,n+1, (26)

and we have used equations (20b) and (20c), the divergence theorem, and the identify∫
∇ × ω · ∇q =

∫
∇ · (ω × ∇q) =

∫
n × ω · ∇q. (27)
� � ∂�
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According to equation (20d), n · ũn+1 can be expressed in terms of pn+1 and other explicit quantities on ∂�o . We therefore 
can transform equation (25) into the final weak form for the pressure pn+1,

∫
�

∇pn+1 · ∇q + 1

νD0

∫
∂�o

pn+1q =
∫
�

Gn+1 · ∇q − ν

∫
∂�d∪∂�o

n × ω∗,n+1 · ∇q

+
∫

∂�o

{
− 1

�t
n · û + 1

νD0

[
νn · ∇u∗,n+1 · n − n · E(n,u∗,n+1) − fn+1

b · n
]}

q

− γ0

�t

∫
∂�d

n · wn+1q, ∀q. (28)

We next sum up equations (21a) and (20a) to obtain

γ0

ν�t
un+1 − ∇2un+1 = 1

ν

(
Gn+1 − ∇pn+1

)
. (29)

Let ϕ(x) denote a test function that vanishes on ∂�d . Taking the L2 inner product between ϕ and equation (29) and 
integrating by part lead to

γ0

ν�t

∫
�

un+1ϕ +
∫
�

∇ϕ · ∇un+1 −
∫

∂�o

n · ∇un+1ϕ = 1

ν

∫
�

(
Gn+1 − ∇pn+1

)
ϕ, ∀ϕ, (30)

where we have used the divergence theorem, and the fact that 
∫
∂�d

n · ∇un+1ϕ = 0 thanks to the requirement that ϕ = 0

on ∂�d . According to equation (21c), n · ∇un+1 can be expressed in terms of un+1 and other explicit quantities on ∂�o . We 
therefore can transform (30) into the final weak form for un+1,

γ0

ν�t

∫
�

un+1ϕ +
∫
�

∇ϕ · ∇un+1 + γ0 D0

�t

∫
∂�o

un+1ϕ = 1

ν

∫
�

(
Gn+1 − ∇pn+1

)
ϕ

+
∫

∂�o

{
D0

�t
û + 1

ν

[
pn+1n + E(n,u∗,n+1) + fn+1

b − ν
(
∇ · u∗,n+1

)
n
]}

ϕ, ∀ϕ. (31)

The weak forms of the algorithm in the continuum space consist of equations (28) and (31), together with the velocity 
Dirichlet condition (21b) on ∂�d . The auxiliary variable ũn+1 does not appear in the weak form and is not explicitly com-
puted. These equations in weak forms can be discretized using C0 spectral elements (or finite elements) in a straightforward 
fashion.

Let �h denote the domain � discretized using a spectral element mesh, and ∂�h = ∂�dh ∪ ∂�oh denote the bound-
ary of �h , where ∂�dh and ∂�oh respectively represent the discretized ∂�d and ∂�o . Let Xh ⊂ [H1(�h)]d (where 
d = 2 or 3 is the spatial dimension) denote the approximation space of the discretized velocity un+1

h , and define Xh0 ={
v ∈ H1(�h) : v|∂�dh = 0

}
. Let Mh ⊂ H1(�h) denote the approximation space of the discretized pressure pn+1. We take 

the test function q of equation (28) from Mh , and take the test function ϕ of equation (31) from Xh0. In the following 
let (·)h denote the discretized version of the variable (·). Then the discretized version of equation (28) is: Find pn+1

h ∈ Mh
such that

∫
�h

∇pn+1
h · ∇qh + 1

νD0

∫
∂�oh

pn+1
h qh =

∫
�h

Gn+1
h · ∇qh − ν

∫
∂�dh∪∂�oh

nh × ω∗,n+1
h · ∇qh

+
∫

∂�oh

{
− 1

�t
nh · ûh + 1

νD0

[
νnh · ∇u∗,n+1

h · nh − nh · E(nh,u∗,n+1
h ) − fn+1

bh · nh

]}
qh

− γ0

�t

∫
∂�dh

nh · wn+1
h qh, ∀qh ∈ Mh. (32)

The discretized version of equations (31) and (21b) is: Find un+1 ∈ Xh such that
h
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γ0

ν�t

∫
�h

un+1
h ϕh +

∫
�h

∇ϕh · ∇un+1
h + γ0 D0

�t

∫
∂�oh

un+1
h ϕh = 1

ν

∫
�h

(
Gn+1

h − ∇pn+1
h

)
ϕh

+
∫

∂�oh

{
D0

�t
ûh + 1

ν

[
pn+1

h nh + E(nh,u∗,n+1
h ) + fn+1

bh − ν
(
∇ · u∗,n+1

h

)
nh

]}
ϕh,

∀ϕh ∈ Xh0, (33)

together with

un+1
h = wn+1

h , on ∂�dh. (34)

Our final algorithm therefore consists of the following operations within a time step: (i) Solve equation (32) for pn+1
h ; 

(ii) Solve equation (33), together with the Dirichlet condition (34) on ∂�dh , for un+1
h . The computations for the pressure 

and the velocity are de-coupled, and the computations for the three components of the velocity are also de-coupled. All the 
terms on the right hand sides of equations (32) and (33) can be computed directly using C0 spectral elements. Note that 
the auxiliary velocity ũn+1 is not explicitly computed.

We employ equal orders of expansion polynomials to approximate the pressure and the velocity in the current spectral-
element implementation, similar to our previous works [16,17,10,12,14,18]. Note that in all the numerical simulations and 
flow tests of Section 3 we have used the same polynomial orders for the pressure and the velocity. We refer the reader to 
the equal-order approximations for the pressure/velocity by other researchers in the literature [40,68,31,41,47,46,1,50].

We finally make some comments on a possible implementation of the algorithm (20a)–(21c) with finite difference type 
discretizations. One can refer to [14] for suggestions in this regard with the open boundary condition presented therein. The 
following discussion largely follows that of [14], but with the current open boundary condition. As suggested in [14], one 
can take the divergence of equation (20a), leading to a pressure Poisson-type equation

∇2 pn+1 = ∇ ·
(

fn+1 + û

�t
− u∗,n+1 · ∇u∗,n+1

)
(35)

where equation (20b) has been used. By taking the inner product between equation (20a) and directional vector n on ∂�d
and using (20c), one attains the Neumann-type condition

∂ pn+1

∂n
= n ·

(
fn+1 + û

�t
− u∗,n+1 · ∇u∗,n+1

)
− νn · ∇ × ω∗,n+1 − γ0

�t
n · wn+1, on ∂�d. (36)

By taking the inner product between (20a) and the directional vector n on ∂�o , and combining the resulting equation with 
(20d), one can obtain the Robin-type condition

∂ pn+1

∂n
+ 1

νD0
pn+1 = n ·

(
fn+1 − u∗,n+1 · ∇u∗,n+1

)
− νn × ω∗,n+1

− 1

νD0

[
fn+1
b · n + n · E(n,u∗,n+1) − νn · ∇u∗,n+1 · n

]
, on ∂�o. (37)

One can therefore solve equation (35), together with the boundary conditions (36) and (37), for the pressure pn+1. For 
the velocity un+1, one can solve equation (29), together with the Dirichlet condition (21b) and the following Robin-type 
condition

∂un+1

∂n
+ γ0 D0

�t
un+1 = 1

ν

[
fn+1
b + E(n,u∗,n+1) + pn+1n − ν(∇ · u∗,n+1)n

]
+ D0

�t
û, on ∂�o, (38)

which stems from and is equivalent to (21c).

2.4. The case of D0 = 0 in open boundary condition

So far we have focused on the case D0 > 0 in the open boundary condition (19). In this subsection we briefly discuss 
the case D0 = 0 in the boundary condition.

As noted in Section 2.1, with D0 = 0 the boundary condition (4) is reduced to a form (so-called “OBC-C”) that is already 
studied in [18]. One can therefore employ the algorithms from [18] or [14] to treat this case. Note that the algorithm 
presented in [14] is with respect to the open boundary condition having a form corresponding to the so-called “OBC-E” 
in [18]. But the algorithm of [14] also applies to other forms of open boundary conditions given in [18].

With D0 = 0 the essential difference when compared with the scheme presented in Section 2.2 lies in that, in the 
pressure sub-step the pressure condition on the open boundary will now become of Dirichlet type rather than Robin type, 
and in the velocity sub-step the velocity condition on the open boundary will become of Neumann type rather than Robin 
type.
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We now briefly mention an algorithm for D0 = 0, as an alternative to the one presented in [14]. We discretize the 
governing equations and the boundary conditions as follows:
For pn+1:

Use equations (20a), (20b), and (20c);

pn+1 = νn · ∇u∗,n+1 · n − n · E(n,u∗,n+1) − fn+1
b · n, on ∂�o. (39a)

For un+1:
Use equations (21a) and (21b);

n · ∇un+1 = 1

ν

[
pn+1n + E(n,u∗,n+1) − ν

(
∇ · u∗,n+1

)
n + fn+1

b

]
, on ∂�o. (40a)

The difference between this algorithm and that of [14] lies in that, in the pressure sub-step of this algorithm we have 
approximated all terms at the time step (n + 1) and in the velocity sub-step no correction terms are involved. On the other 
hand, in [14] certain terms are approximated at time step (n + 1) and the other terms are approximated at step n in the 
pressure sub-step, and in the velocity sub-step several correction terms are involved as a result.

The weak forms of this algorithm can be obtained using a procedure similar to that of [14]. Let H1
p0(�) ={

v ∈ H1(�) : v|∂�o = 0
}

, and q ∈ H p0(�) denote the test function. Then the weak form for pn+1 is∫
�

∇pn+1 · ∇q =
∫
�

Gn+1 · ∇q − ν

∫
∂�d∪∂�o

n × ω∗,n+1 · ∇q

− γ0

�t

∫
∂�d

n · wn+1q, ∀q ∈ H1
p0(�), (41)

where Gn+1 is given by (26). Let H1
u0(�) = {

v ∈ H1(�) : v|∂�d = 0
}

, and ϕ ∈ H1
u0(�) denote the test function. Then the 

weak form for un+1 is

γ0

ν�t

∫
�

un+1ϕ +
∫
�

∇ϕ · ∇un+1 = 1

ν

∫
�

(
Gn+1 − ∇pn+1

)
ϕ

+ 1

ν

∫
∂�o

[
pn+1n + E(n,u∗,n+1) + fn+1

b − ν
(
∇ · u∗,n+1

)
n
]
ϕ, ∀ϕ ∈ H1

u0(�). (42)

The algorithm involves the following operations within a time step: (i) Solve equation (41), together with the pressure 
Dirichlet condition (39a) on ∂�o , for pn+1; (ii) Solve equation (42), together with the velocity Dirichlet condition (21b)
on ∂�d , for un+1. When imposing the pressure Dirichlet condition (39a) on ∂�o using C0 spectral elements (or finite 
elements), a projection of the pressure Dirichlet data to the H1(∂�o) space is required because of the velocity gradient term 
involved in the equation; see [14] for more detailed discussions in this regard. We have implemented the above algorithm, 
and the numerical experiments reported in Section 3 corresponding to D0 = 0 are performed using this algorithm.

3. Representative numerical tests

In this section we consider several flow problems with open/outflow boundaries and employ two-dimensional simu-
lations to demonstrate the effectiveness and performance of the open boundary condition and the numerical algorithm 
developed in the previous section. At large Reynolds numbers the presence of vortices and backflows at the open/outflow 
boundary makes these problems very challenging to simulate. We will look into the spatial and temporal convergence rates 
of the algorithm, and compare current simulation results with the experimental data as well as other simulations from the 
literature. The results show the effectiveness of the proposed method for dealing with the backflow instability.

3.1. Convergence rates

In this subsection we study the spatial and temporal convergence rates of the algorithm presented in Section 2.2 by 
considering an analytic solution to the Navier–Stokes equation together with the open boundary condition proposed in 
Section 2.1.

Fig. 1(a) shows the problem setting. Consider the rectangular domain AB DC defined by 0 � x � 2 and −1 � y � 1, and 
the following analytic solution to the Navier–Stokes equations, (1a) and (1b),
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Fig. 1. Spatial/temporal convergence rates: flow configuration and boundary conditions (a), and L∞ and L2 errors as a function of the element order with 
fixed �t = 0.001 (b) and as a function of �t with a fixed element order 16 (c).⎧⎪⎨

⎪⎩
u = 2 cosπ y sinπx sin t

v = −2 sinπ y cosπx sin t

p = 2 sinπ y sinπx cos t

(43)

where u = (u, v). We use a characteristic velocity scale U0 = 1 and a non-dimensional viscosity ν = 0.01 for this problem. 
The external body force f(x, t) in (1a) is chosen such that the expressions given by (43) satisfy the equation (1a). It is noted 
that the analytical solution (43) employed here has been used for the convergence tests in previous works [14,18].

To simulate the problem we discretize the domain using two equal-sized quadrilateral elements ( AB F E and E F DC ) along 
the x direction. On the sides B D , AB and AE we impose the Dirichlet condition (3), where the boundary velocity w(x, t)
is chosen according to the analytic expressions given in (43). On the sides EC and C D we impose the open boundary 
condition (4), in which we set D0 = 1.0 and δ = 1

20 and fb(x, t) is chosen such that the velocity and pressure expressions 
given by (43) satisfy the condition (4) at these boundaries.

We integrate the Navier–Stokes equations (1a)–(1b) using the scheme presented in 2.2 in time from t = 0 to t = t f
(t f to be specified below). Then we compute the errors of the numerical solution at t = t f against the analytic expression 
given in (43). The element order or the time step size �t has been varied systematically, and the errors are collected and 
monitored to study the convergence behavior of the method.

Let us first look into the spatial convergence behavior. In this group of tests we fix the time step size at �t = 0.001 and 
the integration time at t f = 0.1 (100 time steps), and then vary the element order systematically between 2 and 20. The 
numerical errors corresponding to each element order have been computed and monitored. Fig. 1(b) shows the L∞ and L2

errors of the velocity and the pressure as a function of the element order from these tests. As the element order increases 
but within order 12, all the numerical errors are observed to decrease exponentially. When the element order increases to 
12 and beyond, the error curves are observed to level off at a level ∼ 10−7 for this problem. The saturation of the total 
numerical error is because the temporal truncation error becomes dominant when the element order becomes large. These 
results demonstrate the spatial exponential convergence rate of our method.

The temporal convergence behavior of the method is demonstrated by Fig. 1(c), in which we plot the L∞ and L2 errors 
of the flow variables as a function of the time step size �t . In this group of tests the integration time is fixed at t f = 0.5, 
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Fig. 2. Comparison between current and previous methods: L2 errors of the x velocity (a) and the pressure (b) as a function of the element order obtained 
with different methods. “CL-ESOBC” denotes the current convective-like energy-stable OBC (equation (4)). “ESOBC” denotes the energy-stable open boundary 
condition OBC-C of [18], i.e. equation (4) excluding the time-derivative term.

the element order is fixed at 16, and �t is varied systematically between �t = 0.1 and �t = 0.000390625. The convergence 
appears somewhat not very regular when �t is above 0.025, especially in terms of the L∞ error norms. As �t decreases 
below 0.025, one can observe a second-order convergence rate in time for all the flow variables.

The above results suggest that for problems involving open boundaries the method presented in Section 2 exhibits an 
exponential convergence rate in space and a second-order convergence rate in time.

We next briefly compare the performance of the current method and those from [14,18]. While the algorithm of [18] is 
based on a pressure-correction strategy, both the current and the one from [14] are velocity-correction based schemes. The 
main differences between the current scheme and that of [14] have been pointed out in Section 2.2. In Fig. 2 we compare 
the L2 errors of the x velocity component (plot (a)) and the pressure (plot (b)) as a function of the element order computed 
using different methods. These tests are conducted under the same conditions and with the same parameter values as those 
of Fig. 1(b), but the open boundary condition and the numerical algorithm are changed. Using the current algorithm, we 
have acquired results with the current convective-like energy-stable open boundary condition (denoted by “CL-ESOBC” in 
plots), i.e. Equation (4), and also with the energy-stable open boundary condition OBC-C from [18] (denoted by “ESOBC” in 
plots), i.e. Equation (4) excluding the νD0

∂u
∂t term. Figs. 2(a) and (b) have also included results with the boundary condition 

OBC-C computed using the algorithms of [14,18]. It is observed that the current scheme produces errors comparable to the 
previous methods at element orders prior to the error saturation. However, as the element order becomes large the error 
saturates at a much lower level (by one or two orders of magnitude) with the current algorithm than with those of [14,18]. 
It can also be observed that the velocity-correction type schemes of the current work and [14] appear to result in generally 
lower pressure errors than the pressure-correction scheme of [18], as already pointed out by [18].

3.2. Flow past a circular cylinder

In this subsection we consider a canonical wake problem, the flow past a circular cylinder, in two dimensions to test the 
performance of our method. The goal is to demonstrate the accuracy of the method by comparison with the experimental 
data, and to demonstrate its effectiveness in dealing with the backflow instability as the Reynolds number becomes large.

This flow problem has been used in [18] to test a different set of open boundary conditions and an associated pressure 
correction-based numerical algorithm. The flow configurations employed in the current work largely follow those of [18]. 
It should be noted that the open boundary condition and the algorithm being tested here are very different from those 
of [18].

Specifically, we consider a circular cylinder of diameter d, and a rectangular domain containing the cylinder, −5d � x � L
and −10d � y � 10d, where x = L is the right domain boundary to be specified below. The center of the cylinder coincides 
with the origin of the coordinate system. Four flow domains have been considered with different wake-region sizes. They 
respectively correspond to L/d = 5, 10, 15 and 20, and are chosen in accordance with [18]. The flow domain with L/d = 10
is illustrated in Fig. 3(a).

On the top and bottom domain boundaries (y = ±10d) we assume that the flow is periodic. So the configuration in ac-
tuality corresponds to the flow past an infinite array of cylinders aligned in the y direction. On the left boundary (x = −5d) 
a uniform flow comes into the domain with a velocity u = (u, v) = (U0, 0), where U0 = 1 is the characteristic velocity scale. 
The right domain boundary (x = L) is assumed to be open, where the fluid can freely move out of the domain and backflow 
may occur depending on the flow regime and the domain size.
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Fig. 3. Cylinder flow: spectral element mesh (a), and contours of vorticity at Reynolds numbers Re = 30 (b) and Re = 200 (c). Dashed curves in (b) and (c) 
indicate negative vorticity values.

In order to simulate the problem, we discretize the domain using a mesh of quadrilateral spectral elements. Fig. 3(a) 
shows the spectral element mesh for the domain with L = 10d, involving 1228 quadrilateral elements. The meshes for the 
domain sizes L/d = 15 and 20 are generated based on the mesh in Fig. 3(a), by duplicating the elements from the region 
5d � x � 10d of Fig. 3(a) and appending copies of them to the region x � 10d. The mesh for the domain L = 5d is generated 
by pruning the elements in the region 5d � x � 10d from Fig. 3(a). The meshes for these three other domains respectively 
contain 968, 1488 and 1748 quadrilateral elements.

In simulations we impose the periodic condition at y/d = ±10, and the velocity Dirichlet condition (3) at the inflow 
boundary x = −5d with a boundary velocity w = (U0, 0). On the cylinder surface a velocity no-slip condition is imposed, i.e. 
the Dirichlet condition (3) with w = 0. At the open (outflow) boundary x = L we impose the open boundary condition (4)
with fb = 0 and δ = 1

100 .
We employ the algorithm developed in Section 2 to solve the incompressible Navier–Stokes equations. All the length 

variables are normalized by the cylinder diameter d and the velocity is normalized by U0. So the Reynolds number for this 
problem is defined by

Re = 1

ν
= U0d

ν f
(44)

where ν f is the kinematic viscosity of the fluid. A range of Reynolds numbers (up to Re = 10 000) has been considered. 
We use an element order 6 for Reynolds numbers below 100, and an element order 8 for higher Reynolds numbers. For 
selected Reynolds numbers we have also performed simulations with even larger element orders (up to 12), and we observe 
that the difference in the results when compared with the element order 8 is small. The non-dimensional time step size is 
U0�t/d = 10−3 for Reynolds numbers below 100 and U0�t/d = 2.5 ×10−4 for higher Reynolds numbers in the simulations.

As discussed in Section 2, the analogy between the open boundary condition (11) and the convective boundary condi-
tion (12) suggests that 1

D0
represents a convection velocity. For the majority of simulations in this section we employ the 

average velocity at the outflow boundary, U0, as this convection velocity and set D0 = 1
U0

in the open boundary condi-
tion (4). This is the default D0 value for the results reported in this section. For several selected Reynolds numbers we have 
also investigated the effects of D0 on the simulation results. Results corresponding to the other D0 values will be explicitly 
specified.

The cylinder wake can be classified into several regimes, exhibiting a variety of flow features. These have been expounded 
in the review paper [72]. For Reynolds numbers below about Re = 47 the cylinder flow is two-dimensional and at a steady 
state. As the Reynolds number increases beyond this value, the cylinder wake becomes unsteady and is characterized by vor-
tex sheddings. It remains two-dimensional for Reynolds numbers up to about Re = 180. As the Reynolds number increases 
beyond Re ≈ 180, the cylinder wake develops an instability and the physical flow becomes three-dimensional. More compli-
cated flow features and turbulence develop in the cylinder wake when the Reynolds number increases further. In Figs. 3(b) 
and (c) we plot contours of the instantaneous vorticity obtained on the domain L/d = 10 at Reynolds numbers Re = 30 and 
Re = 200, respectively. The results show a steady-state flow at Re = 30 and regular vortex sheddings at Re = 200.

We have computed and monitored the forces acting on the circular cylinder. In Fig. 4 we show a window of the time 
histories of the lift (i.e. the force component in the cross-flow y direction) at Reynolds numbers Re = 60 and 500. The force 
signals exhibit quite regular fluctuations about a zero mean value at these Reynolds numbers.

Global flow parameters can be determined based on these force data. In Table 1 we have listed several flow param-
eters for two Reynolds numbers Re = 20 and 100 obtained on different flow domains. They include: the drag coefficient 
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Fig. 4. Cylinder flow: time histories of the lift force on the cylinder at Reynolds numbers (a) Re = 60 and (b) Re = 500. Results are obtained with D0 = 1
U0

in the open boundary condition.

Table 1
Cylinder flow: effect of the domain size on the global flow parameters. Cd: drag coefficient 
or time-averaged mean drag coefficient; C ′

d: rms drag coefficient; CL : rms lift coefficient.

Reynolds number Domain Cd C ′
d CL

20 L/d = 5 2.294 0 0
L/d = 10 2.317 0 0
L/d = 15 2.317 0 0
L/d = 20 2.317 0 0

100 L/d = 5 1.441 8.491E−3 0.261
L/d = 10 1.459 7.631E−3 0.254
L/d = 15 1.462 7.700E−3 0.253
L/d = 20 1.462 7.714E−3 0.253

Cd = f x
1
2 ρU 2

0
, where f x is the time averaged drag (i.e. force component in x direction) and ρ = 1 is the fluid density; the 

root-mean-square (rms) drag coefficient C ′
d = f ′

x
1
2 ρU 2

0
, where f ′

x is the rms drag; and the rms lift coefficient CL = f ′
y

1
2 ρU 2

0
, where 

f ′
y is the rms lift. These data indicate that the size of the wake region has an influence on the simulation results, and that 

as the wake region becomes sufficiently large the flow parameters computed from the simulations remain essentially un-
changed as the domain size further increases. It can be observed that the flow domain L/d = 10 is very close to the point 
where further increase in the domain size no longer results in significant changes in the results. In light of this observation, 
our subsequent discussions will be mainly based on the results obtained on the domain L/d = 10.

To demonstrate the accuracy of the method, we compare the force parameters computed from the current simulations 
with those from the experimental measurements and from other simulations in the literature. In Fig. 5(a) we plot the drag 
coefficient (Cd) as a function of Reynolds number from the current simulations, from a number of experiments [71,9,21,
69,61], and from the simulations of [48,13,18]. Note that the simulations in [18] and in the current work are both two-
dimensional, while those of [48,13,15] are three-dimensional. The current results correspond to the domain size L/d = 10
and D0 = 1

U0
in the open boundary condition (4). They agree with those of [18] very well. Note that both the numerical 

algorithm and the outflow boundary condition in the current work are different from those of [18]. In the two-dimensional 
regime the current results also agree well with the experimental data. But for Reynolds numbers where the physical flow 
has become three-dimensional (beyond about Re = 180), the current two-dimensional simulations result in overly large drag 
coefficients compared to the experiments, and the discrepancy grows with increasing Reynolds number.

Fig. 5(b) is a comparison of the rms lift coefficient CL as a function of the Reynolds number between current simu-
lations, the experiment of [53], and the simulations of [18]. The curves show the empirical relation given by [53] based 
on several experimental sources, which exhibits a hysteresis around the Reynolds numbers where the two-dimensional to 
three-dimensional flow transition occurs. The lift coefficients from the current simulations and from [18] agree with each 
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Fig. 5. Cylinder flow: comparison of (a) drag coefficient and (b) rms lift coefficient versus Reynolds number between the current simulations, the experi-
mental data, and the simulation results of [18].

Table 2
Cylinder flow: comparison of rms lift coefficients at Re = 100 and Re = 200
between current simulations and other simulations from literature.

Reference Re = 100 Re = 200

Braza et al. (1986) [5] 0.21 0.55
Engelman & Jamnia (1990) [19] 0.26 –
Meneghini & Bearman (1993) [49] – 0.54
Beaudan & Moin (1994) [2] 0.24 –
Zhang et al. (1995) [73] 0.25 0.53
Tang & Audry (1997) [66] 0.21 0.45
Persillon & Braza (1998) [58] 0.27 0.56
Zhang & Dalton (1998) [74] – 0.48
Kravchenko et al. (1999) [43] 0.22 –
Hwang & Lin (1992) [35] 0.27 0.42
Franke et al. (1990) [24] – 0.46
Karniadakis (1988) [39] – 0.48
Newman & Karniadakis (1995) [51] – 0.51
Newman & Karniadakis (1996) [52] 0.24 –
Dong & Shen (2010) [16] – 0.501
Dong & Shen (2015) [18] 0.254 0.527
Current simulation (domain L/d = 10) 0.254 0.526
Current simulation (domain L/d = 20) 0.253 –

other almost exactly. In the two-dimensional regime the current results agree with the empirical relation from [53] reason-
ably well. In the three-dimensional regime, however, the current two-dimensional simulations grossly over-predict the lift 
coefficient, which is a well-known phenomenon about two-dimensional simulations (see e.g. [13,15]).

In Table 2 we have summarized the rms lift coefficients (CL ) for Reynolds numbers Re = 100 and 200 from a number 
of two-dimensional simulations in the literature. We have also listed the CL values on flow domains with L/d = 10 and 20
from the current simulations for comparison; see Table 1 for CL values on the other domains at Re = 100. One can observe 
a spread in the CL values from different simulations. The lift coefficients from the current work are well within the range 
of values from the literature.

Let us next look into the effectiveness of the open boundary condition and the algorithm from Section 2 for dealing 
with the backflow instability. We will consider the cylinder flow at higher Reynolds numbers, ranging from Re = 2000 to 
Re = 10 000. At these Reynolds numbers energetic vortices are observed to pass through the outflow boundary and induce 
strong backflows in that region. This creates a severe instability issue, and makes the simulation immensely challenging.

Thanks to the energy stability, the current open boundary condition provides an effective way for overcoming this insta-
bility. In Fig. 6 we show distributions of the instantaneous velocity at three Reynolds numbers Re = 2000, 5000 and 10 000. 
The results are obtained on the domain L/d = 10, with D0 = 1

U0
in the open boundary condition (4). Energetic vortices can 

be clearly observed at the open boundary (see e.g. Fig. 6(c)).
We have performed long-time simulations at these Reynolds numbers using the current method. The long-term stability 

of the simulations is demonstrated by Fig. 7, in which we show a window of the time histories (over 30 flow-through time) 
of the lift force on the cylinder at Reynolds numbers Re = 2000 and Re = 10 000 obtained on the domain L/d = 10. At 
Re = 2000 the lift signal exhibits a modulation in its amplitude. At Re = 10 000 the fluctuation becomes quite chaotic and 
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Fig. 6. Cylinder flow: snapshots of instantaneous velocity fields at Reynolds numbers (a) Re = 2000, (b) Re = 5000, and (c) Re = 10 000. Velocity vectors are 
plotted on every fifth quadrature points in each direction within each element.

the vortex-shedding frequency appears to vary over time. These results show that simulations using the current method are 
long-term stable in the presence of strong vortices and backflows at the outflow/open boundaries.

In contrast, the boundary condition (10) is observed to be unstable at these Reynolds numbers considered here. The 
computation instantly blows up as the vortices hit the outflow/open boundary.

We observe that the open boundary condition developed herein allows the vortices to discharge from the domain in a 
fairly natural fashion, even at quite high Reynolds numbers. This is illustrated by Fig. 8, in which a temporal sequence of 
snapshots of the velocity fields at Re = 10 000 have been shown. These velocity fields illustrate the process in which the 
vortex originally located near the outflow boundary and the wake centerline in Fig. 8(a) is discharged from the domain 
through the outflow boundary. These results are obtained using the open boundary condition (4) with D0 = 1

U0
. As the 

vortex core crosses the outflow boundary (Fig. 8(b)), one can observe a region of backflows (Figs. 8(b)–(c)). Some distortion 
to the vortex can be observed, especially after the vortex core passes through the outflow boundary (Fig. 8(d)). Overall, the 
current method appears to allow the vortex to cross the outflow boundary and exit the domain in an approximately natural 
way (Figs. 8(b)–(h)) even at such a substantial Reynolds number.

Let us next look into the effects of the D0 value in the open boundary condition (4) on the simulation results. By an 
analogy between the current open boundary condition and the usual convective boundary condition (12), we observe that 

1
D0

should correspond to a convection velocity scale Uc at the outflow boundary, i.e. 1
D0

= Uc , as is discussed in Section 2. 
The simulation results for the cylinder flow presented so far are obtained with a value 1

D0
= Uc = U0, where U0 is the 

average velocity at the outflow boundary.
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Fig. 7. Time histories of the lift force on the cylinder at Reynolds numbers (a) Re = 2000, and (b) Re = 10 000.

We have observed that the variation in the D0 value in the open boundary condition (4) has little or essentially no effect 
on the global physical quantities such as the forces on the cylinder. This is illustrated in Fig. 9 with the time histories of the 
drag at Reynolds number Re = 10 000 corresponding to two values D0U0 = 0 (or Uc = ∞) and D0U0 = 1 (or Uc = U0) in 
the open boundary condition (4). The two drag signals exhibit qualitatively similar characteristics. A quantitative comparison 
of the global physical quantities corresponding to several D0 values is given in Table 3. The table includes the data for 
the mean drag coefficient (Cd), rms drag coefficient (C ′

d), and the rms lift coefficient (CL ) for Reynolds numbers Re =
20, 100 and 10 000 on the flow domain with L = 10d. We have considered several D0 values in these tests, corresponding to 
D0U0 = 0, 0.5, 1, 2 and 5, or equivalently Uc = ∞, 2U0, U0, U0

2 and U0
5 . One can observe that at Re = 20 and Re = 100 these 

global physical quantities obtained using these several D0 values are exactly or almost exactly the same. At Re = 10 000, 
they are also close for different D0 values, with a maximum difference of about 2.7% for Cd , about 6.7% for C ′

d , and about 
2.1% for CL . These results suggest that the value of D0 in the open boundary condition (4) has little effect quantitatively on 
the physical quantities of the flow.

The main effect of D0 appears to be on the qualitative features of the flow, such as the smoothness of the velocity 
field, and on the velocity derivatives in regions local to the outflow boundary. We observe that the current open boundary 
condition (4) with appropriate D0 > 0 result in smoother velocity distributions at the outflow boundary and can allow 
the vortices to cross the outflow boundary more smoothly and in a more natural way when compared to the boundary 
condition with D0 = 0, which corresponds exactly to the boundary condition OBC-C studied in [18]. To demonstrate this 
point, we show in Fig. 10 a temporal sequence of snapshots of the instantaneous vorticity covering approximately one period 
of vortex shedding at Reynolds number Re = 100, obtained with D0 = 0 in the open boundary condition. For comparison, 
Fig. 11 shows another temporal sequence of snapshots of the instantaneous vorticity at Re = 100 obtained using D0 = 1

U0
in 

the open boundary condition. Note that at this Reynolds number no backflow occurs at the outflow boundary, and therefore 
the term involving �0 in the boundary condition (4) disappears and has no effect. With D0 = 0, as the vortex passes 
through the outflow boundary, one can observe a more pronounced distortion to the vorticity contours in regions near the 
boundary; see e.g. Figs. 10(b)–(d), and 10(h)–(j). In contrast, with D0 = 1

U0
, the vortices appear to exit the domain in a more 

natural fashion and there appears to be notably less distortion to the vorticity contours as the vortex passes through the 
outflow boundary; see e.g. Figs. 11(b)–(d), and 11(h)–(j). The vorticity patterns at Re = 100 resulting from other D0 values 
have also been studied. It is observed that the results with D0U0 = 0.5 (i.e. Uc = 2U0) and D0U0 = 2 (i.e. Uc = U0

2 ) are 
comparable to, but slightly worse than, that with D0 = 1

U0
in terms of the distortion to the vorticity patterns as the vortex 

crosses the outflow boundary. The result with D0U0 = 5 (i.e. Uc = U0/5) is comparable to, but appears somewhat worse 
than, that with D0 = 0 (i.e. Uc = ∞).

To provide a quantitative sense of how D0 affects the flow field at the outflow boundary, we look into the integrals of 
the energy and the vorticity-squared over several cross-stream planes at or near the outflow boundary,

E g(t) =
∫

1

2
|u|2dA, �(t) =

∫
|ω|2dA (45)
A A
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Fig. 8. Discharge of vortices away from domain (Re = 10 000): temporal sequence of snapshots of velocity fields at (a) t = 6912.5, (b) t = 6913, (c) t =
6913.25, (d) t = 6913.5, (e) t = 6914, (f) t = 6914.5, (g) t = 6915, (h) t = 6915.5. Velocity vectors are plotted on every fifth quadrature points in each 
direction within each element. D0 = 1

U0
in the open boundary condition.

where ω is the vorticity, and A represents some cross-stream plane (i.e. fixed x coordinate). We consider three cross-stream 
planes: the outflow plane (x = 10d), and two nearby interior planes located at x = 9d and 9.5d. It is expected that E g(t) and 
�(t) would decay along the downstream direction due to viscous dissipation, and that at the outflow plane these quantities 
would be close to at the nearby interior planes if Re is not too small. Fig. 12 shows a window of the time histories of E g(t)
at the outflow plane and the interior plane x = 9d for Re = 100, corresponding to the open boundary condition with D0 = 0
(Figs. 12(a)–(b)) and D0 = 1

U0
(Figs. 12(c)–(d)). The energy integral is observed to fluctuate in time, and the fluctuation 

amplitude at the outflow plane is comparable but a little smaller than at the interior plane x = 9d. The results with D0 = 0
and D0 = 1 appear very close to each other at both planes.
U0



318 S. Dong / Journal of Computational Physics 302 (2015) 300–328
Fig. 9. Time histories of the drag on the cylinder at Re = 10 000 obtained using different D0 values in OBC: (a) D0 = 0, and (b) D0 = 1
U0

.

Table 3
Effect of D0 in OBC on global flow parameters: drag and lift coefficients for cylinder 
flow obtained with different D0 values. Cd : drag coefficient or time-averaged mean 
drag coefficient; C ′

d : root-mean-square (rms) drag coefficient; CL : rms lift coefficient.

Reynolds number D0U0 Cd C ′
d CL

20 0.0 2.317 0.0 0.0
0.5 2.317 0.0 0.0
1.0 2.317 0.0 0.0
2.0 2.317 0.0 0.0
5.0 2.317 0.0 0.0

100 0.0 1.459 7.627E−3 0.254
0.5 1.459 7.630E−3 0.254
1.0 1.459 7.631E−3 0.254
2.0 1.459 7.639E−3 0.254
5.0 1.459 7.656E−3 0.254

10 000 0.0 1.862 0.449 1.483
0.5 1.881 0.421 1.506
1.0 1.843 0.442 1.474
2.0 1.893 0.432 1.504
5.0 1.858 0.446 1.474

The vorticity-squared integral (or enstrophy) �(t), on the other hand, exhibits dramatic differences. Fig. 13 shows a 
window of time histories of �(t) at the outflow plane and the interior plane x = 9d corresponding to D0 = 0 and D0 = 1

U0
in the open boundary condition. Comparison between Figs. 13(a) and (c) indicates that at the plane x = 9d the vorticity 
characteristics obtained with D0 = 0 and D0 = 1

U0
are comparable. However, at the outflow plane the results are significantly 

different with D0 = 0 and D0 = 1
U0

, as shown by Figs. 13(b) and (d). The vorticity at the outflow plane resulting from D0 = 0

is substantially smaller in amplitude than that from D0 = 1
U0

. Comparison between Figs. 13(a) and (b) shows a drastic decay 
in the vorticity between the plane x = 9d and the outflow plane x = 10d when using the open boundary condition with 
D0 = 0. One can also observe a decay in the vorticity with D0 = 1

U0
, but it is much less substantial.

The drastic difference in enstrophy between the outflow plane and the nearby interior plane with D0 = 0 is artificial, not 
due to the natural decay along the downstream direction associated with the viscous dissipation. To demonstrate this point, 
we compute the time-averaged mean and the root-mean-square (rms) of the signal �(t), and denote them respectively by �
and � ′ . Table 4 summarizes these quantities at the outflow plane x = 10d and two nearby interior planes x = 9d and 9.5d
obtained with several D0 values in the outflow boundary condition. At the two interior planes x = 9d and x = 9.5d, the 
mean and rms of �(t) resulting from different D0 values are comparable, and a slight decay in these quantities can be 
observed from plane x = 9d to plane x = 9.5d. At the outflow plane, however, the mean and rms values of �(t) are very 
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Fig. 10. Cylinder flow at Re = 100: temporal sequence of snapshots of instantaneous vorticity at (a) t = 3939, (b) t = 3939.5, (c) t = 3940, (d) t = 3940.5, 
(e) t = 3941, (f) t = 3941.5, (g) t = 3942, (h) t = 3942.5, (i) t = 3943, (j) t = 3943.5, (k) t = 3944, (l) t = 3944.5. Results are obtained using D0 = 0 in the 
open boundary condition. Dashed curves denote negative vorticity values.

different with different D0 values. The boundary condition with D0 = 0 results in a dramatic decay in the mean and rms 
values of �(t) at the outflow plane. Comparison with the values in planes x = 9d and 9.5d suggests that this decrease at 
the outflow plane is too substantial to be natural. With larger D0 values the mean and rms of �(t) at the outflow boundary 
increases, and with D0 = 1

U0
the results at the outflow plane have been significantly improved when compared with the 

values at the interior planes x = 9d and 9.5d. When D0 increases further to D0U0 = 2 and D0U0 = 5 the vorticity at the 
outflow plane becomes worse again, in the sense that the mean and rms of �(t) become significantly larger than those at 
the interior planes x = 9d and 9.5d.

The above results suggest that the D0 value in the open boundary condition modifies the vorticity (and the velocity 
derivatives in general) in a region near the outflow boundary. One should choose 1

D0
in accordance with the convection 

velocity scale of the vortices at the outflow boundary, which for the current problem is close to U0, in order to improve 
the characteristics of the computed flow near the outflow boundary. A larger deviation of the chosen 1

D0
value from the 

actual vortex-convection velocity at the outflow boundary may lead to qualitatively poorer flow patterns near the outflow 
boundary. The value D0 = 0 in general flow situations may not be the most favorable for the open boundary condition and 
can lead to poor flow characteristics near the outflow boundary.

The observation that a non-zero D0 value in the current open boundary condition can result in improved flow patterns 
at the outflow boundary, when compared to D0 = 0, may be understood in part based on the energy balance relation from 
Section 2. Let us assume that there is no external body force (f = 0) and that u = 0 on ∂�d for simplicity. As discussed 
in Section 2, the quantity 

(∫
�

1
2 |u|2 + νD0

∫
∂�o

1
2 |u|2

)
will not grow over time (at the continuum level) when the current 

open boundary condition with D0 > 0 is imposed on ∂�o , according to the energy balance relation (9). This provides some 
control over the velocity u on the outflow boundary ∂�o . On the other hand, if D0 = 0, the energy balance only ensures that ∫
�

1
2 |u|2 does not increase over time, and the control over the velocity u on the outflow boundary ∂�o is lost. Consequently, 

the velocity u can in principle take arbitrary values on ∂�o , which still comply with the energy balance. This may result in 
poor flow patterns at the outflow boundary.

Finally we make some comments concerning the size of the computational domains. Thanks to the energy-stable nature 
of the current open boundary condition, domains with arbitrarily small downstream length can be used in computations in 
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Fig. 11. Cylinder flow at Re = 100: temporal sequence of snapshots of instantaneous vorticity at (a) t = 2867.5, (b) t = 2868, (c) t = 2868.5, (d) t = 2869, 
(e) t = 2869.5, (f) t = 2870, (g) t = 2870.5, (h) t = 2871, (i) t = 2871.5, (j) t = 2872, (k) t = 2872.5, (l) t = 2873. Results are obtained using D0 = 1

U0
in the 

open boundary condition. Dashed curves denote negative vorticity values.

principle, and stable simulation results can be obtained. A smaller computational domain can be advantageous from the cost 
perspective, especially for situations with large Reynolds numbers. On the other hand, one should caution that an overly 
small computational domain can be too restrictive, so much that the main flow characteristics may be significantly modified 
and therefore may not be acceptable from the accuracy perspective. We use Fig. 14 for illustration of these points. Here we 
consider a computational domain for the cylinder flow with a very small downstream length L/d = 3, while in the other 
directions the domain dimensions are the same as in previous tests. Numerical experiments are performed on this domain at 
Reynolds numbers ranging from Re = 100 to Re = 10 000 using the current open boundary condition with D0 = 1

U0
. Stable 

simulation results have been attained for all the Reynolds numbers, but the overly restrictive downstream length makes 
them significantly different from those obtained on larger domains. We observe that the flow field evolves into a steady state 
for Reynolds numbers below about Re = 1000, while at larger Reynolds numbers it is unsteady with vortex shedding. Fig. 14
shows the instantaneous velocity fields and the drag/lift histories at Re = 500 and Re = 10 000. One can compare Fig. 14(c) 
and Fig. 4(b) to discern that the domain L = 3d has completely changed the flow characteristics for Re = 500. A comparison 
between Fig. 14(d) and Fig. 9(b) indicates that the mean drag level obtained on the domain L = 3d is noticeably different 
from that from the larger domain for Re = 10 000. The importance of the current open boundary condition (and also those 
from [14,18]) lies in that they relieve the user of the concern of backflow instability at the outflow/open boundary. Therefore, 
one can focus solely on other considerations such as the physical accuracy when conducting the simulations.

3.3. Jet in open domain

In this subsection we apply the current method to simulate a jet in an open domain. This is a type of flow different 
from that of the previous subsection. The open domain boundaries combined with the physical instability of the jet at 
large Reynolds numbers make this type of flows very challenging to simulate. We will again consider two-dimensional 
simulations.

Fig. 15 is a sketch of the flow configuration. We consider a jet with an inlet diameter d, which is contained in a rect-
angular domain, −2.5d � x � 2.5d and 0 � y � 7.5d. The bottom of the domain (y = 0) is a solid wall, and the jet inlet is 
located in the middle of the wall, covering −0.5d � x � 0.5d. The other three boundaries (top, left and right) of the domain 
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Fig. 12. Cylinder flow (Re = 100): evolution of the energy integral E g(t) over a cross-stream plane at x = 9d (plots (a) and (c)) and at the outflow boundary 
x = 10d (plots (b) and (d)). Results of (a) and (b) are obtained using the open boundary condition with D0 = 0, and those of (c) and (d) correspond to 
D0 = 1

U0
.

are open, where the fluid can freely leave or enter the domain. We assume that the jet velocity at the inlet has the following 
profile⎧⎪⎨

⎪⎩
u = 0

v = U0

[
(H(x,0) − H(x,d/2)) tanh

1 − 2x
d√

2ε
+ (H(x,−d/2) − H(x,0)) tanh

1 + 2x
d√

2ε

]
(46)

where (u, v) are components of the velocity u in x and y directions, U0 is a velocity scale, and ε = d
40 . H(x, a) is the 

Heaviside step function, assuming a unit value if x � a and vanishing otherwise. Note that with this profile the inlet flow 
has a bulk velocity U0. We assume that there is no external body force for this problem.

We normalize all the length variables by the jet inlet diameter d, and all the velocity variables by U0. The Reynolds 
number is therefore given by equation (44), in which d and U0 have meanings particular to this problem.

The domain has been discretized using 600 equal-sized quadrilateral spectral elements, with 20 elements in the x direc-
tion and 30 elements in the y direction. We impose the velocity Dirichlet condition (3) on the bottom side of the domain, 
with the boundary velocity w(x, t) = 0 in the wall region and set according to equation (46) in the jet inlet. On the top, 
left and right sides of the domain we impose the open boundary condition (4) with fb = 0 and δ = 1

100 . The majority of 
simulations in this subsection are performed using D0 = 1

U0
in the open boundary condition. Several other D0 values have 

also been considered in selected cases for comparison.
We integrate the Navier–Stokes equations (1a)–(1b) in time using the algorithm described in Section 2. Long-time sim-

ulations have been performed at three Reynolds numbers: Re = 2000, 5000 and 10 000. In the simulations we employ an 
element order 12 for each element at the two lower Reynolds numbers, and an element order 16 for each element at 
Re = 10 000. The non-dimensional time step size is U0�t

d = 2.5 × 10−4 for Re = 2000 and 5000, and U0�t
d = 2.0 × 10−4 for 

Re = 10 000.
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Fig. 13. Cylinder flow (Re = 100): evolution of the vorticity-squared integral �(t) over a cross-stream plane at x = 9d (plots (a) and (c)) and the outflow 
plane x = 10d (plots (b) and (d)). Results in (a) and (b) are obtained using the open boundary condition with D0 = 0, and those of (c) and (d) correspond 
to D0 = 1

U0
.

Table 4
Cylinder flow (Re = 100): mean (�) and rms (� ′) of the vorticity-squared integral �(t) on the outflow plane (x = 10d) and two cross-stream planes near 
the outflow boundary (x = 9d and 9.5d) corresponding to the open boundary condition with different D0 values.

D0U0 0.0 0.5 1.0 2.0 5.0

Plane x = 9d � 0.957 0.956 0.956 0.957 0.957
� ′ 1.104 1.104 1.104 1.104 1.104

Plane x = 9.5d � 0.946 0.940 0.934 0.923 0.895
� ′ 1.033 1.027 1.021 1.010 0.984

Outflow plane (x = 10d) � 0.210 0.390 0.724 1.857 8.929
� ′ 0.119 0.346 0.728 1.956 9.261

The flow characteristics are illustrated by snapshots of the instantaneous velocity shown in Fig. 16 at these Reynolds 
numbers. These results are obtained using D0 = 1

U0
in the open boundary condition (4). At Re = 2000, the jet appears to 

be stable within a distance of at least 3d downstream of the inlet (Fig. 16(a)). Beyond this region, the jet becomes unstable 
and a pair of vortices forms, which travels downstream along with the jet and eventually crosses the upper open boundary 
and exits the domain. The velocity field appears symmetric with respect to the jet centerline at this Reynolds number. 
As the Reynolds number increases to Re = 5000, the stable region immediately downstream of the inlet becomes shorter 
(approximately 2d, see Fig. 16(b)), and the velocity distribution has lost the symmetry with respect to the jet centerline. 
Pairs of vortices can be observed to form, wrapping around the jet at different downstream locations. At Re = 10 000, the
stable region downstream of the inlet becomes even shorter (about d), and the vortices forming along the jet are notably 
more numerous (Fig. 16(c)).

The jet simulations using the current method are long-term stable, even in the presence of backflows or vortices (see 
e.g. Fig. 16(c)) at the open domain boundaries. This is demonstrated by Fig. 17, in which we show a window of the time 
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Fig. 14. Cylinder flow on domain with very small wake region length L/d = 3. (a) and (b): instantaneous velocity fields. (c) and (d): time histories of drag 
and lift. (a) and (c) are for Re = 500, and (b) and (d) are for Re = 10 000. Velocity vectors are plotted on every fifth quadrature points in each direction 
within each element. D0 = 1

U0
in the open boundary condition.

Fig. 15. Configuration of jet in an open domain.
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Fig. 16. Jet in open domain: snapshots of instantaneous velocity fields at (a) Re = 2000, (b) Re = 5000, and (c) Re = 10 000. Velocity vectors are plotted on 
every ninth quadrature points in each direction within each element. Results are obtained with D0 = 1

U0
in the open boundary condition.

histories of the vertical force acting on the bottom wall for these three Reynolds numbers. Note that the horizontal force 
(x component) on the wall is essentially zero. These results again correspond to D0 = 1

U0
in the open boundary condition (4). 

One can observe that the force signals are highly unsteady, and the fluctuations appear more energetic and chaotic with 
increasing Reynolds numbers (Fig. 17(c)). The large temporal window shown here, over 500 d

U0
or approximately 67 flow 

through times, signifies the long-term stability of our simulations.
The term containing �0(n, u) in the open boundary condition (4) is critical to the stability of the current simulations. 

For comparison, we have also employed the boundary condition (10) on the open boundaries for simulations of the current 
problem, and observe that the computation is unstable for all the Reynolds numbers considered here. The simulations blow 
up instantly as the vortices reach the open boundaries.

The results shown so far have been obtained using D0 = 1
U0

in the open boundary condition (4). We next concentrate on 
the Reynolds number Re = 5000, and look into the effect of D0 on the simulation results. We have considered several D0
values in the open boundary condition: D0U0 = 0, 0.5, 1.0, and 2.0. Fig. 18 shows time histories of the vertical force on the 
wall at Re = 5000 obtained using D0 = 0 and D0 = 1

U0/2 in the open boundary condition (4). These plots can be compared 
with Fig. 17(b), which corresponds to D0 = 1

U0
at the same Reynolds number. These force signals appear qualitatively similar.

To provide a quantitative comparison, we have listed in Table 5 the time-averaged mean and rms forces acting on the 
wall corresponding to different D0 values in the open boundary condition. The mean force in the horizontal direction 
( f x) is essentially zero for all cases. Both the mean and rms forces in the vertical direction obtained using different D0
values are close, with a maximum difference of about 6.6% for the mean vertical force and a maximum difference of about 
9.5% for the rms vertical force. The D0 effect on the global flow quantities (such as forces) observed here for the jet flow 
is approximately in line with the observations for the cylinder flow in Section 3.2. But the differences observed for this 
problem appear slightly larger.

4. Concluding remarks

The main contributions of the current paper are two-fold:

• We have presented a new type of energy-stable open boundary condition for incompressible flow simulations. This 
boundary condition ensures the energy stability of the system, and in some sense can be analogized to the usual 
convective boundary condition. The current open boundary condition can be reduced to that of [18] if the inertia term 
involved herein vanishes (by setting D0 = 0). Note that the current boundary condition can be generalized to a family of 
convective-like energy-stable open boundary conditions with an idea similar to that employed in [18]; see the remarks 
in Section 2.1.

• We have presented an efficient numerical algorithm for the proposed open boundary condition. The key issue here 
lies in the numerical treatment of the inertia term involved in the current open boundary condition. Our algorithm 
combines a rotational velocity-correction type splitting strategy for the Navier–Stokes equations with two different 
implicit approximations of the inertia term in the open boundary condition for the pressure and velocity sub-steps. The 
algorithm leads to Robin-type conditions for both the discrete pressure and the discrete velocity on the outflow/open 
boundary.
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Fig. 17. Jet in open domain: time histories of the vertical force component exerting on the wall at Reynolds numbers (a) Re = 2000, (b) Re = 5000, and 
(c) Re = 10 000. Results correspond to D0 = 1

U0
in the open boundary condition.

We would like to point out that the open boundary condition proposed herein can be considered as the energy-stable 
version of a combined traction-free and convective boundary condition (see equation (10)). As discussed in Section 2.1, this 
condition will be reduced to the traction-free condition if the inertia term vanishes (i.e. D0 = 0), and if p = 0 is imposed on 
the outflow boundary it will be reduced essentially to the usual convective boundary condition.

The method developed in the current work for dealing with outflow/open boundaries exhibits favorable properties when 
compared with those of [14,18] in at least two aspects. First, it can lead to qualitatively smoother flow patterns at or 
near the outflow boundary, because the current boundary condition (when D0 > 0) provides a control over the velocity 
on the outflow boundary. This has been demonstrated by the numerical simulations of Section 3. Second, it provides a 
simpler implementation (with D0 > 0) with C0 spectral-element and finite-element type methods. This is because the 
current method essentially imposes a discrete Robin-type condition for both the velocity and the pressure on the outflow 
boundary, and requires only an update to the coefficient matrix by a surface integral in the implementation. In contrast, 
with the methods of [14,18] a pressure Dirichlet type condition is imposed on the outflow boundary, and a projection to 
the H1(∂�o) space of the pressure Dirichlet data will be required with C0 elements in the implementation. This projection 
is more involved than the evaluation of the surface integral required by the current method.

On the other hand, certain aspects of the method can and remain to be improved. The convective-like energy-stable 
open boundary condition developed here is more complicated in form, due to the inertia term, compared to the boundary 
conditions from [14,18]. The Robin-type conditions for the discrete pressure and velocity on the outflow boundary, which 
arise from the implicit treatment of this inertia term, may complicate the implementation and present an issue for certain 
types of spatial discretization methods.
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Fig. 18. Jet in open domain (Re = 5000): time histories of the vertical force component obtained with different D0 values in OBC: (a) D0U0 = 0 and 
(b) D0U0 = 2.0. These can be compared with Fig. 17(b), which corresponds to D0U0 = 1.0 at the same Reynolds number.

Table 5
Mean and rms forces on the wall for the jet problem at Re = 5000 obtained 
using different D0 values in OBC. f x and f y denote the time-averaged 
mean forces in horizontal and vertical directions, respectively. f ′

y is the rms 
force in the vertical direction.

D0U0 f x f y f ′
y

0.0 −1.621E−6 2.891E−3 6.065E−3
0.5 1.203E−6 2.864E−3 5.713E−3
1.0 −9.599E−7 2.729E−3 5.549E−3
2.0 2.829E−7 2.910E−3 5.541E−3

The effectiveness of the current method has been demonstrated by extensive numerical simulations. Comparison with 
the experimental data shows the accuracy of the current method. At higher Reynolds numbers when backflows and strong 
vortices occur at the outflow/open boundaries, numerical results have demonstrated the long-term stability using the current 
method. It is observed that the method allows the vortices to discharge from the domain in a fairly natural fashion, even at 
quite high Reynolds numbers (up to Re = 10 000 tested here). We would like to point out that the flow tests presented here 
are in two dimensions. The method remains to be tested with three-dimensional turbulent flows.

The several forms of convective-like energy-stable open boundary conditions mentioned in Section 2.1 have a correspon-
dence to those boundary conditions developed in [18]. If D0 = 0 these several forms will reduce to those of [18]. In [18]
the different forms of boundary conditions have been studied closely, and it is observed that the form “OBC-C” appears to 
be the most favorable among them. Note that the convective-like energy-stable open boundary condition proposed here, 
equation (4), reduces to the condition OBC-C of [18] if D0 = 0. In light of the study and observations of [18], we expect 
that the boundary condition given by (4) will be more favorable than the other forms of convective-like energy-stable open 
boundary conditions from Section 2.1.

We anticipate that the presented method will be instrumental in numerical studies of wakes, jets, shear layers, and other 
types of flows involving physically unbounded domains, especially for high Reynolds numbers. It would be very interesting 
to extend the idea and develop analogous boundary conditions for moving domains such as in an arbitrary Lagrangian 
Eulerian context. This would be important and useful to applications such as vortex/flow induced vibrations. Future research 
will address such and related problems.
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