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We develop a method for modeling and simulating a class of two-phase flows consisting of 
two immiscible incompressible dielectric fluids and their interactions with imposed external 
electric fields in two and three dimensions. We first present a thermodynamically-consistent 
and reduction-consistent phase field model for two-phase dielectric fluids. The model honors the 
conservation laws and thermodynamic principles, and has the property that, if only one fluid 
component is present in the system, the two-phase formulation will exactly reduce to that of 
the corresponding single-phase system. In particular, this model accommodates an equilibrium 
solution that is compatible with the zero-velocity requirement based on physics. This property 
leads to a simpler method for simulating the equilibrium state of two-phase dielectric systems. 
We further present an efficient numerical algorithm, together with a spectral-element (for two 
dimensions) or a hybrid Fourier-spectral/spectral-element (for three dimensions) discretization 
in space, for simulating this class of problems. This algorithm computes different dynamic 
variables successively in an un-coupled fashion, and involves only coefficient matrices that are 
time-independent in the resultant linear algebraic systems upon discretization, even when the 
physical properties (e.g. permittivity, density, viscosity) of the two dielectric fluids are different. 
This property is crucial and enables us to employ fast Fourier transforms for three-dimensional 
problems. Ample numerical simulations of two-phase dielectric flows under imposed voltage are 
presented to demonstrate the performance of the method herein and to compare the simulation 
results with theoretical models and experimental data.

1. Introduction

In the current work we focus on the modeling and simulation of a system of two immiscible incompressible dielectric fluids and 
their interaction with external electric fields. Dielectric fluids refer to fluids that are electrically non-conductive and can withstand 
high voltage without breakdown. They are traditionally used for cooling and insulating electrical equipment such as transformers and 
high-voltage cables. In recent years dielectric fluids have found widespread applications in electric vehicles, for cooling the electric 
motor, batteries, electric transmissions, and power electronics.

Using electric field is a widely-adopted technique for manipulating small amounts of liquids on surfaces. Electrowetting-on-

dielectric (EWOD) [57] is one of the most successful and versatile approaches. EWOD systems typically involve conducting fluids or 
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droplets on a dielectric substrate under an imposed voltage. The applications of EWOD range from “lab-on-a-chip” devices [67,14], 
to adjustable lenses [6], to new types of electronic displays [35]. While EWOD is effective in fluid manipulation, it requires the fluids 
to be conductive and an AC (alternating-current) electric potential.

Using dielectrophoresis (DEP) underlies another class of techniques for manipulating fluids [5,28], and has an advantage over 
EWOD in some situations [26]. Dielectrophoresis refers to the electromechanical force due to the polarization of a neutral material 
in non-uniform electric fields [26]. One can use the Korteweg-Helmholtz force density [43] to explain the origination of liquid 
dielectrophoresis. Applying an electric field E to the fluid results in the Korteweg-Helmholtz force density

𝐟𝐾𝑇 = 𝜌𝑓E − 1
2
(E ⋅𝐄)∇𝜖 +∇

[
1
2
(E ⋅𝐄)𝜌 𝜕𝜖

𝜕𝜌

]
, (1)

where 𝜌𝑓 is the free electric charge density, 𝜖 is the permittivity, and 𝜌 is the fluid density. Based on equation (1), in the absence of 
free charge (𝜌𝑓 = 0), as long as nonuniform polarization of dipoles exists within the liquid (∇𝜖 ≠ 0), the fluid will be influenced by 
the electric field; see [29,59] for more detailed discussions of the DEP force theory.

The use of DEP to move bulk fluids can be traced to Pellat’s work in 1895 [26]. A dielectric siphon is described in [41] to 
pump fluids between two reservoirs. DEP is used to transport dielectric particles or droplets in [5] through a channel sandwiched 
by electrodes. Transport of dielectric liquids at microscale and in microfluidic devices has been studied with miniaturized electrodes 
in [40,39,12]. In [9] the authors use DEP to spread a droplet onto coplanar electrodes to form a thin liquid film, establishing the idea 
of interface localized liquid dielectrophoresis. In [54] the effect of localized DEP on the wetting properties of solid-liquid interface has 
been investigated and the term dielectrowetting is introduced. We refer to [74,29,53] for a review of this area and recent applications.

Two-phase systems of dielectric fluids involve fluid interfaces, the associated surface tension, the contrast in fluid properties 
(permittivity, density, and viscosity), contact lines and contact angles when a solid-wall boundary is present, and the interaction with 
the imposed electric field. The approach taken in the current work to handle the two phases belongs to the phase field framework. 
Phase field (a.k.a. diffuse interface) [60,71,3,50,37,7,48,17] is one of the few techniques currently available for dealing with two-

phase systems and fluid interfaces. It is particularly attractive because of its physics-based nature. With phase field the fluid interface 
is treated as a thin smooth transition layer (i.e. diffuse). Besides the hydrodynamic variables, the system is characterized by an 
order parameter (or phase field function), which varies smoothly within the transition layer and is mostly uniform in the bulk 
phases. The evolution of the fluid phases is driven by a free energy density function, which contains component terms that tend to 
promote the mixing of the two fluids and also component terms that tend to separate the fluids. The interplay of these two tendencies 
determines the dynamic profile of the fluid interface. With this approach, the governing equations can be derived rigorously based on 
the conservation laws and thermodynamic principles. We refer to e.g. [50,42,1,66,2,19,49,30,23,61,78] (among others) for several 
thermodynamically consistent phase field models for two-phase and multiphase flows with various degrees of sophistication.

While phase field is successful for a range of two-phase and multiphase problems, investigations into this approach for modeling 
two-phase hydrodynamics coupled with the electric field effect are still quite limited. In [44,75,76] the authors employ the phase field 
method coupled with the Navier-Stokes equations to study the electrohydrodynamic (EHD) phenomenon, in particular the Taylor’s 
leaky dielectric model [63]. The authors of [70] investigate the electrohydrodynamic patterning based on the liquid dielectrophoresis. 
In [72,73] the phase field method is used to study electrowetting and its applications.

The aforementioned studies on the coupled multiphase flow and electric field have a notable drawback. These are phenomenolog-

ical models, and do not admit an energy law (or energy balance relation). In other words, these models are not thermodynamically 
consistent. To overcome this issue, a phase field model is proposed in [25] for electrowetting (conductive fluids with free charges) 
based on variational principles and the thermodynamics of irreversible processes near equilibrium. The model combines multiphase 
flows, the electric field and the free charge system, and admits an energy balance relation. However, it only applies to cases when 
the two conductive fluids have the same density.

This model is extended in [10] to take into account the density contrast and the transport of free ions in the conductive fluids; 
see [55,47,56,45] for numerical algorithms developed based on this extended model. Another diffuse interface model is proposed 
in [58] for electrowetting on dielectric with different densities for the two fluids, which however appears not to be Galilean invariant. 
In [46] a thermodynamically consistent continuum model for single-phase electrohydrodynamic flows has been described. The model 
combines the Navier-Stokes equations and the Poisson-Nernst-Planck (PNP) equations, in which the fluid properties depend on the 
ion concentration fields. We would also like to note the finite element method developed in [81] employing a sharp-interface model 
for electrowetting on dielectric.

In this paper we look into the dynamics of an isothermal system of two immiscible incompressible dielectric fluids and their 
interaction with external electric fields in two and three dimensions (2D/3D). The fluids considered here are non-conductive and the 
system contains no free charges or ions. This setting is quite different from those studies reviewed in previous paragraphs related to 
electrowetting or electrohydrodynamics, where the fluids are electrolytic solutions and conductive and the transport of free ions is cru-

cial to the system dynamics. Due to liquid dielectrophoresis and the Korteweg-Helmholtz force, when an external voltage is imposed, 
the interface between the dielectric fluids can experience large deformations, leading to the dielectrowetting phenomenon [26].

We first present a thermodynamically-consistent and reduction-consistent phase field model for two-phase dielectric flows. Ther-

modynamic consistency refers to the property that the model honors the conservation laws and thermodynamic principles [50,1,69]. 
The current model is developed based on the conservations of mass and momentum and the second law of thermodynamics, in which 
the physical properties of the two fluids (permittivity, density, and viscosity) can be different. The model derivation process follows 
those of [1,19,23], with the quasi-static electromagnetic equations taken into account. Reduction consistency refers to the property 
2

that, when only one fluid component is present in the two-phase system (while the other fluid is absent), the two-phase formulation 
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will exactly reduce to that of the corresponding single-phase system. We refer to [23] for discussions of reduction consistency in 
general multiphase systems. The reduction consistency of a two-phase dielectric system places restrictions on the functional form of 
the mixture permittivity when expressed in terms of the phase field variable. As discussed in [23], reduction consistency reflects an 
inherent reduction relation within multiphase systems, and violation of reduction consistency can lead to unphysical results (e.g. pro-

duction of a fluid phase where it is absent). The phase field model here for dielectric fluids appears to have some connection to that 
of [10] for conductive fluids and electrolytic solutions. We note that the reduction consistency issue was not considered in [10] or 
the related works of [55,47,56,45] for conductive fluids, and the model as given therein appears not reduction-consistent.

At equilibrium, the solution to the current model is compatible with the zero-velocity requirement based on physics. This property 
leads to a method for computing the equilibrium state (or steady state) of two-phase dielectric systems, which is of great practical 
interest and importance, by solving a smaller reduced system of equations. This method is simpler and faster than integrating the full 
model in time until the steady state is reached.

We then present a semi-implicit splitting type algorithm, together with a spectral-element spatial discretization for 2D and a hybrid 
Fourier-spectral/spectral-element discretization for 3D, for numerically solving the governing equations of this two-phase dielectric 
flow model. The computations for different dynamic variables (electric potential, phase field function, velocity, and pressure) are 
de-coupled with our method. For each dynamic variable, the resultant linear algebraic system upon discretization involves a constant 
and time-independent coefficient matrix, which can be pre-computed and saved for later use, despite the variable physical properties 
(permittivity, density, viscosity) of the two-phase mixture. This characteristic of the current algorithm is crucial, and it enables the 
use of Fourier spectral discretization and fast Fourier transform (FFT) in 3D simulations of two-phase dielectric flows with variable 
mixture properties. For 3D problems, with each dynamic variable, the computations of different Fourier modes are completely de-

coupled with the current method. Thanks to these characteristics, the presented method is computationally very efficient.

These attractive properties are attained based on several strategies. The most important strategy, for producing a semi-discretized 
system having constant coefficients when variable material properties are present on the continuum level, is inspired by and built 
upon the algorithm from [24] (with modifications). The main idea of [24] lies in a reformulation of the pressure/viscous terms in 
the momentum equation as follows,

1
𝜌
∇𝑝 ≈ 1

𝜌0
∇𝑝+

(
1
𝜌
− 1

𝜌0

)
∇𝑝∗, 𝜇

𝜌
∇2u ≈ 𝜈𝑚∇2u −

(
𝜇

𝜌
− 𝜈𝑚

)
∇×∇× u∗,

where 𝜌 and 𝜇 are the variable density and variable viscosity of the mixture, 𝜌0 and 𝜈𝑚 are two appropriate constants, 𝑝 and u are the 
pressure and the divergence-free velocity, and 𝑝∗ and u∗ are explicit approximations of 𝑝 and 𝐮 with a prescribed order of accuracy. 
Such and similar reformulations lead to a semi-discretized system of equations with constant coefficients, in spite of the variable 
fluid properties on the continuum level. This semi-discretized system with constant coefficients is critical to the success of subsequent 
Fourier spectral discretization in one or more directions in 3D space. This is because, if this system has variable coefficients, the FFT 
will induce convolutions with the coefficient functions in the frequency space, which will couple together all the Fourier modes of 
the unknown dynamic variables to be solved for.

The current algorithm is semi-implicit in nature, in which the nonlinear terms are treated explicitly and the linear terms are treated 
implicitly. As such the algorithm is only conditionally stable, in the sense that the time step size employed in the simulations cannot 
be large. On the other hand, this conditional stability in the algorithm enables very efficient computations within each time step, 
with constant pre-computable coefficient matrices and de-coupled computations for all dynamic variables. As opposed to the semi-

implicit approach, one may also consider the development of energy-stable type schemes, which is not pursued here. Energy-stable 
schemes are discretizations designed to satisfy a discrete version of the energy law, irrespective of the time step size. The strength 
of energy-stable schemes lies in that they are unconditionally stable and can allow the use of relatively large time step sizes in the 
simulations. We refer to e.g. [64,62,33,31,65,32,77,61] (among others) for several energy-stable schemes for two-phase problems. 
The downside of the energy-stable algorithms lies in that their computational cost per time step can be very high. These schemes 
typically involve the solution of coupled nonlinear algebraic equations or coupled linear algebraic equations, and the linear algebraic 
systems resultant from these schemes involve time-dependent coefficient matrices, which require frequent re-computations (e.g. at 
every time step).

We present a number of numerical examples of two-phase dielectric flows under an imposed voltage in 2D and 3D to test the 
performance of the presented method. In particular, we compare the current simulation results with theoretical models and the 
experimental data from the literature. The comparisons show that the phase field model and the numerical method developed herein 
can capture the physics of this class of flow problems well.

The contributions of this paper lie in three aspects: (i) the reduction-consistent and thermodynamically-consistent phase field 
model for two-phase dielectric fluids, (ii) the simpler method for computing the equilibrium state of two-phase dielectric systems, 
and (iii) the efficient numerical algorithm for simulating two-phase dielectric flows.

The rest of this paper is organized as follows. In Section 2 we present the phase field model for two-phase dielectric flows and 
discuss the equilibrium solution to the model. In Section 3 we present the numerical algorithm for solving this model, and discuss 
the spectral-element implementation for 2D and the hybrid Fourier-spectral and spectral-element implementation for 3D. We employ 
several 2D and 3D two-phase dielectric flows to test the presented method in Section 4. In particular we compare the simulation 
results with theoretical models and the experimental data. Section 5 concludes the presentation with some closing remarks. In the 
Appendix we outline the development of the current phase field model based on the conservation laws and thermodynamic principles 
3

and discuss several further numerical tests.



Journal of Computational Physics 514 (2024) 113228J. Yang, I.C. Christov and S. Dong

2. Phase field model for two-phase dielectric fluids

Consider a domain Ω in two or three dimensions, and an isothermal system of two immiscible incompressible dielectric fluids 
in Ω. The two fluids are assumed to be Newtonian, with constant densities 𝜌1 and 𝜌2, constant dynamic viscosities 𝜇1 and 𝜇2, and 
constant relative permittivity 𝜖1 and 𝜖2, respectively. We introduce a phase field variable 𝜙, which assumes the constant values 1 and 
−1 in the bulk of the two fluids and has a smooth distribution in a thin layer surrounding the interface.

The material properties of the mixture are functions of the above parameters and the phase field variable 𝜙, with the mixture den-

sity 𝜌 = 𝜌(𝜌1, 𝜌2, 𝜙), mixture viscosity 𝜇 = 𝜇(𝜇1, 𝜇2, 𝜙), and mixture permittivity 𝜖 = 𝜖(𝜖1, 𝜖2, 𝜙). Specifically, we assume the following 
relations,

⎧⎪⎨⎪⎩
𝜌(𝜙) =

𝜌1 + 𝜌2
2

+
𝜌1 − 𝜌2

2
𝜙, 𝜇(𝜙) =

𝜇1 + 𝜇2
2

+
𝜇1 − 𝜇2

2
𝜙,

𝜖(𝜙) =
𝜖1 + 𝜖2

2
+

𝜖1 − 𝜖2
2

𝜙(3 − 𝜙2)
2

.

(2)

In the above relations, 𝜌 and 𝜇 are linear with respect to 𝜙, which has been commonly used (see e.g. [17,21]). However, for 𝜖 we 
employ a relation based on the Hermite interpolation. The benefit of Hermite interpolation is that 𝑑𝜖

𝑑𝜙
= 0 in the bulk (𝜙 = ±1), while 

a linear relation would result in a non-zero derivative. The zero derivative of permittivity plays an important role in our model, which 
will become clearer in later discussions.

2.1. Governing equations

The model describing the motion of this system of fluids can be derived based on the conservation laws and thermodynamic 
principles. The development of this model has been discussed in detail in the appendix (Section A.1). Here we only summarize the 
governing equations for this system.

Let 𝐮 denote the velocity,  denote the pressure, 𝜙 denote the phase field variable, 𝑉 denote the electric potential, and 𝐄 denote 
the electric field. Then the dynamics of this two-phase system is described by the following set of equations (see Section A.1 for 
derivation and specifically (118) for the general form),

𝜕𝜙

𝜕𝑡
+ u ⋅∇𝜙 = 𝛾1Δ

(
𝜆ℎ(𝜙) − 𝜆Δ𝜙− 𝜖′

2
E ⋅𝐄

)
, (3)

𝜌

(
𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅∇𝐮
)
+ �̃� ⋅∇𝐮 = −∇ ⋅ (𝜆∇𝜙⊗∇𝜙) − ∇𝜖

2
E ⋅𝐄+∇ ⋅

[
𝜇
(
∇𝐮+∇𝐮𝑇

)]
−∇ , (4)

∇ ⋅ u = 0, (5)

∇ ⋅ (𝜖∇𝑉 ) = 0, (6)

𝐄 =∇𝑉 , (7)

where the flux term J̃ is given by

J̃ = −𝛾1
𝜌1 − 𝜌2

2
∇
(
𝜆ℎ(𝜙) − 𝜆∇2𝜙− 𝜖′

2
E ⋅𝐄

)
. (8)

In these equations 𝛾1 is the mobility coefficient, and 𝜆 is the mixing energy density coefficient. 𝜌, 𝜇 and 𝜖 denote the density, dynamic 
viscosity, and permittivity of the mixture and are given in (2). ℎ(𝜙) in equation (3) is defined by 𝜆ℎ(𝜙) = 𝜕𝐹

𝜕𝜙
, where 𝐹 (𝜙) is the 

interfacial mixing energy density function (with double well) given by,

𝐹 (𝜙,∇𝜙) = 1
2
𝜆|∇𝜙|2 + 𝜆

4𝜂2
(𝜙2 − 1)2. (9)

The constant 𝜂 here is a length scale characterizing the interfacial thickness, and 𝜆 is related to the surface tension 𝜎 by 𝜆 = 3
2
√
2
𝜎𝜂

[79]. So ℎ(𝜙) is given by, ℎ(𝜙) = 1
𝜂2

𝜙(𝜙2 − 1).

With J̃ given by (8) and 𝜌 given in (2), equation (3) is equivalent to,

𝜕𝜌

𝜕𝑡
+ u ⋅∇𝜌 = −∇ ⋅ J̃. (10)

Let 𝜇𝑐 denote a generalized chemical potential given by

𝜇𝑐 = 𝜆ℎ(𝜙) − 𝜆∇2𝜙− 𝜖′

2
E ⋅𝐄. (11)
4

Then, J̃ can be written as, J̃ = −𝛾1
𝜌1−𝜌2

2 ∇𝜇𝑐 .
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2.2. Reduction consistency

We require that the system consisting of (3)–(7) should be reduction-consistent [23,22]. In other words, if only one fluid compo-

nent is present (while the other fluid is absent), the system of two-phase governing equations should exactly reduce to that of the 
corresponding single-phase system. This means that the system given by (3)–(7) should admit the following two solutions:

• (𝐮,  , 𝑉 , 𝐄) and 𝜙 ≡ 1: the first fluid is present, and the second fluid is absent.

• (𝐮,  , 𝑉 , 𝐄) and 𝜙 ≡ −1: the second fluid is present, and the first fluid is absent.

It can be verified that these solutions are ensured if the following conditions on 𝜖(𝜙) are satisfied,

𝑑𝜖

𝑑𝜙

||||𝜙=1 = 0, 𝑑𝜖

𝑑𝜙

||||𝜙=−1 = 0. (12)

The choice for 𝜖(𝜙) in (2) satisfies these conditions. Therefore the phase field model given by (3)–(7), with the mixture properties 
given by (2), is reduction consistent. It is noted that if one chooses a linear form for 𝜖(𝜙) (similar to 𝜌(𝜙) and 𝜇(𝜙) in (2)), then 
the system (3)–(7) will not be reduction consistent (when 𝜖1 ≠ 𝜖2). We refer to [23] for more detailed discussions of the reduction 
consistency for multiphase systems.

From the physics perspective, the electric field influences the generalized chemical potential through the term 𝜖
′ (𝜙)
2

𝐄 ⋅𝐄. Phys-

ically, the generalized chemical potential in the phase field equation should only have an effect on the interface (not in the bulk 
region), i.e. 𝜇𝑐 should vanish in the bulk. This leads to the same conditions as given in (12). Therefore, the Hermite interpolation 
relation for 𝜖(𝜙) in equation (2) is crucial to the current model.

2.3. Energy law

The model given by equations (3)–(7) admits an energy law. Let 𝐸(𝑡) denote the total system energy,

𝐸(𝑡) = ∫
Ω

(1
2
𝜌u ⋅ u + 𝐹 (𝜙,∇𝜙) + 1

2
D ⋅ E

)
𝑑Ω+ ∫

𝜕Ω𝑠

Θ(𝜙)𝑑𝑆. (13)

Here Ω and 𝜕Ω𝑠 denote the flow domain and the solid domain boundary, respectively. 𝐹 (𝜙, ∇𝜙) is the free energy density function 
defined in (9). The term 1

2
D ⋅ E represents the quasi-static electric energy of the system [43]. Θ(𝜙) is a wall energy density function, 

whose form is given later, aiming to take into account the contact angle effect.

Taking the time derivative of (13) and using equations (3)–(9) and equation (107c) in the appendix lead to the following energy 
balance equation,

𝑑𝐸

𝑑𝑡
= −∫

Ω

𝛾1

|||||12 (𝜌1 − 𝜌2)∇
(
𝜕𝐹

𝜕𝜙
−∇ ⋅

𝜕𝐹

𝜕∇𝜙
− 𝜖′

2
E ⋅𝐄

)|||||
2

− ∫
Ω

𝜇 ‖∇𝐮‖2
− ∫
𝜕Ω

[(
𝜕𝐹

𝜕𝜙
−∇ ⋅

𝜕𝐹

𝜕∇𝜙
− 𝜖′

2
E ⋅𝐄

)
𝜌1 − 𝜌2

2
− 1

2
(u ⋅ u)

]
(�̃� ⋅ 𝐧)

+ ∫
𝜕Ω

[
𝜇∇u ⋅ n − 𝐹n − 1

2
(u ⋅ u)n

]
⋅ u − ∫

𝜕Ω

𝜆 (𝐧 ⋅∇𝜙) 𝜕𝜙
𝜕𝑡

+ ∫
𝜕Ω𝑠

Θ′(𝜙)𝜕𝜙
𝜕𝑡

− ∫
𝜕Ω

(E × H) ⋅ n,

(14)

where 𝜕Ω denotes the boundary of Ω and 𝜕Ω𝑠 ⊂ 𝜕Ω is the solid portion of 𝜕Ω. The model ensures the dissipativeness of the volume 
integral terms on the right hand side (RHS). Whether the boundary integral terms are dissipative depends on the imposed boundary 
conditions, which can guide the choice for the appropriate forms of boundary conditions. The term E × H is the Poynting vector, 
representing the electromagnetic energy flux to the system [36].

2.4. Equilibrium solution

The incorporation of the electric field term into the chemical potential and the choice of the 𝜖(𝜙) form in (2) (see also Remark 2.2) 
play an important role in our model. It allows us to derive the energy inequality, thus leading to a thermodynamically consistent 
model. It also enables us to compute the equilibrium state (steady state) of the two-phase dielectric system by using essentially the 
phase field equation only, instead of using the full system coupled with the Navier-Stokes equations. We note that in some other 
studies (e.g. [44,75]), where the electric field term is absent from the chemical potential, this benefit does not exist and one needs to 
solve the full set of governing equations in time in order to find the steady state of the problem.

Specifically, the simpler method for computing the equilibrium solution to the current model is as follows. At equilibrium ( 𝜕

𝜕𝑡
= 0), 

the model represented by the equations (3)–(7) admits the following solution,
5

𝜙𝑠(𝐱), 𝑃𝑠(𝐱), 𝑉𝑠(𝐱), and 𝐮𝑠(𝐱) ≡ 0, (15)
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Table 1

Normalization constants for variables and parameters. Choose 𝐿0, 𝜖0, 𝑉𝑑 , 𝜇0 .

variable normalization constant variable normalization constant

𝑥, 𝑦, 𝑧, 𝜂, 𝑑 𝐿0 𝑉 𝑉𝑑

𝜖, 𝜖1 , 𝜖2 𝜖0 𝜇,𝜇1 , 𝜇2 𝜇0

𝐮 𝑢0 =
𝜖0𝑉

2
𝑑

𝐿0𝜇0
 , 𝑃 , 𝑝 𝜌0𝑢

2
0

𝜌, 𝜌1 , 𝜌2
𝜇2
0

𝜖0𝑉
2
𝑑

𝜆 𝜖0𝑉
2
𝑑

𝛾1 𝐿2
0∕𝜇0 𝐄 𝑉𝑑∕𝐿0

𝜙,𝜓 1 𝑡,Δ𝑡 𝐿2
0𝜇0

𝜖0𝑉
2
𝑑

where

𝛾1Δ
[
𝜆ℎ(𝜙𝑠) − 𝜆Δ𝜙𝑠 −

𝜖′(𝜙𝑠)
2

E ⋅𝐄
]
= 0, (16a)

∇𝑠 −∇ ⋅ (𝜆𝜙𝑠 ⊗∇𝜙𝑠) −
∇𝜖
2
(𝐄 ⋅𝐄) = 0, (16b)

∇ ⋅
(
𝜖∇𝑉𝑠

)
= 0, (16c)

𝐄 =∇𝑉𝑠. (16d)

It is important to note that the equilibrium state of the current model is compatible with the zero velocity (𝐮 = 0) requirement based 
on physics. In the presence of an external electric field, the (𝐄 ⋅𝐄) term in (16a) will cause the equilibrium configuration of the fluid 
interface to deviate from that of the case with no electric field (e.g. circular or spherical, due to the surface tension).

These characteristics of the current model suggest that we can employ an alternative system to compute the steady-state solution. 
We replace equation (16a) by the following Cahn-Hilliard equation,

𝜕𝜙𝑠

𝜕𝜏
= 𝛾1Δ

(
𝜆ℎ(𝜙𝑠) − 𝜆Δ𝜙𝑠 −

𝜖′

2
E ⋅𝐄

)
, (17)

where 𝜏 is a pseudo-time. We solve the system consisting of equations (17) and (16c)–(16d) by some time marching scheme until the 
steady state is reached. This in principle will produce the equilibrium solution to the original model consisting of (3)–(7), with 𝐮𝑠 = 0
and 𝑠 computed by using (16b). The alternative system consisting of (17) and (16c)–(16d) is simpler and faster to compute than the 
original full system consisting of equations (3)–(7). We will demonstrate the effectiveness of this simpler method for computing the 
equilibrium solution in Section 4 using numerical simulations, and also compare the results obtained using the simpler method and 
using the full model consisting of equations (3)–(7).

2.5. Normalization, computational domain, and boundary/initial conditions

In numerical simulations we employ the normalized non-dimensional form of the governing equations. The normalization dis-

cussed here is for the full model (3)–(7). We employ a somewhat different normalization for the simpler steady-state model consisting 
of equations (16a)–(16d), which will be specified in a later section. Let 𝐿0 denote a characteristic length scale, 𝑉𝑑 a characteristic 
electric potential, 𝜇0 a characteristic dynamic viscosity, and 𝜖0 the vacuum permittivity with 𝜖0 = 8.85418781 ×10−12 A2 ⋅ s4∕(kg ⋅m3). 
Table 1 lists the normalization constants for different variables and parameters. For example, the normalized 𝜆 is given by 𝜆

𝜖0𝑉
2
𝑑

ac-

cording to this table. The normalized governing equations have the same form as the original dimensional ones, and they are also 
given by the equations (3)–(7). Henceforth, the variables and parameters appearing in the equations (and boundary/initial condi-

tions) are understood to have been normalized appropriately, and we will not differentiate their dimensional and non-dimensional 
forms.

We perform two-phase dielectric flow simulations in both 2D and 3D. The flow domain and the settings considered here largely 
follow those of the experiments by McHale, Brown and collaborators [54,9,8]. Especially we assume that in 3D the domain has at 
least one homogeneous direction, so that Fourier expansions can be performed along that direction. Fig. 1 shows typical flow domains 
and configurations for 2D and 3D. We are interested in the deformation or motion of dielectric droplets on a solid wall. A regular 
array of parallel electrodes (gray stripes in plot (a), or the dark regions in plot(b)) are embedded on the bottom wall, stretching along 
the 𝑧 direction for 3D. The electrodes are separated by wall surfaces (white stripes in plot (a), or white regions in plot (b)). The top 
of the flow domain is open, while in the horizontal directions the flow is assumed to be periodic.

Let 𝜕Ω𝑜 denote the open boundary on the top, 𝜕Ω𝑠𝑒 (“se” standing for solid-electrode) denote the region of electrodes on the 
bottom wall, and 𝜕Ω𝑠𝑔 (“sg” standing for solid-gap) denote the gap region between the electrodes on the wall. The bottom wall 
constitutes the solid domain boundary 𝜕Ω𝑠, with 𝜕Ω𝑠 = 𝜕Ω𝑠𝑒 ∪ 𝜕Ω𝑠𝑔 .

We employ periodic conditions for all the field variables in the horizontal directions and the following boundary conditions for 
6

the top and bottom sides of the domain:
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Fig. 1. Typical flow domain and settings for (a) 3D and (b) 2D. On the bottom wall, the gray stripes denote the electrodes and the white stripes denote the gap between 
the electrodes.

Top open boundary 𝜕Ω𝑜∶

(phase field eq.)

⎧⎪⎨⎪⎩
n ⋅∇

(
𝜆ℎ(𝜙) − 𝜆Δ𝜙− 𝜖′

2
E ⋅𝐄

)
= 0, on 𝜕Ω𝑜

∇𝜙 ⋅ n = 0, on 𝜕Ω𝑜.

(18)

(momentum eq.)
𝜕u

𝜕𝑛
= 0, 𝑃 = 0, on 𝜕Ω𝑜. (19)

(electric potential)
𝜕𝑉

𝜕𝑛
= 0, on 𝜕Ω𝑜. (20)

Bottom wall (𝜕Ω𝑠𝑒 ∪ 𝜕Ω𝑠𝑔 = 𝜕Ω𝑠)∶

(phase field eq.)

⎧⎪⎨⎪⎩
n ⋅∇

(
𝜆ℎ(𝜙) − 𝜆Δ𝜙− 𝜖′

2
E ⋅𝐄

)
= 0, on 𝜕Ω𝑠

𝜆∇𝜙 ⋅ n +Θ′(𝜙) = 0, on 𝜕Ω𝑠

(21)

(momentum eq.) u = 0, on 𝜕Ω𝑠, (22)

(electric potential)

⎧⎪⎨⎪⎩
𝜕𝑉

𝜕𝑛
= 0, on 𝜕Ω𝑠𝑔

𝑉 = 𝑒, on 𝜕Ω𝑠𝑒.

(23)

In equation (21) Θ(𝜙) denotes the wall energy density function, which accounts for the contact angle effect, given by

Θ(𝜙) = 𝛾 cos(𝜃𝑠)
𝜙(𝜙2 − 3)

4
+ 1

2
(𝛾𝑠1 + 𝛾𝑠2), (24)

where 𝛾, 𝛾𝑠1, 𝛾𝑠2 are interfacial tension between phase1-phase2, phase1-solid and phase2-solid, and 𝜃𝑠 is the static contact angle. This 
functional form is essentially a Hermite interpolation of interfacial tensions; see [18] for more details. In equation (23) 𝑒 denotes the 
imposed voltage on the electrodes. We will in general impose an alternate negative/positive voltage on adjacent electrodes as in the 
experiments (see e.g. [54]). In the gap region between the electrodes, we have employed a simple condition 𝜕𝑉

𝜕𝑛
= 0. This essentially 

assumes that the electric field at the wall (gap region) has only a tangent component. Note that this condition is exact if the fluids 
and the wall have matching permittivities or when the fluid is homogeneous [27]. In more general cases, this boundary condition 
may not be exactly accurate. We adopt this boundary condition because of its simplicity, and that the simulation results indicate that 
it can capture the flow physics reasonably well. We note that the set of boundary conditions (18)–(23) is reduction-consistent with 
𝜖(𝜙) given by (2) and Θ(𝜙) given by (24).

Finally we employ the following initial conditions,

𝐮(𝐱, 𝑡 = 0) = 𝐮0(𝐱), (25)

𝜙(𝐱, 𝑡 = 0) = 𝜙0(𝐱), (26)
7

where 𝐮0 and 𝜙0 denote the initial distributions for the velocity and the phase field function.
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3. Numerical algorithm

3.1. Algorithm formulation

The system consisting of the equations (3)–(7), the boundary conditions (18)–(23) and the periodic conditions along the horizontal 
directions, and the initial conditions (25)–(26) constitute the initial/boundary value problem we need to solve for the velocity, 
pressure, phase field, and the electric potential.

For the purpose of numerical testing, we modify some of the equations and boundary conditions slightly by adding certain pre-

scribed source terms. These source terms are useful for testing the convergence of the method using manufactured solutions, and they 
will be set to zero in actual flow simulations. Specifically, we re-write equations (3), (4) and (6) into,

𝜕𝜙

𝜕𝑡
+ u ⋅∇𝜙 = 𝛾1Δ

(
𝜆ℎ(𝜙) − 𝜆Δ𝜙− 𝜖′

2
E ⋅𝐄

)
+ 𝑔(𝐱, 𝑡), (27)

𝜕𝐮
𝜕𝑡

+𝐍(𝐮) + 1
𝜌
�̃� ⋅∇𝐮 = −𝜆

𝜌
∇2𝜙∇𝜙− 𝜖′

2𝜌
(E ⋅𝐄)∇𝜙+ 𝜇

𝜌
∇2𝐮+ 1

𝜌
∇𝜇 ⋅(𝐮) − 1

𝜌
∇𝑃 + 1

𝜌
𝐟(𝐱, 𝑡) (28)

∇ ⋅ (𝜖𝑉 ) = 𝑓𝑉 (𝐱, 𝑡), (29)

where 𝑔, 𝐟 and 𝑓𝑉 are prescribed source terms, and

𝑃 =  + 𝜆

2
∇𝜙 ⋅∇𝜙, (𝐮) = ∇𝐮+∇𝐮𝑇 , 𝐍(𝐮) = 𝐮 ⋅∇𝐮. (30)

The boundary conditions (18)–(19) are modified as,

𝐧 ⋅∇
(
𝜆ℎ(𝜙) − 𝜆∇2𝜙− 1

2
𝜖′𝐄2

)
= 𝑔1(𝑥, 𝑡), 𝐧 ⋅∇𝜙 = 𝑔2(𝐱, 𝑡), 𝐱 ∈ 𝜕Ω𝑜; (31)

𝜕𝐮
𝜕𝑛

= 𝐟1(𝐱, 𝑡), 𝑃 = 𝑓2(𝐱, 𝑡), 𝐱 ∈ 𝜕Ω𝑜; (32)

where 𝐟1, 𝑓2, 𝑔1, 𝑔2 are prescribed source terms. The boundary conditions (21)–(22) are modified as,

𝐧 ⋅∇
(
𝜆ℎ(𝜙) − 𝜆∇2𝜙− 1

2
𝜖′𝐄2

)
= 𝑔1(𝑥, 𝑡), 𝐧 ⋅∇𝜙+ 1

𝜆
Θ′(𝜙) = 𝑔3(𝐱, 𝑡), 𝐱 ∈ 𝜕Ω𝑠; (33)

𝐮 =𝐰(𝐱, 𝑡), 𝐱 ∈ 𝜕Ω𝑠; (34)

where 𝑔3 and 𝐰 are prescribed source terms.

We next present an algorithm for solving the system consisting of equations (27)–(29), (5), (7), (31)–(34), (20), (23), together 
with the periodic conditions in the horizontal directions. Let 𝑛 ⩾ 0 denote the time step index, Δ𝑡 denote the time step size, and (⋅)𝑛
denote the variable (⋅) at time step 𝑛. Given (𝐮𝑛, 𝑃 𝑛, 𝜙𝑛, 𝑉 𝑛), we compute these quantities at step (𝑛 +1) successively by the following 
procedure:

Electric potential 𝑉 𝑛+1 and electric field 𝐄𝑛+1∶

∇ ⋅ (𝜀0∇𝑉 𝑛+1) = 𝑓𝑛+1
𝑉

−∇ ⋅
[
(𝜖(𝜙∗,𝑛+1) − 𝜀0)∇𝑉 ∗,𝑛+1] , (35a)

𝜕𝑉 𝑛+1

𝜕𝑛
= 0, on 𝜕Ω𝑜 ∪ 𝜕Ω𝑠𝑔, (35b)

𝑉 𝑛+1 = 𝑒, on 𝜕Ω𝑠𝑒, (35c)

𝐄𝑛+1 = ∇𝑉 𝑛+1. (35d)

Phase field 𝜙𝑛+1∶

𝛾0𝜙
𝑛+1 − �̂�

Δ𝑡
+∇ ⋅ (u∗,𝑛+1𝜙∗,𝑛+1) = −𝜆𝛾1∇2

[
∇2𝜙𝑛+1 − 𝑆

𝜂2
(𝜙𝑛+1 −𝜙∗,𝑛+1)

−ℎ(𝜙∗,𝑛+1) + 𝜖′(𝜙∗,𝑛+1)
2𝜆

|||𝐄𝑛+1|||2
]
+ 𝑔𝑛+1, (36a)

n ⋅∇
[
∇2𝜙𝑛+1 − 𝑆

𝜂2
(𝜙𝑛+1 − 𝜙∗,𝑛+1) − ℎ(𝜙∗,𝑛+1) + 𝜖′(𝜙∗,𝑛+1)

2𝜆
|||𝐄𝑛+1|||2

]
= 𝑔𝑛+11 , on 𝜕Ω𝑜 ∪ 𝜕Ω𝑠, (36b)

n ⋅∇𝜙𝑛+1 = 𝑔𝑛+12 , on 𝜕Ω𝑜, (36c)

− 𝐧 ⋅∇𝜙𝑛+1 − Θ′(𝜙∗,𝑛+1) = 𝑔𝑛+1, on 𝜕Ω . (36d)
8

𝜆 3 𝑠
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Pressure 𝑃 𝑛+1∶

𝛾0ũ
𝑛+1 − û

Δ𝑡
+ 1

𝜌0
∇𝑃 𝑛+1 = −N(u∗,𝑛+1) +

(
1
𝜌0

− 1
𝜌𝑛+1

)
∇𝑃 ∗,𝑛+1 − 𝜇𝑛+1

𝜌𝑛+1
∇ ×∇× u∗,𝑛+1

+ 1
𝜌𝑛+1

∇𝜇𝑛+1 ⋅(u∗,𝑛+1) − 𝜆

𝜌𝑛+1
∇2𝜙𝑛+1∇𝜙𝑛+1 + 𝑓𝑛+1

𝜌𝑛+1

− 1
𝜌𝑛+1

J̃
𝑛+1 ⋅∇u∗,𝑛+1 − 𝜖′(𝜙𝑛+1)

2𝜌𝑛+1
|||𝐄𝑛+1|||2 ∇𝜙𝑛+1, (37a)

∇ ⋅ ũ𝑛+1 = 0, (37b)

𝜕ũ𝑛+1

𝜕𝑛
= 𝐟𝑛+11 , on 𝜕Ω𝑜, (37c)

𝑃 𝑛+1 = 𝑓𝑛+1
2 , on 𝜕Ω𝑜, (37d)

ũ𝑛+1 ⋅ n = w𝑛+1 ⋅ n, on 𝜕Ω𝑠. (37e)

Velocity u𝑛+1∶

𝛾0u
𝑛+1 − û

Δ𝑡
+ 1

𝜌0
∇𝑃 𝑛+1 − 𝜈𝑚∇2u𝑛+1 = −N(u∗,𝑛+1) +

(
1
𝜌0

− 1
𝜌𝑛+1

)
∇𝑃 ∗,𝑛+1

+
(
𝜈𝑚 − 𝜇𝑛+1

𝜌𝑛+1

)
∇×∇× u∗,𝑛+1 + 1

𝜌𝑛+1
∇𝜇𝑛+1 ⋅(u∗,𝑛+1) − 𝜆

𝜌𝑛+1
∇2𝜙𝑛+1∇𝜙𝑛+1

+ 𝑓𝑛+1

𝜌𝑛+1
− 1

𝜌𝑛+1
J̃
𝑛+1 ⋅∇u∗,𝑛+1 − 𝜖′(𝜙𝑛+1)

2𝜌𝑛+1
|||𝐄𝑛+1|||2 ∇𝜙𝑛+1 (38a)

𝜕u𝑛+1

𝜕𝑛
= 𝐟𝑛+11 , on 𝜕Ω𝑜, (38b)

u𝑛+1 = w𝑛+1, on 𝜕Ω𝑠. (38c)

In the horizontal directions (𝑥 in 2D, 𝑥 and 𝑧 in 3D) we impose periodic conditions for (𝑉 𝑛+1, 𝜙𝑛+1, 𝑃 𝑛+1, 𝐮𝑛+1). These periodic 
conditions are not explicitly included in the above system of equations.

The symbols in the above equations have the following meanings. J̃𝑛+1 in (37a) and (38a) is given by,

J̃
𝑛+1 = 1

2
(𝜌1 − 𝜌2)𝜆𝛾1∇

[
∇2𝜙𝑛+1 − 𝑆

𝜂2
(𝜙𝑛+1 − 𝜙∗,𝑛+1) − ℎ(𝜙∗,𝑛+1) + 𝜖′(𝜙∗,𝑛+1)

2𝜆
|||𝐄𝑛+1|||2

]
, (39)

in which 𝑆 is a stabilization parameter to be described later. ũ𝑛+1 is an auxiliary approximation of 𝐮 at time step (𝑛 +1). Let 𝜉 denote 

a generic variable. Then in the above equations the expression 1
Δ𝑡

𝐷𝜉𝑛+1 = 1
Δ𝑡

(𝛾0𝜉𝑛+1 − 𝜉) represents an approximation of 𝜕𝜉
𝜕𝑡

||||𝑛+1 by 

the 𝐽 -th order backward differentiation formula (BDF), where 𝐽 = 1 or 2, and 𝜉∗,𝑛+1 represents a 𝐽 -th order explicit approximation 
of 𝜉𝑛+1. They are explicitly given by,

𝐷𝜉𝑛+1 =
{

𝜉𝑛+1 − 𝜉𝑛, if 𝐽 = 1,
3
2 𝜉

𝑛+1 − 2𝜉𝑛 + 1
2 𝜉

𝑛−1, if 𝐽 = 2; 𝜉∗,𝑛+1 =
{

𝜉𝑛, if 𝐽 = 1,
2𝜉𝑛 − 𝜉𝑛−1, if 𝐽 = 2. (40)

Note that 𝛾0 = 1 for 𝐽 = 1, and 32 for 𝐽 = 2.

The 𝜀0 in equation (35a), 𝜌0 in (37a), and 𝜈𝑚 in (38a) are constant algorithmic parameters. With those terms involving these 
constants formulated as above, the algorithm leads to linear algebraic systems with constant and time-dependent coefficient matrices 
upon discretization, which makes the current method computationally highly efficient. We choose 𝜀0 = max(𝜖1, 𝜖2), where 𝜖1, 𝜖2
are permittivities of the dielectric fluids. In (35a) we have treated the 𝜀0∇𝑉 term on the left hand side (LHS) implicitly and the 
correction term (𝜖 − 𝜀0)∇𝑉 in the RHS explicitly. The consistent approximation of these terms ensures the 𝐽 -th order accuracy of 
the overall scheme. We choose 𝜌0 and 𝜈𝑚 following [24,20], specifically with 𝜌0 = min(𝜌1, 𝜌2) and 𝜈𝑚 ≥ 1

2
max(𝜇1 ,𝜇2)
min(𝜌1 ,𝜌2)

, where 𝜌1 and 𝜌2
are the densities, and 𝜇1 and 𝜇2 are the dynamic viscosities of two dielectric fluids, respectively. We note the approach using the 
Helmholtz-Hodge decomposition for dealing with the variable density in [13,4,15].

The term 𝑆

𝜂2
(𝜙𝑛+1 − 𝜙∗,𝑛+1) in equation (36a) is a stabilization term, where 𝑆 is a chosen constant satisfying 𝑆 ≥ 𝜂2

√
4𝛾0

𝜆𝛾1Δ𝑡
. 

This allows us to reformulate the fourth order Cahn-Hilliard equation into two decoupled Helmholtz type equations (see [18] for 
more details). Note that the convective term of the phase field equation is written into the conservative form in the discretized 
equation (36a). This form ensures the conservation of the integral of the phase field function on the discrete level (see Remark 3.2
9

below).
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Remark 3.1. In the above algorithm we need to compute the initial distribution of the electric potential (and the electric field) to 
start the computation, i.e. solving for 𝑉 (𝐱, 𝑡 = 0) = 𝑉0(𝐱). We use a fixed point iteration to compute the initial distribution,

∇ ⋅
(
𝜀0∇𝑉 (𝑘+1)) = 𝑓 𝑖𝑛𝑖

𝑉
−∇ ⋅

[
(𝜖(𝜙0) − 𝜀0)∇𝑉 (𝑘)] , (41)

where 𝜙0 is the initial phase field distribution given in (27), 𝑓𝑖𝑛𝑖
𝑉

= 𝑓𝑉 (𝐱, 𝑡 = 0), and the superscript in 𝑉 (𝑘) refers to the iteration 
index. The electric potential distribution is obtained upon convergence of this iteration.

3.2. Implementation and spatial discretization

We next discuss how to implement the algorithm represented by equations (35a)–(38c) using high-order 𝐶0 spectral elements in 
2D and a hybrid Fourier spectral/spectral-element method in 3D. We first derive a weak form of the algorithm, which is suitable for 
both 2D and 3D. Then we further transform the weak form in 3D to a form specifically for the hybrid Fourier spectral/spectral-element 
discretization.

Given (u𝑛, 𝑃 𝑛, 𝜙𝑛, 𝑉 𝑛), we wish to compute (u𝑛+1, 𝑃 𝑛+1, 𝜙𝑛+1, 𝑉 𝑛+1). We will first derive the weak forms about these variables in 
the continuous space by taking the 𝐿2 inner product between an arbitrary test function and the equations about these variables. Then 
we restrict these variables and the test functions to appropriate function spaces to attain the final weak forms.

Let 𝑒(𝐱) denote an arbitrary test function. Taking the 𝐿2 inner product between 𝑒 and (35a) and using the integration by parts, 
we attain the weak form for 𝑉 𝑛+1,

∫
Ω

𝜀0∇𝑉 𝑛+1 ⋅∇𝑒 = −∫
Ω

(𝜖(𝜙∗,𝑛+1) − 𝜀0)∇𝑉 ∗,𝑛+1 ⋅∇𝑒− ∫
Ω

𝑓𝑛+1
𝑉

𝑒, ∀𝑒. (42)

The weak form of the electric field 𝐄𝑛+1(𝐱) = (𝐸𝑛+1
𝑥

(𝐱), 𝐸𝑛+1
𝑦

(𝐱), 𝐸𝑛+1
𝑧

(𝐱)) is obtained by taking the 𝐿2 inner product between 𝑒(𝐱)
and equation (35d),

∫
Ω

𝐄𝑛+1𝑒 = ∫
Ω

∇𝑉 𝑛+1𝑒, ∀𝑒. (43)

Equation (36a) can be written as (see [24] for details),

∇2𝜓𝑛+1 −
(
𝛼 + 𝑆

𝜂2

)
𝜓𝑛+1 =𝑄1 + ∇2𝑄2, (44a)

∇2𝜙𝑛+1 + 𝛼𝜙𝑛+1 = 𝜓𝑛+1, (44b)

where 𝛼 = − 𝑆

2𝜂2

(
1 +

√
1 − 4𝛾0

𝜆𝛾1Δ𝑡
𝜂4

𝑆2

)
, 𝜓𝑛+1 is an auxiliary variable defined by (44b), and

𝑄1 =
1
𝜆𝛾1

(
𝑔𝑛+1 − ∇ ⋅ (u∗,𝑛+1𝜙∗,𝑛+1) + �̂�

Δ𝑡

)
, 𝑄2 = ℎ(𝜙∗,𝑛+1) − 𝑆

𝜂2
𝜙∗,𝑛+1 − 𝜖′(𝜙∗,𝑛+1)

2𝜆
|𝐄𝑛+1|2. (45)

Let 𝜔(𝐱) denote an arbitrary test function. The weak forms for (44a) and (44b) are attained by taking the 𝐿2 inner product between 
𝜔(𝐱) and these equations,

∫
Ω

∇𝜓𝑛+1 ⋅∇𝜔+
(
𝛼 + 𝑆

𝜂2

)
∫
Ω

𝜓𝑛+1 ⋅𝜔 = ∫
𝜕Ω𝑜

[
𝑔𝑛+11 +

(
𝛼 + 𝑆

𝜂2

)
𝑔𝑛+12

]
𝜔

+ ∫
𝜕Ω𝑠

[
𝑔𝑛+11 +

(
𝛼 + 𝑆

𝜂2

)(
−𝑔𝑛+13 − Θ′(𝜙∗,𝑛+1)

𝜆

)]
𝜔− ∫

Ω

𝑄1𝜔+ ∫
Ω

∇𝑄2 ⋅∇𝜔, ∀𝜔; (46)

∫
Ω

∇𝜙𝑛+1 ⋅∇𝜔− 𝛼 ∫
Ω

𝜙𝑛+1𝜔 = ∫
𝜕Ω𝑜

𝑔𝑛+12 𝜔+ ∫
𝜕Ω𝑠

[
−𝑔𝑛+13 − Θ′(𝜙∗,𝑛+1)

𝜆

]
𝜔− ∫

Ω

𝜓𝑛+1𝜔, ∀𝜔. (47)

Let 𝑞(𝐱) denote an arbitrary test function that vanishes on 𝜕Ω𝑜 . Taking the 𝐿2 inner product between ∇𝑞 and equation (37a) leads 
to the weak form about 𝑃 𝑛+1,

∫
Ω

∇𝑃 𝑛+1 ⋅∇𝑞 = 𝜌0 ∫
Ω

[
T +∇

(
𝜇𝑛+1

𝜌𝑛+1

)
×𝝎

∗,𝑛+1
]
⋅∇𝑞

− 𝜌0 ∫
𝜕Ω

𝜇𝑛+1

𝜌𝑛+1
n ×𝝎

∗,𝑛+1 ⋅∇𝑞 −
𝜌0𝛾0
Δ𝑡 ∫

𝜕Ω𝑠

n ⋅𝐰𝑛+1𝑞, ∀𝑞 with 𝑞|𝜕Ω𝑜
= 0, (48)
10

where 𝝎 =∇ × 𝐮 and
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T = 1
𝜌𝑛+1

[
𝑓𝑛+1 − 𝜆(𝜓𝑛+1 − 𝛼𝜙𝑛+1)∇𝜙𝑛+1 − 𝜖′(𝜙𝑛+1)

2
|E|2 ∇𝜙𝑛+1 + ∇𝜇𝑛+1 ⋅(u∗,𝑛+1)

−J̃
𝑛+1 ⋅∇u∗,𝑛+1

]
+ �̂�

Δ𝑡
− N(u∗,𝑛+1) +

(
1
𝜌0

− 1
𝜌𝑛+1

)
∇𝑃 ∗,𝑛+1. (49)

When deriving the above equation, the following identity has been used,

𝜇

𝜌
∇×𝝎 ⋅∇𝑞 =∇ ⋅

(
𝜇

𝜌
𝝎 ×∇𝑞

)
−∇

(
𝜇

𝜌

)
×𝝎 ⋅∇𝑞.

For the weak form of equation (38a), let 𝑣(𝐱) be an arbitrary test function that vanishes on 𝜕Ω𝑠 , and we take the 𝐿2 inner product 
between 𝑣(𝐱) and equation(38a) to get

∫
Ω

∇u𝑛+1 ⋅∇𝑣+
𝛾0

𝜈𝑚Δ𝑡 ∫
Ω

u𝑛+1𝑣 = 1
𝜈𝑚 ∫

Ω

(
T − 1

𝜌0
∇𝑃 𝑛+1

)
𝑣− 1

𝜈𝑚 ∫
Ω

(
𝜇𝑛+1

𝜌𝑛+1
− 𝜈𝑚

)
𝝎
∗,𝑛+1 × ∇𝑣

+ 1
𝜈𝑚 ∫

Ω

∇
(
𝜇𝑛+1

𝜌𝑛+1
− 𝜈𝑚

)
×𝝎

∗,𝑛+1𝑣+ ∫
𝜕Ω𝑜

𝐟𝑛+11 𝑣− 1
𝜈𝑚 ∫

𝜕Ω𝑜

(
𝜇𝑛+1

𝜌𝑛+1
− 𝜈𝑚

)
n ×𝝎

∗,𝑛+1𝑣,

∀𝑣 with 𝑣|𝜕Ω𝑠
= 0, (50)

where the following identity has been used,

𝑣

(
𝜈𝑚 − 𝜇

𝜌

)
∇×𝝎 =∇×

[
𝑣𝝎

(
𝜈𝑚 − 𝜇

𝜌

)]
− 𝑣∇

(
𝜈𝑚 − 𝜇

𝜌

)
×𝝎−

(
𝜈𝑚 − 𝜇

𝜌

)
∇𝑣 ×𝝎.

Remark 3.2. The discretized scheme as given by (42)–(50) conserves the volume integral of the phase field function, i.e.

∫
Ω

𝜙𝑛𝑑Ω= ∫
Ω

𝜙0𝑑Ω, ∀𝑛 ⩾ 0, (51)

provided that there is no external force, only periodic or no-slip (or no penetration) boundary conditions are imposed, and the phase 
field at the first time step, 𝜙1(𝐱), is computed by the first-order scheme (𝐽 = 1). The relation (51) can be shown to be true by setting 
𝜔 = 1 in (46)–(47), noting 𝛼

(
𝛼 + 𝑆

𝜂2

)
= − 𝛾0

𝜆𝛾1Δ𝑡
, using the divergence theorem and 𝐧 ⋅𝐮 = 0 for no-slip (or no penetration) boundaries, 

and by induction.

3.2.1. Two dimensions

For two-dimensional (2D, Ω ⊂ℝ2) problems we employ 𝐶0 spectral elements for spatial discretizations. We partition the domain 
Ω using a spectral element mesh. Let Ωℎ denote the discretized domain, Ωℎ = ∪𝑁𝑒

𝑒=1Ω
𝑒
ℎ
, where Ω𝑒

ℎ
(1 ⩽ 𝑒 ⩽𝑁𝑒) denotes the element 𝑒

and 𝑁𝑒 is the number of elements in the mesh. Let 𝜕Ωℎ, 𝜕Ω𝑜ℎ, 𝜕Ω𝑠ℎ denote the discretized versions of the domain boundary 𝜕Ω, open 
boundary 𝜕Ω𝑜, and solid boundary 𝜕Ω𝑠. Then 𝜕Ωℎ = 𝜕Ω𝑜ℎ ∪ 𝜕Ω𝑠ℎ = 𝜕Ω𝑜ℎ ∪ 𝜕Ω𝑠𝑒ℎ ∪ 𝜕Ω𝑠𝑔ℎ, where 𝜕Ω𝑠𝑒ℎ and 𝜕Ω𝑠𝑔ℎ are the discretized 
versions of the solid-electrode boundary and the solid-gap boundary, respectively. Let Π𝐾 (Ω𝑒

ℎ
) denote the linear space of polynomials 

defined on Ω𝑒
ℎ

with their degrees characterized by 𝐾 (𝐾 will be referred to as the element order hereafter). Define

⎧⎪⎪⎨⎪⎪⎩

𝑋ℎ = { 𝑣 ∈𝐻1(Ωℎ) ∶ 𝑣|Ω𝑒
ℎ
∈Π𝐾 (Ω𝑒

ℎ
), 1 ⩽ 𝑒 ⩽𝑁𝑒 },

𝑋𝐸
ℎ0 = { 𝑣 ∈𝑋ℎ ∶ 𝑣|𝜕Ω𝑠𝑒ℎ

= 0 },

𝑋𝑃
ℎ0 = { 𝑣 ∈𝑋ℎ ∶ 𝑣|𝜕Ω𝑜ℎ

= 0 },

𝑋𝑢
ℎ0 = { 𝑣 ∈𝑋ℎ ∶ 𝑣|𝜕Ω𝑠ℎ

= 0 }.

(52)

In what follows we use (⋅)ℎ to denote the discretized version of (⋅).
The 2D fully discretized equations consist of the following:

For 𝑉 𝑛+1
ℎ

∶ find 𝑉 𝑛+1
ℎ

∈𝑋ℎ such that

∫
Ωℎ

𝜀0∇𝑉 𝑛+1
ℎ

⋅∇𝑒ℎ = −∫
Ωℎ

(𝜖(𝜙∗,𝑛+1
ℎ

) − 𝜀0)∇𝑉
∗,𝑛+1
ℎ

⋅∇𝑒ℎ − ∫
Ωℎ

𝑓𝑛+1
𝑉 ℎ

𝑒ℎ, ∀𝑒ℎ ∈𝑋𝐸
ℎ0; (53a)

𝑛+1
11

𝑉
ℎ

= 𝑒, on 𝜕Ω𝑠𝑒ℎ. (53b)
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For 𝐄𝑛+1
ℎ

∶ find 𝐄𝑛+1
ℎ

∈ [𝑋ℎ]2 such that

∫
Ωℎ

𝐄𝑛+1
ℎ

𝑒ℎ = ∫
Ωℎ

∇𝑉 𝑛+1
ℎ

𝑒ℎ, ∀𝑒ℎ ∈𝑋ℎ. (54)

For 𝜓𝑛+1
ℎ

∶ find 𝜓𝑛+1
ℎ

∈𝑋ℎ such that

∫
Ωℎ

∇𝜓𝑛+1
ℎ

⋅∇𝜔ℎ +
(
𝛼 + 𝑆

𝜂2

)
∫
Ωℎ

𝜓𝑛+1
ℎ

⋅𝜔ℎ = ∫
𝜕Ω𝑜ℎ

[
𝑔𝑛+11ℎ +

(
𝛼 + 𝑆

𝜂2

)
𝑔𝑛+12ℎ

]
𝜔ℎ

+ ∫
𝜕Ω𝑠ℎ

[
𝑔𝑛+11ℎ +

(
𝛼 + 𝑆

𝜂2

)(
−𝑔𝑛+13ℎ −

Θ′(𝜙∗,𝑛+1
ℎ

)
𝜆

)]
𝜔ℎ − ∫

Ωℎ

𝑄1ℎ𝜔ℎ + ∫
Ωℎ

∇𝑄2ℎ ⋅∇𝜔ℎ,

∀𝜔ℎ ∈𝑋ℎ. (55)

For 𝜙𝑛+1
ℎ

∶ find 𝜙𝑛+1
ℎ

∈𝑋ℎ such that

∫
Ωℎ

∇𝜙𝑛+1
ℎ

⋅∇𝜔ℎ − 𝛼 ∫
Ωℎ

𝜙𝑛+1
ℎ

𝜔ℎ = ∫
𝜕Ω𝑜ℎ

𝑔𝑛+12ℎ 𝜔ℎ + ∫
𝜕Ω𝑠ℎ

[
−𝑔𝑛+13ℎ −

Θ′(𝜙∗,𝑛+1
ℎ

)
𝜆

]
𝜔ℎ

− ∫
Ωℎ

𝜓𝑛+1
ℎ

𝜔ℎ, ∀𝜔ℎ ∈𝑋ℎ. (56)

For 𝑃 𝑛+1
ℎ

∶ find 𝑃 𝑛+1
ℎ

∈𝑋ℎ such that

∫
Ωℎ

∇𝑃 𝑛+1
ℎ

⋅∇𝑞ℎ = 𝜌0 ∫
Ωℎ

[
Tℎ +∇

(
𝜇𝑛+1
ℎ

𝜌𝑛+1
ℎ

)
×𝝎

∗,𝑛+1
ℎ

]
⋅∇𝑞ℎ

− 𝜌0 ∫
𝜕Ωℎ

𝜇𝑛+1
ℎ

𝜌𝑛+1
ℎ

n ×𝝎
∗,𝑛+1
ℎ

⋅∇𝑞ℎ −
𝜌0𝛾0
Δ𝑡 ∫

𝜕Ω𝑠ℎ

n ⋅𝐰𝑛+1
ℎ

𝑞ℎ, ∀𝑞ℎ ∈𝑋𝑃
ℎ0. (57a)

𝑃 𝑛+1
ℎ

= 𝑓𝑛+1
2ℎ , on 𝜕Ω𝑜ℎ. (57b)

For 𝐮𝑛+1
ℎ

∶ find 𝐮𝑛+1
ℎ

∈ [𝑋ℎ]2 such that

∫
Ωℎ

∇𝑣ℎ ⋅∇u𝑛+1
ℎ

+
𝛾0

𝜈𝑚Δ𝑡 ∫
Ωℎ

u𝑛+1
ℎ

𝑣ℎ =
1
𝜈𝑚 ∫

Ωℎ

(
Tℎ −

1
𝜌0

∇𝑃 𝑛+1
ℎ

)
𝑣ℎ

− 1
𝜈𝑚 ∫

Ωℎ

(
𝜇𝑛+1
ℎ

𝜌𝑛+1
ℎ

− 𝜈𝑚

)
𝝎
∗,𝑛+1
ℎ

×∇𝑣ℎ +
1
𝜈𝑚 ∫

Ωℎ

∇

(
𝜇𝑛+1
ℎ

𝜌𝑛+1
ℎ

)
×𝝎

∗,𝑛+1
ℎ

𝑣ℎ + ∫
𝜕Ω𝑜ℎ

𝐟𝑛+11ℎ 𝑣ℎ

− 1
𝜈𝑚 ∫

𝜕Ω𝑜ℎ

(
𝜇𝑛+1
ℎ

𝜌𝑛+1
ℎ

− 𝜈𝑚

)
n ×𝝎

∗,𝑛+1
ℎ

𝑣ℎ, ∀𝑣ℎ ∈𝑋𝑢
ℎ0; (58a)

u𝑛+1
ℎ

= w𝑛+1
ℎ

, on 𝜕Ω𝑠ℎ. (58b)

Therefore, given (𝐮𝑛, 𝑃 𝑛, 𝜙𝑛, 𝑉 𝑛), one can compute 𝑉 𝑛+1, 𝐄𝑛+1, 𝜓𝑛+1, 𝜙𝑛+1, 𝑃 𝑛+1 and 𝐮𝑛+1 by solving equations (53a)–(58b)

successively in an uncoupled fashion. The solution procedure is summarized in Algorithm 1.

3.2.2. Three dimensions

For three dimensions (3D, Ω ⊂ℝ3) we concentrate on problems with one homogeneous direction in this work, so that Fourier ex-

pansions can be employed along that direction, as stated previously. Let us assume that the homogeneous direction is along the 𝑧 axis, 
and we employ a hybrid spectral-element/Fourier spectral discretization to solve the problem, with spectral element discretization 
in the 𝑥𝑦 plane and Fourier spectral discretization along the 𝑧 direction.

We take the domain along the 𝑧 direction as 𝑧 ∈ [0, 𝐿𝑧], and assume that the domain and all the dynamic variables are periodic 
12

at 𝑧 = 0 and 𝑧 =𝐿𝑧, where 𝐿𝑧 is the dimension of the computational domain in 𝑧. Then the following relations hold,
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Algorithm 1: Solution Procedure within a Time Step for 2D Dielectric Flows.

input : 𝑉 𝑛 , 𝜙𝑛 , 𝑃 𝑛 , 𝐮𝑛 .

output : 𝑉 𝑛+1 , 𝐄𝑛+1 , 𝜓𝑛+1 , 𝜙𝑛+1 , 𝑃 𝑛+1 , 𝐮𝑛+1 .

1 solve equations (53a)–(53b) for 𝑉 𝑛+1

2 solve equation (54) for 𝐄𝑛+1

3 solve equation (55) for 𝜓𝑛+1

4 solve equation (56) for 𝜙𝑛+1

5 solve equations (57a)–(57b) for 𝑃 𝑛+1

6 solve equations (58a)–(58b) for 𝐮𝑛+1

{
Ω=Ω2𝐷 ⊗ [0,𝐿𝑧], 𝜕Ω= 𝜕Ω2𝐷 ⊗ [0,𝐿𝑧], 𝜕Ω𝑠 = 𝜕Ω2𝐷

𝑠
⊗ [0,𝐿𝑧], 𝜕Ω𝑜 = 𝜕Ω2𝐷

𝑜
⊗ [0,𝐿𝑧],

𝜕Ω𝑠𝑒 = 𝜕Ω2𝐷
𝑠𝑒

⊗ [0,𝐿𝑧], 𝜕Ω𝑠𝑔 = 𝜕Ω2𝐷
𝑠𝑔

⊗ [0,𝐿𝑧].
(59)

In the above relations Ω is the 3D domain, and Ω2𝐷 is the computational domain in the 𝑥𝑦 plane (i.e. projection of Ω onto the 𝑥𝑦
plane). Similarly, 𝜕Ω2𝐷 , 𝜕Ω2𝐷

𝑠
, 𝜕Ω2𝐷

𝑜
, 𝜕Ω2𝐷

𝑠𝑒
and 𝜕Ω2𝐷

𝑠𝑔
are projections onto the 𝑥𝑦 plane of the 3D boundaries 𝜕Ω, 𝜕Ω𝑠, 𝜕Ω𝑜, 𝜕Ω𝑠𝑒

and 𝜕Ω𝑠𝑔 , respectively. In addition, we have the following relations,

𝐧 = (𝐧2𝐷,0), 𝐧𝑜 = (𝐧2𝐷
𝑜

,0), 𝐧𝑠 = (𝐧2𝐷
𝑠

,0). (60)

Here 𝐧, 𝐧𝑜 and 𝐧𝑠 denote the outward-pointing unit vectors normal to 𝜕Ω, 𝜕Ω𝑜 and 𝜕Ω𝑠, respectively. 𝐧2𝐷 , 𝐧2𝐷
𝑜

and 𝐧2𝐷
𝑠

are the 
outward-pointing unit vectors normal to 𝜕Ω2𝐷 , 𝜕Ω2𝐷

𝑜
and 𝜕Ω2𝐷

𝑠
, respectively.

Let 𝑁𝑧 denote the number of Fourier grid points in 𝑧. We introduce the Fourier basis functions,

Φ𝑘(𝑧) = 𝑒𝑖𝛽𝑘𝑧, 𝛽𝑘 =
2𝜋𝑘
𝐿𝑧

, −
𝑁𝑧

2
≤ 𝑘 ≤ 𝑁𝑧

2
− 1. (61)

Then, for a generic function 𝑓 (𝑥, 𝑦, 𝑧) we have the Fourier expansion relation,

𝑓 (𝑥, 𝑦, 𝑧) =
𝑁𝑧∕2−1∑
𝑘=−𝑁𝑧∕2

𝑓𝑘(𝑥, 𝑦)Φ𝑘(𝑧),

𝐿𝑧

∫
0

𝑓 (𝑥, 𝑦, 𝑧)Φ̄𝑘(𝑧)𝑑𝑧 =𝐿𝑧𝑓𝑘(𝑥, 𝑦), (62)

where Φ̄𝑘 is the complex conjugate of Φ𝑘, and 𝑓𝑘(𝑥, 𝑦) denotes the 𝑘-th Fourier mode of 𝑓 (𝑥, 𝑦, 𝑧).
We define the basis and test functions in 3D by, for −𝑁𝑧

2 ≤ 𝑘 ≤ 𝑁𝑧

2 − 1,{
𝑄𝑘(𝑥, 𝑦, 𝑧) = 𝑙(𝑥, 𝑦)Φ𝑘(𝑧), (basis function),

�̄�𝑘(𝑥, 𝑦, 𝑧) = 𝑙(𝑥, 𝑦)Φ̄𝑘(𝑧), (test function),
(63)

where 𝑙(𝑥, 𝑦) denotes an arbitrary function in the 𝑥𝑦 plane. Define ∇ =
(
∇2𝐷,

𝜕

𝜕𝑧

)
=
(

𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

)
. Let 𝑓 (𝑥, 𝑦, 𝑧) denote a generic scalar 

field and 𝐮(𝑥, 𝑦, 𝑧) = (𝐮2𝐷(𝑥, 𝑦, 𝑧), 𝑢𝑧(𝑥, 𝑦, 𝑧)) = (𝑢𝑥(𝑥, 𝑦, 𝑧), 𝑢𝑦(𝑥, 𝑦, 𝑧), 𝑢𝑧(𝑥, 𝑦, 𝑧)) denote the velocity (or a generic vector) field. Then 
the following relations hold,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

𝑓 (𝑥, 𝑦, 𝑧)�̄�𝑘(𝑥, 𝑦, 𝑧)𝑑Ω=𝐿𝑧 ∫
Ω2𝐷

𝑓𝑘(𝑥, 𝑦)𝑙(𝑥, 𝑦)𝑑Ω2𝐷

∫
Ω

∇𝑓 (𝑥, 𝑦, 𝑧) ⋅∇�̄�𝑘(𝑥, 𝑦, 𝑧)𝑑Ω=𝐿𝑧 ∫
Ω2𝐷

[
∇2𝐷𝑓𝑘(𝑥, 𝑦) ⋅∇2𝐷𝑙(𝑥, 𝑦) + 𝛽2

𝑘
𝑓𝑘(𝑥, 𝑦)𝑙(𝑥, 𝑦)

]
𝑑Ω2𝐷

∫
Ω

u ⋅∇�̄�𝑘𝑑Ω=𝐿𝑧 ∫
Ω2𝐷

[
∇2𝐷𝑙(𝑥, 𝑦) ⋅ û2𝐷,𝑘 − 𝑖𝛽𝑘𝑙(𝑥, 𝑦)�̂�𝑧,𝑘

]
𝑑Ω2𝐷

(64)

where û2𝐷,𝑘 and �̂�𝑧,𝑘 are the Fourier modes of u2𝐷 and 𝑢𝑧, respectively, and 𝑑Ω = 𝑑Ω2𝐷𝑑𝑧.

By using the above integral relations, we can reduce the 3D weak forms in (42)–(50) into 2D weak forms about the Fourier modes. 
Let us assume in the following that 𝜔(𝑥, 𝑦) denote an arbitrary 2D test function for the electric potential, the electric field and the 
phase field functions, and 𝑣(𝑥, 𝑦) denote an arbitrary 2D test function about the pressure and velocity fields. For simplicity, we will 
assume that 𝜔(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) vanish on the corresponding Dirichlet type boundaries. We use the 2D function ̂(⋅)𝑘 or ̂(⋅),𝑘 of (𝑥, 𝑦) to 
denote the 𝑘-th Fourier mode of the 3D function (⋅) of (𝑥, 𝑦, 𝑧).

Let R = (𝜖(𝜙∗,𝑛+1) − 𝜀0)∇𝑉 ∗,𝑛+1 = (𝐑2𝐷, 𝑅𝑧). The weak form (42) is reduced to,

∫
Ω2𝐷

𝜀0∇2𝐷𝑉
𝑛+1
𝑘

⋅∇2𝐷𝜔+ 𝛽2
𝑘 ∫
Ω2𝐷

𝜀0𝑉
𝑛+1
𝑘

𝜔 = − ∫
Ω2𝐷

R̂𝑘 ⋅∇𝜔− ∫
Ω2𝐷

𝑓𝑛+1
𝑉 ,𝑘

𝜔, ∀𝜔(𝑥, 𝑦), (65)
13

where ∇𝜔(𝑥, 𝑦) = (∇2𝐷𝜔, −𝑖𝛽𝑘𝜔), and we have used the following equation,
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∫
Ω

R ⋅∇�̄�𝑘 =
𝑁𝑧∕2−1∑
𝑚=−𝑁𝑧∕2

⎛⎜⎜⎜⎝∫Ω2𝐷

R̂𝑚 ⋅∇𝜔
⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝐿𝑧

∫
0

Φ𝑚(𝑧)Φ̄𝑘(𝑧)
⎞⎟⎟⎟⎠

=𝐿𝑧 ∫
Ω2𝐷

R̂𝑘 ⋅∇𝜔 =𝐿𝑧 ∫
Ω2𝐷

(
�̂�2𝐷,𝑘 ⋅∇2𝐷𝜔− 𝑖𝛽𝑘�̂�𝑧,𝑘𝜔

)
.

(66)

The 3D weak form (43) now becomes

∫
Ω2𝐷

(�̂�𝑛+1
𝑥,𝑘

, �̂�𝑛+1
𝑦,𝑘

, �̂�𝑛+1
𝑧,𝑘

)𝜔 = ∫
Ω2𝐷

(𝜕𝑥𝑉 𝑛+1
𝑘

, 𝜕𝑦𝑉
𝑛+1
𝑘

,−𝑖𝛽𝑘𝑉 𝑛+1
𝑘

)𝜔, ∀𝜔(𝑥, 𝑦), (67)

where �̂�𝑛+1
𝑘

= (�̂�𝑛+1
𝑥,𝑘

, �̂�𝑛+1
𝑦,𝑘

, �̂�𝑛+1
𝑧,𝑘

).
The weak forms (46)–(47) are reduced to,

∫
Ω2𝐷

∇2𝐷�̂�
𝑛+1
𝑘

⋅∇2𝐷𝜔+
(
𝛼 + 𝑆

𝜂2
+ 𝛽2

𝑘

)
∫

Ω2𝐷

�̂�𝑛+1
𝑘

𝜔 = ∫
Ω2𝐷

(𝛽2
𝑘
�̂�2,𝑘 − �̂�1,𝑘)𝜔+ ∫

Ω2𝐷

∇2𝐷�̂�2,𝑘 ⋅∇𝜔

+ ∫
𝜕Ω2𝐷

𝑜

[
�̂�𝑛+11,𝑘 +

(
𝛼 + 𝑆

𝜂2

)
�̂�𝑛+12,𝑘

]
𝜔+ ∫

𝜕Ω2𝐷
𝑠

[
�̂�𝑛+11,𝑘 +

(
𝛼 + 𝑆

𝜂2

)
�̂�𝑘

]
𝜔, ∀𝜔(𝑥, 𝑦); (68)

∫
Ω2𝐷

∇2𝐷�̂�
𝑛+1
𝑘

⋅∇2𝐷𝜔+ (−𝛼 + 𝛽2
𝑘
) ∫
Ω2𝐷

�̂�𝑛+1
𝑘

𝜔 = ∫
Ω2𝐷

�̂�𝑛+1
𝑘

𝜔+ ∫
𝜕Ω2𝐷

𝑜

�̂�𝑛+12,𝑘 𝜔+ ∫
𝜕Ω2𝐷

𝑠

�̂�𝑘𝜔,

∀𝜔(𝑥, 𝑦), (69)

where 𝑈 = −𝑔𝑛+13 − Θ′(𝜙∗,𝑛+1)
𝜆

, and �̂�𝑘 denotes the Fourier modes of 𝑈 .

Let

⎧⎪⎪⎨⎪⎪⎩
G = (G2𝐷,𝐺𝑧) = T +∇

(
𝜇𝑛+1

𝜌𝑛+1

)
×𝝎

∗,𝑛+1, Y = G− 1
𝜌0

∇𝑃 𝑛+1,

J = (J2𝐷,𝐽𝑧) =
𝜇𝑛+1

𝜌𝑛+1
n ×𝝎

∗,𝑛+1, K =
(
𝜇𝑛+1

𝜌𝑛+1
− 𝜈𝑚

)
𝝎
∗,𝑛+1, L =

(
𝜇𝑛+1

𝜌𝑛+1
− 𝜈𝑚

)
n ×𝝎

∗,𝑛+1.

(70)

The weak form (48) for the pressure is reduced to,

∫
Ω2𝐷

∇2𝐷𝑃
𝑛+1
𝑘

⋅∇2𝐷𝑣+ 𝛽2
𝑘 ∫
Ω2𝐷

𝑃 𝑛+1
𝑘

𝑣 = 𝜌0 ∫
Ω2𝐷

Ĝ2𝐷,𝑘 ⋅∇2𝐷𝑣− 𝑖𝛽𝑘𝜌0 ∫
Ω2𝐷

�̂�𝑧,𝑘𝑣

− 𝜌0 ∫
𝜕Ω2𝐷

𝑜

Ĵ2𝐷,𝑘 ⋅∇2𝐷𝑣+ 𝑖𝛽𝑘𝜌0 ∫
𝜕Ω2𝐷

𝑜

𝐽𝑧,𝑘𝑣−
𝜌0𝛾0
Δ𝑡 ∫

𝜕Ω2𝐷
𝑠

n2𝐷 ⋅ �̂�𝑛+1
2𝐷,𝑘

𝑣, ∀𝑣(𝑥, 𝑦). (71)

The weak form (50) for the velocity is reduced to,

∫
Ω2𝐷

∇2𝐷𝑣 ⋅∇2𝐷û𝑛+1
𝑘

+
(
𝛽2
𝑘
+

𝛾0
𝜈𝑚Δ𝑡

)
∫

Ω2𝐷

û𝑛+1
𝑘

𝑣 = 1
𝜈𝑚 ∫

Ω2𝐷

Ŷ𝑘𝑣−
1
𝜈𝑚 ∫

Ω2𝐷

K̂𝑘 ×∇𝑣

+ ∫
𝜕Ω2𝐷

𝑜

𝐟𝑛+11,𝑘 𝑣− 1
𝜈𝑚 ∫

𝜕Ω2𝐷
𝑜

L̂𝑘𝑣, ∀𝑣(𝑥, 𝑦). (72)

Note that the terms 𝑖𝛽𝑘𝜌0 ∫Ω2𝐷
�̂�𝑧,𝑘𝑣 and 𝑖𝛽𝑘𝜌0 ∫𝜕Ω2𝐷

𝑜
𝐽𝑛+1
𝑧,𝑘

𝑣 in equation (71) and the term 1
𝜈𝑚

∫Ω2𝐷
K̂𝑘 ×∇𝑣 in equation (72) mixes up 

the imaginary and real parts, which calls for special attention in the implementation.

To formulate the fully discretized equations in 3D, we partition the domain Ω2𝐷 in the 𝑥𝑦 plane by a mesh of 𝐶0 spectral elements. 
Let Ω2𝐷ℎ denote the discretized Ω2𝐷 , Ω2𝐷ℎ = ∪𝑁𝑒

𝑒=1Ω
𝑒
2𝐷ℎ

, where Ω𝑒
2𝐷ℎ

denotes the element 𝑒 in the 𝑥𝑦 plane. Let 𝜕Ω2𝐷ℎ, 𝜕Ω2𝐷
𝑜ℎ

, and 
𝜕Ω2𝐷

𝑠ℎ
denote the discretized versions of 𝜕Ω2𝐷 , 𝜕Ω2𝐷

𝑜
, and 𝜕Ω2𝐷

𝑠
, respectively. Let 𝜕Ω2𝐷

𝑠𝑒ℎ
and 𝜕Ω2𝐷

𝑠𝑔ℎ
denote the discretized solid-

electrode and solid-gap boundaries in Ω2𝐷 , 𝜕Ω2𝐷
𝑠ℎ

= 𝜕Ω2𝐷
𝑠𝑒ℎ

∪ 𝜕Ω2𝐷
𝑠𝑔ℎ

. Let Π𝐾 (Ω𝑒
2𝐷ℎ

) denote the polynomial space defined on Ω𝑒
2𝐷ℎ

with 
14

their degrees characterized by 𝐾 . We define
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𝕐ℎ = { 𝑣 ∈𝐻1(Ω2𝐷ℎ) ∶ 𝑣|Ω𝑒
2𝐷ℎ

∈Π𝐾 (Ω𝑒
2𝐷ℎ

), 1 ⩽ 𝑒 ⩽𝑁𝑒 },

𝕐𝐸
ℎ0 = { 𝑣 ∈ 𝕐ℎ ∶ 𝑣|

𝜕Ω2𝐷
𝑠𝑒ℎ

= 0 },

𝕐 𝑃
ℎ0 = { 𝑣 ∈ 𝕐ℎ ∶ 𝑣|

𝜕Ω2𝐷
𝑜ℎ

= 0 },

𝕐 𝑢
ℎ0 = { 𝑣 ∈ 𝕐ℎ ∶ 𝑣|

𝜕Ω2𝐷
𝑠ℎ

= 0 }.

(73)

In the following the subscript ℎ denotes the discretized version of a variable.

Then the fully discretized system in 3D consists of the following equations:

For 𝑉 𝑛+1
ℎ

∶ find 𝑉 𝑛+1
𝑘ℎ

∈ 𝕐ℎ such that (for −𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2 − 1)

∫
Ω2𝐷ℎ

𝜀0∇2𝐷𝑉
𝑛+1
𝑘ℎ

⋅∇2𝐷𝜔ℎ + 𝛽2
𝑘 ∫
Ω2𝐷ℎ

𝜀0𝑉
𝑛+1
𝑘ℎ

𝜔ℎ = − ∫
Ω2𝐷ℎ

R̂𝑘ℎ ⋅∇𝜔ℎ − ∫
Ω2𝐷ℎ

𝑓𝑛+1
𝑉 ,𝑘ℎ

𝜔ℎ,

∀𝜔ℎ ∈ 𝕐𝐸
ℎ0; (74a)

𝑉 𝑛+1
𝑘ℎ

=
{ 𝑒, 𝑘 = 0,

0, 𝑘 ≠ 0. on 𝜕Ω2𝐷
𝑠𝑒ℎ

. (74b)

For 𝐄𝑛+1
ℎ

∶ find �̂�𝑛+1
𝑘ℎ

= (�̂�𝑛+1
𝑥,𝑘ℎ

, �̂�𝑛+1
𝑦,𝑘ℎ

, �̂�𝑛+1
𝑧,𝑘ℎ

) ∈ [𝕐ℎ]3, such that (for −𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2 − 1)

∫
Ω2𝐷ℎ

(�̂�𝑛+1
𝑥,𝑘ℎ

, �̂�𝑛+1
𝑦,𝑘ℎ

, �̂�𝑛+1
𝑧,𝑘ℎ

)𝜔ℎ = ∫
Ω2𝐷ℎ

(𝜕𝑥𝑉 𝑛+1
𝑘ℎ

, 𝜕𝑦𝑉
𝑛+1
𝑘ℎ

,−𝑖𝛽𝑘𝑉 𝑛+1
𝑘ℎ

)𝜔ℎ, ∀𝜔ℎ ∈ 𝕐ℎ. (75)

For 𝜓𝑛+1
ℎ

∶ find �̂�𝑛+1
𝑘ℎ

∈ 𝕐ℎ such that (for −𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2 − 1)

∫
Ω2𝐷ℎ

∇2𝐷�̂�
𝑛+1
𝑘ℎ

⋅∇2𝐷𝜔ℎ +
(
𝛼 + 𝑆

𝜂2
+ 𝛽2

𝑘

)
∫

Ω2𝐷ℎ

�̂�𝑛+1
𝑘ℎ

𝜔ℎ

= ∫
Ω2𝐷ℎ

(𝛽2
𝑘
�̂�2,𝑘ℎ − �̂�1,𝑘ℎ)𝜔ℎ + ∫

Ω2𝐷ℎ

∇2𝐷�̂�2,𝑘ℎ ⋅∇𝜔ℎ

+ ∫
𝜕Ω2𝐷

𝑜ℎ

[
�̂�𝑛+11,𝑘ℎ +

(
𝛼 + 𝑆

𝜂2

)
�̂�𝑛+12,𝑘ℎ

]
𝜔ℎ + ∫

𝜕Ω2𝐷
𝑠ℎ

[
�̂�𝑛+11,𝑘ℎ +

(
𝛼 + 𝑆

𝜂2

)
�̂�𝑘ℎ

]
𝜔ℎ, ∀𝜔ℎ ∈ 𝕐ℎ. (76)

For 𝜙𝑛+1
ℎ

∶ find �̂�𝑛+1
𝑘ℎ

∈ 𝕐ℎ such that (for −𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2 − 1)

∫
Ω2𝐷ℎ

∇2𝐷�̂�
𝑛+1
𝑘ℎ

⋅∇2𝐷𝜔ℎ + (−𝛼 + 𝛽2
𝑘
) ∫
Ω2𝐷ℎ

�̂�𝑛+1
𝑘ℎ

𝜔ℎ

= ∫
Ω2𝐷ℎ

�̂�𝑛+1
𝑘ℎ

𝜔ℎ + ∫
𝜕Ω2𝐷

𝑜ℎ

�̂�𝑛+12,𝑘ℎ𝜔ℎ + ∫
𝜕Ω2𝐷

𝑠ℎ

�̂�𝑘ℎ𝜔ℎ, ∀𝜔ℎ ∈ 𝕐ℎ. (77)

For 𝑃 𝑛+1
ℎ

∶ find 𝑃 𝑛+1
𝑘ℎ

∈ 𝕐ℎ such that (for −𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2 − 1)

∫
Ω2𝐷ℎ

∇2𝐷𝑃
𝑛+1
𝑘ℎ

⋅∇2𝐷𝑣ℎ + 𝛽2
𝑘 ∫
Ω2𝐷ℎ

𝑃 𝑛+1
𝑘ℎ

𝑣ℎ = 𝜌0 ∫
Ω2𝐷ℎ

Ĝ2𝐷,𝑘ℎ ⋅∇2𝐷𝑣ℎ − 𝑖𝛽𝑘𝜌0 ∫
Ω2𝐷ℎ

�̂�𝑧,𝑘ℎ𝑣ℎ

− 𝜌0 ∫
𝜕Ω2𝐷

𝑜ℎ

Ĵ2𝐷,𝑘ℎ ⋅∇2𝐷𝑣ℎ + 𝑖𝛽𝑘𝜌0 ∫
𝜕Ω2𝐷

𝑜ℎ

𝐽𝑧,𝑘ℎ𝑣ℎ −
𝜌0𝛾0
Δ𝑡 ∫

𝜕Ω2𝐷
𝑠ℎ

n2𝐷ℎ ⋅ �̂�𝑛+1
2𝐷,𝑘ℎ

𝑣ℎ, ∀𝑣ℎ ∈ 𝕐 𝑃
ℎ0; (78a)

𝑃 𝑛+1
𝑘ℎ

= 𝑓𝑛+1
2,𝑘ℎ, on 𝜕Ω2𝐷

𝑜ℎ
. (78b)

For 𝐮𝑛+1
ℎ

∶ find �̂�𝑛+1
𝑘ℎ

∈ [𝕐ℎ]3 such that (for −𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2 − 1)

∇2𝐷𝑣ℎ ⋅∇2𝐷û𝑛+1
𝑘ℎ

+
(
𝛽2
𝑘
+

𝛾0
)

û𝑛+1
𝑘ℎ

𝑣ℎ =
1

Ŷ𝑘ℎ𝑣ℎ
15

∫
Ω2𝐷ℎ

𝜈𝑚Δ𝑡 ∫
Ω2𝐷ℎ

𝜈𝑚 ∫
Ω2𝐷ℎ
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Algorithm 2: Solution Procedure within a Time Step for 3D Dielectric Flows.

input : 𝑉 𝑛 , 𝜙𝑛 , 𝑃 𝑛 , 𝐮𝑛 .

output : 𝑉 𝑛+1 , 𝐄𝑛+1 , 𝜓𝑛+1 , 𝜙𝑛+1 , 𝑃 𝑛+1 , 𝐮𝑛+1 .

1 solve equations (74a)–(74b) for 𝑉 𝑛+1
𝑘

(−𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2), with Fourier transform to attain 𝑉 𝑛+1

2 solve equation (75) for �̂�𝑛+1
𝑘

(−𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2), with Fourier transform to attain 𝐄𝑛+1

3 solve equation (76) for �̂�𝑛+1
𝑘

(−𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2), with Fourier transform to attain 𝜓𝑛+1

4 solve equation (77) for �̂�𝑛+1
𝑘

(−𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2), with Fourier transform to attain 𝜙𝑛+1

5 solve equations (78a)–(78b) for 𝑃 𝑛+1
𝑘

(−𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2), with Fourier transform to attain 𝑃 𝑛+1

6 solve equations (79a)–(79b) for �̂�𝑛+1
𝑘

(−𝑁𝑧∕2 ⩽ 𝑘 ⩽𝑁𝑧∕2), with Fourier transform to attain 𝐮𝑛+1

− 1
𝜈𝑚 ∫

Ω2𝐷ℎ

K̂𝑘ℎ ×∇𝑣ℎ + ∫
𝜕Ω2𝐷

𝑜ℎ

𝐟𝑛+11,𝑘ℎ𝑣ℎ −
1
𝜈𝑚 ∫

𝜕Ω2𝐷
𝑜ℎ

L̂𝑘ℎ𝑣ℎ, ∀𝑣ℎ ∈ 𝕐 𝑢
ℎ0. (79a)

�̂�𝑛+1
𝑘ℎ

= �̂�𝑛+1
𝑘ℎ

, on 𝜕Ω2𝐷
𝑠ℎ

. (79b)

Given (𝑉 𝑛, 𝜙𝑛, 𝑃 𝑛, 𝐮𝑛) in 3D, the field variables 𝑉 𝑛+1, 𝐄𝑛+1, 𝜓𝑛+1, 𝜙𝑛+1, 𝑃 𝑛+1 and 𝐮𝑛+1 are computed by solving the equa-

tions (74)–(79) individually and successively in an un-coupled fashion. Algorithm 2 summarizes the solution procedure for 3D 
problems.

Remark 3.3. The Algorithms 1 and 2, respectively for 2D and 3D two-phase dielectric flows, share a common characteristic. The 
resultant linear algebraic systems for the dynamic variables (𝑉 𝑛+1, 𝐄𝑛+1, 𝜓𝑛+1, 𝜙𝑛+1, 𝑃 𝑛+1, 𝐮𝑛+1) all involve a constant and time-

independent coefficient matrix upon discretization, which only needs to be computed once and thus can be pre-computed and saved 
for later use, despite the variable permittivity/density/viscosity field involved in the system on the continuum level. Because of this 
property, the current method is computationally very efficient for simulating two-phase dielectric flow problems.

4. Representative numerical simulations

4.1. Convergence test

We next employ a manufactured analytic solution to the governing equations to demonstrate the spatial and temporal convergence 
rates of the numerical method presented in Section 3.

We first look into the convergence for 2D problems. Consider a domain Ω = {(𝑥, 𝑦) ∶ 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 1} (see Fig. 2(a)), and the 
two-phase dielectric governing equations and boundary/initial conditions on Ω as given by equations (27)–(29), (5), (7), (31)–(34), 
(20), (23). We employ the following manufactured solution to this problem:{

𝑢 = cos(𝜋𝑦) sin(𝜋𝑥) sin(𝑡), 𝑣 = −sin(𝜋𝑦) cos(𝜋𝑥) sin(𝑡), 𝑃 = sin(𝜋𝑦) cos(𝜋𝑥) cos(𝑡),

𝜙 = cos(𝜋𝑥) cos(𝜋𝑦) sin(𝑡), 𝑉 = sin(𝜋𝑥) cos(𝜋𝑦),
(80)

where 𝐮 = (𝑢, 𝑣). All the source terms involved in the governing equations and boundary/initial conditions are chosen such that the 
field distributions given in (80) satisfy the governing equations and boundary/initial conditions.

To simulate this problem, we discretize the domain using two spectral elements of the same size, as shown in Fig. 2(a). On the 
left/right boundaries (𝑥 = 0, 2) we impose the periodic condition for all the dynamic variables. The bottom boundary (𝑦 = 0) is 
assumed to be a wall, and we impose the Dirichlet condition for the velocity and the electric potential (see equations (34) and (23)), 
and the boundary condition (33) for the phase field function. The top boundary (𝑦 = 1) is assumed to be open, and we impose the 
boundary conditions (20), (31) and (32) for the electric potential, the phase field function and the velocity/pressure, respectively.

Fig. 2(b) shows the 𝐿∞ and 𝐿2 errors of the velocity, pressure, phase field function, and the electric potential versus the element 
order. Here the time step size is fixed at Δ𝑡 = 0.001, and the governing equations are integrated from 𝑡 = 0 to 𝑡 = 𝑡𝑓 = 0.2. Shown 
in this figure are the errors of dynamic variables at 𝑡 = 𝑡𝑓 . The errors decrease exponentially with increasing element order (when 
below 10), and they stagnate when the element order increases beyond 10 due to the dominance of the temporal truncation error.

Fig. 2(c) illustrates the temporal convergence of the method. The 𝐿∞ and 𝐿2 errors of the dynamic variables at 𝑡 = 𝑡𝑓 = 0.4 as 
a function of Δ𝑡 are shown. In this group of tests the element order is fixed at 14. We observe a second-order convergence rate for 
these field variables.

To test the spatial/temporal convergence of the 3D algorithm, we consider the domain Ω = {(𝑥, 𝑦, 𝑧) ∶ 0 ≤ 𝑥 ≤ 2, −1 ≤ 𝑦 ≤ 1, 0 ≤
𝑧 ≤ 2}, as sketched in Fig. 3(a). The plane 𝐻𝐵𝐸𝐾 (𝑥 = 1) partitions the domain into two equal sub-domains. The domain Ω and all 
the flow variables are assumed to be homogeneous along 𝑧. The top boundary (𝑦 = 1) is open. The boundaries along the 𝑥 direction 
(𝑥 = 0 and 2) are periodic. On the bottom face 𝐴𝐶𝐼𝐺, we impose the Dirichlet boundary condition for the velocity 𝐮, and the wall 
boundary conditions (33) for the phase field function 𝜙. For the electric potential 𝑉 , we impose the Dirichlet condition (second 
16

equation in (23)) on the region 𝐴𝐵𝐻𝐺 and the Neumann condition (first equation in (23)) on the region 𝐵𝐶𝐼𝐻 .
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Fig. 2. 2D convergence test: (a) Sketch of the computational domain and configuration. (b) 𝐿∞ and 𝐿2 errors of the dynamic variables versus the element order (fixed 
Δ𝑡 = 0.001), showing spatial exponential convergence. (c) 𝐿∞ and 𝐿2 errors versus Δ𝑡 (fixed element order = 14), showing temporal second-order convergence rate.

Fig. 3. 3D convergence test: (a) Domain and configuration. (b) 𝐿∞ errors of the dynamic variables versus the element order (fixed Δ𝑡 = 0.001 and 𝑁𝑧 = 8), showing 
spatial exponential convergence. (b) 𝐿∞ errors versus Δ𝑡 (fixed element order 14 and 𝑁𝑧 = 8), showing temporal second-order convergence rate.

We employ the following manufactured analytic solution on Ω for the 3D convergence tests,{
𝑢 = cos(𝜋𝑥) cos(𝜋𝑦)𝑐𝑜𝑠(𝜋𝑧) sin(𝑡), 𝑣 = 0, 𝑤 = sin(𝜋𝑥) cos(𝜋𝑦) sin(𝜋𝑧) sin(𝑡),

𝑃 = sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧) cos(𝑡), 𝜙 = cos(𝜋𝑥) cos(𝜋𝑦) cos(𝜋𝑧) sin(𝑡), 𝑉 = sin(𝜋𝑥) cos(𝜋𝑦) cos(𝜋𝑧),
(81)

where 𝐮 = (𝑢, 𝑣, 𝑤). The source terms in the governing equations and the non-homogeneous boundary conditions are set according to 
these analytic expressions. We employ 𝑁𝑧 = 8 Fourier grid points along the 𝑧 direction, and two spectral elements in the 𝑥𝑦 planes, 
as shown in Fig. 3(a).

The spatial convergence of the 3D algorithm is illustrated by Fig. 3(b), in which the 𝐿∞ errors of the dynamic variables are 
shown as a function of the element order. Here the problem is simulated from 𝑡 = 0 to 𝑡 = 𝑡𝑓 = 0.1, and the time step size is fixed at 
17

Δ𝑡 = 0.001. The exponential convergence in space is evident from the results.
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Fig. 4. Dielectric liquid drop on a wall: (a) Sketch of domain and flow configuration. (b) Cartoon of the drop deformation when the electrodes are switched on. (c) The 
spectral element mesh in the 𝑥𝑦 plane used in the simulations. On bottom wall, the shaded regions are the electrodes and the white regions denote the gaps between 
the electrodes. In (c), at the bottom wall, the voltage is 𝑉0 in element 1, element 2 is a gap, the voltage is −𝑉0 in element 3, element 4 is a gap, etc.

The temporal convergence of the 3D algorithm is illustrated by Fig. 3(c). Here the 𝐿∞ errors of the dynamic variables are shown 
as a function of Δ𝑡. The element order has been fixed at 14, and the final integration time is 𝑡 = 𝑡𝑓 = 0.1. One can observe the 
second-order convergence rate with respect to Δ𝑡.

4.2. Equilibrium dielectric drop on a wall

We study the 3D equilibrium shape of a dielectric liquid drop on a horizontal wall under an imposed electric field in this test. 
The problem setting is in accordance with the experiment from [54]; see Fig. 4(a). When the electrodes on the wall are turned on, 
the dielectric drop (an initial hemisphere) deforms due to the imposed electric field, and eventually reaches an equilibrium state, as 
sketched in Fig. 4(b). We are interested in simulating the equilibrium shape of the dielectric drop.

As discussed in Section 2.4, the current phase field model allows us to compute the equilibrium state of the system by solving 
an alternative simpler system consisting of equations (17), (16c) and (16d), with the corresponding boundary and initial conditions. 
After that, if needed, the pressure field can be computed by solving (16b), and the velocity is given by 𝐮 = 0. We will simulate the 
equilibrium shape of the dielectric liquid drop by this method.

We consider a computational domain (𝑥, 𝑦, 𝑧) ∈ Ω = [0, 53𝐿0] × [0, 23𝐿0] × [0, 72𝐿0], where 𝐿0 = 1.2 mm, as shown in Fig. 4(a). 
The electrodes embedded on the bottom wall each has a width 𝑑 = 0.1 mm. Adjacent electrodes are 0.1 mm apart on the wall, and 
the constant voltage imposed on adjacent electrodes have the same magnitude but with opposite signs (𝑉0 and −𝑉0), as sketched 
in Fig. 4(b). The dielectric liquid drop (in ambient air) is initially shaped like a hemisphere, with a radius 𝑅0 =

1
2𝐿0 and its center 

located at (𝑋0, 𝑌0, 𝑍0) = ( 56𝐿0, 0, 
7
4𝐿0).

We employ the following physical parameter values:{
surface tension: 𝛾 = 3.857 × 10−2 kg∕s2;

permittivity: (air) 𝜖1 = 𝜖0, (dielectric liquid) 𝜖2 = 32𝜖0;
(82)

where 𝜖0 = 8.854 ×10−12𝐹∕𝑚 is the vacuum permittivity. Note that the fluid density and viscosity play no role when we simulate the 
equilibrium state using the system consisting of (17), (16c) and (16d).

All the dynamic variables and simulation parameters are normalized consistently. The normalization constants used for non-

dimensionalizing the alternative system of equations from Section 2.4 for the equilibrium solution are provided in Table 2. Note that 
they are a little different from those shown in Table 1 for normalizing the full system of governing equations. In particular, all the 
length variables are normalized by 𝐿0. For brevity and convenience of presentation, in what follows we employ the same symbols to 
denote the dimensional and the normalized variables or parameters. We employ a Cahn number 𝜂 = 0.02, and the mobility is set by 
𝜆𝛾1 = 0.1, where 𝜆 = 3

2
√
2
𝜂. The pseudo-time-step size is Δ𝑡 = 2 × 10−6 in the simulations.

We solve the system consisting of equations (17), (16c) and (16d) by the hybrid spectral element/Fourier spectral method in 3D. 
We employ 𝑁𝑧 = 120 Fourier grid points along the 𝑧 direction and a mesh of 120 quadrilateral spectral elements (with element order 
18

12) in the 𝑥𝑦 plane, with 20 uniform elements along 𝑥 and 6 non-uniform elements along 𝑦 (see Fig. 4(c)). We impose the periodic 
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Table 2

Normalization constants for variables and parameters with the simpler system 
from Section 2.4 for computing the equilibrium solution. Choose 𝐿0 , 𝑉𝑑 , and 𝛾
(surface tension).

variable normalization constant variable normalization constant

𝑥, 𝑦, 𝑧, 𝑑, 𝜂 𝐿0 𝑡 1
𝑉 , 𝑉0 𝑉𝑑 𝐄 𝑉𝑑∕𝐿0

𝜖, 𝜖1 , 𝜖2 𝐿0𝛾∕𝑉 2
𝑑

𝛾1 𝐿3
0∕𝛾

𝜆 𝐿0𝛾 𝜙,𝜓 1

Fig. 5. Dielectric drop on the wall: equilibrium drop shapes under imposed electrode voltage 𝑉0 = 100 volt (left column), 𝑉0 = 150 volt (middle column), and 𝑉0 = 200
volt (right column). Top row: plan view (toward −𝑦 direction); Middle row: side view (toward −𝑥 direction); Bottom tow: perspective view.

boundary condition in 𝑥 (at 𝑥 = 0 and 𝑥 = 5
3𝐿0), and the boundary conditions (18) and (20) at the top boundary 𝑦 = 2

3𝐿0. On the 
bottom wall (𝑦 = 0) we impose the boundary conditions (21) and (23), where the imposed voltage on adjacent electrodes alternates 
between 𝑉0 and −𝑉0 (see Fig. 4(c)). All the dynamic variables are homogeneous along the 𝑧 direction. The initial distribution of the 

phase field function is given by 𝜙(𝑥, 𝑦, 𝑧) = tanh

(√
(𝑥−𝑋0)2+(𝑦−𝑌0)2+(𝑧−𝑍0)2−𝑅0√

2𝜂

)
.

Fig. 5 shows the deformed shape of the dielectric drop under three imposed electrode voltages (𝑉0 = 100 volt, 150 volt, and 
200 volt) obtained from the 3D simulations. The plots in the three rows show the plan view, the side view, and the perspective view 
of the drop, respectively. The drop deformation becomes increasingly pronounced with increasing electrode voltage. At 𝑉0 = 200 volt, 
the dielectric drop becomes highly elongated along the 𝑧 direction (see Figs. 5(c,f,i)).

Fig. 5 illustrates the asymmetric deformation of dielectric drops, an important feature observed in experiments (see [26]). The 
dielectric droplet tends to stretch along the direction parallel to the electrodes, while in the direction perpendicular to the electrodes 
the droplet remains approximately the same in dimension. In other words, the width of the drop (𝑤 in Fig. 4(a)) remains approximately 
19

unchanged, while the length and height of the drop (𝑙 and ℎ in Fig. 4(a)) can vary significantly with the electrode voltage.
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Fig. 6. Dielectric drop on a wall: (a) the drop height/width/length as a function of the electrode voltage. (b) Comparison between the theoretical model [8] and the 
current simulation on the drop height as a function of the electrode voltage.

The asymmetric deformation is further demonstrated by Fig. 6(a), in which we plot the length, width, and height of the deformed 
dielectric drop as a function of the electrode voltage from our simulations. It is evident that, while the length and height exhibit a 
significant change, the width of the deformed drop remains nearly constant as the electrode voltage increases. This is because the 
electrodes serve as some potential walls, and so crossing those walls will increase the energy of the system. We refer to [26] for more 
details on the experimental observation and the explanation of the asymmetric deformation.

In [8] a theoretical model was proposed on the dielectric drop deformation, and it leads to the following formula relating the drop 
height to the electrode voltage,

ℎ2 = ℎ20 −
𝜖0Δ𝜖𝑉 2

0
4𝛿𝛾

Ω. (83)

In this equation, ℎ is the deformed drop height, 𝑉0 is the electrode voltage, and Ω = ℎ0𝑙0, with ℎ0 and 𝑙0 denoting the initial height 
(in 𝑦 direction) and initial length (in 𝑥 direction) of the drop. 𝛾 is the surface tension. 𝜖0 is the vacuum permittivity, and Δ𝜖 is the 
difference in the relative permittivity of the two fluids. 𝛿 = 4𝑑

𝜋
is a geometry parameter. In Fig. 6(b) we show a comparison of the 

deformed drop height as a function of the electrode voltage between our simulation results and the theoretical model (83). While 
there exist some discrepancies in the quantitative values, the simulation results and the model are generally in reasonable agreement 
in the range 100 ≤ 𝑉0 ≤ 180 for the electrode voltage. It should be noted that the theoretical model (83) is only valid for a range 
of electrode voltage values (when ℎ ≫ 𝛿, see [8]). For the electrode voltage beyond about 180, the simulation result and the model 
prediction are qualitatively different. This discrepancy is due to the breakdown of the model equation (83). The trend exhibited by 
the simulation result in this region is similar to what has been observed in the experimental measurement [8].

4.3. Equilibrium dielectric film on a surface

In this subsection we study the equilibrium state of a thin dielectric liquid film on a solid wall in two dimensions. The dielectric 
film exhibits a wave-like profile under an imposed electric field, as observed in the experiment [9], in which this is referred to as an 
optical interface.

The problem configuration and settings are illustrated in Fig. 7(a). We consider a rectangular domain, (𝑥, 𝑦) ∈ Ω = [0, 4𝑑] ×[0, 52𝑑], 
where 𝑑 is the width of the electrode (see below). The domain and all the variables are assumed to be periodic in the horizontal 
(𝑥) direction. The top of the domain is open, and the bottom of the domain is a solid wall. Two electrodes, each with a width 𝑑, 
are embedded on the bottom wall. The gap between the electrodes is 𝑑′ = 𝑑. The two electrodes specifically occupy the regions 
𝑥 ∈ [𝑑∕2, 3∕2] and 𝑥 ∈ [5𝑑∕2, 7𝑑∕2] on the wall. The voltage imposed on the right electrode is 𝑉0 , and on the left electrode is 0. A 
thin layer of dielectric fluid, with a thickness ℎ0 , is at rest on the bottom wall in an ambient fluid. When the electrodes are turned on, 
the fluid interface deforms under the imposed electric field and exhibits a wave-like profile at equilibrium. Our goal is to simulate 
the equilibrium dielectric fluid interface.

In what follows we provide two sets of simulations. The first set is obtained using the method from Section 2.4, based on the 
simpler system consisting of equations (17), (16c) and (16d). The second set, for comparison, is based on the full model consisting of 
equations (3)–(7), together with appropriate boundary/initial conditions.

4.3.1. Equilibrium simulation using the simpler system

We first simulate the equilibrium profile of the dielectric fluid interface using the method from Section 2.4, by solving the simpler 
system of (17), (16c) and (16d), with the boundary conditions as outlined in the above paragraphs.

We employ a surface tension 𝛾 = 2.84 × 10−2 kg∕s2, and a permittivity for the ambient fluid the same as the vacuum permittivity, 
20

𝜖1 = 𝜖0. The permittivity for the dielectric film (𝜖2) is varied and will be specified below. All the variables and parameters are 
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Fig. 7. Dielectric thin film: (a) flow configuration and notation, (b) spectral-element mesh. The imposed voltage is 0 on the left electrode (1 ⩽ 𝑥 ⩽ 3) and 𝑉0 on the 
right electrode (5 ⩽ 𝑥 ⩽ 7).

Fig. 8. Dielectric thin film: Distributions of (a) the phase field function showing the fluid interface, and (b) the electric potential in the domain. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

normalized based on the normalization constants in Table 2. Here we choose the length scale as 𝐿0 =
𝑑

2 , and the voltage scale as 
𝑉𝑑 = 100 volt. We use ℎ(𝑥) to denote the thickness of the equilibrium film at 𝑥.

Fig. 7(b) shows a spectral element mesh employed in the current simulations. The elements are uniform in the 𝑥 direction, and are 
generally non-uniform in 𝑦. Along the 𝑦 direction we divide the domain into three regions: (i) near-wall region (0 ≤ 𝑦 ≤ ℎ0 −𝐴∕2), (ii) 
wave region (ℎ0 −𝐴∕2 ≤ 𝑦 ≤ ℎ0 +𝐴∕2), and (iii) upper region (𝑦 ≥ ℎ0 +𝐴∕2), where 𝐴 is the peak-to-valley amplitude of the wave 
profile (see Fig. 7(a)). For setting up the simulations, the amplitude 𝐴 in the above is estimated based on the following theoretical 
model formula from [9],

𝐴 =
16𝜖0
3𝜋4𝛾

(𝜖1 − 𝜖2) exp
(
−
2𝜋ℎ0
𝑝

)
𝑉 2
0 , (84)

where 𝑝 = 𝑑 + 𝑑′ = 2𝑑. We employ 𝑁𝑦1
, 𝑁𝑦2

and 𝑁𝑦3
spectral elements in these three regions respectively along the 𝑦 direction. The 

mesh is uniform in the near-wall and wave regions, and is non-uniform in the upper region (Fig. 7(b)). The specific values for 𝑁𝑦1
, 

𝑁𝑦2
and 𝑁𝑦3

will be provided below when discussing different simulation cases.

In all the simulations we employ a pseudo-time step size Δ𝑡 = 2.0 × 10−6, Cahn number 𝜂 = 0.01, and a mobility 𝛾1 by 𝜆𝛾1 = 0.1, 
where 𝜆 = 3

2
√
2
𝜂. The initial phase field distribution is

𝜙(𝑥, 𝑦) = tanh

(
𝑦− ℎ0√

2𝜂

)
. (85)

It should be noted that, while the physical length scale may be different for different simulation cases, the normalized computational 
domain is fixed due to the choice 𝐿0 = 𝑑∕2 and is always (𝑥, 𝑦) ∈Ω = [0, 8] × [0, 5].

Fig. 8 provides an overview of the equilibrium distributions of the phase field function 𝜙 (plot (a)) and the electric potential field 
𝑉 (plot (b)). The wavy fluid interface is unmistakable from Fig. 8(a). This figure also illustrates that the domain dimension in 𝑦 is 
much larger than the dielectric film thickness in our simulations. This is necessary because in the upper open boundary we have used 
the boundary condition (20), which is accurate only when the height of the computational domain is sufficiently large compared 
with the size of the electrode.

Fig. 9 is a comparison of the equilibrium interfacial amplitudes obtained from the current simulations, the theoretical model 
formula (84), and the experimental measurement of [9]. Here the initial film thickness (ℎ0) and the electrode width (𝑑) are fixed, while 
21

the voltage on the right electrode (𝑉0) is varied systematically. The permittivity ratio is 𝜖2
𝜖1

= 8. We employ (𝑁𝑦1
, 𝑁𝑦2

, 𝑁𝑦3
) = (5, 4, 4)
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Fig. 9. Dielectric thin film: Comparison of the amplitude (𝐴) as a function of the electrode voltage squared (𝑉 2
0 ) from the current simulations, the theoretical model 

(equation (84)), and the experimental measurement [9], for two cases with (a) ℎ0 = 14 μm and 𝑝 = 160 μm, and (b) ℎ0 = 18 μm and 𝑝 = 240 μm. The insets of these 
plots show two typical interface profiles.

Fig. 10. Dielectric thin film: Comparison of log(𝐴) (interfacial wave amplitude) versus ℎ0∕𝑝 (initial film thickness) from the current simulations and the theoretical 
model equation (84).

elements along the 𝑦 direction in this set of simulations, with an element order 12 for all the elements. The two plots in this figure 
show the equilibrium interfacial amplitude as a function of 𝑉 2

0 for two cases, corresponding to ℎ0 = 14 μm and 𝑝 = 160 μm (Fig. 9(a)) 
and ℎ0 = 18 μm and 𝑝 = 240 μm (Fig. 9(b)), respectively. The insets of these plots depict two typical interfacial profiles at equilibrium 
corresponding to 𝑉0 = 150 and 300 volts. It can be observed that the simulation results agree with the theoretical model and with the 
experimental data reasonably well.

Fig. 10 shows another comparison between the current simulation and the theoretical model (84). In this set of simulations we 
have a fixed 𝑉0 = 200 volt, 𝑝 = 160 μm and 𝜖2∕𝜖1 = 8, while the initial thickness of the film is varied systematically. We again employ 
(𝑁𝑦1

, 𝑁𝑦2
, 𝑁𝑦3

) = (5, 4, 4) elements along the 𝑦 direction. This figure plots the log(𝐴) as a function of ℎ0∕𝑝 from these tests. While 
there are some discrepancies, the simulation results overall are close to the predictions of the theoretical model equation (84).

As observed in the experiments of [9] and in the boundary integral model of [11], the interfacial profiles that are sinusoidal-like 
or non-sinusoidal-like can occur under the imposed electric field. We have observed both types of profiles in our simulations. Fig. 11

shows examples of these two types of interfacial profiles attained from our simulations, corresponding to several electrode voltage 
values. Fig. 11(a) corresponds to the case in Fig. 9(a) (with ℎ0 = 14 μm, 𝑝 = 160 μm and 𝜖2∕𝜖1 = 8), exhibiting a sinusoidal wave-like 
profile. Fig. 11(b) corresponds to the parameter values ℎ0 = 6 μm, 𝑝 = 240 μm and 𝜖2∕𝜖1 = 2, exhibiting an apparently non-sinusoidal 
wave-like profile.

4.3.2. Comparison with full-model simulation

We now simulate the equilibrium profile of the dielectric fluid interface using the full model as given by the Equations (3)–(7), 
together with the boundary and initial conditions. The flow configuration and the problem setting follow those of Section 4.3.1, as 
given in Fig. 7.

We consider the same group of tests as in Fig. 9(a). The values for the physical and geometric parameters, such as the surface tension 
𝛾 , the permittivities (𝜖1 and 𝜖2), ℎ0 and 𝑝, are taken to be the same as in Section 4.3.1 (specifically Fig. 9(a)). The only difference 
22

lies in the fluid densities and the dynamic viscosities, which are needed in the full model but do not appear in the simpler model 
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Fig. 11. Dielectric thin film: Interfacial profiles at different electrode voltages: (a) sinusoidal-like profiles, (b) non-sinusoidal like profiles. In (a), ℎ0 = 14 μm, 𝑝 = 160 μm, 
and 𝜖2

𝜖1
= 8. In (b), ℎ0 = 6 μm, 𝑝 = 240 μm, and 𝜖2

𝜖1
= 2.

of Section 4.3.1. Here in the full model we employ 𝜌1 = 𝜌2 = 830 kg∕m3 for the two densities, and 𝜇1 = 1.2048 × 10−5 kg∕(m ⋅ s)
and 𝜇2 = 2𝜇1 for the two dynamic viscosities. Employing the same density for the two fluids apparently does not correspond to 
realistic situations. Since we are seeking the equilibrium solution, employing the same density in principle will not alter the solution 
at equilibrium, but will make the computation considerably easier. All the physical variables and parameters have been normalized 
consistently.

In the full-model simulations, we employ the following simulation parameter values (non-dimensional): Cahn number 𝜂 = 0.01, 
mobility 𝛾1 = 0.05, Δ𝑡 = 2 × 10−6, the number of elements in the three regions along 𝑦 (𝑁𝑦1

, 𝑁𝑦2
, 𝑁𝑦3

) = (5, 4, 4), and an element 
order 12. The initial phase field profile is given by (85). The electrode voltage 𝑉0 is varied in the tests. The simulations have been 
performed for a sufficiently long time until the velocity becomes very small.

Fig. 12 shows a comparison of the equilibrium interfacial profiles obtained by the simpler model of Section 4.3.1 and by the full 
model here. These profiles correspond to several electrode voltages ranging from 𝑉0 = 150 volt to 𝑉0 = 275 volt. The results from the 
simpler model and the full model in general agree very well, with their profiles essentially overlapping with each other. At larger 
electrode voltages (e.g. 𝑉0 = 275 volt), some discrepancy in the valley (or peak) of the interfacial profile can be noticed between these 
two models.

Fig. 13 is another comparison between the simpler model and the full model. It shows the interfacial amplitude 𝐴 (see Fig. 7(a)) 
as a function of the electrode voltage squared (𝑉 2

0 ) obtained from the simpler model, the full model, and the theoretical model (84). 
It can be observed that the results from the simpler model and the full model agree well with each other, and that both are in good 
agreement with the theoretical model (84).

4.4. Dynamic simulations

The simulations in Sections 4.2 and 4.3 are for steady-state problems. In this section we further test the proposed method using 
dynamic problems with two-phase dielectric flows.

4.4.1. Transport of a dielectric drop on a wall

We study the transport of a dielectric fluid drop on a horizontal wall in two dimensions in this subsection. The problem setting 
is illustrated by Fig. 14(a). Consider a rectangular domain, which is periodic in the horizontal direction, open on the top, and has a 
solid wall at the bottom. An array of electrodes is embedded on the left half of the bottom wall, while the right half of the wall is free 
of electrodes. A dielectric liquid drop is initially at rest in the electrode-free region of the wall. When the electrodes are switched on, 
the drop will be pulled leftwards to the electrode-embedded region of the wall, due to its interaction with the nonuniform electric 
field. The goal of this problem is to simulate the motion of the liquid drop.

We employ the model given by equations (3)–(7) to simulate this problem, with the boundary and initial conditions as described 
below. We consider a computational domain, (𝑥, 𝑦) ∈ Ω = [0, 85𝐿0] × [0, 12𝐿0], where 𝐿0 = 1 mm. Fig. 14(b) shows the mesh of 9216
non-uniform quadrilateral spectral elements employed in the simulations, with 192 and 48 elements along the 𝑥 and 𝑦 directions, 
respectively. Four electrodes are embedded on the bottom wall, with a voltage 𝑉0 or −𝑉0, where 𝑉0 = 300 volt. The electrode-

embedded regions on the wall are: 𝑥∕𝐿0 ∈ [0.1, 0.2] (voltage −𝑉0), 𝑥∕𝐿0 ∈ [0.3, 0.4] (voltage 𝑉0), 𝑥∕𝐿0 ∈ [0.5, 0.6] (voltage −𝑉0), 
and 𝑥∕𝐿0 ∈ [0.7, 0.8] (voltage 𝑉0). We impose the boundary conditions (21)–(23) on the bottom wall (𝑦∕𝐿0 = 0), with a static contact 
angle 𝜃𝑠 = 900. The boundary conditions (18)–(20) are imposed on the top domain boundary (𝑦∕𝐿0 = 0.5). We impose periodic 
boundary conditions for all the dynamic variables on the horizontal boundaries (𝑥∕𝐿0 = 0, 1.6). The drop is assumed to be semi-
23

circular initially, with a radius 𝑅0 = 0.28𝐿0 and its center located at (𝑥0, 𝑦0) = (1.2𝐿0, 0). We employ an initial phase field profile,
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Fig. 12. Dielectric thin film: Comparison of equilibrium interfacial profiles at several electrode voltages obtained from equilibrium simulations based on the simpler 
model of Section 2.4 and based on the full model.

Fig. 13. Dielectric thin film: Comparison of the interfacial amplitude versus the electrode voltage squared obtained from the equilibrium simulations based on the 
simpler model and the full model, and from the theoretical model (84).

𝜙(𝑥, 𝑦, 𝑡 = 0) = tanh
√
(𝑥− 𝑥0)2 + (𝑦− 𝑦0)2 −𝑅0√

2𝜂
, (86)
24

and zero initial velocity in the simulations.
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Fig. 14. Drop transport: (a) Flow configuration and settings. (b) Mesh of 9216 non-uniform spectral elements.

Fig. 15. Drop transport: Distribution of the electric potential (𝑡 = 0.0).

Fig. 16. Drop transport: A temporal sequence of snapshots of the dielectric drop showing its motion on the wall. Shown are the distributions of the phase field function 
𝜙 at different time instants.

The following physical parameters are employed for this problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

surface tension: 𝛾 = 2.84 × 10−2 kg∕s2;

densities: 𝜌1 = 𝜌2 = 429.7 kg∕m3; (ambient fluid 𝜌1, drop 𝜌2)

dynamic viscosities: (ambient fluid) 𝜇1 = 12.048 × 10−4 kg∕(m ⋅ s), (drop) 𝜇2 = 2𝜇1;

permittivities: (ambient fluid) 𝜖1 = 𝜖0 = 8.854 × 10−12𝐹∕𝑚, (drop) 𝜖2 = 8.1𝜖0;

model parameters: 𝜂 = 0.01𝐿0, 𝜆 = 3
2
√
2
𝛾𝜂, 𝛾1 = 1 × 10−4

𝐿2
0

𝜇1
, Δ𝑡 = 1 × 10−6

𝐿2
0𝜇1

𝜖0𝑉
2
0

.

(87)

All the physical variables and parameters are normalized consistently based on the normalization constants listed in Table 1, with 
𝐿0 and 𝜖0 as given above and the 𝜇0 and 𝑉𝑑 therein given by 𝜇0 = 𝜇1 and 𝑉𝑑 = 𝑉0 for this problem. We employ an element order 6
in the simulations.

Figs. 15 and 16 provide an overview of the electric potential distribution in the domain and the motion of the dielectric drop on 
the bottom wall. Shown in Fig. 16 are a temporal sequence of snapshots of the phase field function 𝜙(𝑥, 𝑦, 𝑡) in the domain. One can 
observe that the dielectric drop moves leftward along the wall due to the interaction with the imposed electric field, and approaches 
an equilibrium state resting on top of the electrodes.

4.4.2. Coalescence of two dielectric liquid drops

We study the motion and coalescence of two dielectric fluid drops in this subsection. Fig. 17(a) sketches the flow configuration 
and problem setting. We again consider a rectangular domain, periodic in the horizontal direction, open at the top, and with a solid 
wall at the bottom. Two electrodes are embedded in the middle of the bottom wall, whose imposed voltages have the same magnitude 
25

but with opposite signs. Two liquid drops of the same dielectric fluid, initially at rest in the electrode-free regions of the wall, are 
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Fig. 17. Drop coalescence: (a) Flow configuration and settings. (b) Mesh of 2000 quadrilateral spectral elements.

Fig. 18. Drop coalescence: distribution of the electric potential field (𝑡 = 0.0).

pulled toward each other when the electrodes are turned on, and merge into a single drop. Our goal is to simulate this process with 
the proposed method.

The simulation settings and the boundary conditions are similar to those employed in Section 4.4.1. We employ a computational 
domain (𝑥, 𝑦) ∈Ω = [0, 2𝐿0] ×[0, 25𝐿0], where 𝐿0 = 1 mm, and the phase field model given by the equations (3)–(7). Fig. 17(b) shows 
the mesh of 2000 quadrilateral spectral elements (with an element order 8) employed in the simulations. The two electrodes occupy 
the following regions on the wall: 𝑥∕𝐿0 ∈ [0.8, 0.9] (with voltage 𝑉0), and 𝑥∕𝐿0 ∈ [1, 1.1] (with voltage −𝑉0), where 𝑉0 = 300 volt. 
The boundary conditions (21)–(23) are imposed on the bottom wall, with a static contact angle 𝜃𝑠 = 750 (measured on the side of 
the fluid drop). The boundary conditions (18)–(20) are imposed on the top boundary (𝑦∕𝐿0 = 0.4). Periodic conditions are imposed 
on the horizontal boundaries (𝑥∕𝐿0 = 0, 2.0) for all the dynamic variables. Both drops are assumed to be shaped like a circular cap 
initially, with radius 𝑅0 and their centers located at (𝑋1, 𝑌1) and (𝑋2, 𝑌2), respectively, as given by

𝑅0∕𝐿0 =
0.3
sin𝜃𝑠

, 𝑋1∕𝐿0 = 0.6, 𝑌1 = −𝑅0 cos𝜃𝑠, 𝑌2∕𝐿0 = 1.4, 𝑌2 = −𝑅0 cos𝜃𝑠. (88)

The initial phase field distribution is

𝜙(𝑥, 𝑦, 𝑡 = 0) = tanh
√
(𝑥−𝑋1)2 + (𝑦− 𝑌1)2 −𝑅0√

2𝜂
+ tanh

√
(𝑥−𝑋2)2 + (𝑦− 𝑌2)2 −𝑅0√

2𝜂
− 1, (89)

where 𝜂 is the characteristic interfacial thickness. The initial velocity is set to zero.

We employ the following physical and simulation parameters for this problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

surface tension: 𝛾 = 1.136 × 10−1 kg∕s2;

densities: 𝜌1 = 𝜌2 = 129.7 kg∕m3; (ambient fluid 𝜌1, drop 𝜌2)

dynamic viscosities: (ambient fluid) 𝜇1 = 12.048 × 10−4 kg∕(m ⋅ s), (drop) 𝜇2 = 2𝜇1;

permittivities: (ambient fluid) 𝜖1 = 𝜖0 = 8.854 × 10−12 F∕m, (drop) 𝜖2 = 8.1𝜖0;

static contact angle: 𝜃𝑠 = 750 (measured on the drop side);

model parameters: 𝜂 = 0.007𝐿0, 𝜆 = 3
2
√
2
𝛾𝜂, 𝛾1 = 5 × 10−5

𝐿2
0

𝜇1
, Δ𝑡 = 1 × 10−6

𝐿2
0𝜇1

𝜖0𝑉
2
0

.

(90)

The physical variables and parameters in the system are normalized based on those constants given in Table 1, in which 𝐿0 and 𝜖0
are as given above and we set 𝜇0 = 𝜇1 and 𝑉𝑑 = 𝑉0.

Fig. 18 shows the distribution of the electric potential in the domain, signifying a non-uniform potential and thus a non-uniform 
electric field. The electric field is stronger near the electrodes, and is weaker in the region farther away from the electrodes. As a 
result, the net Korteweg-Helmholtz force (−1

2 (𝐄 ⋅𝐄)∇𝜖) acting on the dielectric drops has a direction pointing toward the electrodes, 
which causes the drops to move inward toward each other.

Fig. 19 shows a temporal sequence of snapshots of the phase field distribution in the domain. It can be observed that the two 
drops move along the wall and merge with each other to form a single drop, which approaches an equilibrium state resting on top of 
26

the electrodes.
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Fig. 19. Drop coalescence: a temporal sequence of snapshots of the phase field distribution, showing the motion and coalescence of the two dielectric fluid drops.

5. Concluding remarks

We have developed a method for modeling and simulating multiphase flows consisting of two immiscible incompressible dielectric 
fluids, and their interactions with external electric fields in two and three dimensions. We first presented a thermodynamically-

consistent and reduction-consistent formulation based on the phase-field framework for modeling two-phase dielectric fluids. The 
model respects the mass and momentum conservations, and the second law of thermodynamics. When only one fluid component is 
present, the two-phase formulation reduces exactly to that for the single-phase system. In particular, the presented model accom-

modates an equilibrium solution that is compatible with the requirement of zero velocity based on physics. This property leads to 
a simpler method for simulating two-phase dielectric systems at equilibrium, by solving a much simplified system consisting of the 
phase field equation and the electric potential equation only.

We have further presented an efficient semi-implicit type algorithm, together with a spectral-element discretization for 2D and a 
hybrid Fourier-spectral/spectral-element discretization for 3D in space, for simulating this class of problems. This algorithm allows 
the computation of different dynamic variables successively in an uncoupled fashion. Upon discretization the algorithm involves 
only coefficient matrices that are constant and time-independent in the resultant linear algebraic systems, even when the physical 
properties of the two dielectric fluids (e.g. the permittivities, densities, viscosities) are different. This property is crucial and enables 
us to employ the combined Fourier spectral and spectral-element discretization and fast Fourier transforms (FFT) for 3D simulations.

We have tested the performance of the presented method using several two-phase dielectric problems at equilibrium or in dy-

namic evolution. The simulation results obtained using the current method have been compared with theoretical models and with 
experimental measurements. The numerical results signify that the method developed herein can capture the physics well, and that 
it provides an effective technique for simulating this class of problems.
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Appendix A. Model development and further numerical tests

A.1. Development of phase field model for two-phase dielectric flows

We outline below the derivation of the phase field model for two-phase dielectric fluids based on the conservation laws and 
thermodynamic principles. Much of this development builds upon the works of [1,19].

Mass conservation We consider a system of two immiscible incompressible dielectric fluids, and let 𝜌1 , 𝜌2 denote the constant densities 
27

of these two pure fluids (without mixing). Consider an arbitrary control volume 𝑉𝑐 of the mixture, with mass 𝑀 . Let 𝑀1 and 𝑀2
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denote the mass of these two fluids within 𝑉𝑐 . Then �̂�1 =
𝑀1
𝑉𝑐

and �̂�2 =
𝑀2
𝑉𝑐

denote the densities of the two phases within the mixture. 
Naturally, we can introduce the mixture density 𝜌,

𝜌 = 𝑀

𝑉𝑐
=

𝑀1 +𝑀2
𝑉𝑐

= �̂�1 + �̂�2 (91)

Let 𝑉1 and 𝑉2 denote the volume occupied by each pure fluid component with mass 𝑀1 and 𝑀2. We assume that when forming the 
mixture there is no volume loss or volume addition, i.e.

𝑉𝑐 = 𝑉1 + 𝑉2 (92)

We introduce the volume fraction of each fluid by, 𝜙𝑖 =
𝑉𝑖

𝑉𝑐
= 𝑀𝑖∕𝜌𝑖

𝑀𝑖∕�̂�𝑖
= �̂�𝑖

𝜌𝑖
(𝑖 = 1, 2). Note that 0 ≤ 𝜙𝑖 ≤ 1. Then equation (92) becomes

𝜙1 + 𝜙2 = 1. (93)

We define the phase field variable by, 𝜙 = 𝜙1 −𝜙2.

The mass conservation for each phase in the mixture is given by,

𝜕�̂�𝑖

𝜕𝑡
+∇ ⋅ Ĵ𝑖 = 0, 𝑖 = 1,2, (94)

where �̂�𝑖 is the mass flux of phase 𝑖. We introduce the velocity u𝑖 of each phase in the mixture by Ĵ𝑖 = �̂�𝑖u𝑖 (𝑖 = 1, 2). Then equation (94)

is transformed into,

𝜕�̂�𝑖

𝜕𝑡
+∇ ⋅ (�̂�𝑖u𝑖) = 0, 𝑖 = 1,2. (95)

We define the bulk mixture velocity u by the volume average of the velocities of the two phases,

u = 𝜙1u1 + 𝜙2u2. (96)

Then it follows that

∇ ⋅ u =∇ ⋅
(
�̂�1
𝜌1

u1 +
�̂�2
𝜌2

u2

)
=∇ ⋅

(
Ĵ1
𝜌1

+
Ĵ2
𝜌2

)
= − 𝜕

𝜕𝑡

(
�̂�1
𝜌1

+
�̂�2
𝜌2

)
= − 𝜕

𝜕𝑡
(𝜙1 +𝜙2) = − 𝜕1

𝜕𝑡
= 0, (97)

where equation (93) has been used.

Equation (97) indicates the bulk mixture velocity as defined above is divergence free (see also [17,1]). One can also use the mass 
fraction to define the bulk velocity (see e.g. [50]). However, in that case the bulk velocity will not be divergence free. In the current 
work we employ the volume-averaged velocity as the bulk mixture velocity, as given by (96).

Finally, the mass conservation in terms of the bulk density 𝜌 is, by adding equation (94) for 𝑖 = 1, 2,

𝜕𝜌

𝜕𝑡
+ u ⋅∇𝜌 = −∇ ⋅ J̃, (98)

where J̃ = (Ĵ1 − �̂�1u) + (Ĵ2 − �̂�2u). J̃ denotes the total difference of the mass flux of different phases with respect to the bulk. It will 
be determined by an constitutive relation based on the energy inequality. Note that equation (91) implies 𝜌 = 𝜌1+𝜌2

2 + 𝜌1−𝜌2
2 𝜙. So 

equation (98) can be transformed into,

𝜕𝜙

𝜕𝑡
+ u ⋅∇𝜙 = − 2

𝜌1 − 𝜌2
∇ ⋅ J̃. (99)

Momentum conservation Following [34,1,19], we assume that the inertia and the kinetic energy due to the relative motion of each 
fluid phase with respect to the bulk motion are negligible. The conservation of momentum for each fluid phase is represented by,

𝜕(�̂�𝑖u𝑖)
𝜕𝑡

+∇ ⋅ (�̂�𝑖u𝑖u𝑖) = ∇ ⋅ T𝑖 + 𝝅𝑖, 𝑖 = 1,2, (100)

where T𝑖 is the stress tensor of the phase 𝑖, and 𝝅𝑖 (𝑖 = 1, 2) represents the interaction body force, with 𝝅1 + 𝝅2 = 0.

We rewrite the above equation into,

𝜕(�̂�𝑖u)
𝜕𝑡

+∇ ⋅ (�̂�𝑖uu) +
𝜕(�̂�𝑖(u𝑖 − u))

𝜕𝑡
+∇ ⋅ (�̂�𝑖(u𝑖 − u)(u𝑖 − u))

+ ∇ ⋅ (�̂�𝑖(u𝑖 − u)u) + ∇ ⋅ (�̂�𝑖u(u − u𝑖)) = ∇ ⋅ T𝑖 + 𝝅𝑖.

(101)

We omit the third and the fourth terms on the left hand side (LHS) based on the assumption that the inertia and the kinetic energy 
of the differential motion relative to the bulk are negligible. We move the term ∇ ⋅ (𝜌𝑖u(u − u𝑖)) to the right hand side (RHS) and 
incorporate it into the ∇ ⋅𝐓𝑖 term to get,

𝜕(�̂�𝑖u)
𝜕𝑡

+∇ ⋅ (�̂�𝑖uu) + ∇ ⋅ (J𝑖u) = ∇ ⋅ T̃𝑖 + 𝝅𝑖, 𝑖 = 1,2, (102)
28

where J𝑖 = Ĵ𝑖 − �̂�𝑖u and T̃𝑖 = T𝑖 − �̂�𝑖u(u − u𝑖). Then we sum up equation (102) for all the phases,
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𝜕(𝜌u)
𝜕𝑡

+∇ ⋅ (𝜌uu) + ∇ ⋅ (J̃u) = ∇ ⋅ T, (103)

where 𝐓 is a stress tensor with T = T̃1 + T̃2, and we have used 𝝅1 + 𝝅2 = 0. In light of (98), this equation can be transformed into,

𝜌

(
𝜕u

𝜕𝑡
+ u ⋅∇u

)
+ J̃ ⋅∇u =∇ ⋅ T. (104)

We assume that the stress tensor T is symmetric, and re-write it into

𝐓 = 1
3
(tr𝐓)𝐈+ 𝐒 = −𝑝𝐈+ 𝐒, (105)

where 𝐈 denotes the identity tensor, 𝐒 is a trace-free symmetric tensor, and 𝑝 = −1
3 tr𝐓 will be called the pressure. Then equation (104)

becomes,

𝜌

(
𝜕u

𝜕𝑡
+ u ⋅∇u

)
+ J̃ ⋅∇u = −∇𝑝+∇ ⋅ S. (106)

The tensor 𝐒 will be determined from a constitutive relation based on the energy inequality.

Quasi-static Maxwell equations We focus on a system of dielectric fluids, which are non-conductive and contain no free electric charge. 
The characteristic velocity in the system is negligible compared with the speed of light. On the other hand, we would like to take into 
account the fluid motion and the momentum transport. So this is an electro quasi-static system [16].

The quasi-static Maxwell equations are given by,

∇ ⋅D = 0, (107a)

∇× E = 0, (107b)

𝜕D

𝜕𝑡
=∇× H, (107c)

where E is the electric field, D is electric displacement field (𝐃 = 𝜖𝐄, with 𝜖 denoting the material permittivity), and H is the 
magnetizing field. Equation (107a) indicates that there is no free charge in the system. Equation (107b) allows us to introduce the 
electric potential 𝑉 (𝐱) by

E =∇𝑉 . (108)

Note that the equations (107a) and (107b) alone are sufficient to determine the electric field. Equation (107c) will not be solved in 
numerical simulations. But this equation plays an important role in deriving the energy balance relation. The magnetic field 𝐇 is 
weak based on the quasi-static assumption.

Energy inequality and constitutive relations Let us now determine the forms of �̃� and 𝐒 involved in the mass/momentum balance 
equations based on the second law of thermodynamics. We define the total energy of the system by,

𝐸(𝑡) = ∫
Ω

[1
2
𝜌u ⋅ u + 𝐹 (𝜙,∇𝜙) + 1

2
D ⋅ E

]
𝑑𝑉 + ∫

𝜕Ω𝑠

Θ(𝜙)𝑑𝑆, (109)

where Ω is an arbitrary domain, 𝜕Ω𝑠 denotes the wall boundary, 12𝐃 ⋅ 𝐄 is the electric energy density, 𝐹 (𝜙, ∇𝜙) is the phase-field 
free energy density function (see e.g. (9)), and Θ(𝜙) denotes a wall energy density to account for the contact angle effect. We assume 
that mixture permittivity is a function of the phase field function, 𝜖 = 𝜖(𝜙). By using equations (98), (104) and (107), we can derive

𝑑𝐸

𝑑𝑡
=∫

Ω

𝜌1 − 𝜌2
2

∇
[
𝜕𝐹

𝜕𝜙
−∇ ⋅

𝜕𝐹

𝜕∇𝜙
− 𝜖′

2
E ⋅𝐄

]
⋅ J̃ − ∫

Ω

(
T + 𝜕𝐹

𝜕∇𝜙
⊗∇𝜙− 𝝈𝑀

)
∶ ∇u

− ∫
𝜕Ω

[
𝜌1 − 𝜌2

2

(
𝜕𝐹

𝜕𝜙
−∇ ⋅

𝜕𝐹

𝜕∇𝜙
− 𝜖′

2
E ⋅𝐄

)
J̃ ⋅ n − 1

2
(u ⋅ u)J̃ ⋅ n

]

+ ∫
𝜕Ω

[(
𝐓− 𝝈𝑀 + 𝜕𝐹

𝜕∇𝜙
⊗∇𝜙

)
⋅ n − 𝐹n − 1

2
(u ⋅ u)n

]
⋅ u

+ ∫
𝜕Ω

(
𝜕𝐹

𝜕∇𝜙
⋅ n

)
𝜕𝜙

𝜕𝑡
+ ∫
𝜕Ω𝑠

Θ′(𝜙)𝜕𝜙
𝜕𝑡

− ∫
𝜕Ω

(E × H) ⋅ n, (110)

where 𝜖′ = 𝑑𝜖

𝑑𝜙
, and 𝝈𝑀 is the Maxwell stress tensor [43], given by
29

𝝈𝑀 = D ⊗ E − 𝜖

2
(E ⋅ E)I. (111)
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The second law of thermodynamics dictates that in the absence of external forces (including surface forces acting on the boundary) 
the system should be dissipative. This means that the contributions of the volume integral terms involved in the above equation to 
𝑑𝐸∕𝑑𝑡 should always be non-positive, while the contributions of the surface integral terms can be controlled if appropriate boundary 
conditions are imposed. We would like to choose the constitutive relations about �̃� and 𝐓 such that the requirements of the second 
law of thermodynamics are satisfied.

To ensure the non-positivity of the first volume integral on the RHS of (110), we choose the following constitutive relation,

J̃ = −𝛾1
𝜌1 − 𝜌2

2
∇
(
𝜕𝐹

𝜕𝜙
−∇ ⋅

𝜕𝐹

𝜕∇𝜙
− 𝜖′

2
E ⋅𝐄

)
, (112)

where 𝛾1 ⩾ 0 is a non-negative constant or function.

Noting the symmetry of the tensors 𝐓 and 𝝈𝑀 , the second volume integral on the RHS of (110) can be transformed into,

− ∫
Ω

(
𝐓− 𝝈𝑀 + 𝜕𝐹

𝜕∇𝜙
⊗∇𝜙

)
∶ ∇𝐮

= −∫
Ω

[
𝐓− 𝝈𝑀 + 1

2

(
𝜕𝐹

𝜕∇𝜙
⊗∇𝜙+∇𝜙⊗

𝜕𝐹

𝜕∇𝜙

)]
∶ 1
2
(
∇𝐮+∇𝐮𝑇

)
− ∫

Ω

1
2

(
𝜕𝐹

𝜕∇𝜙
⊗∇𝜙−∇𝜙⊗

𝜕𝐹

𝜕∇𝜙

)
∶ 1
2
(
∇𝐮−∇𝐮𝑇

)
= −∫

Ω

[
𝐒− �̃�𝑀 + ̃𝜙

]
∶ 1
2
(
∇𝐮+∇𝐮𝑇

)
− ∫

Ω

1
2

(
𝜕𝐹

𝜕∇𝜙
⊗∇𝜙−∇𝜙⊗

𝜕𝐹

𝜕∇𝜙

)
∶ 1
2
(
∇𝐮−∇𝐮𝑇

)

(113)

where we have used equations (97), (105) and (107), and

⎧⎪⎨⎪⎩
�̃�𝑀 = 𝝈𝑀 − 1

3
[
tr𝝈𝑀

]
𝐈,

̃𝜙 = 𝜙 − 1
3
[
tr𝜙

]
𝐈, 𝜙 = 1

2

(
𝜕𝐹

𝜕∇𝜙
⊗∇𝜙+∇𝜙⊗

𝜕𝐹

𝜕∇𝜙

)
.

(114)

We choose the following constitutive relation to ensure its non-positivity,

𝐒− �̃�𝑀 + ̃𝜙 = 𝜇(∇𝐮+∇𝐮𝑇 ), (115)

𝜕𝐹

𝜕∇𝜙
⊗∇𝜙−∇𝜙⊗

𝜕𝐹

𝜕∇𝜙
= 0, (116)

where 𝜇 ⩾ 0 is a non-negative constant or function. Equation (116) is a condition that the free energy density function 𝐹 (𝜙, ∇𝜙) must 
satisfy. Equation (115) provides the tensor 𝐒,

𝐒 = 𝜇(∇𝐮+∇𝐮𝑇 ) +
(
𝝈𝑀 − 1

3
[tr𝝈𝑀 ]𝐈

)
−
(
𝜙 − 1

3
[tr𝜙]𝐈

)
. (117)

In light of equations (112), (117), (99), (106), (97), (107a) and (108), we can write down the system of governing equations as 
follows,

𝜕𝜙

𝜕𝑡
+ u ⋅∇𝜙 =∇ ⋅

[
𝛾1∇

(
𝜕𝐹

𝜕𝜙
−∇ ⋅

𝜕𝐹

𝜕∇𝜙
− 𝜖′

2
𝐄 ⋅𝐄

)]
, (118a)

𝜌

(
𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅∇𝐮
)
+ �̃� ⋅∇𝐮 = −∇ ⋅

(
𝜕𝐹

𝜕∇𝜙
⊗∇𝜙

)
− ∇𝜖

2
(𝐄 ⋅𝐄) + ∇ ⋅

[
𝜇
(
∇𝐮+∇𝐮𝑇

)]
−∇ , (118b)

∇ ⋅ u = 0, (118c)

∇ ⋅ (𝜖∇𝑉 ) = 0. (118d)

In the above equations,

 = 𝑝+ 1
3

tr𝝈𝑀 − 1
3

tr𝜙, (119)

and we have used [ ]

30

∇ ⋅ 𝝈𝑀 =∇ ⋅ 𝐃⊗𝐄− 𝜖

2
(𝐄 ⋅𝐄)𝐈 = −∇𝜖

2
(𝐄 ⋅𝐄). (120)
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Table 3

Summary of computational cost (wall-time in seconds per time step or per pseudo-time step) and associated 
parameters for the test problems in the main text. In the problem of Section 4.2 the number and order 
of spectral elements given in the table are for the 𝑥𝑦-plane, and 144 (Fourier) grid points are used in 𝑧
direction.

problem dimension wall-time/step (secs) CPUs number-elements element-order

section 4.2 3D 4.21 6 120 12

section 4.3.1 2D 0.15 2 336 12

section 4.3.2 2D 0.38 2 336 12

section 4.4.1 2D 0.15 80 9216 6

section 4.4.2 2D 0.05 64 2000 8

This set of equations constitutes the phase field model that describes the motion of a system of two immiscible incompressible 
dielectric fluids. This model is thermodynamically consistent.

In this model the form for the mixing energy density function 𝐹 (𝜙, ∇𝜙) is still to be chosen, and it must satisfy the condition (116). 
If we choose 𝐹 (𝜙, ∇𝜙) based on equation (9), which satisfies the condition (116), then the system (118) will be reduced to the system 
consisting of equations (3)–(6).

A.2. Computational cost

Table 3 summarizes the computational cost of our method for simulating the problems from Sections 4.2 to 4.4. We list the wall 
time in seconds per time step (for dynamic problems) or per pseudo-time step (for equilibrium problems), the number of CPUs used, 
the number and order of spectral elements for 2D or in the 𝑥𝑦 planes for 3D. Additional parameters for the test problems, if any, are 
provided in the table caption.

It should be noted that the numerical tests in Sections 4.3.1 and 4.3.2 are for the same dielectric film problem, but computed 
using different methods, with the simpler method in Section 4.3.1 and with the full model in Section 4.3.2. The data in Table 3 show 
that the simpler method is much faster than the full model. We further note that the simpler method generally takes markedly fewer 
(pseudo) time steps to reach the equilibrium state than the full model simulation.

A.3. Convergence test on the h-refinement of method

Section 4.1 illustrates the convergence of the current method as the spatial resolution or the time step size is varied. In those 
spatial convergence tests the element order is varied systematically, while the spectral element mesh is fixed. This approach to refine 
the resolution is often known as p-refinement. We next discuss the convergence of our method as the resolution is refined in another 
way, known as h-refinement, in which the element order is fixed while the mesh size is varied systematically.

We employ the 2D analytic solution (Equation (80)) from Section 4.1 for the h-refinement tests. We fix the element order at 2
(polynomial degree 1) or 4 (polynomial degree 3), the time step size at Δ𝑡 = 10−4 (for element order 2) and Δ𝑡 = 2 ×10−6 (for element 
order 4), and integrate in time from 𝑡 = 0 to 𝑡 = 𝑡𝑓 = 2 ×10−3. We vary the number of uniform elements between 16 ×16 and 128 ×128, 
doubling the elements in both directions during each refinement. Table 4 summarizes the 𝐿∞ and 𝐿2 errors of different variables and 
the convergence order based on these errors. The convergence order is computed by ln(𝜀1∕𝜀2)

ln(𝑁2∕𝑁1)
, where 𝜀1 and 𝜀2 are the errors before 

and after the refinement and 𝑁1 and 𝑁2 denote the corresponding number of elements along each direction. The data show that the 
convergence order for h-refinement approximately follows the element order, generally around 2.0 (resp. 4.0) for a fixed element 
order 2 (resp. 4). However, the convergence is not always regular, and some deviation from these expected convergence orders can 
be observed.

A.4. Numerical tests on the Cahn number and mobility parameter

This section tests the effects of the interfacial thickness (Cahn number) 𝜂 and the mobility parameter 𝛾1 on the simulation results. 
We consider the equilibrium state and the oscillation of a dielectric drop in a uniform electric field in two dimensions.

A.4.1. Equilibrium dielectric drop in a uniform electric field: effect of Cahn number

The current phase field equation contains an electric field term, unlike the standard Cahn-Hilliard equation. In the presence of 
external electric field, the equilibrium state differs from that of the Cahn-Hilliard system. For the standard Cahn-Hilliard equation, 
the equilibrium interfacial profile theoretically follows the tanh distribution [79]. For the current model, on the other hand, the 
equilibrium interfacial profile can no longer be attained theoretically due to the electric field. We next simulate the equilibrium 
interfacial profile of a dielectric drop in an electric field, and study the effect of the Cahn number. We compare the attained interfacial 
parameters with those of the tanh profile to show their similarities.

Fig. 20(a) illustrates the problem setting. We consider a 2D square domain Ω = [0, 0.5𝐿0] × [0, 0.5𝐿0], where 𝐿0 = 10−5 m. The 
bottom and top of the domain are solid walls, with an voltage 𝑉 = 0 and 𝑉 = 𝑉0 = 50 volt imposed respectively. A dielectric fluid 
31

drop, initially circular with a radius 0.1𝐿0, is at rest in the center. The permittivities of the ambient fluid and the drop are 𝜖1 = 17.6𝜖0
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Table 4

h-refinement (2D): 𝐿∞ and 𝐿2 errors and the convergence order corresponding to a series of 
spectral element meshes and two element orders. The analytic solution used in the test is given 
by equation (80).

mesh 16×16 32×32 64×64 128×128

Element Order 2 𝐿∞-u error 6.68E-5 1.66E-5 4.03E-6 9.21E-7

convergence order 2.01 2.04 2.13

𝐿2-u error 1.09E-5 2.40E-6 5.55E-7 1.33E-7

convergence order 2.19 2.11 2.06

𝐿∞-p error 2.62E-2 6.56E-3 1.61E-3 4.01E-4

convergence order 2.00 2.03 2.00

𝐿2-p error 4.21E-3 1.03E-3 2.55E-4 6.36E-5

convergence order 2.03 2.02 2.00

𝐿∞-V error 3.46E-2 8.99E-3 2.28E-3 5.73E-4

convergence order 1.95 1.98 1.99

𝐿2-V error 1.01E-2 2.55E-3 6.42E-4 1.61E-4

convergence order 1.98 1.99 2.00

𝐿∞-𝜙 error 7.32E-4 3.62E-4 1.20E-4 3.04E-5

convergence order 1.02 1.59 1.98

𝐿2-𝜙 error 1.66E-4 6.38E-5 5.77E-6 1.12E-6

convergence order 1.38 3.47 2.37

Element Order 4 𝐿∞-u error 7.27E-7 7.30E-8 2.17E-9 4.29E-11

convergence order 3.31 5.07 5.66

𝐿2-u error 2.41E-8 1.65E-9 4.64E-11 2.76E-12

convergence order 3.87 5.15 4.07

𝐿∞-p error 3.69E-5 1.81E-6 1.11E-7 6.98E-9

convergence order 4.35 4.03 3.99

𝐿2-p error 6.47E-6 3.24E-7 1.51E-8 1.07E-9

convergence order 4.32 4.42 3.82

𝐿∞-V error 2.25E-5 1.44E-6 9.07E-8 5.69E-9

convergence order 3.96 3.99 4.00

𝐿2-V error 5.67E-6 3.56E-7 2.23E-8 1.39E-9

convergence order 3.99 4.00 4.00

𝐿∞-𝜙 error 1.33E-5 5.62E-7 1.79E-8 1.87E-9

convergence order 4.56 4.97 3.26

𝐿2-𝜙 error 4.28E-6 1.89E-7 5.83E-9 8.57E-10

convergence order 4.50 5.02 2.77
32

Fig. 20. Equilibrium dielectric drop in a uniform electric field: (a) problem setting, (b) spectral element mesh with 900 quadrilateral elements.
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Fig. 21. Dielectric drop in uniform electric field: Equilibrium phase field distribution (top row), and equilibrium profile of phase field along the vertical centerline 
(𝑥 = 0.25) of domain (bottom row), computed using three Cahn numbers 𝜂 = 0.01, 0.005 and 0.0025.

Table 5

Dielectric drop in uniform electric field: Comparison of interfa-

cial thickness 𝛿𝑝∕𝜂 from the simulation and from the theoretical 
tanh profile, corresponding to several Cahn numbers. 𝑝 denotes 
the threshold value used for defining the interfacial thickness 
𝛿𝑝 . For the tanh profile 𝛿𝑝∕𝜂 = 2

√
2 tanh−1(𝑝).

𝜂 𝑝 = 0.95 𝑝 = 0.97 𝑝 = 0.99
simulation 0.0025 5.4 6.2 8.0

0.005 5.2 6.0 7.6
0.01 5.4 6.2 7.9

tanh profile – 5.2 5.9 7.5

and 𝜖2 = 3.53𝜖0, respectively, where 𝜖0 denotes the vacuum permittivity. The surface tension between the two fluids is 𝛾 = 0.01 N∕m. 
The dielectric drop deforms due to the electric field, and forms an oval at equilibrium. The goal is to simulate the equilibrium state 
of the drop and investigate the effect of the Cahn number.

We employ the simpler system (16) to simulate the dielectric drop, with a non-dimensional mobility 𝛾1 = 0.01 and a pseudo-time 
step size Δ𝑡 = 10−5. The initial phase field distribution is given by

𝜙(𝑥, 𝑦, 𝑡 = 0) = tanh
√
(𝑥− 𝑥0)2 + (𝑦− 𝑦0)2 −𝑅0√

2𝜂
, (121)

where (𝑥0, 𝑦0) = (0.25, 0.25), 𝑅0 = 0.1, and 𝜂 is the Cahn number. A mesh of 900 quadrilateral elements (Fig. 20(b)) with an element 
order 6 is employed in the simulations.

Fig. 21 shows the equilibrium distributions of the phase field 𝜙, and the 𝜙 profiles along the vertical centerline (𝑥 = 0.25), 
obtained using three Cahn numbers 𝜂 = 0.01, 0.005 and 0.0025. At equilibrium the dielectric drop is deformed, and as the Cahn 
number decreases the drop becomes more sharply defined. The interfacial profiles appear to resemble a tanh profile qualita-

tively. We can notice a shift from the expected ±1 in the bulk value of 𝜙, with the shift being smaller as 𝜂 decreases, a phe-
33

nomenon well-known with the phase field method [80]. Table 5 provides a quantitative comparison of the interfacial thickness 
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Fig. 22. Transient dielectric drop in a uniform electric field: (a) Problem setting and configuration. (b) Spectral element mesh with 3600 elements. 𝐿 and 𝐵 denote 
the major and minor axes, respectively.

Fig. 23. Transient dielectric drop in a uniform electric field: time histories of the deformation ratio 𝑑∕𝑑∞ computed with a range of values for the mobility 𝛾1 . Fixed 
Cahn number 𝜂 = 0.0025. The reference curve is from [68].

between the simulation and the theoretical tanh profile. Here the interfacial thickness 𝛿𝑝 is defined as the thickness of the region {
𝐱 = (𝑥, 𝑦) | 𝑥 = 0.25, |||𝜙(𝐱) − 1

2 (𝜙max +𝜙min)
||| ⩽ 𝑝

2 (𝜙max − 𝜙min)
}

along the centerline, where 𝜙max and 𝜙min are the maximum and 
minimum values of 𝜙(𝐱) in the bulk, respectively, and 𝑝 < 1 is a prescribed threshold value close to 1. For the tanh profile, the phase 
field distribution (in 1D) is given by 𝜙(𝑥) = tanh 𝑥√

2𝜂
[79], leading to an interfacial thickness 𝛿𝑝∕𝜂 = 2

√
2 tanh−1(𝑝) based on the 

above definition. Table 5 lists the 𝛿𝑝∕𝜂 corresponding to three Cahn numbers and three threshold values 𝑝 = 0.95, 0.97 and 0.99, from 
our simulation and the tanh profile. The data suggest that the equilibrium profile of the dielectric drop obtained from our method is 
largely consistent with the tanh profile.

A.4.2. Transient dielectric drop in a uniform electric field: effect of mobility parameter

We next illustrate the effect of the mobility 𝛾1 in the model on the transient process of a dielectric drop approaching the equilibrium 
state in an external electric field. The mobility is known to influence the computed dynamics with the phase field method [37,38,

51,52]. An inappropriate mobility may cause the fluid interface to deviate from the equilibrium profile significantly, leading to a 
convective distortion and instability [52]. The analyses in [51] suggest that the mobility should scale as 𝛾1 ∼ 𝜂2 in order for the phase 
field model to be consistent with the sharp interface limit. Our simulation is indicative of a relation consistent with this scaling.

We consider a problem setup similar to that of Section A.4.1. But here we focus on the transient process as the drop deforms and 
approaches the equilibrium configuration, in a way similar to [68]. We simulate this dynamic process by the full phase field model 
(equations (3)–(7)) and investigate the effect of the mobility 𝛾1 . Fig. 22(a) provides the problem configuration and the important 
parameters of the transient dielectric drop to be monitored. In particular, we record the time histories of the major and minor 
axes (𝐿 and 𝐵) of the drop and compute the deformation ratio 𝑑 = (𝐿 − 𝐵)∕(𝐿 + 𝐵). Following [68], this ratio is normalized by 

𝑅0𝜖0𝜖1𝑉
2 9(𝜖 ∕𝜖 −1)2
34

𝑑∞ = 0
𝜎𝐿2

0

1 2
16(𝜖1∕𝜖2+2)2

. The variables involved in this expression are explained below.



Journal of Computational Physics 514 (2024) 113228J. Yang, I.C. Christov and S. Dong

We choose the physical parameters in accordance with [68], and normalize them according to Table 1. The relevant parameters 
are 𝐿0 = 10−5 m, 𝜖0 = 8.854 × 10−12 C∕V ⋅ m, 𝜇0 = 0.001 Pa ⋅ s, 𝑉𝑑 = 100 V, 𝜌0 = 1000 kg∕m3, and the surface tension 𝜎 = 0.03 N∕m. 
The non-dimensionalized simulation parameters include the densities 𝜌1 = 𝜌2 = 1, viscosities 𝜇1 = 𝜇2 = 1, the upper-wall voltage 
𝑉0 = 0.5, relative permittivities 𝜖1 = 3 and 𝜖2 = 80, and the mixing energy density coefficient 𝜆 = 3

2
√
2
𝜎𝜂. The drop is initially circular 

and at rest, with a radius 𝑅0 = 0.1 and its center located at (𝑥0, 𝑦0) = (0.25, 0.25). The initial phase field distribution is given by (121), 
and we employ a zero initial velocity. Fig. 22(b) shows the mesh, with 3600 quadrilateral elements and an element order 6.

Fig. 23 depicts time histories of the deformation ratio corresponding to several mobility values ranging from 𝛾1 = 0.05𝜂2 to 
𝛾1 = 50𝜂. Here the Cahn number is fixed at 𝜂 = 0.0025. This figure also shows the result from [68] as a reference. With a mobility 
around 𝛾1 ∼ 𝜂2, the deformation ratio oscillates around an equilibrium value (see the curve 𝛾1 = 2𝜂2), similar to [68]. With a mobility 
much larger than 𝜂2, the deformation ratio reaches its equilibrium value almost instantly and no oscillation is observed. The results 
indicate that the mobility values on the order 𝜂2 or larger yield essentially the same equilibrium value for the deformation ratio. 
On the other hand, if 𝛾1 is significantly lower than 𝜂2, the deformation ratio exhibits an oscillation, but over time it can approach 
an equilibrium value that deviates significantly from that obtained with mobility about 𝜂2 or larger. Overall these tests suggest that 
a mobility around 𝜂2 appears to yield more reasonable dynamics. This is consistent with the theoretical analyses of [51]. In the 
simulations of this paper we have employed mobility values generally on the order of 𝜂2 .
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