
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 1–20
Dual-level parallelism for high-order
CFD methods q

Suchuan Dong, George Em Karniadakis *

Division of Applied Mathematics, Center for Fluid Mechanics, Brown University, Box 1966,

307 Manning street, Providence, RI 02912, USA

Received 23 September 2002; received in revised form 7 May 2003; accepted 7 May 2003
Abstract

A hybrid two-level parallel paradigm with MPI/OpenMP is presented in the context of

high-order methods and implemented in the spectral/hp element framework to take advantage

of the hierarchical structures arising from deterministic and stochastic CFD problems. We

take a coarse grain approach to OpenMP shared-memory parallelization and employ a work-

load-splitting scheme that reduces the OpenMP synchronizations to the minimum. The hybrid

algorithm shows good scalability with respect to both the problem size and the number of pro-

cessors for a fixed problem size. For the same number of processors, the hybrid model with 2

OpenMP threads per MPI process is observed to perform better than pure MPI and pure

OpenMP on the SGI Origin 2000 and the Intel IA64 Cluster, while the pure MPI model per-

forms the best on the IBM SP3 and on the Compaq Alpha Cluster. A key new result is that the

use of threads facilitates effectively p-refinement, which is crucial to adaptive discretization

using high-order methods.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Dual level parallelism; Message passing interface; OpenMP; Spectral element method; CFD
1. The hybrid model

The hybrid programming (MPI/OpenMP or MPI/Pthreads) paradigm combining

message passing and shared-memory parallelism has become popular in the past few

years and has been applied in many applications, ranging from costal wave analysis
qAn abbreviated version appears in Supercomputing Conference 2002 (SC2002).
*Corresponding author. Tel.: +1-401-863-1217; fax: +1-401-863-3369.

E-mail address: gk@dam.brown.edu (G.E. Karniadakis).

0167-8191/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2003.05.020

mail to: gk@dam.brown.edu


2 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
[1,11] to atmospheric research [10], to molecular dynamics analysis [6]. The adoption

of this model is facilitated by both the architectural developments of modern super-

computers and the characteristics of a wide range of applications.

The hybrid model can potentially exploit modern supercomputer architectures

consisting of shared-memory multi-processor (SMP) nodes more effectively. Modern
HPC machines are usually based on distributed memory architecture for scalable

performance. However, to address issues of cost-effective packaging and power,

manufacturers incorporate shared-memory parallelism at the node level. Thus, most

HPC platforms, including the top ten supercomputers in the world (www.to-

p500.org) at the time of this writing, are essentially clusters of shared-memory mul-

tiprocessors. The challenge presented to application developers by such machines is

that they exhibit hierarchical parallelism with increasingly complex non-uniform

memory access data storage. Flat message passing has been the dominant model
on these systems. However, compared to the direct data access in shared-memory

parallelism, message passing within the SMP node involves the overhead of mem-

ory-to-memory data copies and the latencies. A hybrid model combining these

two approaches, employing shared-memory parallelism within and message passing

across the nodes, seems a natural alternative on such hierarchical systems.

The characteristics of an application also influence the programming paradigm.

Irregular applications like molecular dynamics and adaptive mesh refinement, char-

acterized by unpredictable communication patterns and load imbalance, have been
the focus of several research efforts with different programming models. For exam-

ple, OpenMP has been applied to improve the load balance within the SMP node in

molecular dynamics analysis [6], mitigating the excessively fine data decompositions

in pure MPI computations. The hybrid approach has also been encouraged by the

observations that even for irregular codes the shared-memory implementation seem

to be able to perform as well as MPI through techniques like runtime performance

monitoring [12] and with substantial ease of programming [13].

The hybrid programming model with MPI/threads has been analyzed previously
with kernel calculations or simplified model problems [2,6]. These analyses, while

providing insights into the hybrid-programming model, are based upon the fine grain

shared-memory parallelism, i.e., the shared-memory parallelization using OpenMP

or POSIX threads is applied only to major loops [2,6] or sub-routines [5,11]. While

feasible for model problems and some applications, this approach is generally not

adequate for complex applications, in which either no major loop is readily identifi-

able or the complicated operations prohibit such loop-level parallelization directives.

For example, in the spectral element implementation in the current work the spectral
elements are organized using linked lists. The loops for traversing the element lists

account for a significant portion of the operations. However, these loops are not

readily parallelizable with loop-level directives because of their structures. The poin-

ter operations within such loops also preclude the loop-level directives. Fine grain

parallelization also suffers from the drawback of frequent thread creations, destruc-

tions and associated synchronizations.

Alternatively, we take a coarse grain approach to the shared-memory paralleliza-

tion in a fashion similar to MPI data parallel programs. Loft et al. [10] reported such

http://www.top500.org
http://www.top500.org


S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20 3
an approach for atmospheric modeling, and observed a better performance with the

hybrid model in some cases. However, the performance of the coarse grain hybrid

model relative to the shared-memory and the unified MPI approach, especially in

the context of high-order methods, is still not quite clear, while the effect of the hy-

brid paradigm on dynamic p-refinement has not been studied before.
2. Current objectives

The objective of this work is to design a hybrid approach to take full advantage of

the hierarchical structures arising from the spectral/hp discretizations of determinis-

tic and stochastic CFD problems.

Deterministic and stochastic CFD systems demonstrate inherent hierarchical
structures when discretized with a spectral/hp element method. For deterministic

Navier–Stokes equations the flow velocity is represented by
uðx; y; z; tÞ ¼
X

k

ûu�kðx; y; tÞeikz:
This representation applies to 3D unsteady flow problems on geometries with one

homogeneous direction while the non-homogeneous 2D domain is of arbitrary

complexity. A combined spectral element-Fourier discretization [8] can be employed

to accommodate the requirements of high-order as well as the efficient handling of
multiply connected computational domain in the non-homogeneous planes. Spectral

expansions in the homogeneous direction employ Fourier modes that are decoupled

except in the non-linear terms. Each Fourier mode can be solved with the spectral

element approach.

Similar hierarchical structures arise from the stochastic analysis using generalized

polynomial chaos [14]. The key idea of polynomial chaos is to represent stochasticity

spectrally with polynomial functionals, first introduced by Wiener for Gaussian ran-

dom processes. The randomness is absorbed by a suitable orthogonal basis function
from the Askey family of polynomials [14]. Subsequently, the Navier–Stokes equa-

tion is projected onto the space spanned by the same orthogonal polynomial func-

tions, leading to a set of deterministic differential equations. The flow velocity is

thus represented by
uðx; y; z; t; hÞ ¼
X

m

ûu�mðx; y; z; tÞHðnðhÞÞ;
where Hð�Þ is the Hermite polynomial functional, n is the Gaussian variable and h is

a random parameter. As a result, the Navier–Stokes equations are reduced to a set of

equations for the expansion coefficients (called random modes), which are 3D

deterministic functions of both space and time. The random modes are decoupled

except in the non-linear terms, and can be solved with the spectral/hp element

method [8].
The inherent hierarchical structures in CFD problems suggest a multi-level paral-

lelization strategy. At the top-most level are groups of MPI processes. Each group



4 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
computes one random mode. At the next level, the 3D domain of each random mode

is decomposed into sub-domains, each consisting of a number of spectral elements.

Each MPI process within the group computes one sub-domain. At the third level,

multiple threads are employed to share the computations within the sub-domain.

Compared with the flat message-passing model, this multilevel parallelization strat-
egy reduces the network latency overhead because a greatly reduced number of pro-

cesses are involved in the communications at each level. This enables the application

to scale to a large number of processors more easily.

The pure MPI approach for the deterministic problems has been documented in

[3,4,7]. In this approach a straight-forward mapping of the Fourier modes onto the

processors is employed, resulting in an efficient and balanced computation where the

3D problem is decomposed into 2D problems using multiple 1D FFTs. One draw-

back of this approach (and 1D domain decompositions in general), however, is that
the number of Fourier planes in the homogeneous direction imposes an upper limit

on the number of processors that can be employed. When the maximum number of

processors is used, the wall clock time per time step is solely determined by the speed

of computations of the 2D plane. Increasing the number or the order of the elements

in the non-homogeneous 2D domain, which is often desired for resolving vortical

flows, cannot be further balanced by increasing the number of processors accord-

ingly. However, this limit can be eliminated by: (1) further decomposing the 2D

plane through e.g. METIS [9] or (2) using shared-memory parallelism.
Both approaches can be effective but here we follow the second one, which is rela-

tively less complicated from the data structure standpoint. Specifically, we parallelize

the computations in the non-homogeneous 2D plane via a coarse grain shared-

memory parallelism with OpenMP. The resulting hybrid MPI/OpenMP approach

eliminates the limit on the number of processors that can be exploited and dramati-

cally expands the capability of the pure MPI model. The objectives of this paper are:

• to present the coarse grain approach for the hybrid MPI/OpenMP programming
paradigm,

• to investigate the influence of multi-threading on the p-type refinement in high-

order methods, and

• to examine the performance of different programming models in the context of

high-order methods.
3. Spectral/hp element method

A spectral/hp element method [8] is employed to discretize in space, a semi-implicit

scheme in time, and polynomial chaos in the random direction. These algorithms are

implemented in C++ in NekTar, a general-purpose high-order CFD code for incom-

pressible, compressible and plasma unsteady flows in 3D geometries. The code uses

meshes similar to standard finite element and finite volume meshes, consisting of

structured or unstructured grids or a combination of both. The formulation is also

similar to those methods, corresponding to Galerkin and discontinuous Galerkin



S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20 5
projections for the incompressible, compressible and plasma governing equations,

respectively. Flow variables are represented in terms of Jacobi polynomial expan-

sions. This new generation of Galerkin and discontinuous Galerkin high-order meth-

ods implemented in NekTar extends the classical finite element and finite volume

methods [8]. The additional advantage is that not only the convergence of the dis-
cretization but also the solution verification can be obtained with p-refinement

(refinement over the interpolation orders). However, the computational complexity

associated with p-refinement (Oðpdþ1), where d is the spatial dimension) has limited

its use in large-scale simulations to date.
4. Coarse grain shared-memory parallelization

Fig. 1 provides a schematic of the parallel hybrid paradigm. The flow domain is

decomposed in the homogeneous z-direction. At the outer level multiple MPI pro-

cesses are employed, with each process computing one sub-domain. At the inner

level, within each MPI process multiple OpenMP threads conduct the computations

in the sub-domain in parallel. Data exchange across sub-domains is implemented

with MPI. Within each process, access to shared objects by multiple threads is coor-

dinated with OpenMP synchronizations.

Specifically, a single parallel region encloses the time-integration loops at the top-
most level to enable the coarse grain approach. This avoids the overhead associated

with frequent thread creations and destructions inherent in fine grain programs. The

number of threads in different MPI processes can vary to offset the load imbalance

in different sub-domains. The OpenMP threads share the computations within a
Fig. 1. Schematic showing domain decomposition and the OpenMP threads within MPI processes. The

flow region is decomposed in the homogeneous direction (z). Each MPI process is assigned to one sub-

domain. Multiple OpenMP threads within the MPI process work on disjoint sections of the data in

parallel.



6 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
sub-domain by working on disjoint groups of elements or disjoint sections of the vec-

tors (of roughly the same size). The vector length, the element number, and the num-

ber of entries in the linked lists are split based on the number of threads. This

computation is done only once at the pre-processing stage, and the results are stored

in a shared table, which can be referenced based on thread IDs. In this configuration
each thread works on a large section of a vector with contiguous memory, improving

the cache-hit rate. The MPI calls are handled by only one thread within each process.

Advantageous over pure MPI programs on SMP nodes, this configuration assembles

the nodal messages into a single large message and thus reduces the network latency

overhead. The OpenMP barriers surrounding the MPI call constitute the associated

overhead.

OpenMP barrier is the main type of OpenMP synchronization involved. The bar-

riers exist at (1) the beginning of time integration sub-steps due to data dependence,
(2) the beginning and end of MPI calls to ensure the data completeness, (3) the inner

products in the conjugate gradient iterative solver for boundary-mode solves, and (4)

the switching points between global and local operations. The majority of OpenMP

barriers occur at the switching points between global and local operations. The

workload splitting dictated by OpenMP loop-level directives would result in exces-

sive such barriers and compromise the performance. We first illustrate this situation

and then introduce a workload splitting scheme that completely eliminates these bar-

riers.
The following code segment from the pure MPI implementation is for calculating

the non-linear term U oU
ox þ V oU

oy þ W oU
oz in Navier–Stokes equations.

. . . // dU/dz is calculated here

dvmul(nq,W->base_h,1,Uz->base_h,1,grad_wk,1); // grad_wk¼W *dU/dz

U->Grad_h(U->base_h,Ux->base_h,Uy->base_h,NULL,trip); // calculate dU/dx,dU/dy

dvvtvp(nq,U->base_h,1,Ux->base_h,1,grad_wk,1,grad_wk,1); // grad_wk +¼ U *dU/dx

. . .

The term W oU
oz is computed on the first line and stored in the temporary vector

grad_wk. On the second line the derivatives oU
ox and

oU
oy are computed in the function

Grad_h() and stored in Ux and Uy, respectively. Inside Grad_h() the derivatives

are computed element by element (local operations). In the implementation the

structures Uz and Uy point to the same object in memory. On the third line the term

U oU
ox is computed and added to the temporary vector grad_wk. The vector length,

nq, is the product of the number of Fourier planes on the current processor and
the total number of quadrature points in the x–y plane. The two LAPACK-style

vector routines, dvmul and dvvtvp, manipulate the entire vector (global opera-

tions).

In the hybrid model, the straightforward approach is to adopt loop-level OpenMP

directives in functions dvmul, Grad_h and dvvtvp, which unfortunately would re-

sult in excessive barriers. With loop-level directives the vector length, nq, would be

split based on the number of threads. So each thread computes a section of the vec-

tors with length approximately ½nqP �, where P is the number of OpenMP threads. In-



S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20 7
side the function Grad_h() the workload could be split based on the number of ele-

ments, nel, since the computations are performed element by element. Thus, each

thread works on about ½nelP � elements. Because Uz and Uy point to the same object

in memory an OpenMP barrier is required between the first and the second lines

to ensure that all the operations on Uz have completed before the operations on
Uy canstart. By the same token, another barrier is needed between the second and

the third lines to ensure that all the results about oU
ox have been written to Ux-

>base_h before they can be used on the third line. With loop-level parallelization

directives, these barriers cannot be avoided no matter what scheduling policies (sta-

tic, dynamic, guided) are employed inside dvmul, dvvtvp and Grad_h. These bar-

riers persist because they are at the switching points between global and local

operations. An additional complexity is that in function Grad_h() the loop for tra-

versing the element list is not readily parallelizable with OpenMP directives.
To eliminate these barriers a consistent workload splitting needs to be employed

across the global and local operations. We note that in the implementation the global

vector (e.g. Uz->base_h) with length nq is a concatenation of the local vectors on

all the elements. Therefore we can still split the number of elements into groups with

size ½nelP � inside the function Grad_h(). The global vectors, however, should be split

in a fashion such that each section of the vectors is a concatenation of the local vec-

tors of that particular group of elements the thread works on inside Grad_h().

With this scheme each thread operates on its own group of elements and the corre-
sponding sections of the global vectors. These barriers are thus completely elimi-

nated.
5. Benchmarking procedure

The performance of the hybrid paradigm is tested with simulations of turbulent

flow past a circular cylinder at Reynolds number Re ¼ 500 based on the inflow veloc-
ity and the cylinder diameter. The dimension of the flow domain is p in z direction
(homogeneous). We use 412 triangular elements in the x–y plane and 16 modes (32

planes) in z direction (Fig. 2). A uniform inflow is prescribed at the inlet. Outflow

boundary conditions are applied at the outlet and the upper/lower boundaries of

the flow domain. Periodic conditions are imposed in the homogeneous direction.

The initial flow is a 3D fully developed turbulent flow generated in a separate run.

A third-order stiffly-stable scheme is used for time-integration [8].

Benchmarks are performed on the following four platforms:

• IBM SP3 (BlueHorizon) at SDSC (375 MHz Power3);

• SGI Origin 2000 at NCSA (250 MHz MIPS R10000);

• Compaq Alpha Cluster (LeMieux) at PSC (1 GHz Alpha EV68);

• Intel IA64 Cluster (Titan) at NCSA (800 MHz Itanium).

We use compiler optimization options ‘‘-Ofast’’ on NCSA Origin, ‘‘-O3

-qarch¼ pwr3 –qtune¼ pwr3’’ at SDSC, ‘‘-fast’’ at PSC, and ‘‘-O3 -ip -IPF_fma’’



Fig. 2. Unstructured mesh in a 2D slice x–y plane (412 elements) for the test flow problem.

8 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
on NCSA IA64 Cluster. On the NCSA Origin the timing results are collected in the

dedicated mode on a 128-CPU host. At SDSC and PSC, and on the NCSA IA64

cluster the benchmarks are performed with exclusive access to the nodes allocated

to the job. Wall clock time is collected by the MPI_Wtime() calls embedded in

the code. Timings are accumulated across all MPI processes and divided by the num-

ber of processes to give the mean values per processor. The command ‘‘dplace’’ has

been employed to optimize memory placement policies.

The first group of tests is designed to examine the scaling with respect to the num-
ber of processors for a fixed problem size. In particular, a fixed (spectral) polynomial

order of Norder ¼ 15 is used for these cases, while the number of MPI processes is var-

ied from 1 through 16 (1, 2, 4, 8, 16), and the number of OpenMP threads per pro-

cess is varied between 1 and 8 (1, 2, 4, 6, 8) on the NCSA Origin and at SDSC,

between 1 and 4 (1, 2, 3, 4) at PSC, and between 1 and 2 on the NCSA IA64 Cluster.

The total number of processors (number of processes · number of threads per pro-

cess) varies from 1 to 128. The second group of tests is to check the scalability with

respect to the problem size. The same mesh as in the first group is used while the
order of the interpolating polynomials and the number of threads per process are

varied.
6. Performance results

6.1. Fixed problem size

Fig. 3 shows the wall clock time per step (top row) and the parallel speedup (bot-

tom row) versus the total number of processors for the pure MPI, pure OpenMP,

and the hybrid runs on the SGI Origin. Since there are 32 Fourier planes in the

homogeneous direction, a maximum of 16 processors can be used in the MPI runs.

Up to 8 threads per process are used for the OpenMP and hybrid runs because the



Fig. 3. Wall clock timing (top row) and parallel speedup (lower row) for three programming models (pure

MPI, pure OpenMP, hybrid) on NCSA SGI Origin 2000: top left, time per step versus total number of

processors; top right, enlarged view of the figure on top left; bottom left, speedup factor versus total num-

ber of processors; bottom right, enlarged view of the figure on bottom left. The total number of processors

is the multiplication of the number of MPI processes and the number of threads per process. Pure MPI: 1

thread per MPI process; Pure OpenMP: only 1 process; Hybrid: multiple MPI processes, multiple threads

per process. Meanings of labels: 4T means 4 threads per process; 8Pr means 8 MPI processes.

S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20 9
performance deteriorates beyond this number for the problem size in consideration.

For up to 4 processors, the pure MPI and pure OpenMP demonstrate comparable

performance, with the OpenMP slightly better. The pure OpenMP run demonstrates

a super-linear speedup for 2 processors. This is attributed to the two factors: (1) the

large dataset size the OpenMP handles (the whole flow domain), and (2) the proxim-

ity of the two processors to the memory. On the SGI Origin 2000 a node consists of

two processors and one piece of memory. Two such nodes are attached to a router,

and the routers form a hypercube for up to 64 processors. Beyond 64 processors a
hierarchical hypercube is employed. It follows that on this architecture the applica-

tion should still achieve a good performance with up to four OpenMP threads if



10 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
these threads are scheduled on the two nearby nodes attached to the same router.

This is indeed the case for the pure OpenMP and all the hybrid runs. Beyond 4

threads the performance of the OpenMP quickly deteriorates due to the overhead

associated with remote memory access (NUMA). The pure MPI demonstrates a

near-linear speedup up to the maximum number of processors (16) that can be em-
ployed.

The hybrid runs demonstrate a good speedup factor for up to 4 threads per pro-

cess. The speedup drops from 96 processors (16 processes, 6 threads/process) to 128

processors (16 processes, 8 threads/process). These observations are consistent with

our analysis in the previous paragraph. We would like to emphasize that the hybrid

model extends substantially the performance curve of the pure MPI. The hybrid

model reduces the minimum wall clock time that the pure MPI can achieve by a fac-

tor of 3.2 with 4 OpenMP threads per process, and a factor of 3.8 with 6 OpenMP
threads per process.

Fig. 4 shows the wall clock time per step (top row) and the parallel speedup (bot-

tom row) versus the number of processors for the three programming models on the

IBM SP3 at SDSC. The results demonstrate the same trend as the ones observed on

the Origin. However, compared with the Origin results the wall clock time on the SP

is smaller by a factor of 2–3. With the 8-way SMP nodes on the SP, the applications

cannot benefit further from the shared-memory parallelism with more than 8 threads

per process. Pure MPI performs consistently better than the pure OpenMP, and the
performance gap widens as the number of processors increases. The pure MPI run

achieves a super-linear speedup for 4, 8 and 16 processors. This usually indicates that

the application benefits from the larger aggregate cache size as the number of proces-

sors increases. Compared to the maximum speedup achieved by pure MPI, the hy-

brid model increases the value by a factor of 2.6 with 4 threads per node, and a

factor of 3.1 with 6 threads per process. The scaling of the hybrid model is good

for up to 6 threads per process for this problem size. Then it flattens as the number

of threads per process further increases.
In Fig. 5 we plot the wall clock time per step (top row) and the parallel speedup

(bottom row) versus the total number of processors on the Compaq Alpha cluster at

PSC. Since the cluster consists of 4-processor nodes, a maximum of 4 OpenMP

threads per process is deployed in these tests. The data shows that the wall clock time

on the PSC Compaq cluster is nearly half of that on the SP at SDSC, and an even

smaller fraction of that on the Origin. The pure MPI runs demonstrate near-linear

speedup. The pure OpenMP run with 2 threads shows a performance comparable

to the pure MPI run with two processes, although the latter performs slightly better.
The pure MPI run with 4 processes performs considerably better than the pure

OpenMP run with 4 threads. This performance gap between the pure MPI and

OpenMP is attributed to the memory bandwidth contention between multiple

threads within the node in OpenMP runs. Since the threads within the node share

the memory bandwidth, severe contentions may occur with a fair number of threads,

leading to a reduced effective memory bandwidth. In contrast, multiple MPI pro-

cesses are started on different nodes in pure MPI runs, with no memory bandwidth

contention on any node. Similar to what has been observed on other systems, the



Fig. 4. Wall clock timing (top row) and parallel speedup for the three programming models (pure MPI,

pure OpenMP, hybrid) on SDSC IBM SP: top left, time per step versus total number of processors; top

right, enlarged view of the figure on top left; bottom left; speedup factor versus total number of processors;

bottom right, enlarged view of the figure on bottom left. See caption of Fig. 3 for meanings of the labels.

S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20 11
hybrid runs greatly extend the performance curve of the pure MPI runs. With 2 and

4 threads per MPI process speedup factors of 1.7 and 2.2 are observed, respectively.

The maximum number of processors in this test on Compaq Alpha (64 processors)
produces a lower parallel speedup (32) compared with those on IBM SP (speedup 41)

and SGI Origin (speedup 42).

Fig. 6 shows the wall clock timing (top row) and the parallel speedup (bottom

row) collected on the IA64 cluster at NCSA. A maximum of two OpenMP threads

per MPI process is deployed for the hybrid and pure OpenMP runs on the dual-

processor nodes of the cluster. Like on the other platforms, the MPI runs demon-

strate near-linear speedup. An intriguing observation is that the OpenMP run and

the hybrid runs demonstrate super-linear speedup. Deploying two threads per pro-
cess reduces the wall clock time of the corresponding MPI run (same number of

MPI processes, single thread per process) by more than half in all the cases. The high



Fig. 5. Wall clock (top row) and parallel speedup for the three programming models (pure MPI, pure

OpenMP, hybrid) on PSC Compaq Cluster: top left, time per step versus total number of processors;

top right, enlarged view of the figure on top left; bottom left, speedup factor versus total number of pro-

cessors; bottom right, enlarged view of the figure on bottom left. See caption of Fig. 3 for the meanings of

the labels.

12 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
scalability of the IA64 cluster is attributed to its high memory bandwidth as com-

pared to the other three platforms and the large L3 cache of the Itanium processor.

To better understand the scaling of the three programming models, we decompose

the total execution time of each MPI process into inter-process communication time,

thread serial computation time, thread synchronization (mainly OpenMP barriers)

time, and thread parallel computation time. Since the MPI inter-process communi-

cations are handled by one thread within each process, they will be classified as serial
operations in terms of the threads. We would call the sum of the inter-process com-

munication time and the thread serial computation time the total serial operation time,

which can be easily measured. Because the OpenMP barriers are scattered it is dif-

ficult to measure this synchronization time accurately. Fig. 7 shows the percentage

of the communication cost and the total serial operation cost against the total exe-

cution time versus the total number of processors on the four platforms. On all four

platforms the communication cost accounts for the major portion of the serial



Fig. 6. Wall clock timing (top row) and parallel speedup (lower row) for the three programming models

(pure MPI, pure OpenMP, hybrid) on NCSA IA64 (Titan) Cluster: top left, time per step versus total

number of processors; top right, enlarged view of the figure on top left; bottom left, speedup factor versus

total number of processors; bottom right, enlarged view of the figure on bottom left. See caption of Fig. 3

for the meanings of labels.

S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20 13
operations in all except the single-process runs. As the number of processes increases

the communication cost increases drastically in the MPI runs. With 16 processes (the

maximum for pure MPI) the communication accounts for about 50% of the total
execution time on SDSC SP, NCSA Origin and IA64 cluster, and an even higher per-

centage on the PSC Compaq cluster. With multiple threads in the OpenMP and hy-

brid runs, the communication cost increases only slightly compared to that of the

MPI case with the same number of processes. This is because only one thread han-

dles the inter-process communications on each node. Increasing the number of

threads per process does not add to the overall communication cost so much as

increasing the number of processes, although an additional thread synchronization

is involved in MPI communication routine in the hybrid runs.

6.2. Relative performance of three models for the same number of processors

The relative performance of the three programming models––pure MPI, OpenMP

and hybrid––with the same total number of processors is also of interest. Tables 1–4



Fig. 7. Percentage of communication and total serial operation cost versus total number of processors on

NCSA Origin 2000 (top left), SDSC IBM SP (top right), PSC Alpha Cluster (bottom left) and NCSA IA64

Cluster (bottom right). Total serial operations (concerning OpenMP) include inter-process communica-

tions and other serial computations such as the FFTW calls. The communication time and the total serial

operation time are normalized by the total execution time. The total number of processors, P, is the prod-

uct of the number of MPI processes and the number of threads per process. Pure OpenMP:1 process, 1, 2,

4, 6 and 8 threads/process; Pure MPI: 1 thread/process, 1, 2, 4, 8 and 16 processes; Hybrid: 16 processes, 1,

2, 4, 6 and 8 threads/process on Origin and SP, 1,2,3,4 threads/process on Compaq Cluster, and 1,2

threads/process on IA64 Cluster.

14 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
summarize the performance results of the three models for a total number of 4, 8 and

16 processors on the four platforms, respectively. On the Origin and IA64 cluster, the

hybrid model with 2 threads per process is observed to perform better than pure MPI

and OpenMP. The hybrid model with 4 threads per process performs the best in

some cases on the Origin. On the other hand, the pure MPI performs better than

both the hybrid model and the pure OpenMP on the IBM SP and the Compaq Alpha

cluster, though some configurations of the hybrid runs show performances compa-

rable to pure MPI. It is worth pointing out that even on these two systems the hybrid
model is able to exploit a larger number of processors and thus achieve a much smal-

ler wall clock time per step.



Table 1

Performance comparison of three programming models (pure MPI, pure OpenMP, hybrid) for a set of fixed number of processors on SGI Origin 2000 at

NCSA

CPU MPI Hybrid OpenMP

Process Thread/

process

Process Thread/

process

Process Thread/

process

Process Thread/

process

Process Thread/

process

4 4 1 2 2 N/A N/A N/A N/A 1 4

95.56 (s) 87.30 (s) N/A N/A 88.87 (s)

8 8 1 4 2 2 4 N/A N/A 1 8

52.75 (s) 48.41 (s) 47.8 (s) N/A 66.88 (s)

16 16 1 8 2 4 4 2 8 N/A N/A

25.64 (s) 24.09 (s) 26.02 (s) 36.47 (s) N/A

For each number of CPU (the left column), the first row shows the configurations (the number of MPI processes and the number of threads per process); the

second row shows the wall clock time per step in seconds.

Table 2

Performance comparison of three programming models (pure MPI, pure OpenMP, hybrid) for a set of fixed number of processors on the IBM SP3 at SDSC

CPU MPI Hybrid OpenMP

Process Thread/

process

Process Thread/

process

Process Thread/

process

Process Thread/

process

Process Thread/

process

4 4 1 2 2 N/A N/A N/A N/A 1 4

29.51 (s) 34.36 (s) N/A N/A 41.46 (s)

8 8 1 4 2 2 4 N/A N/A 1 8

14.66 (s) 17.19 (s) 21.5 (s) N/A 31.67 (s)

16 16 1 8 2 4 4 2 8 N/A N/A

7.65 (s) 8.7 (s) 10.89 (s) 16.55 (s) N/A

See Table 1 for the meaning of different columns.

S
.
D
o
n
g
,
G
.E
.
K
a
rn
ia
d
a
k
is
/
P
a
ra
llel

C
o
m
p
u
tin

g
3
0
(
2
0
0
4
)
1
–
2
0

1
5



Table 3

Performance comparison of three programming models (pure MPI, pure OpenMP, hybrid) for a set of fixed number of processors on the Compaq Alpha

cluster at PSC

CPU MPI Hybrid OpenMP

Process Thread/

process

Process Thread/

process

Process Thread/

process

Process Thread/

process

Process Thread/

process

4 4 1 2 2 N/A N/A N/A N/A 1 4

15.32 (s) 17.51 (s) N/A N/A 23.05 (s)

8 8 1 4 2 2 4 N/A N/A N/A N/A

7.53 (s) 8.98 (s) 12.06 (s) N/A N/A

16 16 1 8 2 4 4 N/A N/A N/A N/A

3.82 (s) 4.53 (s) 6.3 (s) N/A N/A

See Table 1 for the meaning of different columns.

Table 4

Performance comparison of three programming models (pure MPI, pure OpenMP, hybrid) for a set of fixed number of processors on the IA64 Cluster at

NCSA

CPU MPI Hybrid OpenMP

Process Thread/

process

Process Thread/

process

Process Thread/

process

Process Thread/

process

Process Thread/

process

4 4 1 2 2 N/A N/A N/A N/A N/A N/A

57.55 (s) 51.82 (s) N/A N/A N/A

8 8 1 4 2 N/A N/A N/A N/A N/A N/A

29.16 (s) 27.27 (s) N/A N/A N/A

16 16 1 8 2 N/A N/A N/A N/A N/A N/A

14.76 (s) 14.04 (s) N/A (s) N/A N/A

See Table 1 for meanings of different columns.

1
6

S
.
D
o
n
g
,
G
.E
.
K
a
rn
ia
d
a
k
is
/
P
a
ra
llel

C
o
m
p
u
tin

g
3
0
(
2
0
0
4
)
1
–
2
0



Fig. 8. Time per step in seconds versus the order of expansion polynomials on NCSA Origin 2000 (top

left), SDSC IBM SP (top right), PSC Alpha Cluster (bottom left) and NCSA IA64 Cluster (bottom right).

The order of polynomial varies as 7, 10, 13, 15 and 17 on Origin and SP, as 7, 10, 12, 13 on Alpha Cluster,

and as 7 and 10 on IA64 Cluster. Dashed line corresponds to 1 thread/process. Solid line shows the result

when the number of threads per process is increased accordingly. 16 MPI processes are used for all cases.

The label near each symbol shows the number of threads per process (e.g., 4T means 4 threads per pro-

cess).

S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20 17
6.3. Variable problem size

Next we examine the scaling of the hybrid model with respect to the problem size.
The pure MPI approach has been shown to demonstrate good scalability with re-

spect to the number of Fourier planes in the homogeneous direction on a dozen plat-

forms [7]. However, it does not scale well as the problem size increases in the x–y
plane through, e.g., hp-refinement. Here we concentrate on the scaling of the hybrid

paradigm as the grid in the non-homogeneous x–y plane is refined. One advantage of

the spectral/hp element method is that the grid can be refined by either (1) increas-

ing the number of elements (called h-type refinement), which results in algebraic

decay of the numerical error, or (2) increasing the order of interpolating polynomials
while keeping the number of elements fixed (called p-type refinement), which results

in exponential decay of the numerical error for smooth functions. We consider the



18 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
p-type refinement because it is typical of polynomial spectral methods. We use the

same mesh as in the first group of tests, but vary the order of the interpolating poly-

nomials. The number of Fourier planes in the homogeneous z direction is fixed at 32,

and16 MPI processes are used for all the following cases. On the Origin and SP, five

different problem sizes are tested corresponding to the polynomial orders of 7, 10, 13,
15 and 17. For each problem size we first test the case with one thread per process.

Then we increase the number of threads per process approximately in proportion to

the cost increase in the single thread/process cases, with 1, 2, 4, 6 and 8 threads per

process for the five problem sizes. On the Compaq cluster, three different problem

sizes are considered corresponding to the polynomial orders of 7, 10 and 13, and

the number of OpenMP threads per process is varied among 1, 2 and 4 (The case

of polynomial order 12, with 3 threads per process is also included in the plot).

On the IA64 cluster we consider two problem sizes corresponding to polynomial or-
ders 7 and 10, and the number the OpenMP threads per process is varied between 1

and 2. Fig. 8 shows the wall time per step versus the order of the interpolating poly-

nomials on these four platforms. The execution time increases algebraically for the

runs with a single thread per process as the order of polynomials increases. When

the number of threads per process is increased in proportion, the execution time in-

creases only slightly, indicating that the hybrid model demonstrates good scalability

with respect to the problem size on these systems.
7. Concluding remarks

Based on the results on the SGI Origin 2000, the IBM SP, the Compaq Alpha

Cluster and the IA64 Itanium cluster we can draw the following conclusions:

1. With the same number of processors, the hybrid model with 2 threads per process

performs the best on the SGI Origin and the IA64 cluster, while pure MPI per-
forms the best on the IBM SP and Compaq Alpha cluster.

2. For high-order methods the cost increase associated with the p-type refinement

(the refinement over the interpolation order) can be effectively counter-balanced

by employing multiple threads. The use of threads in conjunction with p-refine-

ment for high-order methods is an effective way of performing adaptive discreti-

zations. When p-refinement is performed, one can potentially retain a constant

wall clock time per step by varying the number of threads per process proportion-

ately. This is a significant new result that can potentially change the way high-
order methods are implemented on parallel computers.

3. The performance of the hybrid paradigm is affected by the MPI message-passing

library, the OpenMP shared-memory library and the underlying hardware. These

factors also influence the performance of the pure MPI and pure OpenMP com-

putations. The performance is also affected by the problem size. Increasing the

problem size by using higher spectral order favors the hybrid model as this will

localize the work in the spectral element method which will then be computed

efficiently using multiple threads.



Fig. 9. Overheads of OpenMP parallel regions (left) and barriers (right) vs. the number of threads on IA64

cluster and SGI Origin 2000, IBM SP3, and Compaq cluster. Results obtained with the OpenMP micro-

benchmark suite.

S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20 19
4. The relative performance of the hybrid paradigm and MPI is determined by the

tradeoff between several factors. On the one hand, the hybrid model takes better

advantage of the faster intra-node communications within the SMP nodes. Com-
pared to pure MPI computations on the same number of processors, there are

also fewer processes involved in the communications in the hybrid computations.

The hybrid model reduces the number of communications and increases the mes-

sage size by assembling the nodal messages into a single large one, thus reducing

the network latency overhead. On the other hand, thread management overhead

(creation/destruction and synchronization) can increase considerably as the num-

ber of threads increases. Fig. 9 shows the overheads of OpenMP parallel region

(left) and OpenMP barrier (right) measured with the OpenMP Micro-Benchmark
[15] on the four platforms we benchmarked. The OpenMP overheads vary with

respect to the platform, and increase with respect to the number of threads. An-

other unfavorable factor is that multiple threads within a node compete for the

available memory bandwidth. When a large number of threads are deployed with-

in the node these overheads and the memory bandwidth contention can poten-

tially overwhelm the aforementioned benefits. This is why some systems do not

exhibit superior performance of the hybrid model relative to pure MPI for the

same number of processors. In future systems a factor of 5 to 10 in bandwidth
increase is expected. This, together with new OpenMP libraries with low over-

heads, would influence favorably the hybrid model developed here.
Acknowledgements

The authors would like to thank Dr. Constantinos Evangelinos at MIT for his

help on the thread-safety of the Veclib and many useful discussions. The assistance



20 S. Dong, G.E. Karniadakis / Parallel Computing 30 (2004) 1–20
from George Loriot and Samuel Fulcomer at the Technology Center for Advanced

Scientific Computing and Visualization (TCASCV) at Brown University, from Mark

Straka at NCSA, and from David O’Neal and Sergiu Sanielevici at PSC is gratefully

acknowledged. Computer time was provided by NCSA, NPACI and PSC via an

NSF NRAC grant.
References

[1] S.W. Bova, C. Breshears, C. Cuicchi, Z. Demirbilek, H.A. Gabb, Dual-level parallel analysis of

harbor wave response using MPI and OpenMP, Int. J. High Perform Comput. Appl. 14 (2000) 49–64.

[2] F. Cappello, D. Etiemble, MPI versus MPI+OpenMP on the IBM SP for the NAS Benchmarks, in:

Supercomputing 2000: High Performance Networking and Computing (SC2000), 2000.

[3] C.H. Crawford, C. Evangelinos, D. Newman, G.E. Karniadakis, Parallel benchmarks of turbulence

in complex geometries, Comput. Fluids 25 (1996) 677–698.

[4] C. Evangelinos, G.E. Karniadakis, Communication patterns and models in Prism: A spectral element-

Fourier parallel Navier–Stokes solver, in: Supercomputing 1996: High Performance Networking and

Computing (SC96), 1996.

[5] W.D. Gropp, D.K. Kaushik, D.E. Keyes, B.F. Smith, High-performance parallel implicit CFD,

Parallel Comput. 27 (2001) 337–362.

[6] D.S. Henty, Performance of hybrid message-passing and shared-memory parallelism for discrete

element modeling, in: Supercomputing 2000: High Performance Networking and Computing

(SC2000), 2000.

[7] G.S. Karamanos, C. Evangelinos, R.C. Boes, M. Kirby, G.E. Karniadakis, Direct numerical

simulation of turbulence with a PC/Linux cluster: fact or fiction?, in: Supercomputing 1999: High

Performance Networking and Computing (SC99), 1999.

[8] G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Method for CFD, Oxford University Press,

1999.

[9] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitionaing irregular graphs,

SIAM J. Sci. Comput. 20 (1998) 359–392.

[10] R.D. Loft, S.J. Thomas, J.M. Dennis, Terascale spectral element dynamical core for atmospheric

general circulation models, Supercomputing 2001: High Performance Networking and Computing

(SC2001), 2001.

[11] P. Luong, C.P. Breshears, L.N. Ly, Coastal ocean modeling of the U.S. west coast with multiblock

grid and dual-level parallelism, in: Supercomputing 2001: High Performance Networking and

Computing (SC2001), 2001.

[12] D.S. Nikolopoulos, E. Ayguade, Scaling irregular parallel codes with minimal programming effort, in:

Supercomputing 2001: High Performance Networking and Computing (SC2001), 2001.

[13] H. Shan, J.P. Singh, L. Oliker, R. Biswas, A comparison of three programming models for adaptive

applications on the Origin2000, in: Supercomputing 2000: High Performance Networking and

Computing (SC2000), 2000.

[14] D. Xiu, G.E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations,

SIAM J. Sci. Comput. 24 (2002) 619–644.

[15] J.M. Bull, Measuring synchronization and scheduling overheads in OpenMP, in: First European

Workshop on OpenMP (EWOMP’99), Lund, Sweden, 1999.


	Dual-level parallelism for high-order CFD methods
	The hybrid model
	Current objectives
	Spectral/hp element method
	Coarse grain shared-memory parallelization
	Benchmarking procedure
	Performance results
	Fixed problem size
	Relative performance of three models for the same number of processors
	Variable problem size

	Concluding remarks
	Acknowledgements
	References


