
Journal of Computational Physics 463 (2022) 111290
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

On computing the hyperparameter of extreme learning 

machines: Algorithm and application to computational PDEs, 
and comparison with classical and high-order finite elements

Suchuan Dong ∗, Jielin Yang

Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2021
Received in revised form 4 May 2022
Accepted 6 May 2022
Available online 13 May 2022

Keywords:
Extreme learning machine
Local extreme learning machine
Neural network
Least squares
Nonlinear least squares
Differential evolution

We consider the use of extreme learning machines (ELM) for computational partial 
differential equations (PDE). In ELM the hidden-layer coefficients in the neural network are 
assigned to random values generated on [−Rm, Rm] and fixed, where Rm is a user-provided 
constant, and the output-layer coefficients are trained by a linear or nonlinear least squares 
computation. We present a method for computing the optimal or near-optimal value of 
Rm based on the differential evolution algorithm. The presented method enables us to 
illuminate the characteristics of the optimal Rm for two types of ELM configurations: (i) 
Single-Rm-ELM, corresponding to the conventional ELM method in which a single Rm is 
used for generating the random coefficients in all the hidden layers, and (ii) Multi-Rm-ELM, 
corresponding to a modified ELM method in which multiple Rm constants are involved 
with each used for generating the random coefficients of a different hidden layer. We adopt 
the optimal Rm from this method and also incorporate other improvements into the ELM 
implementation. In particular, here we compute all the differential operators involving the 
output fields of the last hidden layer by a forward-mode auto-differentiation, as opposed to 
the reverse-mode auto-differentiation in a previous work. These improvements significantly 
reduce the network training time and enhance the ELM performance. We systematically 
compare the computational performance of the current improved ELM with that of the 
finite element method (FEM), both the classical second-order FEM and the high-order FEM 
with Lagrange elements of higher degrees, for solving a number of linear and nonlinear 
PDEs. It is shown that the current improved ELM far outperforms the classical FEM. 
Its computational performance is comparable to that of the high-order FEM for smaller 
problem sizes, and for larger problem sizes the ELM markedly outperforms the high-order 
FEM.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

This work focuses on the use of extreme learning machines (ELM) for computational partial differential equations (PDEs). 
ELM was originally developed in [29,30] for linear classification/regression problems with single hidden-layer feed-forward 
neural networks, and has since found wide applications in a number of fields; see the reviews in [28,1] and the references 
therein. Two strategies underlie ELM: (i) random but fixed (non-trainable) hidden-layer coefficients, and (ii) trainable linear 

* Corresponding author.
E-mail address: sdong@purdue.edu (S. Dong).
https://doi.org/10.1016/j.jcp.2022.111290
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111290
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111290&domain=pdf
mailto:sdong@purdue.edu
https://doi.org/10.1016/j.jcp.2022.111290


S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
output-layer coefficients determined by a linear least squares method or by using the pseudo-inverse of the coefficient 
matrix (for linear problems). The ELM type idea has also been developed for nonlinear problems; see e.g. [12,13] for solving 
stationary and time-dependent nonlinear PDEs in which the neural network is trained by a nonlinear least squares method. 
Following [13], we broadly refer to the artificial neural network-based methods exploiting these strategies as ELM type 
methods, including those employing neural networks with multiple hidden layers and those for nonlinear problems [57,59,
12,13,19].

Our research is motivated by the following questions:

• Can artificial neural networks provide a competitive technique for scientific computing and in particular for computa-
tional PDEs?

• Can we devise a neural network-based method for approximating PDEs that can outcompete traditional numerical 
techniques in computational performance?

These questions have been hanging in the air ever since the early studies on neural networks for differential equations in 
the 1990s (see e.g. [40,45,46,8,66,38]). The remarkable success of deep learning [22] in the last decade or so has stimulated 
a significant amount of efforts in the development of deep neural network (DNN) based PDE solvers and scientific machine 
learning [34,54,50,17,60]. By exploiting the universal approximation property of neural networks [26,27,5,43], these solvers 
transform the PDE solution problem into an optimization problem. The field function is represented by a neural network, 
whose weight/bias coefficients are adjusted to minimize an appropriate loss function. The differential equation, the boundary 
and initial conditions are then encoded into the loss function by penalizing some residual norms of these quantities in 
strong or weak forms [38,39,54,50,17,68,37]. The differential operators involved therein are usually computed analytically 
with shallow neural networks in the early works (see e.g. [38]), and in modern implementations they are typically computed 
by auto-differentiation [2] available from the common machine learning libraries such as Tensorflow (www.tensorflow.org) 
and PyTorch (pytorch.org). The minimization of the loss function is performed by an optimizer, which is usually based on 
some flavor of gradient descent or back propagation type techniques [63,23] (see [7] for a combined gradient descent-least 
squares training algorithm). The optimization process constitutes the predominant computations in the neural network-
based PDE solvers, and it is commonly known as the training of the neural network. We refer the reader to the recent 
works in e.g. [33,32,42] (among others) for the use of domain decomposition and parallelization to improve the cost of 
network training. Upon convergence of the optimization process, the PDE solution is given by the neural network, with the 
adjustable weight/bias parameters set based on their converged values. A number of prominent works on DNN-based PDE 
solvers have appeared in the literature, and we refer the reader to e.g. [50,54,17,51,64,24,36,68,62,52,42,33,32,7,58,3,61,14]
(among others), and also the review article [34] and the references contained therein.

As discussed in [12], while their computational performance is promising, the existing DNN-based PDE solvers suffer 
from several drawbacks: limited accuracy, general lack of convergence with a certain convergence rate, and extremely high 
computational cost (very long time to train). We refer the reader to [12] for more detailed discussions of these aspects. 
These drawbacks make such solvers numerically less than attractive and computationally uncompetitive. There is mounting 
evidence that these solvers, in their current state, seem to fall short and cannot compete with traditional numerical methods 
for commonly-encountered computational PDE problems (especially in low dimensions) [12].

The pursuit for higher accuracy and more competitive performance with neural networks for computational PDEs has led 
us in [12,13] to explore randomized neural networks (including ELM) [53,20]. Since optimizing the entire set of weight/bias 
coefficients in the neural network can be extremely hard and costly, perhaps randomly assigning and fixing a subset of the 
network’s weights will make the resultant optimization task of network training simpler, and ideally linear, without severely 
sacrificing the achievable approximation capacity. This is the basic strategy in randomizing the neural networks. In ELM one 
assigns random values to and fixes the hidden-layer coefficients, and only allows the output-layer (assumed to be linear) 
coefficients to be trainable. For linear problems, the resultant system becomes linear with respect to the output-layer coeffi-
cients, which can then be determined by a linear least squares method [29,48,16,12,13,4]. Random-weight neural networks 
similarly possess a universal approximation property. This property has been investigated in e.g. [31,41,30]. We refer the 
reader to [31] (Theorem 1, on page 1323) and [30] (Theorem II.1, on page 882) for the universal approximation theorem 
for random-weight neural networks with a single hidden layer (hidden-layer coefficients randomly assigned, output-layer 
coefficients trained). For example, it has been shown in [30] that a single hidden-layer feed-forward neural network having 
random but fixed (not trained) hidden nodes can approximate any continuous function to any desired degree of accuracy, 
provided that the number of hidden units is sufficiently large. In [31] (Theorem 3, on page 1324) an estimate of the ex-
pected rate of convergence for the approximation of Lipschitz continuous functions with random-weight neural networks is 
provided; see also [49].

In [12] we have developed a local version of the ELM method (termed locELM) for solving linear and nonlinear PDEs, 
which combines the ideas of ELM, domain decomposition, and local neural networks. We use a local feed-forward neural 
network to represent the field solution on each sub-domain, and impose Ck (with an appropriate k) continuity conditions 
on the sub-domain boundaries. The weight/bias coefficients in all the hidden layers of the local neural networks are preset 
to random values generated on [−Rm, Rm] (Rm denoting a user-provided constant) and fixed, and the weights of the linear 
output layers of the local networks are trained by a linear least squares method for linear PDEs or by a nonlinear least 
squares method for nonlinear PDEs. For time-dependent linear/nonlinear PDEs, we have introduced a block time marching 
2

http://www.tensorflow.org


S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
scheme together with locELM for long-time dynamic simulations. Note that locELM reduces to (global) ELM if a single 
subdomain is used in the domain decomposition. Most interesting is that locELM is highly accurate and computationally fast. 
This method exhibits a clear sense of convergence with respect to the degrees of freedom in the neural network. For smooth 
PDE solutions, its numerical errors decrease exponentially or nearly exponentially as the number of training parameters or 
the number of training data points increases, reminiscent of the spectral convergence of traditional high-order methods such 
as the spectral, spectral element or hp-finite element (high-order finite element) type techniques [35,56,69,67,15,10,9,44,65]. 
When the number of degrees of freedom (number of training collocation points, number of training parameters) becomes 
large, the errors of locELM can reach a level close to the machine zero.

More importantly, it is shown in [12] that the computational performance (accuracy, computational cost) of locELM is on 
par with that of the classical FEM (2nd order, linear elements), and locELM outperforms the classical FEM for larger problem 
sizes. Here for locELM the computational cost refers to the time for training the neural network and related computations, 
and for FEM it refers to the FEM computation time (see [12] for details). By “outperform” we mean that one method 
achieves a better accuracy under the same computational budget/cost or incurs a lower computational cost to achieve the 
same accuracy. More specifically, there is a cross-over point in the relative performance between locELM and the FEM 
with respect to the problem size. The classical FEM typically outperforms locELM for smaller problem sizes, and for larger 
problem sizes locELM outperforms the classical FEM [12].

Some comparisons between locELM and the high-order FEM (employing high-order Lagrange elements) for the 2D Pois-
son equation have also been conducted in [12]. It is observed that the locELM method can outperform the Lagrange elements 
of degree 2, but can barely outperform the Lagrange elements of degree 3. The method as implemented in [12] cannot out-
compete high-order FEM with element degrees 4 or larger. Overall the method of [12] seems competitive to some degree 
when compared with the high-order FEM, but it is in general not as efficient as the latter as of the writing of [12]. This 
inefficiency in comparison with high-order FEM is the primary motivator for the current work.

We would like to mention that in [12] a systematic comparison between locELM and two state-of-the-art DNN-based 
PDE solvers, the deep Galerkin method (DGM) [54] and the physics-informed neural network (PINN) method [50], has also 
been performed. It is shown that locELM outperforms PINN and DGM by a considerable degree. The numerical errors and 
the computational cost (network training time) of locELM are considerably smaller, typically by orders of magnitude, than 
those of DGM and PINN.

In the current paper we present improvements to the ELM technique (which also apply to locELM) in two aspects. First, 
we present a method for computing the optimal (or near-optimal) value of the Rm constant in ELM, i.e. the maximum 
magnitude of the random hidden-layer coefficients. Note that in [12] Rm is estimated by using a preliminary simulation 
with manufactured solutions for a given problem. The method presented here is based on the differential evolution algo-
rithm [55], and seeks the optimal Rm by minimizing the residual norm of the linear/nonlinear algebraic system that results 
from the ELM representation of the PDE solution and that corresponds to the ELM least squares solution to the system. This 
method amounts to a pre-processing procedure that determines a near-optimal value for Rm , which can be used in ELM for 
solving linear or nonlinear PDEs.

The procedure for computing the optimal Rm enables us to investigate two types of ELM methods based on how the 
random hidden-layer coefficients are assigned: Single-Rm-ELM and Multi-Rm-ELM. The Single-Rm-ELM configuration corre-
sponds to the conventional ELM method, in which the weight/bias coefficients in all the hidden layers are set to random 
values generated on [−Rm, Rm], with a single Rm for all hidden layers. The Multi-Rm-ELM configuration corresponds to a 
modified ELM method, in which the weight/bias coefficients for any given hidden layer are set to random values gener-
ated on [−Rm, Rm], with a different Rm value for a different hidden layer. Therefore, multiple Rm constants are involved in 
Multi-Rm-ELM for assigning the random coefficients, with each corresponding to a different hidden layer. The characteristics 
of the optimal Rm corresponding to these two types of ELM configurations are studied and illuminated. The Multi-Rm-ELM 
configuration leads to more accurate simulation results than Single-Rm-ELM.

The second aspect of improvement is in the implementation of the ELM method. A major change in the current work 
lies in that here we compute all the differential operators involving the output fields of the last hidden layer of the neural 
network by the forward-mode auto-differentiation, implemented by the “ForwardAccumulator” in the Tensorflow library. In 
contrast, in the ELM implementation of [12] these differential operators are computed by the default reverse-mode auto-
differentiation (“GradientTape”) in Tensorflow. Because in ELM the number of nodes in the last hidden layer is typically 
much larger than that of the input layer, this change reduces the ELM network training time dramatically.

Building upon these improvements, in the current paper we systematically compare the current improved ELM with 
the classical FEM (2nd-order) and the high-order FEM employing Lagrange elements of higher degrees (with both h-type 
and p-type refinements [35,11]) for solving a number of linear and nonlinear PDEs. We show that the improved ELM far 
outperforms the classical FEM. The ELM’s computational performance is comparable to that of the high-order FEM for 
smaller problem sizes, and for larger problem sizes the ELM markedly outperforms the high-order FEM. Overall, the current 
ELM method is computationally far more competitive than the classical FEM, and is more competitive than or as competitive 
as the high-order FEM.

As in [12], the ELM method here is implemented in Python using the Tensorflow and Keras (keras.io) libraries. The 
classical FEM and the high-order FEM are implemented in Python using the FEniCS library, in which the linear and higher-
order Lagrange elements are available.
3



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
The rest of this paper is structured as follows. In Section 2 we present the method for computing the optimal Rm

constant(s) with the Single-Rm-ELM and Multi-Rm-ELM configurations based on the differential evolution algorithm. In Sec-
tion 3 we investigate the characteristics of the optimal Rm and study the effect of the network/simulation parameters on the 
optimal Rm for function approximation and for solving linear/nonlinear PDEs. We compare systematically the computational 
performance of the ELM and the classical/high-order FEMs for solving the differential equations. In Section 4 we summarize 
the common characteristics of the optimal Rm in Single-Rm-ELM and Multi-Rm-ELM and also the performance comparisons 
between ELM and classical/high-order FEM to conclude the presentations. The Appendix provides a study of the effect of 
activation functions on the ELM accuracy with the Poisson equation.

2. Computing the optimal Rm constant(s) in ELM

2.1. The maximum magnitude of random coefficients (Rm)

When the ELM method is used to solve linear/nonlinear PDEs, the hidden-layer coefficients are set to uniform random 
values generated on the interval [−Rm, Rm], where Rm is a user-defined constant (see [12,13]). The Rm constant is a hy-
perparameter of the ELM method. Its value can have a marked influence on the accuracy of the ELM results [12]. The best 
accuracy is typically associated with Rm from a range of moderate values, while very large or very small Rm values can 
result in simulation results with poor or poorer accuracy (see [12] for details). For a given problem, in [12] the Rm (or the 
optimal range of Rm) is estimated by preliminary simulations using some manufactured solution.

One goal of this work is to devise a method to attain the optimal or near-optimal value of the constant Rm for a given 
problem. This method enables us to explore and study the characteristics of and the effects of the simulation/network 
parameters on the optimal Rm . In particular, it enables us to look into a modified ELM method, which employs multiple Rm

constants, each for generating the random coefficients of a different hidden layer, in a deeper neural network. The use of 
multiple Rm constants in ELM leads to more accurate simulation results. It would be extremely difficult, and often practically 
impossible, to determine an optimal vector of Rm values without the automatic procedure.

The method for computing the optimal Rm presented here amounts to a pre-processing procedure. It only needs to be 
performed when a given problem (or some configuration) is considered for the first time. The Rm in ELM can then be fixed 
to the value obtained by the method in subsequent computations. As will become clear in later sections, the optimal Rm

is insensitive to the number of training collocation points and has a quite weak dependence on the number of training 
parameters. In addition, the Rm values in a range around the optimal Rm lead to comparable and essentially the same 
accuracy as the optimal Rm . Therefore, for a given problem one can basically employ a specific set of collocation points and 
a specific number of training parameters to compute the optimal Rm using the method developed here. Then in subsequent 
computations one can fix the Rm in ELM at the returned value for a different set of collocation points or different number 
of training parameters. This is especially useful in long-time dynamic simulations of time-dependent PDEs by the block time 
marching scheme [12]. The pre-processing computation for the optimal Rm only needs to be performed using the spatial-
temporal domain of the first time block. Then the Rm fixed at the returned value can be used for ELM computations on all 
the time blocks.

2.2. ELM configuration with a single Rm constant (Single-Rm-ELM)

We now develop a procedure for computing the optimal Rm constant in ELM for solving partial differential equations. 
Consider a domain � in d (d = 1, 2 or 3) dimensions, and the following generic boundary value problem on �,

L(u) = f(x), (1a)

B(u) = g(x), on ∂�, (1b)

where L and B are differential (or algebraic) operators that may be linear or nonlinear, u(x) is the field function to be 
solved for, f and g are given functions (source terms) in the domain � or on the domain boundary ∂�. We assume that 
this problem is well-posed.

We solve this problem using a feed-forward neural network by the ELM method (see [12]). Let the vector [M0, M1, . . . ,
ML] denote the architecture of the neural network, where (L + 1) is the number of layers in the neural network with 
L � 2, and Mi � 1 denotes the number of nodes in layer i (0 � i � L). The input layer (i.e. layer 0) to the neural network 
represents the coordinate x, with M0 = d. The output layer (i.e. layer L) represents the field solution u(x), with ML being 
the dimension of u. Those layers in between are the hidden layers.

The neural network logically represents a parameterized function constructed through repeated function compositions 
with a nonlinear activation function and repeated affine transforms [22]. More specifically, we choose a set of Q discrete 
points (collocation points) on the domain �, among which Q b (1 � Q b < Q ) points reside on the boundary ∂�, and these 
are the training data points. We use

Z = {xi ∈ �, 1 � i � Q }, and Zb = {xi ∈ Z and xi ∈ ∂�, 1 � i � Q b} (2)
4



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
to denote the set of all collocation points and the set of boundary collocation points, respectively. Let the matrix X of 
dimension Q × M0 denote the coordinates of the collocation points, which are the input data to the network. Let the matrix 
U of dimension Q × ML denote the output data of the neural network, which represent u(x) on the collocation points. Let 
the matrix �l of dimension Q × Ml denote the output data of layer l (0 � l � L), with �0 = X and �L = U. Then the logic 
of the hidden layer l (1 � l � L − 1) is represented by

�l = σ
(
�l−1Wl + bl

)
, 1 � l � L − 1, (3)

where σ(·) is the activation function, Wl is a constant matrix of dimension Ml−1 × Ml representing the weight coefficients 
of layer l, and bl is a row vector of dimension 1 × Ml representing the biases of this layer. Note that we have used the con-
vention (as in the Python language) here that when computing the right hand side of (3) the data in bl will be propagated 
along the first dimension to form a Q × Ml matrix.

With the ELM method, we follow [12] to set the weight/bias coefficients in all the hidden layers, (Wl, bl) for 1 � l � L −1, 
to uniform random values generated on [−Rm, Rm], and fix their values (not trainable) once they are set. The output layer 
is required to be linear, i.e. without the activation function, with zero bias. The logic of the output layer is given by,

U = �L−1WL (4)

where WL is a ML−1 × ML constant matrix denoting the weights of the output layer, which are the trainable parameters of 
the ELM neural network.

On the continuum level, the relation (4) becomes the following in terms of the coordinate x,

ui(x) =
M∑

j=1

V j(x)β ji, 1 � i � ML, (5)

where u = (u1, u2, . . . , uML ), WL = [
βi j

]
ML−1×ML

, and M = ML−1 denotes the number of nodes in the last hidden layer, 
which can be large in the ELM neural network. V j(x) (1 � j � M) are the output fields of the last hidden layer, whose data 
on the collocation points are given by �L−1.

Substituting the expression (5) for u(x) into the system (1), enforcing (1a) on all the collocation points in Z and enforcing 
(1b) on all the boundary collocation points in Zb , we have

L

⎛
⎝ M∑

j=1

V j(xp)β j

⎞
⎠ = f(xp), for all xp ∈ Z , 1 � p � Q , (6a)

B

⎛
⎝ M∑

j=1

V j(xq)β j

⎞
⎠ = g(xq), for all xq ∈ Zb, 1 � q � Q b, (6b)

where β j = (β j1, β j2, . . . , β jML ). This is a system of (Q + Q b) algebraic equations about the training parameters WL =[
βi j

]
ML−1×ML

. This system is linear with respect to βi j if the original system (1) is linear with respect to u, and it is 
nonlinear if the original system (1) is nonlinear. Following [12], we solve this algebraic system (6) for βi j by the linear least 
squares (LLSQ) method if it is linear, and by the nonlinear least squares method with perturbations (NLLSQ-perturb) if it is 
nonlinear; see [12] for details.

What has been discussed so far is the main idea of the ELM method from [12] for solving the system (1). Let us now 
consider how to determine the optimal value for the Rm constant.

We first modify the generation of the random hidden-layer coefficients as follows. Let Nh = ∑L−1
l=1

(
Ml−1 + 1

)
Ml denote 

the total number of hidden-layer coefficients (weights/biases) in the neural network. We first generate a set of Nh uniform 
random values on the interval [−1, 1], which will be denoted by the vector ξ of length Nh . Once ξ is generated, it will be 
fixed throughout the computation. Given a constant Rm , the vector Rmξ contains a set of Nh random values on [−Rm, Rm], 
and we will set the random hidden-layer coefficients, (Wl, bl) for 1 � l � L − 1, by the random vector Rmξ . With this 
modification the Rm constant becomes a scaling coefficient, and it is not confined to positive values. In the following 
discussions Rm can in principle assume positive, zero, or negative values.

Let β L S
i j (1 � i � ML−1, 1 � j � ML ) denote the least squares solution to the system (6) obtained by the linear or non-

linear least squares method. Define the residual vector r, with length (Q + Q b), of the system (6) at the least squares 
solution,
5



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Algorithm 1: Computing the cost function K(Rm) in Single-Rm-ELM.
input : Rm; input data X to neural network; fixed random vector ξ , of length Nh containing uniform random values on [−1, 1].
output : K(Rm).

1 update the hidden-layer coefficients, (Wl, bl) for 1 � l � L − 1, by Rmξ

2 compute �L−1 by evaluating the neural network (first (L − 1) layers) on the input data X
3 solve system (6) for β L S

i j by the linear or nonlinear least squares method from [12]

4 update the output-layer coefficients WL by β L S
i j (1 � i � ML−1, 1 � j � ML )

5 compute uL S , L(uL S ) and B(uL S ) by evaluating the neural network on X and by auto-differentiation
6 compute the residual vector r(Rm) by equation (7)
7 compute K(Rm) by equation (8)

r(Rm) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

L
(∑M

j=1 V j
(
xp, Rm

)
β L S

j

)
− f(xp)

...

...

B
(∑M

j=1 V j
(
xq, Rm

)
β L S

j

)
− g(xq)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

L
(
uL S(xp, Rm)

) − f(xp)
...

...

B
(
uL S(xq, Rm)

) − g(xq)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where β L S
j =

(
β L S

j1 , β L S
j2 , . . . , β L S

jML

)
, uL S = ∑M

j=1 V jβ
L S
j is the least squares solution, xp ∈ Z and xq ∈ Zb . Note that here 

the dependence of the residual r(Rm), the output fields of the last hidden layer V j(x, Rm), and the least squares solution 
uL S (x, Rm) on the scaling coefficient Rm has been made explicit. Let

K(Rm) = ‖r(Rm)‖ (8)

denote the Euclidean norm of the residual vector r(Rm).
We seek the optimal value Rm0 for Rm such that the norm K(Rm) is minimized, i.e.

Rm0 = arg min
Rm

K(Rm). (9)

This is an optimization problem of a scalar function with a single variable. Note that the derivative K ′(Rm) may be approx-
imated by finite difference. But in general K ′(Rm) cannot be computed directly based on the system (6), if this system is 
nonlinear. This is because of the nonlinear least squares solution β L S

i j involved therein. If this system is linear K ′(Rm) can 
be computed from (6) in principle.

A number of methods can be used for solving the problem (9). In the current work we adopt the differential evolu-
tion (DE) algorithm [55] for computing Rm0. Differential evolution is a population-based evolutionary (genetic) algorithm 
for continuous functions. The implementation of differential evolution is available in several scientific libraries, e.g. the 
Tensorflow-Probability library (www.tensorflow.org /probability) and the scipy library. In the current paper we employ the 
scipy implementation for the differential evolution algorithm. This algorithm requires, as an input argument, a routine for 
evaluating the cost function K(Rm) for any given Rm . The procedure for computing K(Rm) is summarized in Algorithm 1.

Remark 2.1. If the system (6) is linear, then in line 2 of the Algorithm 1 one also needs to the compute the derivatives of 
�L−1 involved in the L(u) and B(u) operators. This can be done by auto-differentiation. In this case, in line 5 of Algorithm 1, 
one can compute uL S by equation (4), and compute L(uL S ) and B(uL S ) by multiplying WL to the appropriate derivatives 
already computed in line 2.

When solving a linear system (6), it is important to avoid implementations of linear least squares solvers employing nor-
mal equations (e.g. the Tensorflow’s “lstsq” routine with the default “fast” option), which can lead to severe ill-conditioning 
and significantly lower accuracy, even if the original system is only moderately ill-conditioned [21]. In the current paper 
(and in [12]), we employ the linear least squares routine from the LAPACK, available through the wrapper function in the 
scipy package (“scipy.linalg.lstsq”).

Remark 2.2. The computation for Rm0 amounts to a pre-processing procedure, which can be performed when a given 
problem setting or neural network setup is considered for the first time. In subsequent computations the Rm in ELM can 
be fixed to the attained Rm0 (or a value nearby). Numerical experiments indicate that the optimal Rm in Single-Rm-ELM is 
not sensitive to the number of collocation points and only weakly depends on the number of training parameters, and that 
the Rm values in a range around the optimum Rm0 lead to essentially the same accuracy as Rm0. Therefore, in general one 
can use a specific set of degrees of freedom (number of collocation points and training parameters) in the pre-processing 
6

http://www.tensorflow.org/probability


S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
run to compute the optimal Rm . Then the Rm fixed at the obtained value can be used in subsequent computations with 
other sets degrees of freedom or simulation parameters. Oftentimes one would like to perform a series of simulations with 
a simulation parameter varied in a range of values, e.g. varying the number of training parameters between 10 and 500. 
In this case, one can compute the Rm0 in the pre-processing run with a representative value for this parameter. One can 
typically use a larger value (e.g. the largest or close to the largest value) for this simulation parameter. The resultant Rm0
can be used for Rm to perform the planed series of simulations.

When computing the Rm0 during pre-processing we require that the number of collocation points be sufficiently large 
such that in the system (6) the number of equations is larger than the number of unknowns. This is to try to avoid the 
regime where, if the system is linear, its coefficient matrix may become rank deficient.

Remark 2.3. The methods for computing the optimal Rm and for solving PDEs using ELM all involve random number gen-
erators. Given a specific problem to be solved, in the current work we require that the seed for the random number 
generator be fixed when computing the Rm0 during pre-processing and when using the ELM with a fixed Rm to solve the 
PDE subsequently. In other words, the random number generator should be initialized by the same fixed seed in all these 
computations. The specific seed value is unimportant, as long as the random numbers are all generated by that seed. This 
is to ensure that the random coefficients of the neural network in the pre-processing run for computing the Rm0, and in 
the subsequent ELM runs using the attained Rm0 value, are generated by the same seed. A fixed and known seed value 
also makes all the ELM simulation results (their numerical values) deterministic and exactly reproducible. We follow this 
convention in all the numerical experiments reported in Section 3.

Remark 2.4. In addition to differential evolution, we have also considered the simplicial homology global optimization 
(SHGO) algorithm [18] (implementation also available from scipy) for computing the Rm0. The results from SHGO and from 
differential evolution are comparable. We only consider the results from the differential evolution algorithm in Section 3. 
When one uses the differential evolution implementation from scipy a pair of values, (Rmin, Rmax), needs to be provided to 
serve as the lower/upper bounds for the range of Rm values.

Remark 2.5. One should note that the computed Rm0 is but a reference value in practice. The Rm values in a neighborhood 
of Rm0 typically lead to simulation results with comparable or essentially the same accuracy. Therefore, in ELM simulations 
one can usually employ a “nicer” Rm value that is close to Rm0, instead of Rm0 itself. For example, with an Rm0 = 1.24931
obtained from the method, one can typically employ Rm = 1.25 in subsequent ELM computations to attain results with the 
same or similar accuracy.

Remark 2.6. For a nonlinear system (6), when computing Rm0 one can turn off the initial-guess perturbations and the 
associated sub-iterations in the NLLSQ-perturb method (see [12] for details). In other words, in the Rm0 computation we 
can solve the nonlinear algebraic system (6) for βi j using the nonlinear least squares method without perturbations. This 
is because only the relative merits of different Rm values are important when computing the optimal Rm . Once the Rm0 is 
obtained, one can turn on the perturbations in the subsequent ELM computations with the NLLSQ-perturb method.

Remark 2.7. If the PDE is time-dependent and the temporal domain [0, T ] is small, we can treat the time variable t in the 
same way as the spatial coordinate x, e.g. by treating t as the (d + 1)-th independent variable, and generate collocation 
points in the spatial-temporal domain � × [0, T ]. Therefore, the foregoing discussions equally apply to solving the initial-
boundary value problems and for computing the optimal Rm with time-dependent PDEs. If the temporal domain is large 
(large T ), we employ the block time marching (BTM) scheme (see [12] for details) together with the ELM method for solving 
the problem. The temporal domain is divided into a number of windows (time blocks) and the problem is computed block 
by block [12].

When using ELM together with block time marching for time-dependent PDEs, in the pre-processing run for computing 
the optimal Rm one only needs to use the first time block. In other words, when computing Rm0 we can use a smaller 
spatial-temporal domain in the computation, which consists of only the first time block (not the entire temporal domain). 
The resultant Rm0 can then be used subsequently in the ELM/BTM simulations for all the time blocks in the entire spatial-
temporal domain.

Remark 2.8. When the domain � is partitioned into multiple sub-domains and the system (1) is solved by the locELM 
method (see [12] for details), the procedure for computing the optimal Rm remains essentially the same. The modification 
lies in that in the system (6) one needs to additionally include the Ck continuity conditions (see [12]) on the collocation 
points of the sub-domain boundaries. The residual vector in (7) needs to be modified accordingly to include these additional 
equations.

2.3. ELM configuration with multiple Rm constants (Multi-Rm-ELM)

We next consider a modified ELM method that involves multiple Rm constants for setting the random hidden-layer 
coefficients, and present a procedure for computing the optimal values of these constants. This modified ELM has the 
7



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Algorithm 2: Computing the cost function K(Rm) in Multi-Rm-ELM.

input : Rm = (R(1)
m , . . . , R(L−1)

m ); input data X; fixed random vectors ξ l , of length (Ml−1 + 1)Ml and containing uniform random values on [−1, 1], 
for 1 � l � N − 1.

output : K(Rm).

1 update the hidden-layer coefficients (Wl, bl) by R(l)
m ξ l , for 1 � l � L − 1

2 compute �L−1 by evaluating the neural network (first (L − 1) layers) on the input data X
3 solve system (6) for β L S

i j by the linear or nonlinear least squares method from [12]

4 update the output-layer coefficients WL by β L S
i j (1 � i � ML−1, 1 � j � ML )

5 compute uL S , L(uL S ) and B(uL S ) by evaluating the neural network on X and by auto-differentiation
6 compute the residual vector r(Rm) by equation (10)
7 compute K(Rm) by equation (11)

advantage over the conventional ELM from Section 2.2 that it leads to generally more accurate simulation results. The 
notation below follows that of Section 2.2.

We modify the ELM configuration for solving the system (1) as follows. Instead of setting the coefficients for all the 
hidden layers to random values from [−Rm, Rm] with a single Rm , we set the weight/bias coefficients for each different 
hidden layer to random values generated on an interval with a different Rm . Specifically, we set the weight/bias coefficients 
in hidden layer l, (Wl, bl) for 1 � l � L −1, to uniform random values generated on [−R(l)

m , R(l)
m ], where R(l)

m (1 � l � L −1) are 
user-prescribed constants (hyperparameters). The random hidden-layer coefficients are again fixed once they are assigned. 
This modified ELM provides increased freedom for generating the random hidden-layer coefficients.

Let us consider how to determine the optimal or near-optimal values for these R(l)
m constants. We first generate, for each 

hidden layer l (1 � l � L −1), a set of (Ml−1 +1)Ml uniform random values on the interval [−1, 1], which will be denoted by 
the vector ξ l of length (Ml−1 +1)Ml . Once the random vectors ξ l (1 � l � L −1) are generated, they will be fixed throughout 
the computation. Given the constants R(l)

m (1 � l � L − 1), the random hidden-layer coefficients (Wl, bl) will be set by the 
random vector R(l)

m ξ l for 1 � l � L − 1. Let Rm = (R(1)
m , R(2)

m , . . . , R(L−1)
m ). Then Rm represents the set of scaling parameters for 

the random hidden-layer coefficients.
We use a procedure analogous to that of Section 2.2 for computing the optimal Rm . We solve system (6) by the linear 

or nonlinear least squares method, and let β L S
i j (1 � i � ML−1, 1 � j � ML ) denote its least squares solution. Let uL S (x) =∑M

j=1 V j(x)β L S
j denote the least squares solution to the system (1). The residual vector of the system at the least squares 

solution is given by

r(Rm) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

L
(∑M

j=1 V j
(
xp,Rm

)
β L S

j

)
− f(xp)

...

...

B
(∑M

j=1 V j
(
xq,Rm

)
β L S

j

)
− g(xq)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

L
(
uL S(xp,Rm)

) − f(xp)
...

...

B
(
uL S(xq,Rm)

) − g(xq)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where the dependence on Rm has been explicitly specified. Note that now r depends on the multitude of R(l)
m (1 � l � L − 1) 

constants. Consider the Euclidean norm of the residual vector

K(Rm) = ‖r(Rm)‖ . (11)

We seek the optimal value Rm0 for Rm such that K(Rm) is minimized, namely,

Rm0 = arg min
Rm

K(Rm). (12)

We solve the optimization problem (12) again by the differential evolution algorithm [55] and employ its scipy implemen-
tation. This algorithm requires the valuation routine for the cost function K(Rm) for any given Rm . K(Rm) can be evaluated 
by a modification of the Algorithm 1, and the modified version is summarized in Algorithm 2.

The modified ELM method involves the multiple components of Rm . An automatic procedure is essential for computing 
the optimal or near-optimal Rm in this case. It would be extremely difficult, and practically impossible if the neural network 
becomes deeper, to determine a near-optimal Rm manually such as in [12].

Remark 2.9. For neural networks with a single hidden layer, the modified ELM method would contain a single Rm and is 
therefore identical to the conventional ELM for this case. If the neural network consists of two or more hidden layers, the 
8



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
modified ELM and the conventional ELM will generally be different. It is observed that the modified ELM with multiple 
Rm constants generally leads to a better accuracy than the conventional ELM, under the same network architecture and the 
same number of collocation points. The cost for computing the optimal Rm in the modified ELM is generally larger than that 
for computing the optimal Rm in the conventional ELM. Note that a list of lower-/upper-bound pairs, each for a component 
of Rm , needs to be provided when using the scipy routine of the differential evolution algorithm.

Remark 2.10. Several parameters are important and can influence the accuracy when the differential evolution routine in 
scipy (scipy.optimize.differential_evolution) is invoked. These include the population size, the bounds for Rm (or Rm), and 
the relative tolerance for convergence. The size of the population must be at least 4, as required by the differential evolution 
algorithm [55]. We observe that a population size in the range of 6 to 10 will typically suffice. While a large population 
size can in principle produce more accurate results, in reality this can make the algorithm harder to converge and take 
significantly more iterations, with little improvement in the obtained result. As mentioned previously, a pair of bounds 
[Rmin, Rmax] for Rm in Single-Rm-ELM (or pairs of bounds for Rm in Multi-Rm-ELM, each for a component of Rm) needs to 
be provided to the routine. Since Rm is in a range of moderate values, we typically employ a range [0.01, 5] (or [0.01, 3]) 
for Rm and also for the Rm components in the numerical tests. A larger range can ensure that the true optimum Rm0 will 
not be missed, but on the other hand may not produce a very accurate Rm0 under a given maximum number of iterations. 
An appropriate narrower range is conducive to attaining a more accurate Rm0. One can therefore also start out with a 
larger range to get a rough estimate for Rm0, and then narrow down the range based on the rough estimate to obtain 
a more accurate Rm0. The relative tolerance refers to the tolerance on the ratio between the standard deviation and the 
mean of the objective function values within the population. A small enough tolerance ensures that all members of the 
population will reach the minimum upon convergence. We observe that a relative tolerance around 0.1 would typically lead 
to very good simulation results. Even smaller tolerance values can substantially increase the number of iterations, with little 
improvement in the obtained results. In the current paper we employ a relative tolerance 0.1 for all the numerical tests 
in Section 3. In addition to the above parameters, the scipy routine can also optionally polish the obtained result in the 
end using a local minimizer. We observe that the local polishing typically has little or no improvement on the result. In 
the current paper no polishing is performed on the result from the differential evolution algorithm. We typically employ a 
maximum of 50 generations in the differential evolution algorithm for the numerical tests.

Remark 2.11. We would like to emphasize that there is one major difference between the current paper and our previ-
ous work [12] in terms of the ELM implementation, for computing the V j(x) (last hidden-layer output fields) and the 
differential operators involving V j (see equation (6)). In [12] these differential operators are computed by the default 
reverse-mode auto-differentiation (“GradientTape”) in Tensorflow. In the current work we have employed the forward-mode 
auto-differentiation (implemented by the “ForwardAccumulator” in Tensorflow) for computing the differential operators in-
volving V j(x). This modification has sped up the computations and significantly reduced the ELM network training time in 
the current paper, when compared with that of [12]. This is because in ELM the number of nodes in the last hidden layer 
is typically much larger than that of the input layer, which is particularly suitable for forward-mode auto-differentiations.

In the current paper we have compared extensively the current implementation of the ELM method with the finite 
element method (FEM), including both the classical second-order FEM and the high-order FEM with Lagrange elements [6], 
in terms of their accuracy and computational cost (FEM computation time, ELM network training time). We observe that, 
for time-dependent PDEs, the ELM method combined with block time marching consistently and far outperforms the FEM 
(both 2nd-order and high-order FEM). For stationary PDEs, ELM outperforms FEM (both 2nd-order and high-order FEM) for 
essentially all problem sizes, except for a range of very small problem sizes. By “outperform” we mean that one method 
achieves a better accuracy under the same computational budget/cost or incurs a lower computational cost to achieve the 
same accuracy. These observations can be contrasted with those of [12], where the comparisons between ELM (locELM) and 
FEM are also performed. In [12] it is observed that: (i) ELM (with the implementation therein) outperforms the classical 
2nd-order FEM for larger problem sizes; (ii) ELM is competitive to some degree compared with the high-order FEM, but is 
not as efficient as the latter. With the improvements in the algorithm and implementation in the current work, the ELM 
method far outperforms the classical second-order FEM. Furthermore, ELM can markedly outperform the high-order FEM. It 
is more efficient than or as efficient as the high-order FEM. The comparisons between ELM and the classical and high-order 
FEMs will be detailed in Section 3.

3. Numerical examples

In this section we use several numerical examples, with linear/nonlinear and stationary/dynamic PDEs in two dimensions 
(2D), or in one spatial dimension (1D) plus time for dynamic problems, to demonstrate the effectiveness of the presented 
method for computing the optimal Rm . We also compare the current improved ELM method with the classical second-order 
and high-order finite element methods (FEM) with regard to their accuracy and computational cost.
9



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
3.1. General notes on the implementations

We first provide some implementation notes on the ELM and FEM. They apply to all the numerical tests in the following 
subsections.

The ELM method is implemented in Python, employing the Tensorflow (www.tensorflow.org) and the Keras (keras.io) 
libraries. In particular, the differential operators involving the output fields of the last hidden layer are computed using 
the forward-mode auto-differentiation employing the “ForwardAccumulator” in Tensorflow, as stated before. We use the 
Gaussian activation function, σ(x) = e−x2

, in all the hidden nodes for all the test problems in Section 3.
In the pre-processing run for computing the optimum Rm0 (or Rm0), we have monitored and recorded the wall time for 

Rm0 (or Rm0) computation using the “timeit” module in Python. The Rm0/Rm0 computation time includes all the time spent 
in the iterations with the differential evolution algorithm and the update of the random hidden-layer coefficients with the 
final Rm0 (or Rm0) value upon convergence. Within every differential evolution iteration, the primary computations involve 
the evaluation of K(Rm) or K(Rm) using the Algorithm 1 or Algorithm 2 for a given Rm or Rm .

When ELM is used to solve a PDE with a given Rm (or Rm), the computational cost refers to the training time of the ELM 
neural network. The ELM network training time includes the computation time for the output fields of the last hidden layer 
(V j(x)) and the associated differential operators involving these field functions, the computation time for the coefficient 
matrix and the right hand side for the linear least squares problem, the computation time for the residual of the nonlinear 
algebraic system and the associated Jacobian matrix for the nonlinear least squares problem, the solution time for the 
linear/nonlinear least squares problem, and the update time of the output-layer coefficients by the linear/nonlinear least 
squares solution. Note that, following the protocol in [12], this time does not include, after the network is trained, the 
evaluation time of the neural network on a set of given data points for the output of the solution data.

In the current paper, the computations for V j(x) (output fields of the last hidden layer) and the associated differen-
tial operators are implemented as “Tensorflow Functions” (tf.function) executed as a computational graph [22]. When these 
functions are invoked for the first time, the Tensorflow library builds the computational graph by “autograph and tracing” 
the operations contained in these functions, and performs graph optimizations. When they are invoked subsequently, the 
computations are performed directly in the graph mode, which generally speeds up the computations significantly. The au-
tograph/tracing operations during the first invocation of the Tensorflow Functions can slow down the computations notably. 
This means that the network training time when the ELM training routine is invoked for the first time can be markedly 
larger than that when the training routine is invoked subsequently. We will illustrate this difference with some specific test 
problems in the following subsections. In the comparisons between ELM and FEM, the ELM network training time refers to 
the time obtained with the computations in the graph mode (no autograph/tracing).

The finite element method is implemented also in Python, by using the FEniCS library (fenicsproject.org). The FEM 
implementations for different problems follow those in [12], which we refer the reader to for more detailed discussions.

When FEM is used to solve a given PDE, the computational cost refers to the FEM computation time. The computation 
time includes the symbolic specifications of the mesh, the finite element space, the trial/test function spaces, the variational 
problem, the forming and solution of the linear system [12]. All these operations are handled by FEniCS, and are opaque to 
the user. Note that the FEM computation time does not include the output of the solution data after the problem is solved.

As pointed out in [12], when the FEM code is run for the first time, the FEniCS library compiles the key operations in 
the Python code into a C++ code using Just-in-Time (JIT) compilers, which is in turn compiled by the C++ compiler and 
then cached. In subsequent runs of the FEM code, the cached operations are used directly in the FEM computation, making 
it significantly faster. Therefore, the FEM computation time when the code is run for the first time (with JIT compilation) 
is considerably larger than that when the code is run subsequently (no JIT compilation). In the comparisons between ELM 
and FEM for different test problems in the following subsections, the FEM computation time refers to the time collected by 
“timeit” in subsequent runs of the FEM code (other than the first run, no JIT compilation). All the timing data in this paper 
are collected on a MAC computer (Intel Core i5 CPU 3.2 GHz, 24 GB memory) in the authors’ institution.

Here are some further comments on the random number generators. In the current ELM implementation, the random 
vector ξ in Algorithm 1, the random vectors ξ l (1 � l � L − 1) in Algorithm 2, and the random perturbations in the NLLSQ-
perturb method [12] for solving nonlinear PDEs, are all generated by the random number generator from the Tensorflow 
library. The random numbers involved in the differential evolution routine of the scipy library are generated by the ran-
dom number generator from the numpy package in Python. In order to make the simulation results reported here exactly 
reproducible, we employ the same seed value for the random number generators in both Tensorflow and numpy for all 
the numerical tests in Section 3. In addition, the seed value is fixed for all the numerical experiments within a subsection 
(see also Remark 2.3). Specifically, the seed value is 1 for the numerical tests in Section 3.2, 10 for those in Section 3.3, 25
for those in Section 3.4, and 100 for those in Section 3.5, respectively. This seed value is passed to the scipy differential 
evolution routine when invoking that algorithm.

We would like to mention another implementation detail in ELM for all the numerical tests in the following subsections. 
When implementing the neural network model in Keras, between the input layer (representing (x, y) in 2D or (x, t) in 
1D plus time) and the first hidden layer, we have added an affine mapping to normalize the (x, y) or (x, t) data. Suppose 
(x, y/t) ∈ [a1, b1] ×[a2, b2], then this affine mapping normalizes the (x, y) or (x, t) data from [a1, b1] ×[a2, b2] to the domain 
[−1, 1] × [−1, 1]. This mapping is implemented as a “lambda” layer in Keras. Because of this affine mapping, all the data 
10

http://www.tensorflow.org


S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
into the first hidden layer are normalized. Note that this lambda layer is not counted toward the number of hidden layers 
in the neural network.

Finally, we would like to comment on the evaluation of the neural network and the computation of the maximum and 
rms ELM errors after the neural network has been trained. In the current paper we mostly consider regular rectangular 
domains for 2D (or 1D plus time) problems, although the ELM simulation of the Poisson equation on an irregular domain 
has also been performed (see Fig. 17). For regular domains, we adopt the following protocol for training the neural network, 
and for evaluating the neural network to compute the ELM errors after the network is trained:

• For a given neural-network architecture, we train the network on a uniform set of Q = Q 1 × Q 1 collocation points 
(uniform regular grid points) on the domain with the linear or nonlinear least squares method. In other words, the 
coordinate data of these Q collocation points are the input data to the neural network.

• After the neural network is trained, we evaluate the neural network on another finer set of Q eval = Q 2 × Q 2 uniform 
regular grid points on the domain to attain the ELM solution data, where Q 2 is chosen to be much larger than Q 1. We 
evaluate the exact solution for the problem (if available) on the same set of Q 2 × Q 2 grid points. Then we compare the 
ELM solution data and the exact solution data on the Q 2 × Q 2 grid points to compute the maximum/rms errors on the 
domain.

• We refer to the maximum/rms errors as computed above as the ELM errors associated with the given neural network 
architecture and the Q = Q 1 × Q 1 training collocation points. The ELM errors presented in all the subsequent subsec-
tions are computed in this way.

• In the convergence tests with respect to the number of collocation points Q , as Q 1 is varied in a prescribed range for 
the training, we employ a fixed set of Q eval = Q 2 × Q 2 grid points for the network evaluation and error computation, 
with Q 2 much larger than the largest Q 1 in the prescribed range.

• If the block time marching scheme (see Remark 2.7) is used together with the ELM method for solving time-dependent 
problems, the collocation points Q = Q 1 × Q 1 and the valuation points Q eval = Q 2 × Q 2 as discussed above refer to 
the points within each time block.

• If the locELM method [12] together with domain decomposition is used for solving a problem (see Remark 2.8), the 
collocation points Q = Q 1 × Q 1 and the valuation points Q eval = Q 2 × Q 2 as discussed above refer to the points within 
each sub-domain.

In the current paper, we employ Q eval = 101 × 101 (i.e. Q 2 = 101) for evaluating the neural network and compute the ELM 
errors for all the test problems on regular domains in Sections 3.2 to 3.5.

For irregular domains, we employ a total of Q collocation points (equally-spaced points on the domain boundaries, and 
random points inside the domain) for the network training. For evaluating the neural network and computing the ELM 
errors, we partition the irregular domain into several sub-regions and generate a fine set of structured mesh points within 
each sub-region in an ad hoc fashion. The ELM maximum/rms errors on the irregular domain are then computed based on 
the ELM solution data and the exact solution data on the collection of structured mesh points. Please refer to Section 3.3
(the discussions of Fig. 17) for the details in this regard.

3.2. Function approximation

In the first example we consider the approximation of a 2D function using ELM and illustrate the effects of the net-
work/simulation parameters on the optimal Rm . The numerical results in this subsection are obtained using a seed value 1
in the random number generators in both Tensorflow and Numpy.

We consider the unit square domain � = {(x, y) | 0 � x, y � 1}, and the following function on �,

f (x, y) =
[

3

2
cos

(
3

2
πx + 9π

20

)
+ 2 cos

(
3πx − π

5

)][
3

2
cos

(
3

2
π y + 9π

20

)
+ 2 cos

(
3π y − π

5

)]
. (13)

Fig. 1(a) illustrates the distribution of this function. Given f (x, y) on a set of data points, we would like to approximate 
f by ELM. The function approximation problem is equivalent to the problem (1), with L(u) = u and without the boundary 
condition (1b). So the PDE is reduced to an algebraic equation,

u = f (x, y), (14)

where u(x, y) is the approximant given in the form of an extreme learning machine.
We use a feedforward neural network to represent u(x, y), with a total of (L +1) layers. The input layer (layer 0) contains 

two nodes, representing (x, y). The output layer (layer L) is linear and contains one node, representing u(x, y). The network 
consists of one or more hidden layers, with the Gaussian activation function for all the hidden nodes. As stated in Section 2, 
the network architecture is characterized by the vector [M0, M1, . . . , ML], where Mi denotes the number of nodes in layer i
(0 � i � L). The specific architecture of the neural networks are given below. We use M = ML−1 to denote the width of the 
last hidden layer (or number of training parameters). M is either fixed or varied systematically below.
11



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 1. Function approximation: (a) Distribution of the function to be approximated. (b) Illustration of the uniform collocation points (with 5 × 5 points 
here) used in the ELM simulation.

Fig. 2. Function approximation (Single-Rm-ELM): The optimum Rm0 versus (a) the number of collocation points per direction and (b) the number of training 
parameters, with neural networks of different depth. (c) Rm0 versus the number of training parameters with neural networks having the same depth but 
different width. Q = 31 × 31 in (b,c), varied in (a). M = 250 in (a), varied in (b,c).

We employ a set of uniform grid points, Q = Q 1 × Q 1, as the collocation points on �, where Q 1 denotes the number 
of uniform collocation points along both x and y directions. Therefore, there are Q 1 uniform collocation points on each 
boundary of �. Fig. 1(b) illustrates this distribution with Q = 5 × 5 collocation points. The input data to the neural network 
consist of the coordinates of all the collocation points. Q 1 is either fixed or varied systematically in the numerical tests. We 
assume that the function values f (x, y) are given on the collocation points.

With the above settings, we employ the Single-Rm-ELM and Multi-Rm-ELM configurations from Section 2 to solve this 
problem. The difference of these two configurations lies in the setting of the random hidden layer coefficients in the neural 
network, as detailed in Section 2. The ELM maximum/rms errors presented below are computed based on the ELM solution 
data and the exact solution data on a uniform set of Q eval = 101 ×101 grid points on the domain, as discussed in Section 3.1.

Let us first look into the Single-Rm-ELM configuration, and we employ the method from Section 2.2 to compute the 
optimal Rm based on the differential evolution algorithm. We have considered several neural network architectures with 
different depths and widths, and Fig. 2 illustrates the characteristics the optimum Rm0 obtained from the method.

Fig. 2(a) depicts the Rm0 as a function of the number of uniform collocation points in each direction (Q 1) for three 
neural networks as specified in the legend with one to three hidden layers. The number of training parameters is fixed at 
M = 250, and the widths of the preceding hidden layers are fixed at 100 in them. In this group of tests, for each neural 
network, we vary the number of collocation points systematically between Q = 20 × 20 and Q = 60 × 60, and for each set 
of collocation points we compute the optimum Rm0. We have employed a population size 6, the bounds [0.01, 3] for Rm , 
and a relative tolerance 0.1 in the scipy differential evolution routine. We can make two observations from Fig. 2(a). First, 
Rm0 is largely insensitive to the number of collocation points with Single-Rm-ELM. In other words, Rm0 remains essentially 
the same as the number of training data points varies. Second, Rm0 tends to decrease with increasing number of layers in 
the neural network. There is a big drop in Rm0 from a single hidden layer to two hidden layers. Beyond two hidden layers, 
as the network depth further increases, the decrease in Rm0 is slight and sometimes almost negligible. These seem to be 
the common characteristics of Rm0 with Single-Rm-ELM, which will appear repeatedly in other test problems.

Fig. 2(b) shows the effect of the number of training parameters (M) on Rm0, with three network architectures as given 
in the legend. In this group of tests, we employ a fixed set of Q = 31 × 31 uniform collocation points, and vary the number 
of training parameters systematically between M = 50 and M = 500. The widths of the preceding hidden layers are fixed at 
100 in the tests. Corresponding to each M , we compute the optimum Rm0 using the differential evolution algorithm. The 
data in Fig. 2(b) correspond to a population size of 8, the Rm bounds [0.01, 3], and a relative tolerance 0.1 in the scipy 
differential evolution routine. We can make the following observations. First, Rm0 decreases with increasing depth in the 
neural network. Rm0 drops markedly from one hidden layer to two hidden layers in the network. For neural networks with 
12



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 3. Function approximation (Single-Rm-ELM): (a) absolute-error distribution. The maximum and root-mean-squares (rms) errors in the domain versus 
(b) the number of collocation points per direction and (c) the number of training parameters (M). (d) The maximum/rms errors and the LLSQ residual 
norm versus Rm in a neighborhood of Rm0. Network architecture: [2, M , 1]. Q = 31 × 31 in (a,c,d), varied in (b). M = 400 in (a,b,d), varied in (c). Rm = 1.8
in (a,b,c), varied in (d). Rm0 = 1.822 in (d).

two or more hidden layers, as the depth further increases, Rm0 decreases only slightly. This observation is consistent with 
that from Fig. 2(a). Second, Rm0 has a dependence on the number of training parameters. For neural networks with a single 
hidden layer, this dependence on M is stronger. Fig. 2(b) indicates that in this case Rm0 generally increases with increasing 
M , except in a range of smaller M values where Rm0 decreases with increasing M . For neural networks with two or more 
hidden layers, the dependence of Rm0 on M is weak. Rm0 appears to increase only slightly as M increases.

Fig. 2(c) illustrates the effect of the widths of the preceding hidden layers on Rm0. It depicts the Rm0 as a function of the 
number of training parameters (M) for two neural networks, which contain three hidden layers but have different widths 
(50 versus 100) in the preceding hidden layers (i.e. other than the last hidden layer). These data are obtained again with a 
population size of 8, the Rm bounds [0.01, 3], and a relative tolerance 0.1 in the differential evolution algorithm. We observe 
that Rm0 generally decreases, albeit slightly, as the width of the preceding hidden layers increases. The characteristics 
observed from Figs. 2(b,c) also seem common to Single-Rm-ELM, and they will appear repeatedly in other test problems.

Fig. 3 illustrates the accuracy of the ELM approximant with Rm near the optimum Rm0 in Single-Rm-ELM. In this group 
of tests, we employ a neural network with an architecture [2, M, 1], where the number of training parameters M is either 
fixed at M = 400 or varied between M = 50 and M = 500. A set of Q = Q 1 × Q 1 uniform collocation points is employed, 
where Q 1 is either fixed at Q 1 = 31 or varied between Q 1 = 5 and Q 1 = 50. Rm is either fixed at Rm = 1.8, or varied in a 
neighborhood of Rm0 = 1.822, which is attained from the differential evolution algorithm with M = 400 and Q = 31 × 31. 
Fig. 3(a) shows the distribution in the x-y plane of the absolute error of the ELM approximant obtained with Q = 31 × 31, 
M = 400 and Rm = 1.8. It indicates that ELM can approximate the function accurately, with the maximum error on the 
order 10−8. Fig. 3(b) shows the maximum and root-mean-squares (rms) errors in the domain of the ELM approximant as a 
function of Q 1, which is varied systematically here. It is observed that the errors decrease exponentially with increasing Q 1
before they saturate gradually beyond about Q 1 ≈ 25. Fig. 3(c) shows the maximum/rms errors of the ELM approximant as 
a function of M , which is varied systematically. We observe an exponential decrease in the errors with increasing M before 
a gradual saturation for M beyond around M ≈ 300. Fig. 3(d) shows the maximum/rms errors of the ELM approximant, 
as well as the residual norm of the linear least squares (LLSQ) problem (i.e. K(Rm) in equation (8)), as a function of 
Rm in a neighborhood of Rm0 = 1.822. The data indicate that the ELM accuracy is generally not sensitive to Rm within 
a neighborhood of Rm0. The ELM errors are largely comparable with the Rm values around Rm0. These results attest to 
the point in Remark 2.5 that one can generally employ an Rm value around Rm0 in the computations without seriously 
sacrificing the accuracy.

Let us next consider the Multi-Rm-ELM configuration for the function approximation problem (14). We employ the 
method from Section 2.3 to compute the optimum Rm0 for neural networks with two or three hidden layers. The results 
are summarized in Fig. 4. In this group of tests, the architecture of the neural networks is characterized by [2, 100, M, 1] or 
13



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 4. Function approximation (Multi-Rm-ELM): The Rm0 components versus the number of collocation points (a,c) and the number of training parameters 
(b,d), with neural networks having two (a,b) or three (c,d) hidden layers. The network architectures are given in the legends. Q = 31 × 31 in (b,d), varied 
in (a,c). M = 300 in (a,c), varied in (b,d).

[2, 100, 100, M, 1], where M is either fixed at M = 300 or varied between M = 50 and M = 500. As stated previously, the 
Gaussian activation function has been employed in all the hidden nodes in this work. We employ a set of Q = Q 1 × Q 1
uniform collocation points in the domain, with Q 1 either fixed at Q 1 = 31 or varied between Q 1 = 20 and Q 1 = 60.

Figs. 4(a,b) illustrate the optimum Rm0 = (R(1)
m0, R

(2)
m0) for the neural networks with two hidden layers, which are obtained 

with a population size of 10, the bounds [0.01, 3] for all components of Rm , and a relative tolerance 0.1 in the differential 
evolution algorithm. Fig. 4(a) depicts the Rm0 components as a function of Q 1, with a fixed M = 300 in the neural network. 
We observe that the values for R(1)

m0 and R(2)
m0 are quite different, indicating that the random coefficients for the first and 

second hidden layers could be generated on two quite different intervals. It is also observed that they are essentially 
independent of the number of collocation points. Fig. 4(b) shows the Rm0 components as a function of the number of 
training parameters (M), with a fixed Q 1 = 31 in these tests. Both components of Rm0 appear to generally increase with 
increasing M , except that R(1)

m0 is observed to decrease for a range of smaller M values.

Figs. 4(c,d) show the corresponding optimum Rm0 = (R(1)
m0, R

(2)
m0, R

(3)
m0) for neural networks containing three hidden layers. 

These are obtained with a population size of 12, the bounds [0.01, 3] for all components of Rm , and a relative tolerance 
0.1 in the differential evolution algorithm. Fig. 4(c) depicts the Rm0 components as a function of Q 1, with a fixed M = 300
in the neural network. Fig. 4(d) depicts the Rm0 components as a function of the number of training parameters M in the 
neural network, with a fixed set of Q = 31 × 31 uniform collocation points. Overall the relations of the Rm0 components 
with respect to the collocation points and the training parameters appear quite irregular. The relation of Rm0 versus the 
number of collocation points seems somewhat less irregular, and some Rm0 components appear to stay close to a constant 
for a range of Q 1 values. This is in stark contrast to those of Figs. 4(a,b) with two hidden layers in the neural network.

Fig. 5 illustrates the accuracy of the ELM approximant obtained with Multi-Rm-ELM using an Rm close to the optimum 
Rm0. In this group of tests, we employ a neural network with two hidden layers, with its architecture given by [2, 100, M, 1], 
where M is either fixed at M = 400 or varied systematically. We employ a set of Q = Q 1 × Q 1 uniform collocation points, 
where Q 1 is either fixed at Q 1 = 31 or varied systematically. We employ a fixed Rm = (0.6, 0.3) in Multi-Rm-ELM, which is 
close to the optimum Rm0 = (0.64, 0.28) obtained from the differential evolution algorithm corresponding to M = 400 and 
Q = 31 × 31. Fig. 5(a) shows the absolute error distribution of the Multi-Rm-ELM approximant obtained with M = 400 and 
Q = 31 × 31. The approximation is observed to be highly accurate, with a maximum error on the order 10−8 in the domain. 
Figs. 5(b) and (c) show the maximum and rms errors of the Multi-Rm-ELM approximants as a function of Q 1 (with a fixed 
M = 400) and as a function of M (with a fixed Q 1 = 31), respectively. The results demonstrate the exponential decrease 
(before saturation) in the errors with respect to the collocation points and the training parameters.

Fig. 6 is a comparison of Single-Rm-ELM and Multi-Rm-ELM, with regard to their accuracy and cost for computing the 
optimal Rm/Rm with the differential evolution algorithm. In this group of tests we employ a set of Q = 31 × 31 uniform 
collocation points, and a neural network with an architecture [2, 100, M, 1], where M is varied between 50 and 500.
14



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 5. Function approximation (Multi-Rm-ELM): (a) absolute-error distribution of the ELM solution. The maximum/rms errors in the domain versus (b) the 
number of collocation points per direction, and (c) the number of training parameters M . Network architecture: [2, 100, M , 1]. Q = 31 × 31 in (a,c), varied 
in (b). M = 400 in (a,b), varied in (c). Rm = (0.6, 0.3) in (a,b,c).

Fig. 6. Function approximation: (a) The maximum/rms errors in the domain obtained with Rm = Rm0 in Single-Rm-ELM and with Rm = Rm0 in Multi-Rm-
ELM, versus the number of training parameters (M) in the neural network. (b) The Rm0 (or Rm0) computation time and the ELM network training time in 
Single-Rm-ELM and in Multi-Rm-ELM, versus the number of training parameters. Network architecture: [2, 100, M , 1]. Q = 31 × 31 in (a,b).

Fig. 6(a) shows the maximum/rms errors of the Single-Rm-ELM (or Multi-Rm-ELM) configuration corresponding to Rm =
Rm0 (resp. Rm = Rm0), as a function of the number of training parameters M in the neural network. The Multi-Rm-ELM 
errors are observed to be consistently lower, sometimes by over an order of magnitude, than the Single-Rm-ELM errors. 
This shows that, by setting the hidden-layer coefficients to random values with different maximum magnitudes for different 
hidden layers, as in the Multi-Rm-ELM configuration, one can achieve a better accuracy with the ELM method.

Fig. 6(b) shows a comparison of the Rm0/Rm0 computation time by the differential evolution algorithm, as well as the 
ELM training time of the neural network, with the Single-Rm-ELM/Multi-Rm-ELM configurations. For both Single-Rm-ELM 
and Multi-Rm-ELM, Rm0 and Rm0 are computed by using a population size of 10, Rm/Rm bounds of [0.01, 3], and a relative 
tolerance 0.1 in the differential evolution algorithm. Note that when computing the Rm0 (or Rm0) the differential evolution 
algorithm would invoke the Algorithms 1 or 2 (the ELM training routine) whenever the residual norm for some Rm (or 
Rm) needs to be evaluated. The ELM training routine would be typically called dozens of times by the differential evolution 
algorithm. As shown by Fig. 6(b), the Rm0 (or Rm0) computation time for this function approximation problem is typically 
on the order of 1 to 10 seconds. In contrast, the ELM network training time for a given Rm is typically on the order of 
0.01 to 0.1 seconds for this function approximation problem. From Fig. 6(b) we can also observe that computing the Rm0 in 
Multi-Rm-ELM is generally more expensive than computing the Rm0 in Single-Rm-ELM. Fig. 6 indicates that there is a trade-
off between the accuracy and the cost for computing the optimal Rm (or Rm). While the Multi-Rm-ELM is more accurate 
than the Single-Rm-ELM, the cost for computing the optimal Rm is also generally larger.

3.3. Poisson equation

In this subsection we use the canonical 2D Poisson equation to test the method for computing the optimal Rm (or Rm) 
and study the effect of the simulation parameters on the optimum Rm0 (or Rm0). We compare the current ELM method 
with the classical and high-order FEMs in terms of their computational performance. A seed value 10 is used in the random 
number generators of Tensorflow and numpy for all the numerical tests in this subsection.

Consider the 2D rectangular domain � = {(x, y) | 0 � x, y � 2} and the following boundary value problem with the 
Poisson equation on � and Dirichlet boundary conditions on ∂�,

∂2u
2

+ ∂2u
2

= f (x, y), (15a)

∂x ∂ y

15



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 7. Poisson equation: Distribution of the exact solution.

Fig. 8. Poisson equation (Single-Rm-ELM): Rm0 versus (a) the number of collocation points per direction and (b) the number of training parameters, with 
neural networks of different depth. (c) Rm0 versus the number of training parameters for neural networks with the same depth but different width. 
Q = 35 × 35 in (b,c), varied in (a). M = 800 in (a), varied in (b,c). Network architectures are listed in the legends.

u(x,0) = g1(x), u(x,2) = g2(x), u(0, y) = h1(y), u(2, y) = h2(y). (15b)

Here u(x, y) is the field to be solved for, f (x, y) is a prescribed source term, and g1, g2, h1 and h2 are the prescribed 
boundary distributions. We choose f (x, y) such that the following field satisfies (15a),

u(x, y) = −
[

2 cos

(
3

2
πx + 2π

5

)
+ 3

2
cos

(
3πx − π

5

)][
2 cos

(
3

2
π y + 2π

5

)
+ 3

2
cos

(
3π y − π

5

)]
. (16)

We set g1, g2, h1 and h2 by evaluating the expression (16) on the corresponding domain boundaries. Under these settings 
the expression (16) solves the boundary value problem (15). Fig. 7 shows the distribution of the analytic solution (16) in 
the x-y plane.

We solve this problem using ELM. The neural network has an input layer of two nodes (representing x and y), a linear 
output layer of one node (representing u), and one or more hidden layers in between with the Gaussian activation function. 
The specific architectures of the neural networks will be provided below, again with M denoting the number of training 
parameters (i.e. the number of nodes of the last hidden layer). We employ a set of Q = Q 1 × Q 1 uniform grid points on 
� as the collocation points, where Q 1 denotes the number of points in both x and y directions. So there are Q 1 uniform 
collocation points on each domain boundary. Q 1 and M are varied systematically in the numerical tests. We employ the 
Single-Rm-ELM and Multi-Rm-ELM configurations from Section 2 for setting the random hidden-layer coefficients based on 
a single Rm or a vector Rm , respectively.

Fig. 8 illustrates the characteristics of the optimum Rm0 obtained with the differential evolution algorithm for the Poisson 
equation with the Single-Rm-ELM configuration. Fig. 8(a) depicts Rm0 as a function of Q 1 for several neural networks with 
different depth. The network architectures are given in the legend, and Q 1 is varied systematically between 30 and 60. 
Fig. 8(b) shows the Rm0 as a function of the number of training parameters M for several neural networks with different 
depth. Fig. 8(c) shows the computed Rm0 as a function of M for several neural networks that contain three hidden layers 
with the same M but different width for the preceding hidden layers. In Figs. 8(b,c) a fixed set of Q = 35 × 35 uniform 
collocation points is employed. In the differential evolution algorithm we have employed a population size of 6, the Rm
bounds [0.1, 5] and a relative tolerance of 0.1 for these numerical tests.

We have the following observations from Fig. 8. First, Rm0 is essentially independent of the number of collocation points 
in the simulation. Second, Rm0 has a stronger dependence on the number of training parameters M for neural networks 
containing a single hidden layer, and its dependence on M is quite weak for neural networks with two or more hidden 
layers. Rm0 generally increases with increasing M , except in a range with smaller M values where Rm0 is observed to 
decrease as M increases. With two or more hidden layers in the neural network, Rm0 can be approximated by essentially 
a constant for a wide range of M values. Third, Rm0 generally decreases with increasing depth of the neural network. It 
16



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Table 1
Poisson equation (Single-Rm-ELM): Effect of the Rm value on the LLSQ residual norm K(Rm) (see equation (8)), the 
maximum error, and the rms error of the Single-Rm-ELM solution. Network architecture: [2, 500, 1]. Q = 35 × 35. 
The optimum Rm0 ≈ 2.23 from the differential evolution algorithm. The Multi-Rm-ELM configuration results in the 
same results as Single-Rm-ELM, because it is equivalent to the latter for a single hidden layer in the neural network.

Rm K(Rm) max error rms error

0.5 2.04E + 3 5.16E + 1 1.37E + 1

1.0 6.83E + 0 4.54E − 1 5.48E − 2

1.5 7.55E − 3 5.49E − 4 7.76E − 5

2.0 4.77E − 4 2.15E − 5 2.82E − 6

2.23 (Rm0) 3.09E − 4 1.67E − 5 1.71E − 6

2.5 4.16E − 4 3.23E − 5 2.66E − 6

3.0 1.91E − 3 1.20E − 4 1.10E − 5

3.5 1.97E − 2 1.97E − 3 1.47E − 4

4.0 7.45E − 2 5.82E − 3 4.24E − 4

5.0 6.66E − 1 5.24E − 2 6.21E − 3

7.0 3.50E + 1 4.13E + 0 3.74E − 1

10.0 6.31E + 2 3.37E + 1 6.76E + 0

20.0 8.30E + 3 5.14E + 1 7.33E + 0

50.0 1.01E + 4 2.66E + 2 5.00E + 0

Fig. 9. Poisson equation (Single-Rm-ELM): (a) Absolute error distribution of the ELM solution. The maximum/rms errors in the domain versus (b) the 
number of collocation points per direction and (c) the number of training parameters M . Network architecture: [2, M, 1]. Q = 35 × 35 in (a,c), varied in 
(b). M = 800 in (a,b), varied in (c). Rm = 3.36 in (a,b,c).

drops significantly from a single hidden layer to two hidden layers, and then decreases only slightly as the depth further 
increases. Fourth, Rm0 has only a weak dependence on the width of the preceding hidden layers (other than the last one), 
and tends to decrease slightly with increasing width of the preceding hidden layers. These observations are consistent with 
those from the function approximation problem in Section 3.2.

Table 1 illustrates that the Rm0 obtained from the differential evolution algorithm indeed corresponds to an optimal (or 
near-optimal) Rm , which leads to more accurate (or the most accurate) ELM results than other values. Here we consider 
a neural network [2, 500, 1] with the Single-Rm-ELM configuration, and a uniform set of Q = 35 × 35 collocation points. 
We vary the Rm systematically (by a step size 0.5) between Rm = 0.5 and Rm = 50 for generating the random hidden-layer 
coefficients. For each Rm value, we solve the problem (15) and compute the residual norm K(Rm) in equation (8), and the 
maximum/rms errors of the Single-Rm-ELM solution in the domain. Table 1 lists these errors and the residual norm K(Rm)

corresponding to a number of Rm values in the test, as well as for the optimum Rm0 ≈ 2.23 from the differential evolution 
algorithm. It is evident that Rm = Rm0 leads to a lower residual norm for the least squares problem and more accurate 
simulation results for the ELM method. Note that the Multi-Rm-ELM configuration would produce the same results as the 
Single-Rm-ELM in this case, because it is equivalent to Single-Rm-ELM for a single hidden layer in the neural network.

Fig. 9 illustrates the solution accuracy obtained with the Single-Rm-ELM configuration. In this group of tests we employ a 
neural network with an architecture [2, M, 1] and the Gaussian activation function, where the number of training parameters 
is either fixed at M = 800 or varied systematically. The set of uniform collocation points is either fixed at Q = 35 × 35 or 
varied between Q = 5 × 5 and Q = 50 × 50. We employ a fixed Rm = 3.36, which is close to the optimum Rm0 from the 
differential evolution algorithm, for generating the random hidden-layer coefficients in Single-Rm-ELM. Fig. 9(a) shows the 
absolute error distribution of the ELM solution in the x-y plane, which corresponds to a fixed M = 800 and Q = 35 × 35. 
It indicates that ELM produces an accurate solution, with the maximum error on the order 10−8. Figs. 9(b) and (c) depict 
the maximum and rms errors in the domain as a function of the number of collocation points and the number of training 
parameters, respectively. One can clearly observe that the errors decrease exponentially (before saturation) with increasing 
number of collocation points and training parameters.
17



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 10. Poisson equation (Multi-Rm-ELM): The optimum Rm0 versus the number of collocation points per direction (a,c) and the number of training 
parameters (b,d), with neural networks having two (a,b) and three (c,d) hidden layers. The network architectures are given in the legends. Q = 35 × 35 in 
(b,d), varied in (a,c). M = 800 in (a,c), varied in (b,d).

Fig. 11. Poisson equation (Multi-Rm-ELM): (a) Absolute error distribution of the Multi-Rm-ELM solution. The maximum/rms errors in the domain versus (b) 
the number of collocation points per direction, and (c) the number of training parameters. Network architecture: [2, 75, M, 1]. Q = 35 × 35 in (a,c), varied 
in (b). M = 800 in (a,b), varied in (c). Rm = (0.8, 0.5) in (a,b,c).

Fig. 10 illustrates the characteristics of the optimum Rm0 for the Multi-Rm-ELM configuration obtained with the dif-
ferential evolution algorithm. Here we have considered two neural networks with two and three hidden layers, whose 
architectures are characterized by [2, 75, M, 1] and [2, 75, 75, M, 1], respectively, where M is either fixed at M = 800 or 
varied systematically. A set of uniform collocation points is employed, either fixed at Q = 35 × 35 or varied systematically 
between Q = 30 × 30 and Q = 60 × 60. Figs. 10(a) and (b) show the components of Rm0 = (R(1)

m0, R
(2)
m0) versus the number of 

collocation points and the number of training parameters for the neural network with two hidden layers, respectively. These 
are obtained with a population size of 8, the bounds [0.01, 3] for all Rm components, and a relative tolerance of 0.1 in the 
differential evolution algorithm. Figs. 10(c) and (d) show the components of Rm0 = (R(1)

m0, R
(2)
m0, R

(3)
m0) versus the number of 

collocation points and the number of training parameters for the neural network with three hidden layers, respectively. They 
are obtained using a population size of 9, the bounds [0.01, 3] for all the Rm components, and a relative tolerance of 0.1
in the differential evolution algorithm. One can see that the Rm0 components exhibit a fairly weak dependence (Fig. 10(c)) 
or essentially no dependence (Fig. 10(a)) on the number of the collocation points in the domain. The relation between Rm0
and the number of training parameters, on the other hand, appears quite irregular. The Rm0 components tend to increase 
as the number of training parameters M increases, except for some component, which appears to decrease in a range of 
smaller M values.
18



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 12. Poisson equation: (a,c) The maximum/rms errors in the domain corresponding to Rm = Rm0 in Single-Rm-ELM and Rm = Rm0 in Multi-Rm-ELM, 
versus the number of the training parameters (M). (b,d) The Rm0 (or Rm0) computation time and the ELM network training time in Single-Rm-ELM and 
Multi-Rm-ELM, versus the number of training parameters (M). Network architecture: [2, 75, M, 1] in (a,b), [2, 75, 75, M, 1] in (c,d). Q = 35 × 35 in (a,b,c,d).

Fig. 11 illustrates the solution accuracy obtained with the Multi-Rm-ELM configuration. In this group of tests we employ 
a neural network with two hidden layers, with an architecture [2, 75, M, 1], where M is either fixed at M = 800 or varied 
systematically. The set of uniform collocation points is either fixed at Q = 35 × 35 or varied between Q = 5 × 5 and 
Q = 50 × 50. We employ a fixed Rm = (0.8, 0.5) here, close to the Rm0 obtained corresponding to M = 800 and Q =
35 × 35. Fig. 11(a) shows the distribution of the absolute error of the Multi-Rm-ELM solution corresponding to M = 800
and Q = 35 × 35, suggesting a quite high accuracy, with the maximum error on the order 10−7. Figs. 11(b) and (c) depict 
the maximum/rms errors in the domain as a function of the number of collocation points and the training parameters, 
respectively. The exponential convergence of the errors (before saturation) with respect to the collocation points and the 
training parameters is evident.

Fig. 12 is a comparison between the Single-Rm-ELM and the Multi-Rm-ELM methods in terms of their accuracy and 
Rm0/Rm0 computation cost. Here we consider two neural networks with architectures [2, 75, M, 1] and [2, 75, 75, M, 1], 
respectively, where M is varied systematically. We employ a set of Q = 35 × 35 uniform collocation points in the domain. 
We look into the numerical errors corresponding to Rm = Rm0 in Single-Rm-ELM and Rm = Rm0 in Multi-Rm-ELM, and 
the time spent on computing Rm0 and Rm0 with the differential evolution algorithm, as well as the network training time 
with ELM for solving the Poisson equation with the obtained Rm0 or Rm0. Figs. 12(a) and (c) depict the maximum/rms 
errors in the domain as a function of the number of training parameters M for these two neural networks, respectively, 
obtained with Rm = Rm0 in Single-Rm-ELM and Rm = Rm0 in Multi-Rm-ELM. Figs. 12(b) and (d) depict the corresponding 
Rm0 and Rm0 computation time with the differential evolution algorithm, as well as the ELM network training time, versus 
M . The Rm0 and Rm0 computations in Figs. 12(a) and (b), for the neural network with two hidden layers, correspond to a 
population size of 10, the Rm and Rm bounds [0.01, 3], and a relative tolerance 0.1 in the differential evolution algorithm 
with both Single-Rm-ELM and Multi-Rm-ELM. The Rm0 and Rm0 computations in Figs. 12(c) and (d), for three hidden layers 
in the neural network, correspond to a population size of 9 and the same bounds and relative tolerance as in (a,b) for both 
Single-Rm-ELM and Multi-Rm-ELM.

We can make the following observations from Fig. 12. First, the Multi-Rm-ELM method consistently leads to smaller 
numerical errors than Single-Rm-ELM. By setting the weight/bias coefficients in different hidden layers to random values 
with different maximum magnitudes as given by Rm , Multi-Rm-ELM can produce more accurate results than Single-Rm-
ELM, which sets the weight/bias coefficients in all hidden layers to random values with the same maximum magnitude 
Rm . Second, the cost for computing Rm0 in Multi-Rm-ELM is generally higher than that for computing Rm0 in Single-Rm-
ELM. Third, for a given Rm in Single-Rm-ELM and given Rm in Multi-Rm-ELM, the ELM network training time for solving 
the Poisson equation is essentially the same. Fourth, the Rm0/Rm0 computation cost with differential evolution is markedly 
higher than the ELM network training cost for solving the PDE with a given Rm or Rm .
19



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Table 2
Poisson equation: Comparison of the maximum/rms errors of Single-Rm-ELM and Multi-Rm-ELM obtained with the optimum Rm0/Rm0 and with a set of 
random Rm/Rm values (generated on [0, 5]), for a neural network architecture [2, 75, 500, 1]. Q = 35 × 35 in all simulations. The data for the cases with 
the optimum Rm0 and Rm0 here correspond to those in Fig. 12(a) for M = 500.

Single-Rm-ELM Multi-Rm-ELM

Rm (random) max error rms error Rm (random) max error rms error

2.56 1.63E + 1 2.79E + 0 (1.31,1.49) 1.33E + 1 1.91E + 0

4.75 1.21E + 1 3.55E + 0 (4.07,0.46) 1.87E + 1 4.75E + 0

0.72 2.80E − 3 1.75E − 4 (3.00,3.64) 1.14E + 1 3.33E + 0

4.74 1.21E + 1 3.55E + 0 (0.94,0.28) 7.38E − 4 5.78E − 5

1.56 2.06E + 1 4.06E + 0 (1.37,3.29) 1.02E + 2 8.02E + 0

2.11 3.69E + 1 3.13E + 0 (2.81,0.75) 1.42E + 1 2.89E + 0

4.14 1.21E + 1 3.48E + 0 (2.16,3.35) 1.71E + 1 3.16E + 0

2.05 3.04E + 1 6.75E + 0 (2.11,3.17) 1.77E + 1 3.44E + 0

2.75 9.11E + 0 2.77E + 0 (4.84,3.42) 1.21E + 1 3.44E + 0

0.14 1.37E + 2 2.65E + 1 (1.96,0.94) 5.73E + 0 1.04E + 0

3.77 1.15E + 1 2.65E + 1 (1.73,2.56) 5.23E + 1 6.33E + 0

2.69 1.15E + 1 2.66E + 0 (4.46,3.88) 1.22E + 1 3.50E + 0

1.65 4.28E + 1 5.97E + 0 (1.59,4.62) 3.81E + 1 6.06E + 0

3.94 1.20E + 1 3.42E + 0 (2.35,3.47) 1.29E + 1 2.99E + 0

1.52 1.8eE + 1 3.46E + 0 (0.54,0.52) 1.71E − 4 1.85E − 5

0.56 (Rm0) 2.10E − 4 1.75E − 5 (0.64,0.33) (Rm0) 5.82E − 5 7.01E − 6

Fig. 13. Poisson equation (Single-Rm-ELM): ELM network training time versus (a) the number of collocation points per direction and (b) the number of 
training parameters, obtained with the training routine invoked for the first time or subsequently. In the first invocation auto-graph/tracing occurs to 
build the computational graphs, which are used in the graph mode in subsequent invocations. The settings and parameters here correspond to those of 
Figs. 9(b,c).

Table 2 provides an accuracy comparison of the Single-Rm-ELM and Multi-Rm-ELM simulations using the optimum 
Rm0/Rm0 from the method of Section 2 and using a set of Rm/Rm values that are randomly generated. Here we consider 
a neural network with the architecture [2, 75, 500, 1], and Q = 35 × 35 uniform collocation points in the domain. For 
generating the random hidden-layer coefficients in Single-Rm-ELM/Multi-Rm-ELM, we set Rm to a random value and Rm to 
a pair of random values that are generated on [0, 5] from a uniform distribution. In Table 2 we list the maximum/rms errors 
of the ELM results corresponding to these random Rm/Rm values, as well as to the optimum Rm0/Rm0 obtained from the 
method of Section 2. The data for Rm0 and Rm0 in this table correspond to those in Fig. 12(a) for M = 500. It is evident that 
the simulation accuracy resulting from a random Rm/Rm value can be quite poor. On the other hand, the optimum Rm0/Rm0
from the current method generally results in simulation results that are highly accurate.

As discussed in Section 3.1, the computations for the output fields of the last hidden layer and the associated differential 
operators are implemented as “Tensorflow Functions” in this paper, which are executed as a computational graph. When 
these functions are invoked for the first time, autograph/tracing occurs in Tensorflow to build the computational graph, 
which can slow down the computations. Subsequent invocations of these functions are executed in the graph mode, which 
is much faster. Fig. 13 illustrates this effect for solving the Poisson equation. Fig. 13(a) depicts the ELM network training 
time with the Single-Rm-ELM configuration, with the training routine invoked for the first time and invoked subsequently, 
as a function of the number of collocation points in each direction. Fig. 13(b) depicts the corresponding ELM network 
training time as a function of the number of training parameters in the neural network. The settings and the simulation 
parameters here correspond to those of Figs. 9(b) and (c), respectively. One can observe that the ELM training time is 
reduced dramatically when these computations are performed in the graph mode (without autograph/tracing).
20



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 14. Poisson equation: The numerical errors (a) and the computation time (b) of the classical FEM (2nd-order, linear elements or degree=1) and the 
high-order FEM (Lagrange elements, degree 5), versus the number of elements in each direction. The numerical errors (c) and the network training time 
(d) of ELM (Single-Rm-ELM) versus the number of collocation points per direction. ELM network architectures are given in the legends of (c,d). Rm = 2.76
for M = 600 and Rm = 3.36 for M = 800 in (c,d). The ELM network training time is the time obtained in the graph mode (no autograph/tracing).

We next compare the computational performance, accuracy and computational cost, between the current implemen-
tation of ELM and the finite element method (classical second-order FEM, and high-order FEM) for solving the Poisson 
equation. For ELM we use the Single-Rm-ELM configuration in the following comparisons. For FEM, as stated in Section 3.1, 
it is implemented using the FEniCS library as in [12]. The classical FEM employs Lagrange elements of degree one (linear 
elements), and high-order FEM employs Lagrange elements [6] with degrees larger than one from the FEniCS library. When 
solving the boundary value problem (15) using FEM, we partition the domain � into an N1 × N1 rectangular mesh, where 
N1 is the number of rectangles in each direction. Each rectangle is further partitioned into two triangular elements along 
the diagonal. So a total of 2N2

1 triangular elements are involved in the FEM computation. For convenience we will loosely 
refer to N1 as the number of elements in each direction. In the FEM tests we vary the number of elements per direction N1
and the degree of the Lagrange elements systematically.

Another implementation detail with FEM concerns the evaluation of the source term and the Dirichlet boundary data 
in equations (15a)–(15b). These terms each is implemented as a FEniCS “Expression”, in which the degree parameter is 
specified as the element degree plus one when solving the Poisson equation. We observe that if the degree parameter 
in these FEniCS Expressions is specified to be equal to the element degree or less, one cannot seem to quite achieve the 
expected convergence rate as the number of elements increases, especially when the mesh size is not very large.

Fig. 14 provides an overview of the numerical errors of FEM and ELM, as well as their computational cost (FEM compu-
tation time, ELM network training time). In these tests the number of the elements in the FEM mesh and the number of 
collocation points in ELM are varied systematically.

Fig. 14(a) shows the maximum/rms errors in the domain as a function of the number of elements in each direction (N1) 
with the classical FEM (degree=1) and the high-order FEM with Lagrange elements of degree=5. One can clearly observe 
a second-order convergence rate and a sixth-order convergence rate with these two types of elements. Fig. 14(b) shows 
the corresponding FEM computation time versus the number of elements per direction with these two types of elements. 
The FEM computation time grows quite rapidly with increasing number of elements. The cost of the high-order FEM grows 
much faster than that of the classical FEM.

Fig. 14(c) shows the ELM maximum/rms errors in the domain as a function of the number of uniform collocation points 
in each direction, obtained using two neural networks with the architectures [2, M, 1] with M = 600 and M = 800, respec-
tively. We have employed Rm = 2.76 for M = 600 and Rm = 3.36 for M = 800, close to their optimal Rm0, for generating the 
random hidden layer coefficients. A set of Q = Q 1 × Q 1 uniform collocation points is employed and Q 1 is varied system-
atically. One can clearly observe an exponential decrease in the ELM errors before saturation. As Q 1 becomes sufficiently 
large, the ELM errors saturate at a higher level with M = 600 than with M = 800. Fig. 14(d) shows the corresponding ELM 
network training time versus the number of collocation points per direction with these two neural networks. Here the ELM 
21



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 15. Poisson equation (comparison between ELM and classical FEM): The (a) maximum error and (b) rms error in the domain versus the computational 
cost (ELM training time, FEM computation time) for ELM and the classical FEM. The FEM data correspond to those of Figs. 14(a,b) with degree=1. The ELM 
data correspond to those of Figs. 14(c,d) with M = 800.

Fig. 16. Poisson equation (comparison between ELM and high-order FEM): The maximum error (a,c) and the rms error (b,d) in the domain versus the 
computational cost (ELM network training time, FEM computation time) of the ELM and the high-order FEM with Lagrange elements of various degrees. 
For FEM, in (a,b) the mesh size is varied systematically for each given element degree, and in (c,d) the element degree is varied systematically for each 
given mesh size. The FEM data in (a,b) with degree=5 correspond to those of Figs. 14(a,b) with degree=5. The ELM data in (a,b,c,d) correspond to those of 
Figs. 14(c,d).

training time refers to the time obtained with the graph mode (no autograph/tracing). They appear to grow quasi-linearly 
with increasing number of collocation points.

Fig. 15 compares the computational performance of the ELM and the classical FEM. The two plots show the maximum 
and rms errors in the domain of the ELM and FEM versus their computational cost (FEM computation time, ELM network 
training time). The FEM data here correspond to those contained in Figs. 14(a,b) with degree=1, and the ELM data here 
correspond to those of Figs. 14(c,d) with M = 800. We observe that the ELM far outperforms the classical FEM in essentially 
all cases, except for a narrow range with very small problem sizes (FEM mesh size below around 50 × 50, ELM collocation 
points below around 13 × 13; error level above around 5 × 10−2; wall time below around 0.03 seconds). With the same 
computational cost/budget, the ELM achieves a considerably better accuracy (typically by orders of magnitude) than the 
classical FEM, and to achieve the same accuracy the ELM incurs a much lower computational cost than the classical FEM. 
Even in the narrow range of small problem sizes, where the classical FEM is a little better, the FEM performance and the 
ELM performance are quite close.

Fig. 16 provides a comparison of the computational performance between the ELM and the high-order FEM with Lagrange 
elements of higher degrees. We have conducted two groups of tests with high-order FEM. In the first group, for a fixed 
22



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 17. Poisson equation (on irregular domain): (a) Illustration of the collocation point distribution (with Q = 900 training collocation points), which 
is equally spaced on the pentagon boundaries and randomly distributed inside the pentagon. (b) Finer mesh points for neural network evaluation and 
computation of the ELM errors. Distributions of (c) the Single-Rm-ELM solution and (d) its absolute error on the domain. The maximum/rms errors of the 
Single-Rm-ELM solution versus (e) the total number of training collocation points in the domain (Q ), and (f) the number of training parameters in the 
neural network (M). Network architecture: [2, M, 1]. Q = 900 in (a,c,d,f), varied in (e). M = 800 in (c,d,e), varied in (f). Rm = 4.0 in (c,d,e,f).

element degree, we vary the mesh size systematically. In the second group, for a fixed mesh size, we vary the degree of the 
Lagrange elements systematically (between 2 and 8). These two types of tests approximately correspond to the so-called 
h-type and p-type refinements with the high-order hp-finite element method [35,56,11].

Figs. 16(a) and (b) show the maximum and rms errors in the domain of the high-order FEM, with Lagrange elements 
of degrees ranging from 3 to 6, versus the FEM computation time in the first group of tests. The FEM data with degree=5 
in these plots correspond to those of Figs. 14(a,b) with degree=5. Figs. 16(c) and (d) depict the maximum/rms errors of 
the high-order FEM, with mesh sizes ranging from 10 × 10 to 50 × 50, versus the FEM computation time in the second 
group of tests. In all these plots, we have included the ELM maximum/rms errors versus the ELM network training time for 
comparison, where the ELM data correspond to those contained in Figs. 14(c,d) with M = 600 and M = 800.

We can make the following observations from Fig. 16. With the h-type refinement (for a fixed element degree), there 
is a cross-over point with respect to the problem size in the relative performance between ELM and high-order FEM. For 
smaller problem sizes (smaller FEM mesh, smaller set of ELM collocation points), the performance of the ELM and that 
of the high-order FEM are largely comparable, with the high-order FEM being a little better. For larger problem sizes, the 
ELM outperforms the high-order FEM markedly (see Figs. 16(a,b)). With the p-type refinement (for a fixed mesh size), there 
is also a cross over in the relative performance between ELM and high-order FEM with respect to the mesh size. With 
a small FEM mesh size, the performance of the high-order FEM (with varying element degree) and that of the ELM are 
comparable, with the high-order FEM being a little better. With a larger FEM mesh size, the ELM markedly outperforms the 
high-order FEM with varying element degree, especially for larger FEM degrees (see Figs. 16(c,d)). Overall, we observe that 
the ELM method is very competitive compared with the high-order FEM. For small problem sizes, the ELM performance and 
the high-order FEM performance appear largely comparable, with the high-order FEM oftentimes a little better. For larger 
problem sizes, the ELM method outperforms the high-order FEM. As the problem size becomes large, ELM can outperform 
the high-order FEM by a substantial factor.

These observations on the ELM/FEM performance should be compared with those of [12]. In [12], it is observed that the 
ELM method can outperform the classical 2nd-order FEM for larger problem sizes. Compared with high-order FEM, however, 
ELM (with the implementation therein) is observed to be generally not as competitive [12]. With the improvements in 
the current work, especially the use of forward-mode auto-differentiations for computing the differential operators (see 
Remark 2.11), we have significantly increased the ELM computational performance. As shown above, the improved ELM 
herein far outperforms the classical FEM. Its computational performance is on par with that of the high-order FEM, and 
oftentimes it can outperform the high-order FEM by a substantial margin.

Finally, Fig. 17 illustrates the capability of the ELM method for solving boundary value problems on irregular 
domains with the Poisson equation. Here we solve the system (15) on a pentagon, whose vertices are given by 
23



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 18. Nonlinear Helmholtz equation: distribution of the exact solution.

{(0.5, 0), (1.8, 0.25), (2.5, 1), (1.5, 1.8), (0, 2)}. Dirichlet data for each domain boundary are obtained based on the an-
alytic solution (16). The collocation points are equally spaced on the domain boundaries, and are randomly distributed 
(uniform distribution) inside the domain, as illustrated by Fig. 17(a) with a total of Q = 900 training collocation points. For 
a prescribed Q collocation points in total, we place 

⌊
4
√

Q
5

⌋
collocation points on each side of the pentagon and the rest of 

the points inside the domain, where �x	 denotes the greatest integer not larger than x (floor). We employ the Single-Rm-
ELM method with a network architecture [2, M, 1] to solve this problem. In the simulations Q is either fixed at Q = 900 or 
varied systematically, and M is either fixed at M = 800 or varied systematically. We employ a fixed Rm = 4.0, which is close 
to the Rm0 obtained from the differential evolution algorithm. After the neural network is trained on the Q collocation 
points, we evaluate the neural network on another set of much finer structured mesh points on the pentagon, and com-
pare the values with the analytic solution (16) on this finer set of points to compute the maximum/rms errors. The mesh 
points for the network evaluation are generated by dividing the pentagon into two quadrilateral sub-regions and generating 
a 101 × 101 structured uniform mesh on each sub-region (see Fig. 17(b)). The errors as computed above are then referred 
to as the ELM errors associated with the neural network on the Q training collocation points.

Figs. 17(c) and (d) demonstrate the distributions of the Single-Rm-ELM solution and its absolute error on this domain, 
obtained with Q = 900 collocation points and M = 800 training parameters in the neural network. The ELM solution is 
quite accurate, with a maximum error on the order 10−7 in the domain. Figs. 17(e) and (f) show the maximum and rms 
errors in the domain of the ELM solution as a function of the total number of collocation points (Q ) and of the number of 
training parameters (M) in the neural network, respectively. It is evident that the ELM errors decrease exponentially with 
respect to these parameters with the irregular domain.

3.4. Nonlinear Helmholtz equation

We next use a nonlinear Helmholtz type equation in 2D to further test the method for computing the optimal Rm and 
Rm . We demonstrate the competitiveness of the ELM method for nonlinear problems by comparing its performance with 
those of the classical and high-order FEMs. A seed value 25 has been employed with the random number generators in 
Tensorflow and numpy for all the numerical tests in this subsection.

Consider a 2D rectangular domain � = {(x, y) | 0 � x, y � 1.5} and the following boundary value problem on �,

∂2u

∂x2
+ ∂2u

∂ y2
− 100u + 10 cos(2u) = f (x, y), (17a)

u(x,0) = g1(x), u(x,1.5) = g2(x), u(0, y) = h1(y), u(1.5, y) = h2(y). (17b)

In the above equations, u(x, y) is the field to be solved for, f is a prescribed source term, and g1, g2, h1 and h2 are 
prescribed Dirichlet boundary data. We choose the source term and the boundary data appropriately so that the following 
field satisfies the problem (17),

u(x, y) =
[

5

2
cos

(
πx − 2π

5

)
+ 3

2
cos

(
2πx + 3π

10

)][
5

2
cos

(
π y − 2π

5

)
+ 3

2
cos

(
2π y + 3π

10

)]
. (18)

The distribution of the analytic solution (18) in the x-y plane is shown in Fig. 18.
The settings of the ELM neural network are similar to those in Section 3.3. The input layer contains two nodes, repre-

senting x and y. The output layer is linear and contains one node, representing u. The network contains one or more hidden 
layers, with the Gaussian activation function for all hidden nodes. The random hidden-layer coefficients are set based on 
the Single-Rm-ELM or Multi-Rm-ELM configurations as described in Section 2. The neural network is trained by the NLLSQ-
perturb method from [12], as discussed in Section 2. The crucial simulation parameters include the number of training 
parameters M , the set of Q = Q 1 × Q 1 uniform collocation points in the domain, and the maximum magnitude Rm or Rm

of the random coefficients.
24



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 19. Nonlinear Helmholtz equation (Single-Rm-ELM): The optimum Rm0 versus (a) the number of collocation points per direction and (b) the number 
of training parameters, with neural networks of different depth. (c) Rm0 versus the number of training parameters with neural networks having the same 
depth but different width. Q = 31 × 31 in (b,c), varied in (a). M = 200 in (a), varied in (b,c). The network architectures are given in the legends.

Table 3
Nonlinear Helmholtz equation (Single-Rm-ELM): Effect of the Rm value on the NLLSQ residual norm K(Rm)

(see equation (8)), the maximum error, and the rms error of the Single-Rm-ELM solution. Network architecture: 
[2, 300, 1]. Q = 31 × 31. The optimum Rm0 ≈ 1.35 from the differential evolution algorithm. The Multi-Rm-ELM 
configuration leads to identical results as Single-Rm-ELM for this test, because it is equivalent to the latter for a 
single hidden layer in the neural network.

Rm K(Rm) max error rms error

0.5 1.98E + 2 1.77E + 1 1.03E + 0

1.0 1.58E − 5 7.49E − 7 6.03E − 8

1.35 (Rm0) 4.44E − 6 2.77E − 7 2.43E − 8

1.5 5.10E − 6 3.13E − 7 2.53E − 8

2.0 7.70E − 5 7.23E − 6 4.59E − 7

2.5 1.12E − 3 9.40E − 5 6.98E − 6

3.0 8.77E − 3 8.18E − 4 6.57E − 5

4.0 3.55E − 1 3.36E − 2 2.49E − 3

5.0 2.61E + 0 2.39E − 1 1.53E − 2

7.0 1.48E + 2 1.17E + 1 8.02E − 1

10.0 1.68E + 3 4.77E + 1 2.59E + 0

20.0 1.35E + 4 6.33E + 1 4.73E + 0

50.0 1.77E + 4 1.52E + 1 4.76E + 0

We first look into the Single-Rm-ELM configuration for assigning the random coefficients in the neural network. Fig. 19
illustrates the characteristics of the optimum Rm0 in Single-Rm-ELM obtained by the differential evolution algorithm. Note 
that when computing Rm0 with differential evolution, we have turned off the random perturbations and the corresponding 
sub-iterations in the NLLSQ-perturb method, as discussed in Remark 2.6. In these tests we consider one to three hidden lay-
ers in the neural network, and vary the number of collocation points per direction Q 1 or the number of training parameters 
M systematically.

Fig. 19(a) depicts the optimum Rm0 as a function of Q 1, for three neural networks with a fixed number of 200 training 
parameters but different depth. Figs. 19(b) and (c) each depicts the Rm0 as a function of M for three neural networks. The 
three neural networks in plot (b) have different depths, with one to three hidden layers and with the width fixed at 100
for the hidden layers other than the last one. The three neural networks in plot (c) all contain three hidden layers, but the 
width the preceding hidden layers (other than the last one) varies between 50 and 150. In both (b) and (c), the number of 
nodes in the last hidden layer (i.e. M) is varied systematically, and a fixed set of Q = 31 × 31 uniform collocation points is 
employed. All these results about Rm0 are obtained with a population size of 4 and a relative tolerance 0.1 in the differential 
evolution algorithm. The Rm bounds are [0.1, 3] in the differential evolution algorithm for all the cases except for the neural 
network with the architecture [2, M, 1] in Fig. 19(b), in which the Rm bounds are set to [0.1, 4].

We observe from Fig. 19 the same characteristics about Rm0 for the nonlinear Helmholtz equation as those for the linear 
problems in previous subsections. For example, Rm0 is largely independent of the number of collocation points. It generally 
decreases with increasing number of layers in the neural network. There is a large decrease in Rm0 from one to two hidden 
layers in the network, and beyond that the decrease in Rm0 is almost negligible.

Table 3 illustrates the effect of Rm on the accuracy of the ELM simulation results for the nonlinear Helmholtz equation, 
and that the Rm0 from the differential evolution algorithm leads to more accurate ELM results than the other Rm values. 
In this test we consider a neural network architecture [2, 300, 1] with the Single-Rm-ELM configuration, and a set of Q =
31 × 31 uniform collocation points in the domain. We vary the Rm constant systematically (by a step size 0.5) between 
Rm = 0.5 and Rm = 50 for generating the random hidden-layer coefficients. For each Rm value, we solve the system (17) and 
compute the residual norm K(Rm) in (8), and the maximum/rms errors of the Single-Rm-ELM solution. These error/norm 
25



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 20. Nonlinear Helmholtz equation (Single-Rm-ELM): (a) Absolute error distribution of the Single-Rm-ELM solution. The maximum/rms errors in the 
domain versus (b) the number of collocation points per direction, and (c) the number of training parameters. Network architecture: [2, M , 1]. Q = 31 × 31
in (a,c), varied in (b). M = 600 in (a,b), varied in (c). Rm = 2.1 in (a,b,c).

Fig. 21. Nonlinear Helmholtz equation (Multi-Rm-ELM): The Rm0 components versus the number of collocation points per direction (a,c) and the number 
of training parameters (b,d), with neural networks having two (a,b) and three (c,d) hidden layers. The network architectures are given in the legends. 
Q = 31 × 31 in (b,d), varied in (a,c). M = 300 in (a,c), varied in (b,d).

values are listed in Table 3 for a number of Rm in this range, together with those corresponding to the optimum Rm0 ≈ 1.35
obtained from the differential evolution algorithm. The superior accuracy of the ELM results with Rm = Rm0 is unmistakable. 
Note that the Multi-Rm-ELM configuration leads to the same results as Single-Rm-ELM for this test, because it is equivalent 
to Single-Rm-ELM for a single hidden layer in the neural network.

Fig. 20 illustrates the accuracy of the solutions to the nonlinear Helmholtz equation obtained with Single-Rm-ELM. 
In these tests we employ a set of Q = Q 1 × Q 1 uniform collocation points, where Q 1 is either fixed at Q 1 = 31 or varied 
systematically, a neural network with the architecture [2, M, 1], where M is either fixed at M = 600 or varied systematically. 
We employ a fixed Rm = 2.1 in these tests, which is close to the Rm0 from the differential evolution algorithm corresponding 
to M = 600 and Q = 31 × 31. Fig. 20(a) shows the distribution of the absolute error of the Single-Rm-ELM solution. It 
signifies a high solution accuracy, with the maximum error on the order 10−10. Figs. 20(b) and (c) depict the maximum/rms 
errors in the domain of the ELM solution as a function of Q 1 and the training parameters M , respectively. The errors 
decrease exponentially (before saturation) with increasing numbers of collocation points or training parameters, similar to 
what has been observed for the linear problems in previous subsections.

Let us next consider the Multi-Rm-ELM configuration for setting the random coefficients in the neural network. Fig. 21
illustrates the characteristics of the optimum Rm0 obtained with the differential evolution algorithm, as the number of 
collocation points or training parameters is varied. In these tests we consider two neural networks with architectures given 
by [2, 100, M, 1] and [2, 100, 100, M, 1], respectively, where the number of training parameters is either fixed at M = 300 or 
26



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 22. Nonlinear Helmholtz equation (Multi-Rm-ELM): (a) Absolute-error distribution of the Multi-Rm-ELM solution. The maximum/rms errors in the 
domain versus (b) the number of collocation points per direction, and (c) the number of training parameters. Network architecture: [2, 100, M , 1]. Q =
31 × 31 in (a,c), varied in (b). M = 500 in (a,b), varied in (c). Rm = (0.55, 0.4) in (a,b,c).

Fig. 23. Nonlinear Helmholtz equation: (a) The maximum/rms errors in the domain corresponding to Rm = Rm0 in Single-Rm-ELM and Rm = Rm0 in Multi-
Rm-ELM, versus the number of training parameters (M) in the neural network. (b) The Rm0/Rm0 computation time and the ELM network training time in 
Single-Rm-ELM and Multi-Rm-ELM, versus the number of training parameters. Network architecture: [2, 100, M, 1]. Q = 31 × 31 in (a,b).

varied systematically. A set of Q = Q 1 × Q 1 uniform collocation points is employed, where Q 1 is either fixed at Q 1 = 31 or 
varied systematically. Figs. 21(a) and (b) depict the components of Rm0 = (R(1)

m0, R
(2)
m0) as a function of Q 1 and M , respectively, 

for the neural network with two hidden layers. These results are obtained with a population size of 4, the bounds [0.01, 3]
for both Rm components, and a relative tolerance 0.1 in the differential evolution algorithm. Figs. 21(c) and (d) show the 
corresponding results for Rm0 = (R(1)

m0, R
(2)
m0, R

(3)
m0) with the neural network of three hidden layers, which are obtained with a 

population size of 6, the bounds [0.01, 2] for all Rm components, and a relative tolerance 0.1 in the differential evolution. 
The Rm0 characteristics observed here are quite similar to those of the linear problems in previous subsections. The values 
for the Rm0 components fluctuate within a range (generally less than 1), and appear more irregular compared with the Rm0
in Single-Rm-ELM. The dependence of Rm0 on the collocation points seems generally quite weak. Its relation to the number 
of training parameters is quite irregular, especially with more hidden layers in the neural network.

Fig. 22 illustrates the accuracy of the Multi-Rm-ELM solutions. In these tests we employ a neural network with an 
architecture [2, 100, M, 1], where the number of training parameters is either fixed at M = 500 or varied systematically. A 
set of Q = Q 1 × Q 1 uniform collocation points is used, with Q 1 fixed at Q 1 = 31 or varied systematically. We employ a 
fixed Rm = (0.54, 0.4) in Multi-Rm-ELM, which is close to the Rm0 obtained with M = 500 and Q = 31 ×31. Fig. 22(a) shows 
the distribution of the absolute error of the Multi-Rm-ELM solution corresponding to Q 1 = 31 and M = 500, signifying a 
quite high accuracy with the maximum error on the order 10−9. Figs. 22(b) and (c) depict the maximum and rms errors 
in the domain of the Multi-Rm-ELM solution versus Q 1 and M , respectively, demonstrating the exponential convergence 
(before saturation) with respect to these parameters.

A comparison between Single-Rm-ELM and Multi-Rm-ELM for the nonlinear Helmholtz equation is provided in Fig. 23
with regard to their accuracies and the Rm0 (Rm0) computation cost. Here the neural network has an architecture 
[2, 100, M, 1], where M is varied between 100 and 600 in the tests. A fixed set of Q = 31 × 31 uniform collocation points 
is employed in the domain. For both Single-Rm-ELM and Multi-Rm-ELM, we have employed a population size of 4, the Rm

(Rm) bounds [0.01, 3], and a relative tolerance 0.1 in the differential evolution algorithm. Fig. 23(a) shows the maximum/rms 
errors in the domain of the Single-Rm-ELM and Multi-Rm-ELM solutions obtained with Rm = Rm0 (Rm = Rm0), as a function 
of the number of training parameters M . The Multi-Rm-ELM produces a consistently better accuracy than Single-Rm-ELM. 
Fig. 23(b) shows the Rm0 (Rm0) computation time in Single-Rm-ELM (Multi-Rm-ELM), as well as the ELM network training 
time for a given Rm (Rm), as a function of M . The Rm0 computation in Multi-Rm-ELM is notably more costly than the Rm0
27



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Table 4
Nonlinear Helmholtz equation: Comparison of the maximum/rms errors of Single-Rm-ELM and Multi-Rm-ELM with the optimum Rm0/Rm0 and with a set 
of random Rm/Rm values (generated on [0, 5]), for a neural network architecture [2, 100, 250, 1]. Q = 31 × 31 in all simulations. The data for the cases 
with Rm0 and Rm0 here correspond to those in Fig. 23(a) for M = 250.

Single-Rm-ELM Multi-Rm-ELM

Rm (random) max error rms error Rm (random) max error rms error
0.80 2.77E − 1 2.05E − 2 (3.18,1.35) 5.21E + 0 1.92E + 0
0.0016 1.57E + 1 4.82E + 0 (0.20,0.08) 2.50E + 1 1.59E + 0
1.08 9.17E + 0 8.70E − 1 (4.07,4.56) 1.59E + 1 4.81E + 0
1.84 2.50E + 1 2.53E + 0 (3.03,3.65) 1.55E + 1 4.68E + 0
0.01 1.55E + 1 2.10E + 0 (2.72,4.68) 1.57E + 1 4.73E + 0
0.97 6.75E + 0 4.83E − 1 (4.08,0.01) 2.16E + 0 2.94E − 1
4.95 1.58E + 1 4.80E + 0 (4.29,0.17) 1.77E + 0 2.51E − 1
3.93 1.57E + 1 4.79E + 0 (3.65,0.88) 2.84E + 0 8.64E − 1
0.61 7.64E − 3 5.54E − 4 (4.32,2.71) 1.52E + 1 4.67E + 0
1.13 1.12E + 1 1.27E + 0 (1.50,2.11) 3.99E + 1 3.51E + 0
3.83 1.57E + 1 4.77E + 0 (0.14,0.62) 2.18E + 1 1.69E + 0
4.58 1.57E + 1 4.81E + 0 (3.35,3.24) 1.53E + 1 4.65E + 0
1.77 2.40E + 1 2.72E + 0 (3.08,1.92) 1.04E + 1 3.39E + 0
3.93 1.57E + 1 4.78E + 0 (4.99,4.90) 1.58E + 1 4.80E + 0
0.73 1.14E − 1 7.54E − 3 (3.43,3.25) 1.56E + 1 4.67E + 0

0.40 (Rm0) 3.47E − 5 2.61E − 6 (0.54,0.12) (Rm0) 5.52E − 6 4.28E − 7

Fig. 24. Nonlinear Helmholtz equation (Single-Rm-ELM): ELM network training time versus (a) the number of collocation points per direction and (b) 
the number of training parameters, obtained with the training routine invoked for the first time or subsequently. The settings and simulation/network 
parameters here correspond to those of Figs. 20(b,c).

computation in Single-Rm-ELM, while the ELM network training cost is essentially the same for given Rm in Single-Rm-ELM 
and for given Rm in Multi-Rm-ELM.

Table 4 provides an accuracy comparison of the Single-Rm-ELM/Multi-Rm-ELM simulations using the optimum Rm0/Rm0
from the current method and using a set of random Rm/Rm values for generating the random hidden-layer coefficients in 
the neural network. Here we consider a neural network with the architecture [2, 100, 250, 1], and Q = 31 × 31 uniform 
collocation points in the domain. For generating the random hidden-layer coefficients, we set Rm in Single-Rm-ELM to a 
random value and Rm in Multi-Rm-ELM to a pair of random values that are generated on [0, 5] by a uniform distribution. 
Table 4 lists the maximum/rms errors of the Single-Rm-ELM/Multi-Rm-ELM simulations corresponding to a set of random 
Rm/Rm values, as well as to the optimum Rm0/Rm0 from the method of Section 2. The data for Rm0/Rm0 here correspond to 
those in Fig. 23(a) with M = 250. The accuracy superiority of the simulation results corresponding to Rm0/Rm0 is evident.

Fig. 24 illustrates the effect of autograph/tracing and the computation in the graph mode on the ELM network training 
time for the nonlinear Helmholtz equation. As discussed previously, the Tensorflow Functions for computing the output 
of the last hidden layer and the associated differential operators are slower when invoked for the first time, because the 
Tensorflow library would use the autograph/tracing to build the computational graphs. But they run much faster when 
invoked subsequently. Figs. 24(a) and (b) depict the ELM network training time with Single-Rm-ELM, obtained with auto-
graph/tracing (invoked for the first time) or in graph mode (invoked subsequently, no autograph/tracing), as a function of 
the number of collocation points per direction and the number of training parameters, respectively. The settings and sim-
ulation parameters of these two plots correspond to those of the Figs. 20(b) and (c), respectively. In the graph mode the 
ELM network training time is markedly reduced. In the following comparisons with FEM, the ELM training time refers to 
the time obtained in the graph mode (no autograph/tracing).

We next compare the computational performance between the ELM method (Single-Rm-ELM configuration) and the 
classical and high-order FEM for solving the nonlinear Helmholtz equation. With FEM we again use an N1 × N1 rectangular 
mesh (partitioned into 2N2

1 triangles), and the nonlinear Helmholtz equation in weak form is solved by the Newton’s method 
from the FEniCS library with a relative tolerance 10−12. We would like to mention an implementation detail concerning the 
28



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 25. Nonlinear Helmholtz equation (FEM/ELM errors and cost): The numerical errors (a) and the computation time (b) of the classical FEM (degree=1) 
and the high-order FEM with Lagrange elements of degree 3, versus the number of elements in each direction. The numerical errors (c) and the network 
training time (d) of the ELM method versus the number of collocation points in each direction. ELM network architecture: [2, M, 1]. In (c,d), Rm = 1.5 for 
M = 400, and Rm = 2.1 for M = 600.

evaluation of the source term and the boundary data in the system (17a)–(17b). When implementing these terms as FEniCS 
“Expressions”, we have employed the element degree plus 4 as the degree parameter in these Expressions. Note that when 
solving the Poisson equation in Section 3.3 the degree parameter in the FEniCS Expressions for the source term and the 
boundary data is set to be the element degree plus one. We find that for nonlinear PDEs (nonlinear Helmholtz equation 
here, and the Burgers’ equation in the next subsection), setting the degree parameter for these FEniCS Expressions to the 
element degree plus one is not adequate with the high-order elements. When setting it to the element degree plus one, 
we observe that one cannot quite obtain the expected rate of convergence with the high-order FEM, in particular for cases 
when the mesh size is not very large. We have tested various cases by setting the degree parameter in these FEniCS 
Expressions to the element degree plus different extra degrees. We observe that, as the extra degree increases (with the 
other parameters fixed), the accuracy of the high-order FEM results increases significantly initially, and it levels off as the 
extra degree increases to 4 and beyond. So in this subsection and the next one (Burgers’ equation), we employ the element 
degree plus 4 as the degree parameter when evaluating the FEniCS Expressions for the source term and the boundary data.

Fig. 25 is an overview of the numerical errors of the FEM and ELM and their computational cost (FEM computation time 
and ELM network training time) for solving the nonlinear Helmholtz equation. Fig. 25(a) shows the maximum/rms errors in 
the domain of the classical FEM (linear elements, degree=1) and the high-order FEM with Lagrange elements of degree=3, 
as a function of the number of elements in each direction (N1). The results signify the second-order convergence rate of 
the classical FEM and the 4th-order convergence rate of the high-order FEM with element degree 3. Fig. 25(b) depicts the 
corresponding computation time versus the number of elements per direction for the classical and high-order FEMs, showing 
that the cost of the high-order FEM grows much faster than the classical FEM with increasing mesh sizes. Fig. 25(c) depicts 
the maximum/rms errors in the domain of the ELM method (Single-Rm-ELM configuration) as a function of the number 
of collocation points in each direction. Two neural networks are employed, with architectures [2, M, 1] with M = 400 and 
M = 600, respectively. A set of Q = Q 1 × Q 1 uniform collocation points is employed, with Q 1 varied systematically between 
5 and 25. In ELM the random hidden-layer coefficients are generated with Rm = 1.5 for the neural network with M = 400
and Rm = 2.1 with M = 600, which are close to the Rm0 obtained with the differential evolution algorithm. The exponential 
decrease in the ELM errors are unmistakable. Fig. 25(d) shows the corresponding ELM network training time as a function 
of the number of collocation points. Here the ELM training time refers to the time obtained in the graph mode (without 
autograph/tracing). One can observe that, as the number of collocation points increases, the growth in the ELM training 
time is nearly linear.

Fig. 26 compares the computational performance of the ELM and the classical FEM (2nd-order, linear elements). It plots 
the maximum error (plot (a)) and the rms error (plot (b)) in the domain of the ELM (and the classical FEM) versus the ELM 
network training time (resp. the FEM computation time). The FEM data correspond to those in Figs. 25(a,b) with degree=1, 
29



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 26. Nonlinear Helmholtz equation (comparison between ELM and classical FEM): The maximum error (a) and the rms error (b) versus the computational 
cost (ELM network training time, FEM computation time) of the ELM and the classical FEM. The FEM data correspond to those of Figs. 25(a,b) with 
degree= 1. The ELM data correspond to those of Figs. 25(c,d) with M = 600.

Fig. 27. Nonlinear Helmholtz equation (comparison between ELM and high-order FEM): The maximum error (a,c) and the rms error (b,d) in the domain 
versus the computational cost (ELM training time, FEM computation time) between ELM and high-order FEM with various element degrees. In (a,b) the 
number of elements per direction in the FEM mesh is varied systematically for each given element degree. In (c,d) the degree of the Lagrange elements 
is varied systematically for each given mesh size. The FEM data of degree 3 in (a,b) correspond to those of Figs. 25(a,b) with degree 3. The ELM data in 
(a,b,c,d) correspond to those of Figs. 25(c,d).

and the ELM data here correspond to those in Figs. 25(c,d) with M = 600 in the neural network. The ELM far outperforms 
the classical FEM in almost all cases, achieving a considerably better accuracy with the same computational cost/budget or 
inducing a considerably smaller cost to achieve the same accuracy. The exception is in a range of very small problem sizes 
(FEM mesh size smaller than around 70 × 70, ELM collocation points less than around 10 × 10, error level above around 
5 × 10−3 ∼ 10−2, wall time less than around 0.3 seconds), where the ELM performance and the FEM performance are close, 
with the FEM a little better.

A comparison between ELM and the high-order FEM is provided in Fig. 27 for solving the nonlinear Helmholtz equation. 
We have again performed the h-type refinement (fix the element degree, vary the mesh size) and the p-type refinement 
(fix the mesh size, vary the element degree between 1 and 7) with high-order FEM. Figs. 27(a) and (b) depict the maximum 
and rms errors, respectively, of the high-order FEM under the h-type refinements versus the FEM computation time. The 
FEM data for the element degree=3 in these plots correspond to those in Figs. 25(a,b) with degree=3. Figs. 27(c) and (d) 
depict the maximum and rms errors of the high-order FEM under the p-type refinements versus the FEM computation time. 
These four plots also include the maximum and rms errors of the ELM method versus the ELM network training time. The 
ELM data here correspond to those in Figs. 25(c,d) for the two neural networks.
30



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 28. Burgers’ equation: distribution of the exact solution.

We can make the following observations from Fig. 27. The ELM method outperforms the high-order FEM as the problem 
size becomes larger (larger FEM mesh size under fixed element degree, or larger element degree under fixed mesh size; 
larger set of ELM collocation points). With smaller problem sizes (smaller FEM mesh size under fixed element degree, or 
smaller element degree under fixed mesh size; smaller set of ELM collocation points), the computational performances 
of ELM and high-order FEM are comparable, with the high-order FEM being slightly better. These observations with the 
nonlinear Helmholtz equation here are consistent with what has been observed for the Poisson equation (linear) in the 
previous subsection.

3.5. Viscous Burgers’ equation

We next use another nonlinear example, the viscous Burgers’ equation, to test the method for computing the optimal Rm

(Rm) and also compare the computational performance of the ELM method with the classical and high-order FEMs. A seed 
value of 100 has bee employed for the random number generators in Tensorflow and numpy for all the numerical tests in 
this subsection.

We consider the spatial-temporal domain, � = {(x, t) | 0 � x � 2, 0 � t � 5}, and the following initial-boundary value 
problem with the viscous Burgers’ equation on �,

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f (x, t), (19a)

u(0, t) = g1(t), u(2, t) = g2(t), (19b)

u(x,0) = h(x), (19c)

where ν = 0.01, u(x, t) is the field solution to be sought, f (x, t) is a prescribed source term, g1 and g2 are the prescribed 
Dirichlet boundary condition, and h denotes the initial distribution. We choose the source term and the boundary/initial 
distributions such that the following manufactured function solves the system (19),

u(x, t) =
(

1 + x

20

)(
1 + t

20

)[
3

2
cos

(
πx + 7π

20

)
+

27

20
cos

(
2πx − 3π

5

)][
3

2
cos

(
πt + 7π

20

)
+ 27

20
cos

(
2πt − 3π

5

)]
. (20)

Fig. 28 illustrates the distribution of this function in the spatial-temporal plane.
We employ the ELM method (Single-Rm-ELM and Multi-Rm-ELM configurations), together with the block time marching 

scheme (see Remark 2.7), to solve the system (19). The input layer of the neural network contains two nodes, representing x
and t . The linear output layer contains a single node, representing the solution u(x, t). The network contains one or multiple 
hidden layers, with the Gaussian activation function for all the hidden nodes. The random hidden-layer coefficients are set 
according to the Single-Rm-ELM or Multi-Rm-ELM configurations from Section 2.

We partition the spatial-temporal domain into a number of windows in time (time blocks), and solve the problem on 
the time blocks individually and successively [12]. On each time block, the ELM network is trained by the NLLSQ-perturb 
method [12]. After one time block is computed, its field solution evaluated at the last time instant is used as the initial 
condition for the computation of the next time block. As discussed in Remark 2.7, we compute the Rm0 and Rm0 by the 
differential evolution algorithm only on the first time block, and we turn off the random perturbations and the associated 
subiterations in the nonlinear least squares method (NLLSQ-perturb) during the Rm0 (Rm0) computation.
31



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 29. Burgers’ equation (Single-Rm-ELM): The optimum Rm0 versus (a) the number of collocation points per direction and (b) the number of training 
parameters, with neural networks of different depth. (c) Rm0 versus the number of training parameters with neural networks having the same depth but 
different widths. Domain: �1 = [0, 2] × [0, 0.25]. Q = 31 × 31 in (b,c), varied in (a). M = 300 in (a), varied in (b,c). The network architectures are given in 
the legends.

Fig. 30. Burgers’ equation (Single-Rm-ELM): (a) Absolute-error distribution of the Single-Rm-ELM solution on �. The maximum/rms errors on � versus (b) 
the number of collocation points per direction on each time block, and (c) the number of training parameters. Domain: �, with 20 time blocks in block 
time marching. Network architecture: [2, M , 1]. Q = 31 × 31 in (a,c), varied in (b). M = 400 in (a,b), varied in (c). Rm = 2.0 in (a,b,c).

The crucial simulation parameters for this problem include the time block size (or the number of time blocks), the 
number of training parameters M (width of last hidden layer in network), the set of Q = Q 1 × Q 1 uniform collocation 
points on each time block, and the maximum magnitude Rm (or Rm) of the random coefficients. We employ 20 uniform 
time blocks on the domain �, resulting in a time block size 0.25. Therefore, the Rm0 and Rm0 are computed on the first 
time block, i.e. by using the spatial-temporal domain �1 = {(x, t) | x ∈ [0, 2], t ∈ [0, 0.25]}.

We first consider the Single-Rm-ELM configuration, and Fig. 29 illustrates the optimum Rm0 obtained with the differential 
evolution algorithm for the Burgers’ equation. In these tests the computational domain is the spatial-temporal domain of the 
first time block �1, and we employ neural networks with one to three hidden layers. The number of training parameters 
is either fixed at M = 300 or varied systematically. The set of Q = Q 1 × Q 1 uniform collocation points is either fixed at 
Q 1 = 31 or varied systematically.

Fig. 29(a) depicts the optimum Rm0 as a function of the number of collocation points per direction Q 1, for three neural 
networks with the same M = 300 but different depth. Figs. 29(b) and (c) both depict the Rm0 as a function of the number of 
training parameters M , but for neural networks with different configurations. The plot (b) is for three neural networks with 
different depths, and the plot (c) is for three neural networks with the same depth but different widths for the preceding 
hidden layers. These results are obtained with a population size of 6, the Rm bounds [0.01, 3], and a relative tolerance 0.1 in 
the differential evolution algorithm. The settings and simulation parameters for each plot are provided in the figure caption.

The Rm0 characteristics shown by Fig. 29 are consistent with those observed from previous subsections. For instance, Rm0
is generally not sensitive to the number of collocation points in the domain, especially with more than one hidden layers 
in the neural network. With a single hidden layer in the neural network, Rm0 has a notable dependence on the number of 
training parameters M , and tends to increase with increasing M (Fig. 29(b)). With two or more hidden layers in the neural 
network, Rm0 only weakly depends on M . Rm0 tends to decrease with increasing depths in the neural network or increasing 
widths of the preceding hidden layers. When the number of hidden layers increases from one to two, the reduction in Rm0
is quite pronounced. Beyond two hidden layers, on the other hand, there is only a slight reduction in Rm0 as the number of 
hidden layers increases.

Fig. 30 illustrates the solution accuracy of the Single-Rm-ELM configuration. The computational domain here is the entire 
spatial-temporal domain � (0 � t � 5), and we employ 20 time blocks in the block time marching scheme, as mentioned 
32



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 31. Burgers’ equation (Multi-Rm-ELM): The optimum Rm0 versus the number of collocation points per direction (a,c) and the number of training 
parameters (b,d), with neural networks having two (a,b) and three (c,d) hidden layers. The network architectures are given in the legends. Computational 
domain: �1 (t ∈ [0, 0.25]). Q = 31 × 31 in (b,d), varied in (a,c). M = 300 in (a,c), varied in (b,d).

before. The neural network has an architecture [2, M, 1], where M is either fixed at M = 400 or varied systematically. A 
set of Q = Q 1 × Q 1 uniform collocation points is employed on each time block, with Q 1 either fixed at 31 or varied 
systematically. We employ a fixed Rm = 2.0 in all these tests, which is close to the Rm0 obtained from the differential 
evolution algorithm corresponding to M = 500 and Q = 31 × 31. Fig. 30(a) shows the distribution of the absolute error of 
the Single-Rm-ELM solution, signifying a high accuracy with the maximum error on the order 10−9 in the entire spatial-
temporal domain. Figs. 30(b) and (c) depict the maximum/rms errors in the overall domain as a function of Q 1 and M , 
respectively, showing the exponential convergence in the numerical errors (before saturation). The simulation parameters 
for each plot are provided in the figure caption.

Let us next look into the Multi-Rm-ELM configuration for solving the Burgers’ equation. The characteristics of the 
optimum Rm0 are illustrated in Fig. 31. The computational domain in these tests is the spatial-temporal domain �1
(t ∈ [0, 0.25]). We have considered two types of neural networks, whose architectures are given by [2, 100, M, 1] and 
[2, 100, 100, M, 1], where M is fixed at 300 or varied systematically. A uniform set of Q = Q 1 × Q 1 collocation points 
is employed in the domain, where Q 1 is fixed at 31 or varied systematically. We employ a population size of 6, the bounds 
[0.01, 3] for all the Rm components, and a relative tolerance 0.1 in the differential evolution algorithm for these tests.

Figs. 31(a) and (b) depict the optimum Rm0 = (R(1)
m0, R

(2)
m0) as a function of Q 1 and M , respectively, for the neural networks 

with two hidden layers. Figs. 31(c) and (d) depict the corresponding components of the optimum Rm0 = (R(1)
m0, R

(2)
m0, R

(3)
m0) as 

a function of Q 1 and M for the neural networks with three hidden layers. Overall, the relations of Rm0 versus Q 1 and M
appear to be quite irregular. The relation between Rm0 and Q 1 seems less irregular, and the dependence appears generally 
not quite strong. On the other hand, the change in M appears to affect the Rm0 components more strongly, especially with 
increasing number of hidden layers in the neural network (see Fig. 31(d)). These characteristics are similar to those observed 
in previous subsections with Multi-Rm-ELM for linear and nonlinear problems.

The solution accuracy of the Multi-Rm-ELM configuration is illustrated in Fig. 32. The computational domain in this set 
of tests is the spatial-temporal domain � (t ∈ [0, 5]), which is partitioned into 25 time blocks (block size 0.2 in time) in 
the block time marching scheme with Multi-Rm-ELM. The neural network architecture is given by [2, 100, M, 1], with M
fixed at 400 or varied systematically. A uniform set of Q = Q 1 × Q 1 collocation points is employed on each time block, 
where Q 1 is fixed at 31 or varied systematically. We employ a fixed Rm = (0.645, 0.145) in these tests, which is close to 
the Rm0 obtained with the differential evolution algorithm corresponding to M = 400 and Q = 31 × 31. Fig. 32(a) shows 
the distribution of the absolute error of the Multi-Rm-ELM solution on the entire spatial-temporal domain. The results 
signify a high accuracy, with a maximum error on the order 10−8 in the overall domain. Figs. 32(b) and (c) depict the 
maximum error and the rms error in the overall domain of the Multi-Rm-ELM solution as a function of Q 1 and M . The 
errors generally appear to decrease exponentially or nearly exponentially with increasing number of collocation points or 
training parameters. But the relation is not that regular. For example, in Fig. 32(b) as the collocation points increase from 
33



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 32. Burgers’ equation (Multi-Rm-ELM): (a) Absolute-error distribution of the Multi-Rm-ELM solution in the spatial-temporal domain. The maximum/rms 
errors on � versus (b) the number of collocation points per direction in each time block, and (c) the number of training parameters. Computational domain: 
�, with 25 time blocks in block time marching. Network architecture: [2, 100, M , 1]. Q = 31 × 31 for each time block in (a,c), varied in (b). M = 400 in 
(a,b), varied in (c). Rm = (0.625, 0.145) in (a,b,c).

Fig. 33. Burgers’ equation: (a) The maximum/rms errors corresponding to Rm = Rm0 in Single-Rm-ELM and Rm = Rm0 in Multi-Rm-ELM, versus the number 
of training parameters (M). (b) The Rm0 (or Rm0) computation time and the ELM network training time in Single-Rm-ELM and Multi-Rm-ELM, versus the 
number of training parameters. Computational domain: �1 (t ∈ [0, 0.25]). Network architecture: [2, 100, M , 1]. Q = 31 × 31 in (a,b).

5 ×5 to 15 ×15, there is little decrease in the errors. However, once beyond that point, there is a sharp exponential decrease 
in the errors (before saturation).

A comparison between Single-Rm-ELM and Multi-Rm-ELM with regard to their accuracies and the cost for computing 
Rm0/Rm0 is provided in Fig. 33. The computational domain is the spatial-temporal domain �1 (t ∈ [0, 0.25]). The neural 
network has an architecture [2, 100, M, 1] in this group of tests, where M is varied systematically. The random hidden-
layer coefficients are set based on the Single-Rm-ELM or Multi-Rm-ELM configurations. A fixed set of Q = 31 × 31 uniform 
collocation points is employed. Fig. 33(a) shows the maximum/rms errors in the domain versus the number of training 
parameters M , corresponding to Rm = Rm0 in Single-Rm-ELM and Rm = Rm0 in Multi-Rm-ELM. Here when computing Rm0
and Rm0 we have employed a population size of 6, the bounds [0.01, 3], and a relative tolerance 0.1 in the differential 
evolution algorithm for both Single-Rm-ELM and Multi-Rm-ELM. One can observe that Multi-Rm-ELM leads to consistently 
more accurate results than Single-Rm-ELM. Fig. 33(b) shows the corresponding cost for computing the Rm0/Rm0 in Single-
Rm-ELM and Multi-Rm-ELM, as well as the ELM network training time with given Rm/Rm , as a function of M . The Rm0
computation cost in Single-Rm-ELM and the Rm0 computation cost in Multi-Rm-ELM appear comparable for the Burgers’ 
equation. The cost for computing the Rm0/Rm0 is markedly higher than the ELM network training time for a given Rm or 
Rm .

Let us next compare the ELM method (Single-Rm-ELM configuration) with the FEM (classical and high-order FEMs) for 
solving the Burgers’ equation. The computational domain is the spatial-temporal domain �1 (t ∈ [0, 0.25]) in the following 
tests.

With FEM, we employ a second-order semi-implicit type time integration scheme to solve the Burgers’ equation 
(see [12]). We discretize the time derivative term in (19a) by the second-order backward differentiation formula (BDF2), 
treat the diffusion term implicitly, and treat the nonlinear term explicitly. The temporally semi-discretized equation in weak 
form is then solved in space by the classical (2nd-order) FEM or high-order FEM with Lagrange elements, which are im-
plemented using the FEniCS library with uniform 1D interval mesh. The FEM simulation parameters include the time step 
size �t (or the number of time steps), the number of elements in space, and the element degree for high-order FEM. In the 
FEM tests, we vary the number of elements systematically and simultaneously vary the number of time steps accordingly, 
34



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 34. Burgers’ equation: The numerical errors (a) and the computation time (b) of the classical FEM (2nd-order, degree=1) and the high-order FEM with 
Lagrange elements of degree 3, versus the number of elements in each direction. In the FEM tests, as the number of elements increases, the time step size 
(�t) is decreased proportionately. The numerical errors (c) and the network training time (d) of the ELM method versus the number of collocation points 
in each direction of the time block. Computational domain: �1 (t ∈ [0, 0.25]). The network architectures are given in the legends.

so that the �t and the element size is increased or decreased proportionately. The element degree is also varied with the 
high-order FEM. As mentioned in Section 3.4, the degree parameter in the FEniCS “Expressions” for the source term and the 
boundary/initial data in (19) is set to be the element degree plus 4 with FEM.

With ELM, we employ one time block in the spatial-temporal domain �1. We consider two neural networks with the 
architecture [2, M, 1] with M = 400 and M = 500, respectively. A fixed Rm = 2.0 is used to generate the random hidden-
layer coefficients. We employ a uniform set of Q = Q 1 × Q 1 collocation points on the spatial-temporal domain �1, where 
Q 1 is varied systematically in the tests.

Fig. 34 provides an overview of the errors and the computational cost of the FEM and the ELM for solving the Burgers’ 
equation. Figs. 34(a) and (b) show the maximum/rms errors in �1, and the computation time, of the classical FEM (2nd-
order, degree=1) and the high-order FEM with Lagrange elements of degree=3, as a function of the number of elements in 
the mesh. Since the element size and the time step size �t are varied proportionately, these plots equivalently show the 
relations of the errors (or computation time) versus �t . With the classical FEM, the number of elements varies between 
20 and 500, and �t is varied proportionately between 1.25 × 10−3 and 5.0 × 10−5 in these data. With the high-order FEM 
of degree=3, the number of elements varies between 20 and 300, and �t is varied proportionately between 1.25 × 10−4

and 8.33 × 10−6. We clearly observe a second-order convergence rate of the classical FEM with respect to the number 
of elements, and also with respect to �t . With Lagrange elements of degree 3, we observe a 4th-order convergence rate 
initially (when the number of elements is not large), which then transitions to a second-order convergence rate when the 
number of elements increases beyond a certain point. The observed change in the convergence rate with high-order FEM is 
due to the interplay and the dominance of the spatial truncation error or the temporal truncation error in different regimes. 
When the spatial error dominates, what one observes is the actual spatial convergence rate (4th-order with element degree 
3). When the temporal error dominates, on the other hand, what one observes is the second-order convergence rate with 
respect to �t , because the spatial error becomes insignificant compared with the temporal error in this case. Fig. 34(b) 
signifies that computational cost of the high-order FEM is markedly larger than that of the classical FEM.

Figs. 34(c) and (d) depict the maximum/rms errors and the network training time of the ELM as a function of the number 
of collocation points in each direction (Q 1) with the two neural networks. Here the ELM training time is the time obtained 
in the graph mode (no autograph/tracing). We observe the familiar exponential decrease in the ELM errors. The plot (d) 
indicates that the ELM network training time grows nearly linearly with increasing number of collocation points.

Fig. 35 compares the computational performance between the ELM method and the classical FEM for the Burgers’ equa-
tion. The two plots show the maximum errors and the rms errors in the overall spatial-temporal domain of the ELM and 
classical FEM solutions versus their computational cost (ELM network training time, FEM computation time). The FEM data 
here correspond to those in Figs. 34(a,b) with degree=1, and the ELM data correspond to those in Figs. 34(c,d) with the 
35



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 35. Burgers’ equation (comparison between ELM and classical FEM): The maximum errors (a) and the rms errors (b) in the spatial-temporal domain 
versus the computational cost (ELM training time, FEM computation time) between ELM and the classical FEM. The FEM data correspond to those in 
Figs. 34(a,b) with degree=1. The ELM data correspond to those in Figs. 34(c,d) with M = 500.

Fig. 36. Burgers’ equation (comparison between ELM and high-order FEM): The maximum error (a,c) and the rms error (b,d) in the spatial-temporal domain 
versus the computational cost (ELM training time, FEM computation time) between ELM and high-order FEM. Computational domain: �1 (t ∈ [0, 0.25]). 
The ELM data correspond to those in Figs. 34(c,d). In the FEM tests, the element size and the time step size (�t) are decreased simultaneously and 
proportionately for each given element degree. In (a,b), the number of FEM elements varies between 20 and 500, and �t varies between 1.25 × 10−3

and 5 × 10−5. In (c,d), the number of FEM elements varies between 20 and 100, and �t varies between 1.25 × 10−4 and 2.5 × 10−5. The FEM data with 
degree=3 in (c,d) correspond to a portion of the data in Figs. 34(a,b) with degree=3.

neural network architecture [2, 500, 1]. One can observe that the ELM method consistently and far outperforms the classical 
FEM.

Fig. 36 is a comparison of the computational performance between the ELM and the high-order FEM for solving the 
Burgers’ equation. The computational domain here is the spatial-temporal domain �1 (t ∈ [0, 0.25]). Two sets of FEM tests 
are conducted here, in both of which the element size and the time step size (�t) are reduced simultaneously and propor-
tionately for a given element degree. In the first set of tests, the number of elements vary between 20 and 500, and the 
time step size varies between �t = 1.25 ×10−3 and �t = 5.0 ×10−5 accordingly. In the second set, the number of elements 
vary between 20 and 100, and the time step size varies between �t = 1.25 × 10−4 and �t = 2.5 × 10−5 accordingly. The 
ELM data correspond to those given in Figs. 34(c,d).

Figs. 36(a) and (b) show the maximum errors and the rms errors, respectively, of the high-order FEM and the ELM 
solutions in the spatial-temporal domain versus the FEM computation time and the ELM network training time for the first 
set of FEM tests. We observe that the FEM curves corresponding to different element degrees essentially overlap with one 
another. This is because in this set of tests the �t is relatively large and the temporal truncation error dominates. So in this 
36



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
case increasing the element degree barely affects the total FEM error. The data in Figs. 36(a,b) demonstrate that the ELM 
consistently outperforms the high-order FEM, and by a considerable margin as the problem size increases.

Figs. 36(c) and (d) show the maximum and rms errors of the high-order FEM versus the computation time for the second 
set of FEM tests, together with the ELM errors versus the ELM training time. We can observe that the FEM error generally 
decreases as the element degree increases (e.g. from 2 to 3 and 4), and that the FEM error remains essentially the same as 
the element degree increases to 4 and beyond. This is because the �t is smaller here than in the first set of FEM tests, and so 
the spatial truncation error dominates the FEM total error, at least with the smaller element degrees. As the element degree 
increases, the spatial truncation error is reduced rapidly and the temporal truncation error gradually becomes dominant. At 
this point, further increase in the FEM element degree will not notably affect the total FEM error. Because of the smaller 
�t values in the second set of FEM tests, a significantly larger number of time steps need to be computed in the FEM 
simulations, resulting in an overall increased FEM computation time. We can observe from Figs. 36(c,d) that the ELM way 
outperforms the high-order FEM for this set of tests.

The above comparisons show that the ELM method combined with block time marching is effective and efficient for 
solving time dependent PDEs. It is considerably more efficient than the FEM (classical and high-order FEMs) combined with 
the commonly-used second-order time stepping scheme, in terms of the accuracy and the incurred computational cost. 
These comparisons are conducted on a relatively small temporal domain (t ∈ [0, 0.25]). When the temporal dimension of 
the spatial-temporal domain increases (i.e. for longer-time simulations), the advantage of the ELM combined with block 
time marching becomes even more prominent.

4. Concluding remarks

In extreme learning machines (ELM) the hidden-layer coefficients of the neural network are pre-set to uniform random 
values generated on the interval [−Rm, Rm], where the maximum magnitude Rm of the random coefficients is a user-
provided constant (hyperparameter), and the output-layer coefficients are trained by a linear or nonlinear least squares 
computation [12]. More accurate ELM results have been observed to be associated with a range of moderate values for 
Rm (see [12]). In the current paper, we have presented a method for computing the optimal or near-optimal value for the 
Rm constant for solving partial differential equations (PDE). The presented method is based on the differential evolution 
algorithm, and seeks the optimal Rm by minimizing the norm of the residual vector of the linear or nonlinear algebraic 
system that results from the ELM representation of the PDE solution and that corresponds to the ELM least squares solution 
to the system. This method amounts to a pre-processing procedure. It determines a near optimal value for Rm , which can be 
used in ELM for solving linear or nonlinear PDEs. In practice, we observe that any value in a neighborhood of the returned 
Rm0 from the method can be used in the ELM simulation and leads to comparable accuracy. This is because, as shown 
in [12], there is usually a range of Rm values that lead to good accuracy with ELM.

We have investigated two configurations in ELM for setting the random hidden-layer coefficients, Single-Rm-ELM and 
Multi-Rm-ELM. The Single-Rm-ELM configuration corresponds to the conventional ELM, in which the weight/bias coefficients 
for all the hidden layers of the neural network are assigned to random values generated on [−Rm, Rm], with a single 
Rm constant. In the Multi-Rm-ELM configuration, the weight/bias coefficients in the l-th hidden layer, 1 � l � L − 1 with 
(L − 1) denoting the total number of hidden layers, are set to random values generated on [−R(l)

m , R(l)
m ]. Therefore, the 

maximum magnitudes of the random coefficients in different hidden layers may be different in Multi-Rm-ELM, and they are 
characterized by the vector Rm = (R(1)

m , R(2)
m , . . . , R(L−1)

m ).
We have computed the optimal Rm in Single-Rm-ELM and the optimal Rm in Multi-Rm-ELM using the method developed 

here for a number of linear and nonlinear PDEs. We have the following observations about the Single-Rm-ELM and Multi-
Rm-ELM and their respective optimum Rm0 and Rm0:

• The optimum Rm0 of Single-Rm-ELM is largely independent of the number of collocation points. Rm0 only weakly 
depends on the number of training parameters for neural networks with two or more hidden layers. For neural networks 
with a single hidden layer, the dependence of Rm0 on the number of training parameters (M) is stronger, and Rm0 tends 
to increase with increasing M (when M is not very small).

• Rm0 generally decreases with increasing number of hidden layers in the neural network. There is a fairly large drop in 
Rm0 from a single hidden layer to two hidden layers. Beyond two hidden layers, the decrease in Rm0 is only slight and 
can oftentimes be negligible as the number of hidden layers further increases.

• Rm0 has only a very weak (oftentimes negligible) dependence on the number of nodes in the hidden layers preceding 
the last hidden layer. Rm0 tends to decrease slightly with increasing width of the preceding hidden layers.

• The optimum Rm0 of Multi-Rm-ELM tends to exhibit a relationship that is not quite regular with respect to the ELM 
simulation parameters. However, the trend exhibited by Rm0 appears reminiscent of what has been observed about the 
optimum Rm0 of Single-Rm-ELM. For example, Rm0 depends only weakly on (or nearly independent of) the number of 
collocation points, and appears to generally increase with increasing number of training parameters.

• The Multi-Rm-ELM configuration with Rm = Rm0 leads to consistently more accurate simulation results than the Single-
Rm-ELM configuration with Rm = Rm0, under otherwise identical conditions. On the other hand, the Rm0 computation 
cost in Multi-Rm-ELM is generally higher than the Rm0 computation cost in Single-Rm-ELM.
37



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
We have made several improvements to the implementation of the ELM method in the current work. The most crucial 
change lies in the adoption of a forward-mode auto-differentiation for computing the differential operators associated with 
the output fields of the last hidden layer of the neural network. This is implemented using the “ForwardAccumulator” in 
Tensorflow. In contrast, these differential operators were computed by the default reverse-mode auto-differentiation (“Gra-
dientTape”) of Tensorflow in the previous work [12]. These improvements result in a significant boost to the computational 
performance of ELM.

Another aspect of the current contribution is a systematic comparison of the computational performance between the 
current ELM method and the classical and high-order finite element methods (FEM) for solving linear and nonlinear PDEs. 
The ELM method employs the improved implementation and the near optimal Rm obtained from the differential evolution 
algorithm. The classical FEM (second-order, linear elements) and the high-order FEM are implemented based on the FEniCS 
library by employing the Lagrange elements of degree one or higher degrees. By looking into the ELM/FEM accuracy and 
their computational cost (FEM computation time, ELM network training time) for a number of linear/nonlinear PDEs, we 
have the following observations:

• For stationary (i.e. time-independent) PDEs, the ELM far outperforms the classical FEM if the problem size is not very 
small. For very small problem sizes (small FEM mesh, small number of ELM training collocation points), the computa-
tional performance of the ELM and the classical FEM is close, with the classical FEM a little better.

• For stationary PDEs, there is a crossover point in the relative performance between ELM and the high-order FEM with 
respect to the problem size (FEM mesh size or element degree, ELM collocation points). For smaller problem sizes 
(smaller FEM mesh in h-type refinements or smaller element degree in p-type refinement; smaller number of ELM 
collocation points), the ELM and high-order FEM are close in computational performance, with the high-order FEM 
appearing slightly better. As the problem size becomes larger, the ELM markedly outperforms the high-order FEM.

• For time-dependent PDEs, the ELM method combined with the block time marching scheme consistently and signifi-
cantly outperforms both the classical and the high-order FEMs (combined with a time-stepping scheme).

These performance comparisons demonstrate that the neural network-based ELM method is computationally competitive 
compared with not only the classical second-order FEM but also the high-order FEM based on high-order polynomials. The 
ELM exceeds the classical FEM by a considerable margin in terms of computational performance. The ELM method delivers 
a comparable performance to high-order FEM for smaller problem sizes. For larger problem sizes, the ELM performance 
exceeds the performance of high-order FEM. The ELM method is more efficient than or as efficient as the high-order FEM.

Can artificial neural networks provide a competitive method for scientific computing and in particular for numerical 
PDEs? Can one devise a neural network-based method for approximating PDEs that can outcompete the traditional nu-
merical techniques? These questions have motivated the current effort and also our recent work in [12]. The ELM type 
methods developed in [12] and the current work for solving PDEs seek a different approach from the existing DNN-based 
PDE solvers, in order to achieve high accuracy and competitive computational performance. Our methods attempt to exploit 
the randomization of a subset of the network weights in order to simplify the optimization task of the network training, 
and more importantly we train the neural network by a linear or nonlinear least squares computation (rather than the 
gradient descent type algorithms). The exponential convergence behavior (for smooth solutions) with respect to the number 
of training data points and training parameters and the high accuracy exhibited by these methods are reminiscent of the 
traditional high-order methods such as the spectral, spectral element or hp-finite element type techniques.

The current work and our recent work in [12] provide strong evidence that the answer to the above questions seems 
indeed to be positive. Our previous work [12] demonstrates that the ELM type method can be more competitive than or 
as competitive as the classical second-order FEM. The importance of the current work lies in that it further shows that the 
ELM type method can be more competitive than or as competitive as the high-order FEM in terms of the accuracy and 
computational cost. These studies collectively instigate a neural network-based accurate, efficient and competitive technique 
for numerical approximation of PDEs in computational science and engineering applications.

CRediT authorship contribution statement

Suchuan Dong: Conceptualization, Methodology, Software, Data acquisition, Visualization, Writing of paper, Paper revi-
sion, Funding acquisition. Jielin Yang: Software, Data acquisition, Data curation, Visualization, Writing of paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgement

This work was partially supported by NSF (DMS-2012415, DMS-1522537).
38



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Fig. 37. Appendix (Poisson equation): distribution of the exact solution.

Table 5
Appendix (Poisson equation): The activation functions and the corresponding optimum Rm0 obtained using the method from Section 2. The Rm0 values are 
computed with the network architecture [2, 800, 1] and Q = 35 × 35 uniform collocation points.

Function name σ(x) Rm0 Function name σ(x) Rm0

Gaussian e−x2
3.3 sine sin(x) 20.0

cosine cos(x) 20.0 gcu x cos(x) 20.0

sinc sin(x)
x 7.0 GELU [25] 1

2 x
[

1 + erf
(

x√
2

)]
4.8

sigmoid 1
1+e−x 3.7 tanh tanh(x) 2.0

erf erf(x) 3.2 swish x
1+e−x 4.0

softplus ln(1 + ex) 4.4 mish [47] x tanh(ln(1 + ex)) 3.0

Table 6
Appendix (Poisson equation): the maximum/rms errors of Single-Rm-ELM obtained with various activation functions on three uniform sets of Q collocation 
points. Neural network architecture [2, 800, 1]. Rm = Rm0, whose values are given in Table 5, for generating the random hidden-layer coefficients.

max error rms error

σ(x) Q = 15 × 15 25 × 25 35 × 35 Q = 15 × 15 25 × 25 35 × 35

Gaussian 4.32E − 2 3.20E − 4 1.17E − 5 6.77E − 3 8.92E − 5 6.04E − 7

GELU 4.36E − 2 3.78E − 4 1.31E − 5 7.24E − 3 7.70E − 5 7.79E − 7

sine 3.87E − 2 1.71E − 5 8.28E − 8 5.25E − 3 3.64E − 6 8.37E − 9

cosine 3.03E − 2 1.73E − 5 1.26E − 7 4.25E − 3 3.44E − 6 1.45E − 8

gcu 6.30E − 2 9.48E − 6 1.55E − 7 1.23E − 2 1.73E − 6 1.48E − 8

sinc 1.14E − 1 3.05E − 5 2.76E − 7 1.07E − 2 5.14E − 6 2.08E − 8

tanh 4.78E − 2 1.23E − 3 8.17E − 5 9.33E − 3 2.41E − 4 6.20E − 6

sigmoid 5.33E − 2 5.22E − 4 1.14E − 4 9.61E − 3 1.10E − 4 1.08E − 5

erf 3.15E − 2 5.01E − 4 2.01E − 5 5.72E − 3 8.64E − 5 7.86E − 7

swish 5.92E − 2 8.05E − 4 1.12E − 4 1.00E − 2 1.69E − 4 9.88E − 6

softplus 5.67E − 2 1.37E − 3 1.71E − 4 9.84E − 3 2.49E − 4 1.20E − 5

mish 5.07E − 2 1.32E − 3 8.01E − 5 9.22E − 3 2.42E − 4 1.04E − 5

Appendix A. Comparison of several activation functions with the Poisson equation

In the main text we have employed the Gaussian activation function (σ(x) = e−x2
) for all the numerical tests. In this 

appendix we provide a comparison of the ELM accuracy for solving the Poisson equation when a number of different 
activation functions are employed in the neural network.

We consider the boundary value problem consisting of (15a) and (15b), and employ the following analytic solution to 
this problem for the numerical experiments in this appendix,

u(x, y) = −
[

sin
(
πx2

)
− 1

10
tanh

(
2x2

)][
sin

(
π y2

)
− 1

10
tanh

(
2y2

)]
. (21)

The distribution of this solution in the xy plane is illustrated in Fig. 37. The other problem settings and configurations follow 
those of Section 3.3.

We employ a neural network architecture [2, M, 1], with M either fixed at M = 800 or varied systematically, and a 
uniform set of Q = Q 1 × Q 1 collocation points, with Q 1 either fixed at Q 1 = 35 or varied systematically. We employ the 
same activation function for all the hidden nodes, and a number of different activation functions are tested. We employ 
Rm = Rm0 for generating the random hidden-layer coefficients, where the optimum Rm0 is computed using the method 
39



S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
Table 7
Appendix (Poisson equation): the maximum/rms errors of Single-Rm-ELM obtained with various activation functions on the network architecture [2, M, 1]
with three M values. Q = 35 × 35 uniform collocation points. Rm = Rm0, whose values are given in Table 5, for generating the random hidden-layer 
coefficients.

max error rms error

σ(x) M = 400 600 800 M = 400 600 800

Gaussian 7.88E − 2 3.67E − 4 1.17E − 5 7.12E − 3 2.95E − 5 6.04E − 7

GELU 7.32E − 2 2.15E − 4 1.31E − 5 8.95E − 3 2.31E − 5 7.79E − 7

sine 4.31E − 2 4.57E − 5 8.28E − 8 4.43E − 3 3.00E − 6 8.37E − 9

cosine 3.03E − 2 2.76E − 5 1.26E − 7 3.33E − 3 1.62E − 6 1.45E − 8

gcu 7.36E − 2 2.45E − 5 1.55E − 7 7.85E − 3 2.10E − 6 1.48E − 8

sinc 8.03E − 2 1.05E − 4 2.76E − 7 9.60E − 3 6.95E − 6 2.08E − 8

tanh 9.70E − 2 1.21E − 3 8.17E − 5 8.12E − 3 1.24E − 4 6.20E − 6

sigmoid 4.05E − 2 1.05E − 3 1.14E − 4 3.61E − 3 1.09E − 4 1.08E − 5

erf 3.85E − 2 2.16E − 4 2.01E − 5 4.33E − 3 1.48E − 5 7.86E − 7

swish 1.15E − 1 1.61E − 3 1.12E − 4 8.55E − 3 1.26E − 4 9.88E − 6

softplus 9.85E − 2 1.96E − 3 1.71E − 4 9.48E − 3 1.87E − 4 1.20E − 5

mish 6.25E − 2 1.65E − 3 8.01E − 5 6.59E − 3 1.26E − 4 1.04E − 5

from Section 2 for different activation functions. Table 5 lists the activation functions considered here, as well as their 
corresponding optima Rm0 values.

Tables 6 and 7 list the maximum and rms errors of the Single-Rm-ELM solution corresponding to various activation 
functions from Table 5, for several sets of collocation points and for several neural networks with different M values, 
respectively. Note that the Multi-Rm-ELM would result in identical results for these tests because it is equivalent to Single-
Rm-ELM with a single hidden layer in the neural network. The data suggest that one can approximately separate these 
activation functions into several groups based on their accuracy, and order them as follows (from higher to lower accuracy),

{sine, cosine, gcu, sinc} � {Gaussian, GELU, erf} � {tanh, swish} � {mish, sigmoid, softplus} ,

where the symbol � is used to denote “generally better than”. Those functions in the same group generally exhibit a 
comparable accuracy.

References

[1] P.A. Alaba, S.I. Popoola, L. Olatomiwa, M.B. Akanle, O.S. Ohunakin, E. Adetiba, O.D. Alex, A.A.A. Atayero, W.M.A.W. Daud, Towards a more efficient and 
cost-sensitive extreme learning machine: a state-of-the-art review of recent trend, Neurocomputing 350 (2019) 70–90.

[2] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18 (2018) 1–43.
[3] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys. 

420 (2020) 109707.
[4] F. Calabro, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients, Comput. 

Methods Appl. Mech. Eng. 387 (2021) 114188.
[5] N.E. Cotter, The Stone-Weierstrass theorem and its application to neural networks, IEEE Trans. Neural Netw. 4 (1990) 290–295.
[6] R.L. Courant, Variational methods for the solution of problems of equilibrium and vibration, Bull. Am. Math. Soc. 49 (1943) 1–23.
[7] E.C. Cyr, M.A. Gulian, R.G. Patel, M. Perego, N.A. Trask, Robust training and initialization of deep neural networks: an adaptive basis viewpoint, Proc. 

Mach. Learn. Res. 107 (2020) 512–536.
[8] M.W.M.G. Dissanayake, N. Phan-Thien, Neural network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng. 

10 (1994) 195–201.
[9] S. Dong, A convective-like energy-stable open boundary condition for simulations of incompressible flows, J. Comput. Phys. 302 (2015) 300–328.

[10] S. Dong, Multiphase flows of N immiscible incompressible fluids: a reduction-consistent and thermodynamically-consistent formulation and associated 
algorithm, J. Comput. Phys. 361 (2018) 1–49.

[11] S. Dong, G.E. Karniadakis, P-refinement and p-rethreads, Comput. Methods Appl. Mech. Eng. 192 (19) (2003) 2191–2201.
[12] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations, Comput. 

Methods Appl. Mech. Eng. 387 (2021) 114129, also arXiv:2012 .02895.
[13] S. Dong, Z. Li, A modified batch intrinsic plascity method for pre-training the random coefficients of extreme learning machines, J. Comput. Phys. 445 

(2021) 110585, also arXiv:2103 .08042.
[14] S. Dong, N. Ni, A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural networks, J. Comput. 

Phys. 435 (2021) 110242.
[15] S. Dong, J. Shen, A time-stepping scheme involving constant coefficient matrices for phase field simulations of two-phase incompressible flows with 

large density ratios, J. Comput. Phys. 231 (2012) 5788–5804.
[16] V. Dwivedi, B. Srinivasan, Physics informed extreme learning machine (pielm) − a rapid method for the numerical solution of partial differential 

equations, Neurocomputing 391 (2020) 96–118.
[17] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.
[18] S.C. Endres, C. Sandrock, W.W. Focke, A simplicial homology algorithm for Lipschitz optimization, J. Glob. Optim. 72 (2018) 181–217.
[19] G. Fabiani, F. Calabro, L. Russo, C. Siettos, Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning 

machines, J. Sci. Comput. 89 (2021) 44.
[20] A.L. Freire, A.R. Rocha-Neto, G.A. Barreto, On robust randomized neural networks for regression: a comprehensive review and evaluation, Neural 

Comput. Appl. 32 (2020) 16931–16950.
40

http://refhub.elsevier.com/S0021-9991(22)00352-7/bib2CB7D180DF7BDED7FAD3908CDECBE526s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib2CB7D180DF7BDED7FAD3908CDECBE526s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib242183E6E519850B25330FA4B86834E9s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib60D679388F58522DBCB2A6E5806A9BDFs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib60D679388F58522DBCB2A6E5806A9BDFs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibC3D1DAD507FCA92D7AB23BD2288EFB9Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibC3D1DAD507FCA92D7AB23BD2288EFB9Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibD46D9750CBEF1A1E5D6F07AA18138DACs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib1C2BDE1D1341CC4D4F6615B8BA1D2FEFs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibEB3F7445777BB24220BEC3E58CF70176s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibEB3F7445777BB24220BEC3E58CF70176s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib51D757CC9FBF1D930C2CE2FBC13D28F7s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib51D757CC9FBF1D930C2CE2FBC13D28F7s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib8946B5E78C99DF1D9D506D65A476C77Bs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibA3E72B7C4EF67F11040B14DE5EA4BB2Es1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibA3E72B7C4EF67F11040B14DE5EA4BB2Es1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibE4DAEA18D4314A4D6E0210F5890FEAD6s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib6052086184DC57437221BE7803763ACDs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib6052086184DC57437221BE7803763ACDs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib3A718C13ECA39B9B7A4078B63E6FCDB6s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib3A718C13ECA39B9B7A4078B63E6FCDB6s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibD745D4F1A7617C62FE35F0BE1944D59Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibD745D4F1A7617C62FE35F0BE1944D59Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib9FCFF0604FB13052881336BA98FBFB26s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib9FCFF0604FB13052881336BA98FBFB26s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib32FA656D8D6D82705B35555D485F10F9s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib32FA656D8D6D82705B35555D485F10F9s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib6803099AB56151B697399F27AA7FA61Bs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib5018FB149FD37D397EFD29A8419513B8s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib3F0D39EEAA76FD2046745CC7F3BB60C3s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib3F0D39EEAA76FD2046745CC7F3BB60C3s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibB9A681E8DF8F28F59E7D5064EE67AB06s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibB9A681E8DF8F28F59E7D5064EE67AB06s1


S. Dong and J. Yang Journal of Computational Physics 463 (2022) 111290
[21] P.E. Gill, W. Murray, M.H. Wright, Numerical Linear Algebra and Optimization, SIAM, 2021.
[22] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.
[23] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.
[24] J. He, J. Xu, MgNet: a unified framework for multigrid and convolutional neural network, Sci. China Math. 62 (2019) 1331–1354.
[25] D. Hendrycks, K. Gimpel, Gaussian error linear units (GELU), arXiv:1606 .08415, 2016.
[26] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359–366.
[27] K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, 

Neural Netw. 3 (1990) 551–560.
[28] G. Huang, G.B. Huang, S. Song, K. You, Trends in extreme learning machines: a review, Neural Netw. 61 (2015) 32–48.
[29] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (2006) 489–501.
[30] G.B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans. 

Neural Netw. 17 (2006) 879–892.
[31] B. Igelnik, Y.H. Pao, Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans. Neural Netw. 6 

(1995) 1320–1329.
[32] A.D. Jagtap, G.E. Karniadakis, Extended physics-informed neural network (XPINNs): a generalized space-time domain decomposition based deep learn-

ing framework for nonlinear partial differential equations, Commun. Comput. Phys. 28 (2020) 2002–2041.
[33] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to 

forward and inverse problems, Comput. Methods Appl. Mech. Eng. 365 (2020) 113028.
[34] G.E. Karniadakis, G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (2021) 422–440.
[35] G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn., Oxford University Press, 2005.
[36] E. Kharazmi, Z. Zhang, G.E. Karniadakis, Variational physics-informed neural networks for solving partial differential equations, arXiv:1912 .00873, 2019.
[37] A.S. Krishnapriyan, A. Gholami, S. Zhe, R.M. Kirby, M.W. Mahoney, Characterizing possible failure modes in physics-informed neural networks, arXiv:

2109 .01050, 2021.
[38] I.E. Lagaris, A.C. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (1998) 

987–1000.
[39] I.E. Lagaris, A.C. Likas, D.G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw. 

11 (2000) 1041–1049.
[40] H. Lee, I. Kang, Neural algorithms for solving differential equations, J. Comput. Phys. 91 (1990) 110–117.
[41] J.-Y. Li, W. Chow, B. Igelnik, Y.-H. Pao, Comments on “stochastic choice of basis functions in adaptive function approximaton and the functional-link 

net”, IEEE Trans. Neural Netw. 8 (1997) 452–454.
[42] K. Li, K. Tang, T. Wu, Q. Liao, D3M: a deep domain decomposition method for partial differential equations, IEEE Access 8 (2020) 5283–5294.
[43] X. Li, Simultaneous approximations of mulvariate functions and their derivatives by neural networks with one hidden layer, Neurocomputing 12 (1996) 

327–343.
[44] L. Lin, Z. Yang, S. Dong, Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable, J. Comput. Phys. 

388 (2019) 1–22.
[45] A.J. Meade, A.A. Fernandez, The numerical solution of linear ordinary differential equations by feedforward neural networks, Math. Comput. Model. 

19 (12) (1994) 1–25.
[46] A.J. Meade, A.A. Fernandez, Solution of nonlinear ordinary differential equations by feedforward neural networks, Math. Comput. Model. 20 (9) (1994) 

19–44.
[47] D. Misra, Mish: A self regularized non-monotonic activation function, arXiv:1908 .08681, 2019.
[48] S. Panghal, M. Kumar, Optimization free neural network approach for solving ordinary and partial differential equations, Eng. Comput., Early Access, 

February 2020.
[49] A. Rahimi, B. Recht, Weighted sums of random kitchen sinks: replacing minimization with randomization in learning, in: D. Koller, D. Schuurmans, Y. 

Bengio, L. Bottou (Eds.), Advances in Neural Information Processing Systems (NIPS), vol. 2, 2008, pp. 1316–1323.
[50] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems 

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[51] K. Rudd, S. Ferrari, A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks, Neurocomputing 

155 (2015) 277–285.
[52] E. Samanaiego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the solution of partial 

differential equations in computational mechanics via machine learning: concepts, implementation and applications, Comput. Methods Appl. Mech. 
Eng. 362 (2020) 112790.

[53] S. Scardapane, D. Wang, Randomness in neural networks: an overview, WIREs Data Min. Knowl. Discov. 7 (2017) e1200.
[54] J. Sirignano, K. Spoliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[55] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (1997) 

341–359.
[56] B. Szabo, I. Babushka, Finite Element Analysis, John Wiley & Sons, Inc., 1991.
[57] J. Tang, C. Deng, G.B. Huang, Extreme learning machine for multilayer perceptron, IEEE Trans. Neural Netw. Learn. Syst. 32 (2) (2015) 392–404.
[58] K. Tang, X. Wan, Q. Liao, Adaptive deep density estimation for Fokker-Planck equations, J. Comput. Phys. 457 (2022) 111080.
[59] M.D. Tissera, M.D. McDonnell, Deep extreme learning machines: supervised autoencoding architecture for classification, Neurocomputing 174 (2016) 

42–49.
[60] X. Wan, S. Wei, VAE-KRnet and its applications to variational Bayes, Commun. Comput. Phys. 31 (2022) 1049–1082, https://doi .org /10 .4208 /cicp .OA-

2021 -0087.
[61] S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: a neural tangent kernel perspective, J. Comput. Phys. 449 (2022) 110768.
[62] Y. Wang, G. Lin, Efficient deep learning techniques for multiphase flow simulation in heterogeneous porous media, J. Comput. Phys. 401 (2020) 108968.
[63] P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, PhD Thesis, Harvard Univeristy, Cambridge, MA, 1974.
[64] N. Winovich, K. Ramani, G. Lin ConvPDE-UQ, Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential 

equations on varied domains, J. Comput. Phys. 394 (2019) 263–279.
[65] Z. Yang, S. Dong, A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed 

positivity, J. Comput. Phys. 404 (2020) 109121, also, arXiv:1904 .00141.
[66] R. Yentis, M.E. Zaghoul, VLSI implementation of locally connected neural network for solving partial differential equations, IEEE Trans. Circuits Syst. I 

43 (1996) 687–690.
[67] Y. Yu, R.M. Kirby, G.E. Karniadakis, Spectral element and hp methods, in: Encyclopedia of Computational Mechanics, vol. 1, John Wiley and Sons, NY, 

2017, pp. 1–43.
[68] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411 (2020) 109409.
[69] X. Zheng, S. Dong, An eigen-based high-order expansion basis for structured spectral elements, J. Comput. Phys. 230 (2011) 8573–8602.
41

http://refhub.elsevier.com/S0021-9991(22)00352-7/bib13511645BB78132D9CB9BA4A6D6393C9s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibF1D1D2222563CE940F8FAA364B1F9E4Ds1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibDF10F1B6FC47CF2D4879E3588938144Es1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibD593559529AC27243F9554C5BEBA979Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib5A349952353D688E4AAC8BC2925F27FAs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib97F6ACE817496D28A02B51C0E6A46AD3s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib11FD2948C60363F113E1A07E25C42B90s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib11FD2948C60363F113E1A07E25C42B90s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib448F9685CF765C1CA28E292CB20B1A49s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib9790E92EEEE40A4ADF8D5F9BE3BDCC18s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib3DC387D12E316604700F2F69B72D4B56s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib3DC387D12E316604700F2F69B72D4B56s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib619AC2FCFE54DACE1C8F734CB4709538s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib619AC2FCFE54DACE1C8F734CB4709538s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib98CA47B06F39C92FD5063F220F7EFE8Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib98CA47B06F39C92FD5063F220F7EFE8Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibE9D3D92A6F7813D4489CCC1B87834B6As1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibE9D3D92A6F7813D4489CCC1B87834B6As1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib6C27A6F2C0614A88F7367DEA28A915DBs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib414FCA57A8F34CBF8FFA3B414E79BD27s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibD845A877FBABCAD14F9865763919B75Es1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibED4955BBB228DF00982FC295E655E1C5s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibED4955BBB228DF00982FC295E655E1C5s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibBCAD6A11F63F0AE6D96BF7F2C0B543D2s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibBCAD6A11F63F0AE6D96BF7F2C0B543D2s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibE662A9089DF76E98AE008D67ADBA85ACs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibE662A9089DF76E98AE008D67ADBA85ACs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib33112A2FFC01D6845E52C6973ACEB79Fs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib4B2CDDA13BA253B24F2C5A8792F81BB6s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib4B2CDDA13BA253B24F2C5A8792F81BB6s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib7727EFEFFC5E5B6AFEF2E98A78A04375s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib26BB7D0B3D0108831C965C454D32C03Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib26BB7D0B3D0108831C965C454D32C03Cs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibDF50EB9326663E62BD959DBB1BEA6538s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibDF50EB9326663E62BD959DBB1BEA6538s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibBEDFEDBE45F707E8D2D84106F963E82Es1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibBEDFEDBE45F707E8D2D84106F963E82Es1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibEEC6B8A06C492E3D53F68BCAE9606313s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibEEC6B8A06C492E3D53F68BCAE9606313s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibDEFC5563F15C69A24FD2A847CA533FE7s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib409651CCBF93D93F99D20D38E97BC198s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib409651CCBF93D93F99D20D38E97BC198s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib95D2ABC295020CAF8E28E8A7DF8F6687s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib95D2ABC295020CAF8E28E8A7DF8F6687s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib56B80EA0B59D6CD792B67DAB3E45F1D9s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib56B80EA0B59D6CD792B67DAB3E45F1D9s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibB3419308C55F96D39B47A4BEA4F30FE8s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib42B836C288A0B549BE6070E1B605BB69s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib7D90A8C311A0021BA58507472DD30B56s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib7D90A8C311A0021BA58507472DD30B56s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib0319132F41C07B2B6596D0F625A11EA1s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib46BE303FBD19C48F086BAD083B872259s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib82ED5A3EC3EA163D1FF1BD2B7BF25815s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib96AA58A7A2E690521390AFEB2BB04908s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib96AA58A7A2E690521390AFEB2BB04908s1
https://doi.org/10.4208/cicp.OA-2021-0087
https://doi.org/10.4208/cicp.OA-2021-0087
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib060CFB6A167796873CB2BB2642180B13s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib07511CF696DF1EB070CFFE1E244CA1BFs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib2B0CC345B7412B3CCCE380C8D018DF86s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib12299DCD6D2B9474B94D8A5085117ECAs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib12299DCD6D2B9474B94D8A5085117ECAs1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibFDF1EB11F1D93E3F2876CA33B903C7C1s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibFDF1EB11F1D93E3F2876CA33B903C7C1s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibB6714AFE475A6A1BFB6218541F994F75s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bibB6714AFE475A6A1BFB6218541F994F75s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib4E21455EB576D4C1ECC490295B6E189Ds1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib4E21455EB576D4C1ECC490295B6E189Ds1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib0B5525B76F95ACEC50C58A7548874B04s1
http://refhub.elsevier.com/S0021-9991(22)00352-7/bib9E5648B3D5BD9DDDAC0A157F0175B82As1

	On computing the hyperparameter of extreme learning machines: Algorithm and application to computational PDEs, and comparis...
	1 Introduction
	2 Computing the optimal Rm constant(s) in ELM
	2.1 The maximum magnitude of random coefficients (Rm)
	2.2 ELM configuration with a single Rm constant (Single-Rm-ELM)
	2.3 ELM configuration with multiple Rm constants (Multi-Rm-ELM)

	3 Numerical examples
	3.1 General notes on the implementations
	3.2 Function approximation
	3.3 Poisson equation
	3.4 Nonlinear Helmholtz equation
	3.5 Viscous Burgers’ equation

	4 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Comparison of several activation functions with the Poisson equation
	References


