
J. Fluid Mech. (2007), vol. 582, pp. 79–101. c© 2007 Cambridge University Press

doi:10.1017/S0022112007005460 Printed in the United Kingdom

79

Turbulent drag reduction by constant
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Computational experiments based on the direct numerical simulation of turbulent
channel flow reveal that the skin friction can be reduced as much as 70 % by the
action of a localized steady force acting against the flow close to the wall. In addition,
the excessive shear stresses observed during the laminar-to-turbulence transition can
be substantially reduced. For a sustained reduction in the skin friction, the control
force has to act within a distance of 20 wall units (scaling with the location of the
maximum Reynolds stress gradient); otherwise a transient drag reduction is observed
or even an increase in drag. The forcing leads to the formation of a shear layer close
to the wall that reduces the skin friction and limits the development of the Reynolds
shear stresses. As the amplitude of the forcing is increased, the shear layer breaks
down and generates its own turbulence, setting an upper limit to the level of drag
reduction. This transition of the shear layer is correlated with a Reynolds number
based on the forcing amplitude and length scale.

1. Introduction
The quest for ‘taming’ turbulence with the objective of reducing the skin friction on

air- and sea-vehicles as well as in gas- and liquid-carrying pipes has been pursued for
more than a century. This has led to many proposals for drag-reduction techniques
including microgrooves, polymer and microbubble injection, and electromagnetic and
acoustic excitation (see Bushnell & Moore 1991; Gad-El-Hak 2000). The use of
microgrooves or riblets mounted on the wall surface has proved to be effective
in partially suppressing turbulence and reducing skin friction by about 5 % to
10 % (see Bechert & Bartenwerfer 1989; Choi 1989). Transverse oscillations and
travelling waves, induced mechanically or electromagnetically, can lead to turbulent
drag reduction of about 50 % (as reported by Berger et al. 2000; Du & Karniadakis
2000; Karniadakis & Choi 2003). Injection of high molecular weight polymer solutions
or gas in the near-wall region of a liquid boundary layer can result in turbulent drag
reduction of more than 70 % (see Phillips, Castano & Stace 1998; Deutsch et al.
2003; Ptasinski et al. 2003).

Closed-loop active control of turbulence has also been successful in reducing turbu-
lent drag, but requires system sensors and actuators for implementation. A theoretical
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Figure 1. Profiles of (a) the gradient of the Reynolds shear stress, scaled by u3
τ /ν and

(b) Reynolds shear stress, against distance from the wall y+. Results at Reτ = 135 (solid line);
Reτ = 192 (dashed line); Reτ = 380 (dotted line); Reτ = 633 (dashed-dotted line).

example is provided by the technique of ‘opposition control’ proposed by Choi,
Moin & Kim (1994) and Hammond, Bewley & Moin (1998). Opposition control
employs a sensor plane located at a distance from the wall y+ = 10–25, in terms of
wall variables, where the wall normal velocity is measured. Opposing inflow/outflow
velocity boundary conditions are imposed at the wall so as to give an effective zero
wall normal velocity at each point in the sensing plane. The level of drag reduction
is about 26 % at Reτ = 100, but drops to 19 % at Reτ = 720, as reported by Chang,
Collis & Ramakrishnan (2002); further results are given by Iwamoto, Suzuki & Kasagi
(2002). The level of drag reduction is also sensitive to the location of the control
plane. Another numerical example of flow control is given by Jiménez & Pinelli
(1999) where selective filtering of the vorticity transport, averaged in the streamwise
direction, leads to a reduction of the near-wall streaks.

In this paper, we consider the effects of a localized constant streamwise forcing
applied to the flow. The forcing F is applied in the near-wall region and acts to oppose
the flow. The forcing is uniform in directions parallel to the wall. One motivation
for this study is a consideration of the effect of the Reynolds shear stress on the
mean momentum distribution. For turbulent Poiseuille flow in a channel, the mean
momentum equation is

ρ
∂U1

∂t
= − dP

dx1

+
∂

∂x2

{
−ρu1u2 + µ

∂U1

∂x2

}
+ F1, (1.1)

and under conditions of steady flow, without forcing, this gives the usual linear shear
stress profile, where the sum of the Reynolds stress and viscous stress varies linearly
across the channel. The Reynolds stress is zero at the wall and attains a maximum
value at a distance from the wall that in terms of wall variables scales with Re1/2

τ (see
Sreenivasan 1989). The acceleration of the mean flow, or the response to an applied
forcing F1, however, depends on the gradient of the shear stress. The gradient of the
Reynolds stress is positive near the wall and then has a smaller negative value in
the core of the channel. This is illustrated by the simulation results described below
and shown in figure 1. Here, the profile of the gradient of the Reynolds shear stress
is plotted, scaled in wall variables, for different Reynolds numbers Reτ . In all cases,



Turbulent drag reduction by constant near-wall forcing 81

y+

F
Fmax

0 20 40 60
–1.5

–1.0

–0.5

0

0.5

1.0

1.5
(i)

(ii)

(iii)

Figure 2. Profiles of the average streamwise force density for bubbles and particles in a
channel flow at Reτ = 135 and 200. (i) Reτ = 200, bubbles; (ii) 135, bubbles; (iii) 135, particles.

the gradient has a maximum at approximately y+ = 8, while the location y+
p at which

the gradient is zero and the Reynolds stress is a maximum increases as the Reynolds
number is increased. The corresponding profiles for the Reynolds shear stress are
also shown in figure 1. Fife et al. (2005) have made similar observations about the
Reynolds stress gradient for turbulent Couette flows and other wall-bounded flows.
The effect of the constant streamwise forcing proposed here counteracts the influence
of the gradient of the Reynolds shear stress.

One context in which a similar feature has been observed is in the simulation of a
turbulent channel flow seeded with microbubbles (Xu, Maxey & Karniadakis 2002;
Maxey et al. 2003). Here the bubbles displace the liquid and one of the dynamic
effects is to reduce the local inertia of the flow. This may be represented by a body
force density acting on the flow that is proportional to the local concentration of the
bubbles and the local acceleration of the fluid. On average, the streamwise component
of the force opposes the flow close to the wall and accelerates the flow further away
from the wall. Figure 2 shows sample profiles for the averaged streamwise component
of this effective force density under various flow conditions. The orientation of the
force near the wall is linked to that of the Reynolds stress gradient. For a flow seeded
with denser solid particles, the force density is positive close to the wall. It is observed
too that the bubbles reduce the effectiveness of momentum transfer by the Reynolds
shear stress and there is a reduction in the skin friction, while for denser particles there
is an increase in skin friction. While the dynamics of drag reduction by microbubbles
is complex and involves many factors, the results provide a motivation for the present
study and suggest that the effect of streamwise forcing is worth investigating as an
independent issue.

As we will show, the imposition of a streamwise forcing substantially modifies both
the mean flow and the turbulence in the near-wall region. In the following sections,
we summarize the simulation procedures and then give results for the change in skin
friction as the parameters of the forcing are varied. Following this, the influence of
the forcing on turbulence structure is discussed, considering both the effects of strong
forcing and intermediate levels.
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Group Reτ Re0 L1/h L3/h N1 N2 N3 −dP/dx1

AA 135 3000 2π 2π 64 1 × 65 64 0.002018
AB 135 3000 2π 2π 96 5 × 21 96 0.002018
B 192 4500 2π 2π 128 4 × 37 128 0.001805
C 380 10 000 2π π 256 8 × 31 256 0.001455
D 633 18 000 2π π 384 10 × 37 384 0.001234

Table 1. Simulation parameters: Reynolds numbers; domain size; numerical resolution
including the number of elements and the spectral order; and mean pressure gradient, scaled
by ρU 2

0 /h, of the base flow.

2. Near-wall forcing and simulation method
Simulations of turbulent Poiseuille flow in a channel are performed by numerical

integration of the momentum equations for incompressible flow

∂ ũ
∂t

+ ũ · ∇ũ = − 1

ρ
∇p̃ + ν∇2ũ +

1

ρ
F, (2.1)

where ρ is the fluid density and γ is the kinematic viscosity. In the channel, the fluid
velocity ũ(x, t) is determined for 0 <x1 <L1 and 0 <x3 < L3 with the rigid planar
walls located at x2 = ± h. No-slip boundary conditions are applied at the walls with
periodic boundary conditions in both the streamwise, x1, and spanwise, x3, directions.
The fluid velocity ũ may be written as the sum of a mean U and a fluctuating u
component. In these simulations, variables are scaled by h and a fluid velocity scale
U0, with the fluid density ρ =1. Under conditions of laminar flow, U0 is the centreline
velocity for the corresponding parabolic velocity profile and the value of Re0 = U0h/ν

specifies the kinematic viscosity. In the simulations, a constant flow rate is set and the
bulk velocity UB is maintained at a constant value of 2U0/3 by a control procedure
that adjusts the mean pressure gradient −dP/dx1. This ensures that the Reynolds
number ReB = UBh/ν is fixed for any simulation.

Equation (2.1) is solved in terms of primitive variables using a spectral/hp element
scheme (Karniadakis & Sherwin 2005). Fourier pseudospectral representations are
used in the two periodic directions together with de-aliasing procedures for the
nonlinear terms. Spectral elements are chosen in the wall-normal direction to ensure
good resolution in both the near-wall regions and in the core of the channel. A
third-order stiffly stable scheme, based on an explicit backwards differencing, is used
for the integration in time. Details of the scheme are given in Karniadakis & Sherwin
(2005, see pp. 426–430). Table 1 summarizes the different simulation conditions, listing
the domain size and numerical resolution, including the number of spectral elements
used at each Reynolds numbers. The Reynolds number Reτ = uτh/ν, based on the
friction velocity uτ , is varied between 135 and 633. Further details of the simulations
are given by Xu (2005).

The results for the turbulence statistics of the base flows, without any streamwise
forcing, are in good agreement with results such as Moser, Kim & Mansour (1999)
for channels of comparable length L1. Del Álamo & Jiménez (2003) and del Álamo
et al. (2004) have demonstrated that longer channels are required to fully resolve
some of the large-scale turbulent features that span both the core of the channel
and the near-wall region. However, for the purposes of the present parametric study
of the effects of streamwise forcing, the choice of L1/h= 2π is adequate to provide
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Figure 3. Idealization of the excitation force and notation; see equation (2.2).

self-consistent results at a reasonable computational cost. Jiménez, del Álamo & Flores
(2004) have shown that these larger-scale structures do not significantly contribute to
the Reynolds shear stress near the wall.

The streamwise forcing is specified by the force density F(x2) = (F1, 0, 0) and has
the form shown in figure 3. In particular, the force density is given by

F1(y) = −ρI sin

(
2π

λ
y

)
(0 � y � λ),

F1(y) = 0 (y > λ),

⎫⎬
⎭ (2.2)

where y = h ± x2 is the distance from the nearest planar boundary. (Throughout the
paper, y is used to denote distance from the wall.) This forcing acts to decelerate
the flow close to the wall, 0<y < λ/2, and then accelerate the flow in the adjacent
region λ/2 <y < λ. Overall the total force, integrated across the channel, is zero
and the mean pressure gradient balances the skin friction to within the limits of
numerical resolution. We parameterize the force density with two parameters I and λ,
representing the amplitude and the spatial region of the excitation, respectively. The
amplitude of the force density I may be scaled in convective flow variables by U 2

0 /h

or in terms of wall variables as I+ = Iν/u3
τ , using the value of uτ for the unforced

flow. Similarly, λ may be given in terms of wall variables as λ+ or as λ/h.

3. Results on drag reduction
In figure 4, we first show representative results at Reτ = 135 for the effect of varying

λ+ on the turbulent drag over time. The drag is normalized by the mean drag of
the base flow without forcing. The value of the forcing amplitude is kept constant
at I = 0.02 (in convective units), I+ = 0.073. We see that for the two lower values of
λ+ a persistent, long-term drag reduction is achieved, whereas for the largest value
of λ+ = 35.1 there is only a transient drag reduction. Later, this transient reduction
gives way to either no drag reduction or a small increase in drag. A similar transient
reduction in drag, followed by a drag increase was found for λ+ =59.4, while for
λ+ = 27 there was a sustained reduction in drag of about 14 %.

If the length scale of the forcing is fixed at λ+ = 18.9 and the amplitude I is varied,
then sustained drag reduction is also achieved (figure 5). The level of drag reduction
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Figure 4. Time history of the normalized skin friction at Reτ = 135, with I+ = 0.073
(I = 0.02), for: (i) No forcing; (ii) λ+ = 13.5; (iii) λ+ = 18.9; (iv) λ+ = 35.1.

0 500 1000

t+

0.2

0.4

0.6

0.8

1.0

D
ra

g

(i)

(ii)

(iii)

(iv)

Figure 5. Time history of normalized skin friction for λ+ = 18.9 and different amplitudes I at
Reτ = 135: (i) No forcing; (ii) I+ = 0.0365 (I =0.01); (iii) I+ = 0.073 (I = 0.02); (iv) I+ =0.109
(I = 0.03).

increases as the forcing amplitude is increased, but for amplitudes larger than I+ = 0.1
there was no apparent additional reduction in the long-term drag.

Results on the long-term change in drag at Reτ = 135 are given in table 2. The
results were obtained by integrating the equations of motion for t+ = 0–600, to allow
for possible transients, and the averages were then obtained by averaging over the
following time interval t+ = 600–1200. Additionally, a higher resolution was used in
the simulations (group AB) for λ+ = 13.5, 18.9 to ensure that small-scale features
produced by the forcing were fully resolved. The results show that for λ+ = 13.5, a
79 % reduction in skin friction can be achieved. This is, in fact, a lower skin friction
than for laminar flow. For λ+ = 27, the maximum level of drag reduction that is
achieved is substantially lower than that for the two smaller values of λ. These results
indicate that there is some preferred range of values for I and λ to achieve a sustained
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I = 0.01 0.015 0.02 0.03 0.05 0.1 0.2
λ λ+ I+ = 0.0365 0.0547 0.073 0.109 0.183 0.365 0.73

0.1 13.5 −18 % −25% −26% −33% −53% −73% −79%
0.14 18.9 −19 % −26% −34% −49% −49% −47%
0.2 27 −10 % −12% −14% −13% −6% −14%

Table 2. Approximate percentage change in long-term drag at Reτ = 135 for various λ and I .
Data from group AB except for λ+ =27 which is from group AA.

reduction in drag. The results in table 2 are ambiguous, and complicated by a direct
contribution of the forcing to the reduction in skin friction. A more careful analysis
is required to interpret the results.

Reduction in drag is closely linked to reductions in the mean turbulent Reynolds
shear stresses. However, as pointed out by Fukagata, Iwamoto & Kasagi (2002)
changes in both the peak value and the profile contribute. This is evident from taking
integral moments of the equation for the mean flow (1.1). The zero-order moment,
which is a simple integral across the channel, gives the usual result that in a final
stationary state, the mean pressure gradient balances the effect of the combined mean
shear stress from the two walls, since the applied forcing exerts no net force on the
flow. The second moment yields

1
2
[τ (h) + τ (−h)] =

3µUB

h
− 3

2h2

∫ h

−h

x2(−ρu1u2) dx2 +
3

4h2

∫ h

−h

x2
2F1 dx2, (3.1)

where τ (±h) is the mean shear stress at the respective walls. The first term on the
right-hand side is equal to the corresponding drag for laminar flow for the given
flow rate UB . The contributions from the laminar drag and the mean Reynolds shear
stress, when scaled by ρu2

τ for the base flow, are denoted by KL and KT , respectively.
There is also a direct contribution of the forcing F1 in (3.1), that tends to reduce

the drag. This may be calculated from (2.2) and when scaled by ρu2
τ , is denoted by

KF . This contribution is

KF = −3

4

Iλ

πu2
τ

λ

h

(
2 − λ

h

)
. (3.2)

Overall, the balance for the normalized skin friction is

[τ (h) + τ (−h)]
/(

2ρu2
τ

)
= KL + KT + KF . (3.3)

At Reτ =135, the contribution from the forcing KF is significant. For λ+ = 13.5 and
I+ =0.073, KF = −0.045 and varies linearly with the forcing amplitude so that at
the largest forcing amplitude, I+ = 0.73, KF = −0.45. At this forcing amplitude, the
overall reduction in the normalized drag is 79 %, of which 45 % comes from KF and
only 34 % from the reduction in the value of KT . The effect of KF leads to a value
for the skin friction that is lower than that for laminar flow.

Figure 6 shows the variation of KT corresponding to the results in table 2. At this
Reynolds number, KT = 0.667 and KL = 0.333 in the absence of any forcing. For
λ+ = 13.5, there is a substantial reduction in the Reynolds stress component KT with
a clear minimum evident around I+ =0.365. For λ+ =18.9, the minimum for KT

occurs around I+ =0.109, but is less pronounced. The initial decrease of KT though
is somewhat faster than for λ+ = 13.5. This and the more significant contribution from
KF accounts for the comparable levels of drag reduction at these two length scales.
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Figure 6. Reynolds stress contribution KT to skin friction at Reτ =135 for λ+ = 13.5
(circles), λ+ = 18.9 (squares) and λ+ = 27 (triangles) for different amplitudes I+.
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Figure 7. Time history of the normalized skin friction at Reτ =633 with I+ = 0.513
(I = 0.4): (i) no forcing; (ii) λ+ = 7.0; (iii) λ+ =13.3; (iv) λ+ = 12.0.

For λ+ = 27, there is a minimal decrease KT at the lowest forcing amplitude, but
otherwise KT increases rapidly for larger amplitudes. The modest levels of reduction
in skin friction shown in table 2 for λ+ =27 are due to KF . There are competing effects
from KT , which tends to increase the skin friction, and KF , which scales linearly with
amplitude, tends to reduce the skin friction. These results overall show that for the
forcing to be effective in reducing turbulent contributions to the skin friction, the
length scale λ+ should be 20–25 or less.

At Reτ = 633, the general features are the same but the level of sustained reduction
in the turbulent drag is more significant. Figure 7 shows the initial time history
of the normalized skin friction. For λ+ = 12.0, there is a transient period with up
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Index Reτ I I+ λ λ+ Iλ/πu2
τ ReS �Drag

A1 135 0.02 0.073 0.1 13.5 0.31 28 −26 %
A2 135 0.03 0.109 0.1 13.5 0.47 43 −33 %
A3 135 0.1 0.365 0.1 13.5 1.57 143 −73 %
B1 192 0.04 0.116 0.064 12.3 0.45 34 −19 %
B2 192 0.06 0.174 0.064 12.3 0.68 51 −30 %
B3 192 0.08 0.232 0.064 12.3 0.91 69 −39 %
C1 380 0.1 0.18 0.034 12.9 0.74 62 −34 %
C2 380 0.15 0.27 0.034 12.9 1.11 92 −47 %
C3 380 0.2 0.36 0.023 8.7 1.00 38 −33 %
C4 380 0.2 0.36 0.034 12.9 1.48 123 −70 %
C5 380 0.2 0.36 0.036 13.7 1.57 147 −63 %
C6 380 0.2 0.36 0.04 15.2 1.74 201 −52 %
C7 380 0.2 0.36 0.05 19 2.18 393 −35 %
D1 633 0.4 0.513 0.011 7.0 1.14 28 −35 %
D2 633 0.4 0.513 0.017 10.8 1.76 103 −68 %
D3 633 0.4 0.513 0.019 12.0 1.96 141 −71 %
D4 633 0.4 0.513 0.021 13.3 2.17 192 −65 %

Table 3. Approximate long-term percentage reduction in turbulent drag from simulations at
Reτ = 135, 192, 380, 633, for various values of I and λ. ReS is defined in (4.2).

to 90 % drag reduction followed by sustained drag reduction of 70 %, whereas for
λ+ = 13.3 there is a larger transient, but a slightly lower level of the final sustained
drag reduction for the same level of the force amplitude. At this Reynolds number,
KL = 0.090 while KF = −0.055 for the results shown at λ+ = 12. The contribution KT

of the Reynolds shear stress to the skin friction balance (3.3) is now more significant
and the reductions in drag directly reflect the reductions in KT .

The evolution of the normalized drag following the start of the forcing shown in
figure 7 and in figures 4 and 5 is given in terms of t+. The time scale for the transient
adjustment period at Reτ = 633 is about t+ = 0–200 and thereafter is in equilibrium.
At Reτ = 135, there is a similar transient interval, measured in terms of t+ in figure 4,
although there is a longer-term fluctuation in the skin friction even for the base
flow.

A summary of results for a range of Reynolds numbers is given in table 3, cover-
ing Reτ = 135–633 for selected values of the forcing parameters. Reductions in the tur-
bulent drag on the channel walls of approximately 70 % may be achieved throughout
this range. As the Reynolds number is increased, the direct contribution of the forcing
to the drag balance (3.3) KF , given by (3.2) becomes less important. The optimal value
of λ+ is consistently in the range λ+ =12–14, even as the Reynolds number is varied.
The negative counter-stream portion of the streamwise force density then acts within
the region y+ < 7. This corresponds to the region in which the Reynolds stress gradient
of the base flow, shown in figure 1, is positive and increasing towards its maximum
value.

The forcing amplitude I and the Reynolds stress gradient term ∂u1u2/∂y have the
same dimensions and may be compared. In terms of wall variables, the maximum
Reynolds stress gradient shown in figure 1 is less than 0.07. The typical value of I+

required for drag reduction, as given in table 3, is substantially larger. At Reτ =135, for
case A1, I+ =0.073 yet a larger value of I+ = 0.365 is required for the stronger drag
reduction in case A3. At higher Reτ , the values of I+ are larger also. The integrated
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Figure 8. Mean velocity profiles U+, normalized with uτ of the base flow: (A) case A1;
(B) case B3; (C) case C4; (D) case D3. The solid line (S) represents the no-control case at
Reτ = 380.

negative contribution of the force density (2.2) retarding the near-wall flow is∫ λ/2

0

F1(y) dy = −ρIλ/π. (3.4)

Dimensionally, Iλ/π scales with u2
τ , or in terms of wall variables equals I+λ+/π,

and may be compared with the wall shear stress of the base flow. At Reτ = 135,
for case A3 this gives a corresponding value of I+λ+/π equal to 1.57. The preferred
combinations of I and λ at other Reynolds numbers give values of I+λ+/π in
the range 1 <I+λ+/π < 2 (table 3). In order to achieve the higher levels of drag
reduction, the magnitude of the retarding force required is thus comparable to the
wall shear stress of the base flow.

4. Flow modification
In this section, we consider the way in which the flow is modified by the streamwise

forcing, and specifically the factors limiting the higher levels of drag reduction and
some of the characteristics at lower forcing levels.

4.1. Mean velocity profile

The first consideration is the change in the mean flow and especially how this changes
in the near-wall region. Figure 8 shows the mean flow at several different Reynolds
numbers with the forcing applied. These profiles are compared to the mean velocity
of the base flow at Reτ =380, without forcing, and the mean velocity is scaled by uτ ,
corresponding to the flow with no forcing. For all the forced flows, the mean velocity
is markedly different from the standard profile. The gradient at the wall is reduced,
but the slope increases sharply away from the wall, consistent with the formation
of an inflection in the mean velocity profile. For case A1, based on λ+ = 13.5 and
I+ = 0.073 at Reτ = 135, the reduction in drag is 21 % and the change in the mean
velocity is less steep than for the other cases, whereas at Reτ = 633 (case D3) the
reduction in drag is 70 %.
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More revealing are the profiles for the mean velocity gradient (figure 9). In all the
forced flows shown, λ+ = 12–13.5 and correspond to significant levels of reduction
in skin friction. The formation of a strong shear layer centred at y+ = 6–7 is clearly
evident, with reduced mean shear both at the wall and beyond the shear layer, y+ > 12.
The peak value of the mean velocity gradient, given in terms of wall variables, increases
with higher levels of drag reduction and corresponding increases in Reynolds number
and forcing amplitude. If the turbulence is indeed strongly suppressed and there is
a purely laminar viscous response to the near-wall forcing in (1.1), then the result
would be a local additional component to the mean shear

∂U1

∂x2

=
Iλ

2πν

{
1 − cos

(
2πy

λ

)}
(4.1)

for 0 � y � λ, and zero otherwise. Here, as in (2.2), y denotes distance from the wall.
This has a maximum at y+ = λ+/2, with a peak additional mean shear of I+λ+/π
when scaled by wall variables. Referring back to the prior discussion of the forcing
levels, we can see that the observed peak value of (∂U1/∂x2)

+ at Reτ = 633 is close
to the value of I+λ+/π = 1.96 for this case (D3). Other factors contributing to this
near-wall maximum of the mean velocity gradient are the mean shear in response
to the pressure-driven flow, which tends to increase the peak value, whereas any
Reynolds shear stresses would tend to decrease the peak value.

4.2. Reynolds stresses

Profiles of the r.m.s. velocity fluctuations at Reτ = 380 for cases C2 and C4 are
compared in figure 10 with the results for the unforced flow. In both cases, λ+ = 12.9.
All three peak values of u′

1, u
′
2 and u′

3 are reduced. For the stronger forcing of case C4
(I+ = 0.36) the reduction is at least 40 %. For other cases at lower Reynolds numbers,
where the level of drag reduction is less, the reduction of the r.m.s. fluctuations is
smaller.

Figure 11 shows Reynolds stress profiles at Reτ =135 and 380. At the lowest simu-
lated Reynolds number, Reτ = 135, there are significant reductions in the Reynolds
shear stress, which are stronger as the forcing amplitude is increased. As shown in
(3.1), the change in wall drag depends on the integral moment KT of the Reynolds
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shear stress. Both a reduced peak value or a shift of the peak away from the wall will
act to reduce KT . We see that for case C4, at Reτ = 380, the peak value is reduced by
70 % and the location of the peak is shifted away from the wall. There is also a shift
in the peak Reynolds stress for case C2 (not shown), where I+ = 0.27. At the lower
forcing level, case C2, there is still a strong mean shear layer with a maximum mean
shear (∂U1/∂x2)

+ = 1.4.
Close to the wall, there is a significant variation in the Reynolds shear stress that

is sensitive to the value of the length scale λ of the streamwise forcing. Figure 12
shows the near-wall profiles at Reτ =380 for several values of λ+ with a fixed value of
I+ = 0.36. For case C4, where λ+ = 12.9, the Reynolds stress is substantially reduced
throughout the flow with a small local maximum at around y+ =8. If λ+ = 8.7 (case
C3), the drag reduction is much less, only 30 %, and the change in Reynolds stress
is smaller. For the somewhat larger value of λ+ = 13.7 (case C5), there is a strong
near-wall local maximum even though the Reynolds stress is reduced elsewhere. The
reduction in drag is also slightly less here, 67 % as opposed to 70 %.
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The same general features are repeated in figure 12 for Reτ = 633 with a fixed
forcing amplitude I+ = 0.513. Again the largest drag reduction, case D3 with λ+ = 12,
is associated with a greatly reduced overall Reynolds shear stress. There is a small
local maximum in the Reynolds stress near the wall. For the slightly larger length
scale λ+ =13.3, case D4, the near-wall maximum is much stronger and occurs at
approximately y+ = 7.5, within the shear layer.

This local increase in the near-wall Reynolds stress is linked to the formation of the
shear layer by the near-wall forcing. On the assumption of strong near-wall forcing,
we may estimate a local Reynolds number ReS for the shear layer using the estimated
mean shear given by (4.1). ReS is defined in terms of the level of mean shear and the
length scale λ as

ReS =
Iλ3

2πν2
. (4.2)

There is a strong cubic dependence of ReS on the value of λ. Values of ReS for the
different cases that have been computed are given in table 3. For case D3, ReS = 141
and a small peak forms in the Reynolds stress forms whereas for case D4, ReS = 192
and there is a strong local peak. Values of ReS in the range of ReS = 120–140 correlate
with changes in the near-wall response to the forcing and the formation of a local
near-wall peak in the Reynolds shear stress at other Reynolds numbers. At Reτ = 380,
the case C4 gives ReS =123, where only a small peak forms, whereas for the clear
near-wall peak of case C5, ReS =147.

At Reτ = 135 there is a similar response and for case A3, where ReS = 143, a near-
wall peak forms in the Reynolds stress (figure 11), comparable to that of case D3
(figure 12). The values of KT for the integral moment of the Reynolds stress shown
in figure 6 also follow the same pattern. KT takes its lowest value for case A3 when
λ+ = 13.5, and for λ+ = 18.9, the lowest value of KT shown corresponds to ReS = 117
at I+ =0.109. The next data point corresponds to ReS = 195. Similarly, for λ+ = 27,
at the lowest level of forcing I+ = 0.0365, ReS = 114 and there is a small reduction in
KT . For the other values of I+ shown, ReS > 170.

The level of drag reduction and reduction of the turbulent velocity fluctuations is
limited then by the value of ReS . Forcing at amplitudes I or length scales λ where ReS

exceeds 140 yields no further reductions and sets an upper limit. Taken together with
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the discussion at the end of the previous section, these conditions set a working range
for I and λ for which reductions in the turbulence may be expected. The sensitivity
of ReS to changes in λ means that even small changes can result in ReS exceeding
the threshold. The level of drag reduction does not necessarily change dramatically
as is evident by comparing cases C4 and C5 or D3 and D4. The increase in Reynolds
stress that occurs initially for ReS > 140 is confined locally to a region near the wall
and extends about 15 wall units or less. The overall change in the Reynolds stress
moment KT is relatively small and so too is the change in skin friction (3.3).

4.3. Vorticity fluctuations and instantaneous flow features

The r.m.s. vorticity fluctuations also exhibit significant near-wall variations when the
streamwise forcing is applied. Figure 13 shows profiles of the vorticity fluctuations of
both the base flow and the forced flows, cases C4 and C5, at Reτ = 380. At the wall,
the spanwise component ω′

3 has the largest fluctuation levels, which are associated
with the fluctuations in the streamwise component of the wall-shear stress. This is
substantially reduced for case C4 as is ω′

1 and the wall-normal component ω′
2, where

the latter goes to zero at the wall because of the no-slip flow condition. With the
forcing there is a simple, local maximum of ω′

2 at around y+ = 8, closer to the wall
than in the unforced flow. There is also a more pronounced local maximum in ω′

1

at around y+ = 8. The case C5, where λ is slightly larger, has significantly increased
vorticity fluctuations near the wall, while the fluctuations are all reduced for y+ > 20.

These results at ReS = 123 and ReS = 147, respectively, for cases C4 and C5 may
be compared with those at a lower forcing amplitude, case C2, where ReS = 92. The
three components of the r.m.s. vorticity fluctuations are shown in figure 14 and may
be compared with those in figure 13. All three components are significantly lower
than for the base flow and do not exhibit any near-wall peaks. The spanwise vorticity
fluctuations ω′

3 are reduced overall, but are relatively stronger for y+ < 10.
The changes in the turbulence due to the near-wall forcing are more evident from

a visualization of the instantaneous flow vorticity. This is done using the second
invariant Q for the velocity gradient, Q =(∂ũi/∂xj )(∂ũj /∂xi). A contour plot of the
regions where Q+ < −0.0142 highlights the dominant vorticity structures in the flow.
The near-wall vortices are shown in figure 15 for a portion of the flow domain,
comparing the base flow with the forced flow C4 at Reτ = 380. The formation of vortex
loops lifting away from the wall is completely suppressed with the forcing applied.
Instead, there are regularly spaced spanwise structures within the region y+ < 20. The
standard turbulent processes near the wall are replaced by those characteristic of a
shear layer in transition. When λ+ is increased to 13.7, case C5, then the shear layer
begins to create its own three-dimensional turbulence structures. The corresponding
contour plot of Q+ for case C5 (see figure 16) shows increased turbulence, but the
vorticity-dominated features are still confined to the near-wall region, y+ < 50.

These features are again consistent with the formation of a local shear layer centred
just above the wall at y+ ∼ 6–7, driven by the streamwise forcing. It would appear
that case C4 corresponds to a near-optimal condition of marginal stability for the
local shear layer. The increase in ReS from 123 to 147 in case C5 leads to a transition
in the shear layer and the turbulence. The suppression of three-dimensional vortex
structures is less evident at lower forcing levels. Examination of a contour plot of Q+

for case C2 shows no obvious special features.
We examine the formation of low-speed streaks in the near-wall zone in figure 17,

where the contours for the instantaneous streamwise velocity for case C4 are compared
to those of the base flow. At y+ = 5, there is a predominance of low-speed (u1) fluid
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for the forced flow with elongation of the low-speed streaks. At y+ =10, there is
now an absence of low-speed fluid in the forced flow while the individual regions of
moderate- or faster-speed fluid are both longer and wider. Even at y+ = 30, outside
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of the shear layer and the spanwise structures seen in figure 15, there is again an
absence of low-speed fluid in the forced flow. This indicates that the usual processes
of exchange of high- and low-speed fluid between the near-wall region and the buffer
layer are greatly reduced by the presence of the shear layer.
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Figure 18 shows the instantaneous velocity fluctuations for u1 and u2 arranged as
a quadrant plot at y+ = 13.5 for the base flow and case A2 at Reτ =135. This plane
corresponds to the outer edge of the forcing. The fluctuations are scaled by uτ of
the base flow. As usual, there are strong contributions to the Reynolds shear stress
from both the second and fourth quadrants. The streamwise velocity flucutations
are comparable between the two cases; however, the u2 fluctuations are significantly
lower for the forced flow and show no large deviations. The reduction in the friction
velocity for case A2 is only 18 % and the changes in u2 are more significant than this.

At the higher Reynolds number of Reτ = 380, figure 19 shows a similar quadrant
plot of the instantaneous velocity u1, u2 fluctuations for cases C1 and C4 at y+ = 11.3.
For both cases, λ+ =12.9 and the plane is just within the region of flow forcing. There
are significant changes as I increases by a factor of two between the two cases shown.
The fluctuations for C1 are not that different from those of the base flow, while for C4
there is both a reduction in u2 fluctuations and a change in the relative contributions
of the quadrants to the Reynolds stress.

4.4. Velocity–vorticity correlations

When the amplitude I of the forcing is strong and the shear layer is clearly evident,
it is not difficult to see the changes in turbulence structure. At lower levels of I , there
may still be substantial reduction of the skin friction and changes in the turbulence
correlations. These may be more evident by considering the gradient of the mean
Reynolds shear stress rather than the Reynolds stress alone.

Changes to the gradient of the Reynolds shear stress can be linked to vorticity flux
terms. In general, the Reynolds stress gradient is

∂(uiuj )

∂xj

= −εijkujωk +
1

2

∂(ujuj )

∂xi

. (4.3)

As the channel flow is homogeneous in the streamwise and spanwise directions and
by selecting i = 1, we obtain

∂(u1u2)

∂x2

= −u2ω3 + u3ω2, (4.4)

where the terms u2ω3 and u3ω2 represent the vortex-transport and vortex-stretching
contributions, respectively. Profiles for the three terms in (4.4) are shown in figure 20,
comparing the results for cases C4 and C2 with that of the base flow. As the amplitude
I is increased, the peak of the Reynolds stress gradient is reduced and shifted towards
the wall. The vortex stretching term u3ω2 is also reduced and the minimum again
shifted towards the wall. For both, the most significant variations are confined to
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y+ < 30. The vorticity transport term u2ω3 is the wall-normal flux of spanwise vorticity
flucutations, which in the base flow extends over a wider range. Within the forced
shear layer, y+ < 13, this is not significantly altered. However the vortex transport is
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reduced significantly in the buffer layer and beyond, consistent with a reduction of
turbulent transport outside the shear layer.

The vortex-transport term u2ω3 has been identified by Jiménez & Pinelli (1999)
as an important part of the autonomous cycle of near-wall turbulence in a channel
flow at low to moderate Reynolds numbers. They separately filtered and reduced the
vortex-transport and vortex-stretching terms to determine how this would modify the
generation of near-wall streaks. They found that reducing the vortex-transport term
significantly reduced the streaks and the skin friction, whereas filtering the vortex-
stretching term u3ω2 had little effect. Our results point to other factors also being
involved.

5. Summary and discussion
We have presented an alternative technique for turbulent drag reduction, providing

an overview of the main observed features. The streamwise forcing leads to the
formation of a strong mean shear layer near each wall and reduces the mean velocity
gradient at the wall while shifting the maximum mean shear to y+ = λ+/2. For larger
forcing amplitudes, a maximum drag reduction of 70 % is observed with a very
large reduction of the Reynolds shear stress. Substantial drag reduction is achieved
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even for lower amplitudes. The streamwise forcing must be localized near the wall,
preferably with λ+ < 13–15. The dynamics of the mean shear layer are characterized
by the Reynolds number ReS . Below ReS ∼ 120, the turbulent Reynolds stresses are
uniformly reduced. In the approximate range ReS = 120–140, the shear layer gives
rise to a local increase in the Reynolds stress at the wall and begins to create its own
flow transition. For ReS > 140, more fully three-dimensional flow disturbances grow
locally at the shear layer, limiting further reductions in drag.

The same controlling force is also effective in reducing the stresses during the
transition process from laminar to turbulent flow. To this end, we have simulated
the transition process in a channel flow at Reτ = 135, starting from a laminar flow
field. In figure 21, we plot the history of the pressure gradient for the controlled
transition as well as the natural transition. In order to accommodate this transition,
a small amount of noise was added initially to the laminar field. We see that during
the transition there is an overshoot in the pressure drop (and correspondingly in the
wall shear stress), which is substantially higher than the asymptotic mean value in
the stationary state. However, the maximum peak in the controlled case is below the
level of the turbulent wall shear stress for the uncontrolled case.

The practical implementation of this method of drag reduction poses obvious
challenges. The first key issue is how to produce a retarding force within a distance
from the wall corresponding to (λ+/2) < 10. At high speeds (e.g. 20 m s−1), this physical
distance is less than 10 µm for a turbulent flow in water. On the other hand, the force
amplitudes used here are smaller by an order of magnitude than the force levels used
in turbulence control via travelling waves in Du & Karniadakis (2000). Ideally, the
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excitation force should have its maximum retardation away from the wall at about
y+ ≈ 4.

One approach might be to attempt to use an electromagnetic Lorentz force produced
by a combination of wall-mounted magnetic tiles and near-wall electric currents in
a conducting fluid such as seawater. Crawford & Karniadakis (1997) used Lorentz
forces to produce a positive, as opposed to negative, streamwise forcing of the flow
adjacent to the wall and observed an increase in the skin friction. The Lorentz force
has its maximum at the wall and decays exponentially to zero with distance from
the wall; therefore, it never reverses direction and thus the required pressure drop is
larger than otherwise. The second key issue is then to induce a positive streamwise
force away from the wall that counterbalances the retarding force in order to realize
the maximum possible drag reduction.

An example of the effect of a Lorentz type of force distribution applied at each of
the walls is

F1(x2) = −ρI{2 exp(−h/δ) cosh(x2/δ) − δ/h}, (5.1)

where locally near the wall the forcing decays on the length scale δ. This forcing exerts
no net force on the flow and there is a small, uniform positive force to compensate
for the negative force near each wall. Numerical results at Reτ = 135 show that for
I = 0.02 (I+ = 0.073) and δ/h= 0.017 (δ+ = 2.3) there is about a 13 % reduction in the
skin friction. For δ/h=0.04 (δ+ = 5.4), the skin friction is lower by 17 %. However,
if we consider the balance (3.3), we find that KF = −0.164 and −0.373, respectively,
for the two cases. Thus, the direct effect of the forcing KF accounts for the entire
observed drag reduction for δ+ = 2.3, and for δ+ = 5.4 there is an increase in the
turbulence. Indeed, the profile of the Reynolds shear stress shows just over a 20 %
increase for this case. From this we may conclude that a Lorentz type of streamwise
forcing of the flow will not be effective.

Finally, we comment on the power required to sustain the streamwise forcing and
the flow through the channel. The negative streamwise forcing adjacent to the wall,
in principle, extracts kinetic energy from the flow and the positive forcing further
away from the wall supplies energy to the flow. Overall there is a net power input
from the forcing that increases with the forcing amplitude. This will offset the power
savings from the drag reduction and the reduction in the mean pressure gradient. At
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Reτ = 135, with λ+ = 13.5 and I+ = 0.073 for case A1, the reduction in power required
for the pressure gradient is 26 % while the net power required for the forcing is 10 %
of the power input for the base flow, giving a total power savings of about 16 %.
This drops to 10 %, however, if the kinetic energy is not extracted by the negative
streamwise forcing. At Reτ = 380, case C4, there is an overall trade-off between the
70 % power savings from drag reduction and the power input for the forcing. This
becomes a net increase in power of 17 % if the kinetic energy is not recovered from
the flow by the negative portion of the streamwise force. At Reτ = 633, case D3, there
is a net increase in the power required. These estimates do not take into account
issues such as the efficiency of the force actuator.

These observations are not peculiar to this technique for drag reduction. Quadrio &
Ricco (2004) report comparable results for drag reduction through spanwise oscilla-
tions of the walls. They give a detailed analysis of the efficiency and power savings. An
intermittent forcing of the flow, or some other modification of the present technique,
would be required to generate power savings at higher Reynolds numbers. The
streamwise forcing is successful in reducing turbulence levels and this may be of value
of itself for noise-reduction applications. Note what happens to the power supplied
to the flow when the skin friction is reduced substantially. In both cases C4 and
D3, the drag was reduced by 70 %, the Reynolds shear stresses were greatly reduced
as was the overall turbulence production. A simple estimate shows that the direct
viscous dissipation of kinetic energy by the mean flow increases with the forcing
amplitude. Using (4.1) to calculate the additional viscous dissipation within the shear
layer, the ratio of the added dissipation rate to the power supplied by the mean
pressure gradient of the base flow ρu2

τUB is (3/8π2)(I+)2(λ+)3(uτ/UB). For case C4,
this is approximately 60 % and 90 % for case D3.

While we may speculate about the practical issues of implementing this stream-
wise forcing technique for drag reduction, the results presented raise interesting
fundamental issues about the interaction of an imposed near-wall shear layer with
the turbulence.
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