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a b s t r a c t 

Incompressible Navier-Stokes solvers based on the projection method often require an expensive numer- 

ical solution of a Poisson equation for a pressure-like variable. This often involves linear system solvers 

based on iterative and multigrid methods which may limit the ability to scale to large numbers of proces- 

sors. The artificial compressibility method (ACM) [6] introduces a time derivative of the pressure into the 

incompressible form of the continuity equation creating a coupled closed hyperbolic system that does not 

require a Poisson equation solution and allows for explicit time-marching and localized stencil numerical 

methods. Such a scheme should theoretically scale well on large numbers of CPUs, GPU’s, or hybrid CPU- 

GPU architectures. The original ACM was only valid for steady flows and dual-time stepping was often 

used for time-accurate simulations. Recently, Clausen [7] has proposed the entropically damped artificial 

compressibility (EDAC) method which is applicable to both steady and unsteady flows without the need 

for dual-time stepping. The EDAC scheme was successfully tested with both a finite-difference MacCor- 

mack’s method for the two-dimensional lid driven cavity and periodic double shear layer problem and a 

finite-element method for flow over a square cylinder, with scaling studies on the latter to large numbers 

of processors. In this study, we discretize the EDAC formulation with a new optimized high-order cen- 

tered finite-difference scheme and an explicit fourth-order Runge–Kutta method. This is combined with 

an immersed boundary method to efficiently treat complex geometries and a new robust outflow bound- 

ary condition to enable higher Reynolds number simulations on truncated domains. Validation studies 

for the Taylor–Green Vortex problem and the lid driven cavity problem in both 2D and 3D are presented. 

An eddy viscosity subgrid-scale model is used to enable large eddy simulations for the 3D cases. Finally, 

an application to flow over a sphere is presented to highlight the boundary condition and performance 

comparisons to a traditional incompressible Navier–Stokes solver is shown for the 3D lid driven cavity. 

Overall, the combined EDAC formulation and discretization is shown to be both effective and affordable. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Fluid flows of practical interest span the low Mach number in-

compressible regime to the high-speed compressible flow regime.

For the latter, the fully compressible Navier–Stokes equations are

the only option for prediction. For low-speed flows, numerical

stiffness due to disparities between the relatively fast acoustic

speed and the slow flow speed often results in numerical stabil-

ity problems, small time steps, and inefficient calculations. Tra-

ditionally, the most common recourse is to discretize and solve
∗ Corresponding author. 
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0045-7930/© 2017 Elsevier Ltd. All rights reserved. 
he incompressible form of the Navier–Stokes equations using a

redictor-corrector approach together with a Poisson equation for

 pressure-like variable. The extra cost of solving the Poisson equa-

ion at each time step is somewhat offset by the larger time step

hat can be employed. Optimizing the efficiency of the Poisson

olver is crucial to ensure the best performance of the solver. This

s because scalability of the algorithm on large numbers of proces-

ors essentially depends on the parallel scalability of the method

sed to solve the system of linear equations. Some applications

till require the use of a compressible solver, even though the flow

s mostly low speed. This happens when aeroacoustics is of inter-

st, or for example in high angle of attack low speed aerodynam-

cs where localized shocks can occur. In this case, preconditioning

ethods can be used [32] . The goal here is to improve the con-

http://dx.doi.org/10.1016/j.compfluid.2017.03.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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ition number of the system of equations before starting the com-

utation, allowing a relaxation of the time step constraint and thus

mproving the efficiency of the overall solver. 

In 1967, Chorin [6] proposed a new method called the Ar-

ificial Compressibility Method (ACM) to solve low speed flows.

his method is based on a modified version of the incompress-

ble Navier–Stokes equations where a time derivative of the pres-

ure is introduced into the continuity equation, hence obviating

he need for a Poisson solver. Upon convergence of the solution to

teady state, the time derivative of the pressure vanishes and the

olution satisfies the original incompressible Navier–Stokes equa-

ions. As a result of this formulation, this approach was at first

imited to steady flows only. In 1977, Steger et al. [31] employed

his approach to efficiently simulate 2D and 3D vortex wake flows.

n 1978, Hafez et al. [16] demonstrated good performance and

ccuracy for transonic flow over an airfoil using a modified ver-

ion of the ACM. In 1985, Choi et al. [5] compared ACM and low

ach number approximation to solve steady low speed flows. They

howed that in 2D an optimized preconditioning is necessary for

he low Mach number formulation to be as efficient as the ACM

n terms of convergence rate. In 1988, Hartwich et al. [17,18] used

CM to study 3D sharp edged delta wings at different angle of at-

acks. The algorithm was implemented using high-order flux re-

onstruction schemes that allowed for accurate predictions of the

erformance of the airfoil when compared to experimental data.

imilarly, Kwak et al. [20] studied 3D space shuttle engine power

ead using ACM on a 3D curvi-linear mesh. All the applications

ited until now were limited to steady flows. 

For application to unsteady flows, a pseudo-time derivative

 / ∂ τ is added to the continuity and momentum equations. Hence,

here are now two time derivatives in the momentum equation:

he actual time and the pseudo-time. For each physical time step,

he solution is advanced in pseudo-time until convergence to the

teady-state, and hence incompressible solution. This results in an

terative process for each time step until the pseudo-time deriva-

ive vanishes. This approach was used successfully for many ap-

lications over the past 20 years [4,26,28] . In 2006, Madsen et al.

23] discussed the efficiency and accuracy of this approach. Indeed,

n artificial parameter β was introduced in the equations, control-

ing the rate of convergence of the solution to steady state. It was

hen possible to converge faster to the incompressible solution, but

ot without affecting the accuracy of the overall solution. It is then

ery important to select the value of β carefully to obtain the best

fficiency while maintaining a desired level of accuracy. This ap-

roach is still widely used for simulations of unsteady 3D flows

33] . 

Recently, Clausen [7] proposed an alternative approach to solve

he ACM equations for unsteady flows without using a dual time

tepping approach. This method is called Entropically Damped

orm of the Artificial Compressibility (EDAC) method and is derived

irectly from the compressible Navier–Stokes equations and uses

hermodynamic relationships to obtain an equation for pressure.

t assumes an isentropic behavior of the flow and the pressure

quation is obtained by minimizing density fluctuations. In [7] , the

DAC scheme was successfully tested using both a finite-difference

acCormack’s method for the two-dimensional steady lid driven

avity and unsteady periodic double shear layer problem, and a

nite-element method for flow over a square cylinder. Scaling of

he finite-element method based solver on a large number of pro-

essors was also shown to be very good due to the absence of an

terative process, even for unsteady flows. 

In the present paper, the EDAC formulation is discretized by

ombining a new family of optimized high-order finite-difference

chemes for spatial discretization on structured Cartesian grids

22] with the classic fourth-order Runge–Kutta scheme for explicit

ime stepping. For non-Cartesian geometries a mirroring immersed
oundary method (IBM) [25] is utilized and for turbulent flows an

ddy viscosity based subgrid-scale model (SGS) is used to enable

arge eddy simulations (LES). In addition, to enable simulations on

ighly truncated domains, a new robust outflow boundary condi-

ion for incompressible flows [10] is implemented and tested. All

hese numerical methods were chosen to obtain a simple and ef-

cient incompressible Navier–Stokes solver. Indeed, the EDAC for-

ulation allows for low-speed flow without the need of a stag-

ered grid or the use of an iterative method to solve the Poisson

quation for a pressure-like variable. This results in a simpler im-

lementation of the algorithm as well as a highly scalable solver

n a large number of processors. The use of IBM enable simu-

ations of complex geometries while maintaining a simple struc-

ured Cartesian mesh needed to implement high-order finite dif-

erence schemes. Similarly, the boundary condition by Dong et al.

10] enables shorter computational domains, hence reducing the

umber of grid points needed for the simulations. In what follows,

he mathematical formulation and numerical discretization of the

overning equations is presented in detail. The solver is then used

or classical 2D studies of the Taylor-Green vortex (TGV), the peri-

dic double-shear layer, and lid-driven cavity problems. This is fol-

owed by extension to the 3D TGV problem and the 3D lid-driven

avity problem to test the LES model. Finally, an application for 3D

ow over a sphere at different Reynolds numbers is presented and

fficiency of the solver is assessed by comparisons to results from

 traditional incompressible Navier–Stokes solver. 

. Methods 

.1. Governing equations 

The non-dimensional form of the entropically damped artificial

ompressibility formulation of Clausen [7] is: 

∂u i 

∂t 
+ u j 

∂u i 

∂x j 
= − ∂ p 

∂x i 
+ 

1 

Re 

∂τi j 

∂x j 
(1) 

here u i is the i th component of the velocity vector, x i is the i th

patial coordinate, p is the pressure, Re is the Reynolds number,

nd τ ij is the viscous stress tensor. Typical projection methods re-

uire solving a Poisson equation for the pressure. EDAC employs

n entropy balance to close the system of equations. Assuming an

sentropic behavior and minimizing density fluctuations, the EDAC

quation for pressure is: 

∂ p 

∂t 
+ u i 

∂ p 

∂x i 
= − 1 

M 

2 

∂u i 

∂x i 
+ 

1 

Re 

∂ 2 p 

∂ x i ∂ x i 
(2) 

here M is the Mach number. More details and discussions about

he mathematical derivation of Eq. (2) can be found in [7] . In all

he results presented in this study, the divergence of the veloc-

ty was no larger than 0.2 locally, with a spatially averaged value

ower than 10 −4 . 

.2. Turbulence modeling 

For 3D studies of transitional or turbulent flows, the low-pass

patially-filtered EDAC equations are solved enabling LES. Hence,

nly the large-scale flow features are resolved on the grid and ef-

ects of the unresolved small-scales on the large-scales are mod-

led using an eddy viscosity SGS model. The closed filtered EDAC

quations are: 

∂ ̃  u i 

∂t 
+ 

˜ u j 

∂ ̃  u i 

∂x j 
= − ∂ ̃  p 

∂x i 
+ 

1 

Re 

∂ ̂  τi j 

∂x j 
(3) 

here ˆ τi j contains the filtered viscous stresses ˜ τi j and the SGS ten-

or ( τ ij ) SGS : 

ˆ i j = ˜ τi j − (τi j ) SGS (4) 
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Employing an eddy viscosity based SGS model yields [27] (
τi j 

)
SGS 

= −2 νT S i j (5)

where 

S i j = 

1 

2 

(
∂ ̃  u i 

∂x j 
+ 

∂ ̃  u j 

∂x i 

)
(6)

The eddy viscosity νT is specified in terms of gradients of the

filtered velocity field according to the Vreman model [30] . This

model is easy to implement, efficient to use, and applicable to fully

inhomogeneous turbulent flows [1,8,9,30] . Following Clausen, the

convective derivative in the pressure equation is neglected as small

and the filtered pressure equation is simply: 

∂ ̃  p 

∂t 
= − 1 

M 

2 

∂ ̃  u i 

∂x i 
+ 

1 

Re 

∂ 2 ˜ p 

∂ x i ∂ x i 
(7)

2.3. Numerical methods 

The filtered EDAC Eqs. (3) and (7) are first written in the fol-

lowing conservative vector form: 

∂ U 

∂t 
+ 

∂ F 

∂x 
+ 

∂ G 

∂y 
+ 

∂ H 

∂z 
= S (8)

where 

U = 

⎡ 

⎢ ⎣ 

˜ p 
˜ u 

˜ v 
˜ w 

⎤ 

⎥ ⎦ 

(9)

F = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 

Re 

∂ ̃  p 

∂x 

˜ u 

2 + 

˜ p − ˆ τxx 

˜ u ̃

 v − ˆ τxy 

˜ u ̃

 w − ˆ τxz 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(10)

G = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 

Re 

∂ ̃  p 

∂y 

˜ u ̃

 v − ˆ τyx 

˜ v 2 + 

˜ p − ˆ τyy 

˜ v ̃  w − ˆ τyz 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(11)

H = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 1 

Re 

∂ ̃  p 

∂z 

˜ u ̃

 w − ˆ τzx 

˜ v ̃  w − ˆ τzy 

˜ w 

2 + 

˜ p − ˆ τzz 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(12)

S = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ p − 1 

M 

2 

(
∂ ̃  u 

∂x 
+ 

∂ ̃  v 
∂y 

+ 

∂ ˜ w 

∂z 

)

˜ u 

(
∂ ̃  u 

∂x 
+ 

∂ ̃  v 
∂y 

+ 

∂ ˜ w 

∂z 

)

˜ v 
(

∂ ̃  u 

∂x 
+ 

∂ ̃  v 
∂y 

+ 

∂ ˜ w 

∂z 

)

˜ w 

(
∂ ̃  u 

∂x 
+ 

∂ ̃  v 
∂y 

+ 

∂ ˜ w 

∂z 

)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(13)

The semi-discrete form of Eq. (8) is temporally integrated us-

ing the classic 4 th −order explicit Runge–Kutta scheme. In order to
nable accurate resolution of high-frequencies on relatively coarse

rids, while maintaining low numerical dissipation, the newly de-

eloped optimized high-order centered finite-difference schemes

f Linders et al. [22] are used. According to this scheme, first

erivatives are discretized as: 

∂u 

∂x 

)
i 

+ O(�x 2 p ) = 

1 

�x 

p+ n ∑ 

k =1 

a k ( u i + k − u i −k ) (14)

In all the results in this paper, the 4th-order accurate version of

he family of schemes is used where p = 2 , n = 4 and the scheme

oefficients are: 
 

 

 

 

 

 

 

 

a 1 

a 2 

a 3 

a 4 

a 5 

a 6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 896 607046 646854 

−0 . 320910877852970 

0 . 119465303396051 

−0 . 037162191039544 

0 . 008242459236975 

−0 . 0 0 0957455525961 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(15)

More details, discussions and proofs regarding these new finite-

ifference schemes can be found in [22] . In order to reduce high-

requency spurious oscillations, a 4th-order spatial filter [2] is ap-

lied to the primitive variables after each time step as shown: 

φ f ilt 

)
i 
= φi + 0 . 1 

( 

6 ∑ 

k =1 

b k ( φi + k + φi −k ) + b 0 φi 

) 

(16)

ith 

 

 

 

 

 

 

 

 

 

 

 

b 0 

b 1 

b 2 

b 3 

b 4 

b 5 

b 6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 190899511506 

−0 . 171503832236 

0 . 123632891797 

−0 . 069975429105 

0 . 029662754736 

−0 . 008520738659 

0 . 001254597714 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(17)

This filter removes high frequency oscillations but leaves the

ower frequencies intact. It is 13 points wide, which is the same

s the stencil used for the first derivative. Further, it is optimized

o filter wave numbers larger than pi/2, which is desired since the

cheme used to compute the first derivative accurately resolves

ave numbers up to precisely pi/2 but no further. Fig. 1 shows the

erformance of the optimized centered scheme with and without

ltering, and compared to a regular 4th order centered scheme. For

his test, the advection equation is solved: 

∂u 

∂t 
+ 

∂u 

∂x 
= 0 (18)

n a [0; 5] domain with a Gaussian pulse initial condition: 

 (x, t = 0) = exp 
(
−3200 × (x − 0 . 5) 2 

)
(19)

We can see that the 4th order scheme (black) shows high os-

illations near the pulse and downstream as well. When using 4th

rder filtering (green), the oscillations are reduced downstream of

he pulse, but are still very present near the pulse. On the other

and, the optimized centered scheme (blue) shows a much better

greement with the exact solution. Only some oscillations are seen

ownstream of the pulse. After applying filtering (orange), the os-

illations downstream of the pulse disappear. These 1D results mo-

ivate the use of the optimized centered scheme with filtering for

he rest of the current study. Near the boundaries of the compu-

ational domain as well as in the vicinity of the immersed body

or the fluxes, a fourth order one sided finite difference scheme is

sed to avoid use of extra layers of ghost points. Finally, the vis-

ous terms are computed by applying twice the centered scheme

or first order derivatives. 
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Fig. 1. Comparison of centered schemes for the Gaussian pulse problem (t = 4). 
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.4. Immersed boundary method 

In order to efficiently simulate flows over or through non-

artesian geometries a mirroring immersed boundary method

IBM) is used [25] . This IBM has been widely used and validated

n our previous studies for a number of internal and external flows

1,8,9] . 

.5. Boundary conditions 

To further enhance numerical efficiency, in particular for ex-

ernal flows on highly truncated computational domains, a newly

eveloped robust energy-stable outflow boundary condition is im-

lemented [10] . Traditionally the use of homogeneous Neumann

oundary conditions for velocity and pressure require the compu-

ational domain length to be linearly proportional to the Reynolds

umber for stability. This results in a more expensive simulation

ince the flow near the outflow is often damped or discarded.

any previous studies have attempted to address this issue [29] .

ollowing the approach of Dong et al. [10] , the boundary condition

or the pressure at the outlet plane is: 

˜ p n + 

1 

Re 
n . ∇ ̃  u −

(
1 

2 

| ̃  u | 2 S 0 ( n . ̃  u ) 
)

n = 0 (20)

ith 

 0 ( n · ˜ u ) = 

1 

2 

(
1 − tanh 

(
n · ˜ u 

U 0 δ

))
(21) 

here n is the outward pointing normal unit vector, U 0 is the char-

cteristic velocity scale, and δ is a small enough positive constant.

n the current study, we used U 0 = 1 and δ = 1 / 20 . This formu-

ation compensates for any influx of kinetic energy through the

utlet plane. The term 

(
1 
2 | ̃  u | 2 S 0 ( n · ˜ u ) 

)
n represents the kinetic en-

rgy entering the domain and it is balanced by the effective stress

˜ p n + 

1 
Re n . ∇ ̃  u on the outlet plane. Similarly an equation for the

elocity gradient at the outlet plane can be derived: 

 . ∇ u = Re 

(
p n + 

1 

2 

| u | 2 S 0 ( n . u ) n − 1 

Re 
( ∇ . u ) n 

)
(22) 

More details about the derivation of the formulation and vali-

ation results can be found in [10] . 
. Results 

.1. 2D Taylor–Green Vortex (2D TGV) 

In order to estimate the order of accuracy of the hybrid scheme,

redictions of the 2D TGV are compared to the analytic solution.

he initial condition and exact solution for u, v and p are: 

u (x, y, t) = 1 − cos (x − t) sin (y − t) e −2 t/Re 

v (x, y, t) = 1 + sin (x − t) cos (y − t) e −2 t/Re (23) 

p(x, y, t) = −1 

4 

( cos (2(x − t)) + cos (2(y − t)) ) e −4 t/Re 

The computational domain is a [0, 2 π ] 2 periodic square and

e = 100 . To estimate the order of accuracy of the solver, com-

arisons between the numerical and analytical solutions were per-

ormed after 10 time steps by computing the L 2 norm of the error

s follow: 

 2 = 

√ √ √ √ 

1 

N x × N y 

Ny ∑ 

j=1 

Nx ∑ 

i =1 

(
(u i j ) analytical − (u i j ) 

)2 
(24) 

The kinetic energy decay as a function of time is shown in

ig. 2 . The agreement between the analytical and numerical re-

ults is excellent. The L 2 norm of the error for different grid sizes

s shown in Fig. 2 -b, where the slope of the curve is very close to

(−4) , confirming the global spatial order of accuracy of the solu-

ion. 

.2. 2D Double Shear Layer (2D DSL) 

In order to assess the role of numerical dissipation in the solver

nd its ability to resolve sharp spatial gradients at low resolutions,

he case of the 2D double shear layer (DSL) is considered. The 2D

SL initial conditions are: 

 (x, y ) = tanh ( 80 × ( y − 0 . 25 ) ) (y ≤ 0 . 5) 

 (x, y ) = tanh ( 80 × ( 0 . 75 − y ) ) (y > 0 . 5) (25) 

v (x, y ) = 0 . 05 × sin ( 2 π( x + 0 . 25 ) ) 

The computational domain is a [0, 1] 2 square periodic domain

nd Re = 10 0 0 0 . Typically, for this case, under-resolved or highly

issipative simulations produce spurious secondary braid vortices

hich result in an early breakdown of the shear layer [24] . Con-

our plots of vorticity are shown in Fig. 3 at t = 1 for two different
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(a) Normalized kinetic energy versus time. (b) L2 norm of the error between numeri-

cal and analytical solutions. The 4th order

accuracy can be clearly seen.

Fig. 2. Validation and accuracy study of the developed solver. 

(a) 64 × 64 points. (b) 128 × 128 points.

Fig. 3. Contour plots of vorticity at t = 1 for the 2D double shear layer. 
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grid resolutions. Secondary vortices in the braid region are seen to

form in Fig. 3 -a corresponding to the 64 × 64 grid due to lack of

resolution. In contrast, Fig. 3 -b for the 128 × 128 grid shows no

evidence of spurious vortices. Hence, the scheme is able to capture

these strong velocity gradients on this relatively coarse grid com-

pared to previously published studies which required finer grids

[7,19,24] . 

3.3. 2D Lid-Driven Cavity (2D LDC) 

In order to consider wall-bounded flows, the classic 2D lid-

driven cavity problem is studied here for a range of different

Reynolds numbers Re ( Re = 40 0 , 10 0 0 , 320 0 , 50 0 0 , 10 0 0 0 ). For all

cases the computational domain is a unit square and a 256 × 256

uniformly spaced grid is used. The simulations are run until steady

state is achieved. Steady-state streamlines are shown in Fig. 4 for

all cases and demonstrate that the solver captures both primary

and secondary corner vortices well. As the Reynolds number keeps
ncreasing, the flow becomes more chaotic and smaller pockets of

ecirculating flow can be seen ( Fig. 4 -e). The results are quantita-

ively compared with the classic numerical data set of Ghia et al.

15] as shown in Fig. 5 . Fig. 5 -a and b show perfect agreement

or low Reynolds numbers. Fig. 5 -c–e show that the flow becomes

ore and more chaotic resulting in sharp velocity gradients near

he walls and yet excellent agreement is maintained. 

.4. 3D Taylor Green Vortex (3D TGV) 

For the 3D TGV case, the computational domain is a [ −π, π ] 3 

eriodic cube with initial conditions: 

u (x, y, z) = sin (x ) cos (y ) cos (z) 

v (x, y, z) = cos (x ) sin (y ) cos (z) (26)

 (x, y, z) = 0 

p(x, y, z) = p 0 + 

1 

( cos (2 x ) cos (2 y ) cos (2 z) + 2 ) 

16 
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(a) Re = 400. (b) Re = 1000.

(c) Re = 3200. (d) Re = 5000.

(e) Re = 10000.

Fig. 4. 2D Lid-Driven cavity. u-velocity contour with selected streamlines inside the cavity. 
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For adequate resolution and numerical accuracy, these initial

ortices will interact and breakdown with time to form a turbu-

ent flow. Comparisons can be made to direct numerical simulation

DNS) data from previous published studies [3] . Fig. 6 -a shows the

nitial vortices inside the cubical computational domain. The sim-

lations are run on a 128 3 grid with Re = 1600 and the Vreman

GS model is used enabling LES. As the simulation progresses, the

ortices interact with each other and eventually break down into

maller scales resulting in a near-homogeneous turbulent state.

ig. 6 -b shows smaller-scale vortices at t = 10 . The kinetic energy

ecay rate from the present EDAC-based LES ( Fig. 7 -a and b) com-

ares well to the DNS data of Brachet [3] . Specifically, on this rel-

tively coarse grid, the results do not show an over-prediction of

he decay, confirming the low level of numerical dissipation of the
olver. 
v  

w  
.5. 3D Lid-Driven Cavity (3D LDC) 

Here the 3D LDC case at Re = 120 0 0 is considered. A unit cube

omputational domain is discretized with an 80 3 grid. The Vreman

GS model is used enabling LES. No-slip boundary conditions are

sed on all but the top face where the wall velocity is specified as

21] : 

 (x, 1 , z) = 

(
1 − (x − 1) 18 

)2 (
1 − (z − 1) 18 

)2 
(27)

The LES results are compared to DNS data from Leriche et al.

21] and are used to assess accuracy of the numerical scheme, as

ell as the SGS turbulence model. Fig. 8 -a depicts a snapshot of

ortical structures within the cavity at t = 100 . The solver is clearly

apable of capturing a wide range of vortical structures with high

orticity magnitude near the top wall and near the left surface

here the impact of the moving wall is the strongest. Fig. 8 -b
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(a) Re = 400. (b) Re = 1000.

(c) Re = 3200. (d) Re = 5000.

(e) Re = 10000.

Fig. 5. 2D Lid-Driven cavity. Comparisons between current results and DNS data from Ghia et al. 
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shows very good agreement for mean velocity profiles between the

LES (averaged over 10 0 0 time units) and the DNS data. 

3.6. 2D flow over a cylinder 

To test the solver using the IBM and the energy-stable outflow

boundary condition [10] , 2D flow over a cylinder at Re = 1500 on

a severely truncated domain is first considered. The computational

domain is [ −2 D, 2 . 5 D ] × [ −2 . 5 D, 2 . 5 D ] and is discretized using a

uniform 90 × 128 grid. The cylinder is placed inside a channel,

resulting in no slip boundary condition on the top and bottom

boundaries. Instantaneous vorticity contour plots at several times

are shown in Fig. 9 . The results shown on the left column were

obtained using a standard homogeneous Neumann boundary con-
ition at the outlet whereas the results on the right column were

btained using the energy-stable outflow boundary condition from

ong et al. At the beginning of the simulations ( Fig. 9 -a–d), the

wo methods show similar solutions, the outlet boundary not af-

ecting the upstream solution at this point since no vortex has

rossed the outlet plane yet. At a later time ( Fig. 9 -e and f), the two

olutions are very different. The results obtained using the energy-

table outflow boundary condition show a typical vortex shedding

ithout any re-circulation or inflow coming from the outlet plane.

n contrast, the case with the Neumann boundary condition, clearly

hows some back-flow at the outlet, which affects the upstream

ow and considerably alters the solution. This phenomenon only

ets worse with time resulting in additional back-flow at the out-

et ( Fig. 9 -g) and eventual numerical instability of the solver. This is
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(a) Iso-surface of λ2 colored by vorticity

magnitude (t = 0).

(b) Iso-surface of λ2 colored by vorticity

magnitude (t = 10).

Fig. 6. 3D Taylor–Green vortices. Vortical structures. 

(a) Decay of kinetic energy compared to

DNS data of Brachet.

(b) Kinetic energy decay rate compared

to DNS data of Brachet

Fig. 7. 3D Taylor–Green vortices. Comparison of kinetic energy decay predicted by the current EDAC solver (black line) with DNS data of Brachet (Red dots). (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the web version of this article.) 

(a) Iso-surface of λ2 colored by vorticity

magnitude (t=100).

(b) Comparison between current predic-

tions and DNS data.

Fig. 8. 3D Lid-Driven cavity. Vortical structures and comparisons with DNS data (Leriche et al. [21] ). 
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(a) Homogeneous

Neumann BC

(t = t0).

(b) Dong et al

outflow BC (t =

t0).

(c) Homogeneous

Neumann BC

(t = t1).

(d) Dong et al

outflow BC (t =

t1).

(e) Homogeneous

Neumann BC

(t = t2).

(f) Dong et al

outflow BC (t =

t2).

(g) Homogeneous

Neumann BC

(t = t3).

(h) Dong et al

outflow BC (t =

t3).
33

Fig. 9. 2D cylinder on a truncated domain. Out of plane vorticity. 

 

 

 

 

 

 

(a) Out of plane vorticity at a centerplane of the domain

(y=0). Re = 200.

(b) Comparison between current predic-

tions and DNS data from Fadlun et al.

Re = 200.

(c) Iso-surface of λ2 colored by vorticity magnitude. Re = 1500.

Fig. 10. 3D flow over sphere (laminar and turbulent). 
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not observed with the other boundary condition ( Fig. 9 -h): the vor-

tices that are generated by the presence of the cylinder are leaving

the computational domain without affecting the rest of the flow,

keeping the solution stable. These two simulations validate the im-

plementation of the energy stable outflow boundary condition, and

show its positive effect on the stability of the solution. This feature
s critical when trying to improve the computational efficiency of

he solver. 

.7. 3D flow over a sphere 

Finally, 3D flow over a sphere at Re = 200 and at Re = 1500

re considered. For both cases, the computational domain size is

 −4 D, 25 D ] × [ −3 D, 3 D ] × [ −3 D, 3 D ] and is discretized using a 200

100 × 100 uniform grid. The results are shown in Fig. 10 . Fig. 10 -

 shows the out-of-plane vorticity along the y = 0 slice for the

e = 200 case where the flow is laminar and steady and the vortic-

ty shows top-bottom symmetry in this plane. Fig. 10 -b shows very

ood agreement between the current numerical predictions for C p 
t the surface of the surface with the DNS data of Fadlun et al. [11] .

his validates the implementation of the IBM in the context of the

DAC formulation. Fig. 10 -c shows an iso-surface of λ2 colored by

orticity magnitude for the sphere case at Re = 1500 . The solver

aptures the complex wake structure downstream of the sphere in-

luding hairpin-like structures near the sphere which break down

urther downstream. 
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(a) Scaling of the solver with a constant

number of grid points or a constant load.

(b) Comparison of the efficiency be-

tween the developed EDAC solver and

a traditional predictor / corrector ap-

proach.

Fig. 11. Performances of the developed solver. 
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.8. Algorithm efficiency assessment 

In order to assess the computational efficiency of the overall

olver, several tests were run. First, the scalability of the solver was

tudied for the 3D LDC problem. It is parallelized using Message

assing Interface (MPI). Fig. 11 -a shows the scalability for two dif-

erent tests: in black we can see the scalability of the solver when

he number of total grid points is maintained constant (51.2 mil-

ions) and the number of processors varies. It can be seen that the

olver scales linearly with performances close to the ideal scalabil-

ty. In red we can see that scalability of the solver when the load of

ach processor is maintained constant. Once again it can be seen

hat the performance of the solver stays very good, even as the

umber of processors increases up to 10 0 0. 

Now, comparisons are also made to a traditional predic-

or/corrector incompressible Navier–Stokes code. The exact same

umerical methods are used in this new solver as in the EDAC

olver. Both solvers are parallelized using Message Passing Inter-

ace (MPI) and the Poisson equation in the predictor/corrector in-

ompressible code is solved using the Hypre library [12–14] . Both

olvers showed linear scaling on up to 800 processors. The effi-

iency comparison between the two solvers is carried out for the

D LDC problem on 512 processors. The simulation speed up is de-

ned as: 

peedup = 

(t 1 s ) pred/correc − (t 1 s ) EDAC 

(t 1 s ) pred/correc 

(28) 

here ( t 1 s ) EDAC is the computational time to reach 1 s of simulation

sing the EDAC code and ( t 1 s ) pred / correc is the computational time

o reach 1 s of simulation using the predictor/corrector code. The

esults are shown in Fig. 11 -b where speed up versus grid size is

ompared. It is clear that on a 64 3 grid, the EDAC code is about

0% faster than the predictor/corrector solver. As the grid size in-

reases, the speed up of the solver deceases slightly to around 27%

or the 128 3 grid, 23% for the 256 3 grid, and 15% for the 1024 3 . The

mproved performance of the EDAC code is primarily due to avoid-

nce of the Poisson solver, which makes the computation time per

ime step much smaller even though the global time step has to be

lightly reduced for stability reasons. As the number of grid points

ncreases, the time step used in the EDAC solver had to be reduced

aster than for the incompressible solver, which affects the overall
peed up. But the drop in efficiency is only seen for very large grid

around a billion point mesh), making this approach suitable for

ractical applications. Moreover, the advantage of the EDAC formu-

ation for simulations of incompressible flows is the fact that no el-

iptic equations need to be solved, making parallel implementation

asier. The use of hybrid grids such as Adaptive Mesh Refinement

AMR), curvilinear meshes or multiple resolution by block is also

acilitated. In conclusion, the EDAC formulation when combined

ith numerical methods selected for this study demonstrate a rel-

tively simple, efficient, and accurate incompressible flow solver. 

. Conclusion 

An efficient algorithm was implemented for the simulation of

aminar and turbulent incompressible internal and external flows.

n inherently unsteady and stable version of the ACM, from

lausen [7] was used. This avoids the need for a Poisson solver or

ual-time stepping resulting in a very efficient numerical scheme.

patial discretization on structured Cartesian grids was achieved

sing recent high-order centered finite-difference schemes opti-

ized for simulating flows featuring a wide range of wave num-

ers. For non-Cartesian geometries a mirroring immersed bound-

ry method was used. For turbulent flows, an eddy viscosity based

ubgrid-scale modeled was used to enable large eddy simulations.

or external flows, a recent energy stable outflow boundary con-

ition was used enabling stable high Reynolds number simula-

ions on highly truncated domains. Both 2D and 3D periodic, in-

ernal, and external flows were simulated and compared to pre-

iously published data for validation. The results show excellent

igh-resolution capability on relatively coarse grids. 
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