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The dynamics of homogeneous, isotropic turbulence seeded with finite sized particles or bubbles is inves-
tigated in a series of numerical simulations, using the force-coupling method for the particle phase and
low wavenumber forcing of the flow to sustain the turbulence. Results are given on the modulation of the
turbulence due to massless bubbles, neutrally buoyant particles and inertial particles of specific density
1.4 at volumetric concentrations of 6%. Buoyancy forces due to gravity are excluded to emphasize finite
size and inertial effects for the bubbles or particles and their interactions with the turbulence. Besides
observing the classical entrapment of bubbles and the expulsion of inertial particles by vortex structures,
we analyze the Lagrangian statistics for the velocity and acceleration of the dispersed phase. The turbu-
lent fluctuations are damped at mid-range wavenumbers by the bubbles or particles while the small-
scale kinetic energy is significantly enhanced. Unexpectedly, the modulation of turbulence depends only
slightly on the dispersion characteristics (bubble entrapment in vortices or inertial sweeping of the solid
particles) but is closely related to the stresslet component (finite size effect) of the flow disturbances. The
pivoting wavenumber characterizing the transition from damped to enhanced energy content is shown to
vary with the size of the bubbles or particles. The spectrum for the energy transfer by the particle phase is
examined and the possibility of representing this, at large scales, through an additional effective viscosity
is discussed.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction measurements of the turbulence dynamics for solid particles in
In the context of dispersed two-phase flows in liquids, the
study of turbulence seeded with bubbles or small particles is a
longstanding topic of research. Engineers involved in the chemical
industry, oil extraction or materials handling need to predict both
aspects of the coupled dynamics. Of the many applications, there
have been a number of recent experiments to investigate the
dynamics of drag reduction in boundary layer and channel flows
through the injection of gas microbubbles, see for example van
den Berg et al. (2005a), Sanders et al. (2006) and Murai et al.
(2007). The typical volume fractions encountered in these exper-
iments are in the range of 5–30%. Microbubble drag reduction has
been investigated too using various direct numerical simulations
as in the studies by Xu et al. (2002), Kawamura and Kodama
(2002), Ferrante and Elghobashi (2004), Ferrante and Elghobashi
(2005), Lu et al. (2005) and Dong et al. (2005). These illustrate
that a range of mechanisms are involved and that the dynamics
are a complex interplay of the bubbles with the turbulence and
near-wall interactions. Kiger and Pan (2002) have made detailed
ll rights reserved.
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horizontal channel flow.
Locally homogeneous turbulence is a simpler context in which

to investigate the two-phase flow dynamics and is relevant to
the small-scale dynamics of more general turbulent flows. The
experiments of Lance and Bataille (1991) provide measurements
of the energy spectrum of the turbulent velocity fluctuations with
a uniform suspension of bubbles. Changes in the spectrum were
noted, as compared to single phase turbulence, that depended on
the bubble size and the bubble concentration. These have been fol-
lowed by more recent experiments by Rensen et al. (2005) and van
den Berg et al. (2005b), where a reduction of the spectrum of the
energy at large scales and an increase at small scales is observed
with a corresponding increase of the dissipation spectrum at the
smallest scales. These changes are linked to the bubble size, rela-
tive to the Kolmogorov length scale, and the ‘‘bubblance” parame-
ter that characterizes the kinetic energy associated with the bubble
motion relative to that of the turbulent liquid phase.

Experiments on turbulent two-phase flows are challenging as
optical access and phase discrimination are not easy, especially
as the volume fraction increases. Computing power has steadily
increased over the past two decades making it possible for simula-
tions to approach actual ‘‘numerical experiments”. Although the
direct numerical simulation of homogeneous isotropic turbulence
is now well established (Yeung et al., 2006b), only a few numerical
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approaches are able to handle simultaneously all the length scales
in a two-phase flow ranging from the surface boundary layers and
wakes of individual particles to the largest coherent structures of
the flow.

In many two-way coupling simulations, particles have been
modeled as point-force source terms in the Navier–Stokes equa-
tions, averaged locally over some numerical cell volume of size
Dx much larger than a particle. Inherently only a portion of the
overall flow is resolved and the disturbance flow generated by
individual particles is modeled as for Boivin et al. (1998) and
Hwang and Eaton (2006). The dispersed phase motion is simu-
lated in a Lagrangian framework using a particle tracking, force
balance equation to predict each particle trajectory. The fluid
forces on a particle are explicitly estimated in terms of a slip
velocity between the particle motion and the resolved (larger
scale) flow field of the surrounding fluid. The underlying assump-
tion is that the typical size of the particles or bubbles is signifi-
cantly smaller than all the significant scales of the turbulent
fluid flow. This approach is relevant when the turbulent modula-
tion is induced by collective effects and when direct hydrody-
namic interactions between particles can be neglected. Such
conditions may occur for very low volume fractions of the dis-
persed phase. Even with these limitations, some basic features
have been revealed on the modulation of homogeneous turbu-
lence in gas–solid flows, see for example (Squires and Eaton,
1990; Elghobashi and Truesdell, 1993); Boivin et al. (1998); (Dru-
zhinin and Elghobashi, 1999). Similarly, corresponding results
have been obtained for bubble-laden turbulence (Mazzitelli and
Lohse, 2003; Mazzitelli et al. (2003)). The results of the latter sim-
ulations are in qualitative agreement with the experiments (Ren-
sen et al., 2005; van den Berg et al., 2005b) as summarized by van
den Berg et al. (2006).

In many liquid–solid flows, the typical Reynolds number of the
carrying flow is often high and the smallest scales of the velocity
field are generally smaller than or comparable to the particle (or
bubble) diameter. In these contexts, point-force approximations
are less applicable because the scale separation is no longer effec-
tive. Only a few studies have considered the finite size of the par-
ticulate phase in a turbulent flow. Sundaram and Collins (1999)
among others took this constraint into account by including elas-
tic collisions between particles but the hydrodynamic forcing
terms were still assumed to be local point (Dirac delta) functions.
More recently, ten Cate et al. (2004) carried out a fully resolved
simulation of a liquid–solid turbulent suspension. By means of
the lattice-Boltzmann method (LBM) they simulated moderately
concentrated two-phase flows, at volume fractions of 2–10%, in
a sustained homogeneous turbulence. Finite size particles with
a solid to fluid density ratio varying from 1.15 to 1.73 generated
perturbations in the three-dimensional homogeneous turbulent
flow. Fluctuating motions were observed to be enhanced at small
scales and the energy spectra showed a weak reduction in the
lower wavenumber content. The range of scales involved in the
dissipation of fluid kinetic energy are clearly increased when par-
ticles are seeded in the flow. Using a new modeling approach,
namely PHYSALIS, Zhang and Prosperetti (2005) simulated the
modulation of decaying homogeneous isotropic turbulence
seeded with particles four times larger than the Kolmogorov
scale. Neglecting the effect of gravity, they showed in their preli-
minary study that the presence of particles enhances dissipation
whereas the turbulence decay rate of the turbulence is slightly
increased.

At low volume fractions a characteristic feature of particle mo-
tion in turbulence is for local particle accumulations to develop in
response to the local vorticity or rate of strain in the flow. This de-
pends on the inertial response time of the particle and is generally
strongest for small particles when the response time matches the
Kolmogorov time scale (Wang and Maxey, 1993a,b). Particles den-
ser than the surrounding fluid tend to collect in regions of high
rates of strain, while particles (or bubbles) less dense tend to col-
lect in regions of high vorticity and lower fluid pressure (Maxey,
1987). Calzavarini et al. (2008) have shown that the tendency for
bubbles to cluster is significantly stronger than for denser particles.
For larger particles, where the response time of the particle falls
within the inertial sub-range, one may expect particles to exhibit
clustering in response to turbulent motions with time scales com-
parable to those of the particle response time. This has been ex-
plored through numerical simulations for gas–solid turbulent
flows by Yoshimoto and Goto (2007), where the response time is
large compared to Kolmogorov scales but the physical dimensions
of the particles remain very small. In general though, there is both
an effective temporal filtering of the particle response to the turbu-
lence and an effective spatial filtering associated with the finite size
of the particle in comparison to the spatial scales of the turbulence,
as noted for example by Xu and Bodenschatz (2008). These are still
open questions.

Recent experiments for isolated particles by Qureshi et al.
(2007), Volk et al. (2008) and Xu and Bodenschatz (2008), based
on earlier work by Voth et al. (2002), have investigated the re-
sponse of finite size particles to isotropic turbulence. These exper-
iments cover almost neutrally buoyant particles, bubbles and
particles with specific density ratios up to 1.4. The experiments
are able to achieve a higher Reynolds number, and hence establish
more of an inertial sub-range, than is generally possible in numer-
ical simulations. By examining the particle acceleration statistics it
is generally observed that for neutrally buoyant particle with
diameters five times the Kolmogorov scale or less the response is
essentially the same as a Lagrangian fluid element. For larger par-
ticles there is a transition in the response as the diameter falls
within the inertial sub-range. Qureshi et al. (2007) observe that
for particle diameters larger than fifteen times the Kolmogorov
scale, the acceleration variance of neutral particles is consistent
with an inertial range scaling.

In this paper we use the force-coupling method (FCM) to
provide a detailed representation of particles in the flow and inves-
tigate the modulation of homogeneous isotropic turbulence in-
duced by spherical bubbles, neutrally buoyant particles and
slightly inertial particles at volume fractions of 3–6%. We exclude
the effects of gravitational settling or buoyancy and focus on the
effects associated with the finite size (and volume) of the particles,
within the range of 6–12 Kolmogorov scales in diameter. The force-
coupling method provides a bridge between the point-particle
methods used for gas–solid flows and the more detailed resolution
of LBM, immersed boundary method or PHYSALIS simulations. FCM
is an efficient scheme for simulating large numbers of small parti-
cles in dispersed two-phase flow and has been applied previously
to simulations of microbubble drag reduction, (Xu et al., 2002)
and sedimentation at finite Reynolds numbers (Climent and Max-
ey, 2003).

The paper is organized as follows. First, we summarize the ba-
sic features of the force-coupling method and the numerical
parameters for the simulation of the homogeneous turbulent
two-phase flow. Initial observations about the bubble or particle
distributions and dispersion are then noted. We follow by a dis-
cussion of the results on turbulence modulation by bubbles, neu-
tral or inertial particles. The last two sections are devoted to
Lagrangian statistics of the dispersed phase and to comments
about the features observed. Our goal is not to provide definitive
answers to the dynamics of two-phase flow in homogeneous tur-
bulence but to point to the many open issues that still need fur-
ther investigation.
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2. Simulation methods

2.1. Force-coupling method

The coupled two-phase flow dynamics of the bubbles or parti-
cles and the turbulence is simulated using the force-coupling
method, described in Maxey and Patel (2001), Lomholt et al.
(2002) and Lomholt and Maxey (2003). FCM is based on a low-or-
der, finite force multipole representation for the influence of the
particles in the flow. The fluid is assumed to fill the entire simula-
tion domain, including the volume occupied by the bubbles or par-
ticles. The presence of the dispersed phase is then represented by a
finite force monopole and a force dipole that generate a body force
distribution fðx; tÞ on the fluid. The volumetric velocity field uðx; tÞ
and pressure pðx; tÞ are solutions of the mass conservation Eq. (1)
for an incompressible fluid

r � u ¼ 0 ð1Þ

and satisfy the Navier–Stokes Eq. (2)

q
Du
Dt
¼ �rpþ lr2uþ fðx; tÞ ð2Þ

where l and q are the fluid viscosity and density. The body force
due to the presence of N bubbles or particles can be written as
the sum of two contributions

fiðx; tÞ ¼
XN

n¼1

FðnÞi Dðx� YðnÞðtÞÞ þ GðnÞij

@

@xj
D0ðx� YðnÞðtÞÞ ð3Þ

where YðnÞ is the position of the nth spherical bubble or particle, FðnÞ

is the force experienced by the fluid and GðnÞ is the strength of the
force dipole.

The spatial distribution of the force monopole acting on the
fluid is specified by a spherical Gaussian envelope DðxÞ as

DðxÞ ¼ ð2pr2Þ�3=2 expð�x2=2r2Þ ð4Þ

The length scale r is set in terms of the bubble radius a as
a=r ¼

ffiffiffiffi
p
p

(Maxey and Patel, 2001). This ensures, amongst other re-
sults, that the particle velocity matches the Stokes settling velocity
under low particulate Reynolds number and captures the Faxen
correction for motion in a nonuniform flow. The velocity of each
bubble or particle VðnÞðtÞ is obtained by forming a local average
of the volumetric velocity field over the region occupied by the
bubble

VðnÞðtÞ ¼
Z

D
uðx; tÞDðx� YðnÞðtÞÞ d3x ð5Þ

Finally, trajectories are determined by numerical integration of
the equation

dYðnÞðtÞ
dt

¼ VðnÞðtÞ ð6Þ

If mP (mB for bubbles) and mF denote the mass of a particle and
the mass of displaced fluid, respectively, the force experienced by
the fluid due to the presence of the particle is

FðnÞ ¼ ðmP �mFÞ g� dVðnÞ

dt

 !
þ FðnÞC ð7Þ

This force is the sum of the net external force due to buoyancy
of the particles (or bubbles), the inertia excess over the corre-
sponding volume of displaced fluid due to the density difference
and a contact force between particles. In the present paper we ne-
glect the effect of gravity g and focus on the inertial interactions
between the phases as well as the effects of finite particle size.
These conditions may be achieved in experiments under micro-
gravity or where the terminal settling velocity is very small
compared to the turbulent velocity scales. For gas bubbles in liq-
uids, the mass is negligible ðmB � mFÞ and the monopole term
mF dV=dt represents the primary interphase coupling through
momentum transfer. Results on bubbly turbulence will be com-
pared to simulations with neutral particles ðmP ¼ mFÞ, where only
the force dipole contribution GðnÞij is nonzero, and also with inertial
particles ðmP > mFÞ.

The term FðnÞC represents the effects of short-range hydrody-
namic interactions and a rigid-body contact force that prevents
bubbles or particles from overlapping. In the present simulations,
and as in Xu et al. (2002), we assume that bubbles are small en-
ough that they remain spherical and due to surface contamination
respond approximately as rigid spheres (no-slip boundary condi-
tion). Also, when bubbles come into contact they do not coalesce
but eventually separate again. We use an effective repulsion or
contact force between bubble or particle surfaces. The contact
force for each pair i and j, is a function of the relative position vec-
tor xij ¼ YðiÞ � YðjÞ and the distance rij ¼ kxijk. If rij < Rref , the cut-off
length scale for the barrier, then the contact force acting on particle
i due to particle j is

Fij
C ¼

Fref

rij

R2
ref � r2

ij

R2
ref � 4a2

" #2

xij ð8Þ

Otherwise the contact force is zero. This force acts along the line
of centers of each pair, it is elastic and conserves momentum.

We fixed the force scale as Fref ¼ mFðvK=sKÞ (see later in the sec-
tion for definitions and the values in Table 1) and the cut-off scale
as Rref=2a ¼ 1:2 in the present simulations. The actual value of the
force barrier during a collision is set in response to the proximity of
the bubbles (or particles) and the relative turbulent motion leading
to the contact. The total force is obtained through a pairwise
summation,

FðiÞC ¼
X
i–j

Fij
C ð9Þ

It is important to include these collisions or contact effects in
order to maintain the volume fraction of the dispersed phase. Fur-
ther details on these short-range interactions are given in Dance
et al. (2004). At higher volume fractions it is necessary to provide
a more detailed representation including viscous lubrication forces
and solid-body contact forces. In principle, viscous lubrication
forces will prevent contact of perfectly smooth particles but con-
tact occurs in practice through surface roughness and other varia-
tions. Tests were made, varying the magnitude of the force Fref and
the cut-off distance Rref . The results presented here were found to
be insensitive to the specific value of Fref within a broad working
range. There was a more obvious effect of varying Rref but for the
chosen value this was still not significant, especially at the average
concentration levels of 6% or less considered here. Any transient
overlap between particles was negligible.

The symmetric part of the force dipole GðnÞij , the stresslet term, is
set through an iterative procedure to ensure that the strain-rate
within the fluid volume occupied by the dispersed phase is zero
(when spatially averaged on the appropriate bubble or particle
scale r0). The instantaneous, volume integrated, rate of strain is
evaluated through the equation

Sij ¼
1
2

Z
@ui

@xj
þ @uj

@xi

� �
D0ðx� YðnÞðtÞÞd3x ð10Þ

The condition is then that Sij is zero for each particle. The length
scale of the envelope r0 associated with D0 is specified as a=r0 ¼
ð6

ffiffiffiffi
p
p
Þ1=3, or approximately 2.20, see Lomholt and Maxey (2003).

The details of the iterative solver used are given by Dance and Maxey
(2003) and this converged typically within three iterations.



Table 1
Simulation parameters of the sustained homogeneous isotropic turbulence (single phase flow). Parameter definitions are given in Sections 2.2 and 2.3. The standard Kolmogorov
velocity, length and time scales are vK ;g and sK .

Grid u0 � m Rek k Te u0Te g sK vK kmaxg

1923 19.8 5562 0.12 58.7 0.356 0.070 1.39 0.0236 0.0046 5.08 2.1
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For a laminar flow the additional stresslet term leads to an en-
hanced viscous dissipation. Even for a neutrally buoyant particle
moving with the surrounding fluid, any local rate of strain in the
flow will be deflected around the particle, see for example Fig. 3
of Lomholt and Maxey (2003), leading to a locally higher rate of
strain and dissipation near the particle. As described in Section
4.11 of Batchelor (1967), this may be represented by an effective
viscosity in a suspension of many particles. Summing the stresslet
contributions in a dilute sheared suspension of rigid spheres gives
the classical Einstein estimate of the effective viscosity under con-
ditions of Stokes flow,

leff ¼ lð1þ 2:5/þ a/2Þ ð11Þ

where / is the volume fraction of the particles. The second-order
coefficient a depends on the specific particle configuration (Batche-
lor and Green, 1972). These effects are captured by FCM at low vol-
ume fractions, and at larger volume fractions when the appropriate
lubrication forces are included (Abbas, 2008; Yeo and Maxey, 2010).

The anti-symmetric part of the dipole corresponds to the sum of
an external torque, Text and the excess inertia for rotation of the
particle ðIPÞ or bubble ðIBÞ over the corresponding, appropriately
chosen, volume of fluid ðIFÞ as given by

TðnÞ ¼ TðnÞext � ðIP � IFÞ
dXðnÞ

dt

 !
ð12Þ

dX=dt is the rate of variation of the particle (or bubble) rotation rate
and the angular velocity X is evaluated in Eq. (13) as

XðnÞðtÞ ¼ 1
2

Z
fr � uðx; tÞgD0ðx� YðnÞðtÞÞd3x ð13Þ

No external torques are applied to the particles in the present
simulations, Text ¼ 0. The rotation rate of a particle changes in re-
sponse to the viscous stresses exerted by the surrounding fluid,
summed over the particle surface, and the moment of inertia of
the particles. Neutrally buoyant particles respond quickly and
their rotation rate is in equilibrium with the rotation rate of
the surrounding fluid at that length scale. The (rigid) bubbles
would show the largest discrepancy due to differences in inertia
but were found still to come to equilibrium quite quickly. We
monitored the amplitude of both symmetric and anti-symmetric
parts of the dipole GðnÞij in selected simulations of bubble motion
involving both motion in a single vortex and in stationary isotro-
pic turbulence. The antisymmetric contribution is significantly
weaker than the stresslet term. It represents less than 8% when
averaged over all bubble trajectories. While (12) is correct in
principle the specification of IF for FCM is not trivial. We decided
to exclude this small effect rather than introduce a possibly inac-
curate fluctuating term in the simulations. Hence throughout the
simulations TðnÞ ¼ 0.

Examples of the application of FCM to the motion of particles at
low to moderate, finite Reynolds numbers, together with compar-
isons to fully resolved direct numerical simulations, are given in
Liu et al. (2002) and Maxey et al. (2006). A discussion of the re-
sponse to unsteady flow conditions, including the ability of FCM
to capture Basset history forces, is reported in Maxey (1999). The
formulation of FCM provides a consistent energy budget for both
the fluid and particle phases. Viscous dissipation of fluid kinetic en-
ergy is evaluated by integration over the whole domain including
the volume occupied by the particles. This is required since the
representation of the particles involves a spatial smoothing or fil-
tering of the near-surface conditions for each particle and the inte-
rior of the particle volume remains an active part of the flow
(Maxey and Patel, 2001; Lomholt and Maxey, 2003).

2.2. Turbulent flow

The flow is simulated in a fully periodic domain, of size
2p� 2p� 2p, using a Fourier pseudo-spectral code. The turbulent
flow is sustained by a random forcing at low wavenumbers to
achieve a statistically stationary state. The simulation procedure
is similar to that used by Wang and Maxey (1993b) with the ran-
dom forcing term applied over a shell of small wavenumbers (Esw-
aran and Pope, 1988). The forcing term is applied to nonzero
wavenumbers in the range 0 < k 6 3. This unsteady forcing will
drive the large length scales of the flow. When a sufficiently large
separation between production and dissipation scales occurs the
small-scale structures exhibit the universal characteristics of a tur-
bulent flow. Basic data on the single phase turbulence are given in
Table 1. The simulations are based on a 1923 grid resolution, for
which kmaxg ¼ 2:1. Simulations on a 1283 grid yielded the same re-
sults but with a lower resolution, kmaxg ¼ 1:4. Both are adequately
resolved, with kmaxg > 1 (Sundaram and Collins, 1997). The forcing
parameters are the same in all simulations and a balance between
the average energy input from the forcing and the viscous dissipa-
tion rate � is achieved.

The turbulent kinetic energy K, or turbulence intensity u0, is ob-
tained by averaging over space and time after the initial transient
(two to three integral time scales) necessary to develop stationary
turbulence. This can be also evaluated in the spectral space by inte-
grating the energy spectrum function EðkÞ as

K ¼ 3
2

u02 ¼ 1
2
hu0iu0ii ¼

Z kmax

0
EðkÞdk ð14Þ

The rate of kinetic energy dissipation per unit volume, � is bal-
anced by the volumetric power input of the turbulence forcing and
it is directly evaluated by integration of the dissipation spectrum
DðkÞ over all the wavenumbers

� ¼
Z kmax

0
DðkÞdk ¼ 2m

Z kmax

0
k2EðkÞdk ð15Þ

where m ¼ l=q is the kinematic viscosity. Energy and dissipation
spectra for the single phase turbulence are shown in Section 4.
Among others, two typical length scales characterize the turbulent
fluid motion, namely the Taylor microscale, k, defined by k2 ¼
15mu02=�, and the Kolmogorov length scale, g, defined by
g ¼ ðm3=�Þ1=4. The Reynolds number of the single phase flow, based
on the Taylor microscale Rek ¼ u0k=m is 59.

2.3. Simulation parameters

The primary group of simulations are for bubbles (B), neutrally
buoyant particles (N) and inertial solid particles (S) at a volume
fraction of approximately 6%. The parameters for these simulations
are listed in Table 2. Two particle or bubble sizes are considered,
with particle radius a ¼ 0:1305 or 0.091. For the larger particles,



Table 2
Parameters of the flow simulations: Bubbles (B,mB ¼ 0), Neutrally buoyant particles
(N,mP ¼ mF ) and Solid particles (S,mP ¼ 1:4mF ). Particle radius a = 0.1305 (1) or
a = 0.091 (2). All simulations include force monopole (M) and dipole terms (D), except
S2–M which is based on the monopole only. Parameter definitions are given in
Sections 2.2 and 2.3; NP is the number of particles.

Case Grid NP Rek u0 � a=g a=k St si=sK

B1 1283 1600 59.7 20.18 5827 5.59 0.37 0.23 3.5

B2 1923 4508 59.2 20.14 5876 3.90 0.26 0.11 1.7

N1 1283 1600 57.3 19.44 5436 5.50 0.37 0.68 10.1

N2 1923 4508 58.7 19.77 5574 3.84 0.26 0.33 5.0

S1 1283 1600 57.0 19.44 5490 5.51 0.37 0.87 12.8

S2 1923 4508 57.3 19.54 5552 3.84 0.26 0.42 6.3

S2–M 1923 4508 58.3 19.78 5629 3.86 0.26 0.42 6.3
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N ¼ 1600 and corresponds to a volume fraction of 6.0% while for
the smaller particles, N ¼ 4508 and corresponds to a volume frac-
tion of 5.7%. In order to resolve the motion of the particles using
FCM, the minimum spatial resolution should be between 5 and 6
grid points to a particle diameter to accurately represent the effect
of both the force monopole and dipole terms. The larger particles
are simulated adequately with a numerical grid of 1283 points
for which then a=Dx ¼ 2:66. The smaller particles are simulated
on a 1923 grid for which a=Dx ¼ 2:78.

Particles or bubbles are initially seeded at random positions in
the homogeneous turbulent flow and statistics are computed after
a transient period, typically one or two integral time scales. The
particle concentrations remain uniform on average but local fluctu-
ations develop in response to the turbulence. These fluctuations
depend on the relative inertial response time of the particles (or
bubbles) to the turbulence time scales. The bubble response time
is defined in terms of the mass of displaced fluid and the added-
mass effect. The Stokes drag law provides a convenient reference
estimate for defining the response time, so that sB ¼ a2=9m. For
inertial solid particles, with relative density q� ¼ qP=q, the particle
relaxation time scale is sP ¼ 2ðq� þ 1=2Þa2=9m and q� ¼ 1 for neu-
tral particles (index N) while q� ¼ 1:4 for the inertial particles (in-
dex S). We define the Stokes number St by comparing sB (or sP) to
the turbulence time scale Te ¼ u02=�, for the large eddy turnover
time or eddy lifetime. This definition does not account for any spe-
cific modification to the drag law based on instantaneous Reynolds
number, but it is appropriate as an a priori estimate for the bubble
or particle response to the turbulence in the absence of buoyancy
effects. The Stokes number (16) is also equivalent to comparing
the bubble or particle radius a to the Taylor microscale k, since
the rate of viscous dissipation per unit mass � is equal to
15mu02=k2 in homogeneous isotropic turbulence,

St ¼ si

Te
¼ 5

3
ai

a2

k2 ð16Þ

In (16) the coefficient ai is equal to 1 for bubbles (B), 3 for neu-
tral particles (N) and 3.8 for inertial particles (S).

The primary data related to the two-phase simulations are sum-
marized in Table 2. The case index is a combination of the particle
type (B, N or S) and the size of the particle (1 or 2) corresponding
respectively to a radius a ¼ 0:1305 or a ¼ 0:091. The particles or
bubbles are larger than the Kolmogorov scale with a length scale
ratio a=g varying from 3.8 to 5.6. On the other hand, they are smal-
ler than the Taylor microscale, typically from k ¼ 2:7a to k ¼ 4a
meaning that the disperse phase will be interacting with the full
range of the most energetic structures of the turbulent flow. For
all the simulations, the Stokes number St is low or moderate, based
on the estimate (16) using the integral time scale. We also provide
the values of the particle relaxation time compared to the Kol-
mogorov time scales.
3. Initial results

A basic feature of microbubble dispersion is a preferential accu-
mulation of bubbles in regions of high vorticity. This is a conse-
quence of the absence of inertia of the bubble itself (Magnaudet
and Eames, 2000). In a turbulent flow, bubbles are likely then to
collect within the cores of vortex tubes that may form in the flow.
In the present simulations, the dispersion of bubbles is driven by
the force monopole, F ¼ �mFdV=dt. As compared to point-particle
tracking schemes, the effects of Basset history forces, added-mass
or lift forces are implicit to the present simulations. We investi-
gated the time evolution of levels of the fluid vorticity x at the
Lagrangian locations of bubbles or particles, based on the point val-
ues at the center. Initially, bubbles were seeded randomly within
the domain and the root mean square (rms) vorticity level at the
bubble locations matches the average value in the turbulent flow.
As time goes on (typically, less than one integral time scale), bub-
bles tend to collect in the vortex structures of the flow. Instanta-
neous snapshots of the flow show that bubbles are clearly
accumulated in high vorticity regions, see Fig. 1, where a planar
section of the flow is shown together with the bubbles in that sec-
tion and the local value of the enstrophy x2. We verified that the
accumulation regions indeed correspond to vortex cores as defined
by Jeong and Hussain (1995) using the k2 eduction scheme.

Fig. 2 shows a sample of the time-history for the rms vorticity
fluctuations following bubbles or particles. Again these were eval-
uated from point data taken on a 1283 grid simulation, for cases B1
and S1. With either the monopole term only (B1–M) or the usual
monopole and stresslet terms (B1), the vorticity fluctuations fol-
lowing the bubbles are significantly higher. The baseline variations
for the single phase flow reflect the variability of the energy input,
and the dissipation, given the random forcing scheme that sustains
the turbulence. The solid particles (S1) have a somewhat reduced
level of vorticity fluctuations. The same features are reflected in
the Lagrangian data presented later in Table 5 for the rms fluctua-
tions in the angular velocity X of a particle or bubble, evaluated
from (13). The accumulation level depends primarily at low con-
centrations on the finite size of the bubble and the relative relaxa-
tion time scale sB=sK , becoming strongest when sB=sK � 1 (Wang
and Maxey, 1993a).

Contact forces between particles (or bubbles) will tend to limit
any increase in local particle concentration, even before the close-
packing limit is reached. In the present simulations, the force bar-
rier (8) is used to represent the short-range interactions between
the particles as described in Section 2.1. The rate of collisions for
solid particles in a liquid turbulent flow are considered in detail
by ten Cate et al. (2004) and by Brunk et al. (1998) and we do
not address these issues here. Contact forces, and other short-range
interactions, do contribute to the overall particle-phase stress.
They may also potentially alter the rate of turbulent diffusion of
bubbles (or particles) in the flow at finite volume fractions.

In our initial investigations, we examined the interactions of bub-
bles and turbulence and determined the long-term dispersion coef-
ficient D for several different bubble sizes at two different void
fraction levels, 3% and 6%. The parameters for this separate set of
simulations are given in Table 3. Note that the dispersion coefficient
is most strongly influenced by the larger scales in the turbulence and
as such may be influenced by the low wavenumber random forcing
used to sustain the flow. In the usual way, each bubble was tracked
from an initial position Yð0Þ, at some initial reference time, and the
relative displacement recorded. According to standard theory of par-
ticle dispersion in homogeneous, stationary turbulence (Taylor,
1921) the mean square relative displacement, choosing one direc-
tional component, will converge as t !1 to give

h½Y1ðtÞ � Y1ð0Þ�V1ðtÞi ¼ D ð17Þ



Fig. 1. (Color online) (a) Instantaneous bubble positions and enstrophy level (case
B1). Bubbles are displayed with their actual size in the planar slice, with high
enstrophy levels shown as white. (b) Corresponding view of bubble positions and
fluid velocity, shown by the vector arrows.
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Fig. 2. Sample Lagrangian time-history of rms vorticity fluctuations following the
bubbles or particles, corresponding to cases S1 and B1: (1) single phase flow; (2)
particles (S1); (3) bubbles simulated with force monopole only (B1–M); and (4)
bubbles (B1).

Table 3
Results for bubble dispersion and pressure due to collision forces. Simulations on
1923 grid with only the force monopole term for FCM. Bubble void fraction / is 3.0%
or 6.0% .

Case a N / a=k sB=sK D=u02Te V 0=u0 PB=/
2u02

MB1 0.19 517 0.06 0.535 7.4 0.360 0.900 1.50
MB2 0.1305 1600 0.06 0.366 3.5 0.409 0.928 1.26
MB3 0.09 4866 0.06 0.254 1.7 0.436 0.946 1.02
MB4 0.0725 9322 0.06 0.204 1.1 0.441 0.956 0.88
MB5 0.19 259 0.03 0.535 7.4 0.41 0.90 –
MB6 0.1305 800 0.03 0.366 3.5 0.40 0.93 –
MB7 0.09 2433 0.03 0.254 1.7 0.40 0.93 –
MB8 0.0725 4661 0.03 0.204 1.1 0.41 0.94 –

226 K. Yeo et al. / International Journal of Multiphase Flow 36 (2010) 221–233
This may be written as D ¼ hV2
1iTL, where TL is the Lagrangian

integral time scale. The dispersion coefficient D was evaluated
from the equivalent long term value of

h½Y1ðtÞ � Y1ð0Þ�2i=2t ¼ D ð18Þ

In all cases, the data is calculated using (18) with a time-aver-
aged estimate from t ¼ 0:3—1:5, corresponding to an interval in
excess of 17Te. This provided a stable estimate of the dispersion
coefficient with lower statistical fluctuation.

The results for the bubble dispersion coefficient are given in
Table 3. All these results were obtained using the 1923 grid as gi-
ven in Table 1. Additional bubble sizes, beyond those given in Table
2 were included and the details are given in Table 3. Only the force
monopole term in the FCM was used in this set of simulations so as
to focus specifically on the effects of the bubble collisions on dis-
persion. At the lower concentration, 3% void fraction, there is only
a small variation in the dispersion coefficient with bubble size as
shown by the results for cases MB5–MB8. The average value of
D=u02Te ¼ 0:40� 0:41 may be compared with the value of 0.43 re-
ported by Yeung and Pope (1989) for the dispersion of Lagrangian
fluid particles. Their simulations were made using a similar forcing
scheme to sustain stationary isotropic turbulence and the Reynolds
number, Rek ¼ 63, is close to the present value. The dispersion
coefficients may also be compared to standard estimates of the
eddy viscosity, which according to a standard k� � model is
mT=u02Te ¼ 9Cl=4 (Pope, 2000). The coefficient Cl ¼ 0:09 and so
the ratio is 0.202 implying that the turbulent Schmidt number
for bubble dispersion is about 0.5.

At the lower void fraction, the rms velocity fluctuation of the
bubbles, defined as V 0 ¼ hV2

1i
1=2, varies between 0:90u0 for the larg-

est bubbles and 0:94u0 for the smallest. The integral time scale will
be longer for the larger bubbles, due to the greater inertia effect,
and this in part compensates for the reduction in the velocity fluc-
tuations so that the dispersion overall shows less variation. At the
higher bubble concentration of 6%, the rms velocity fluctuation
shows a similar variation. The dispersion coefficient however
shows a more noticeable variation, with the dispersion for the
larger bubbles being reduced and that of the smaller bubbles
increased. This may be attributed to the effects of bubble-bubble
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collisions at the higher void fraction. These collisions will tend to
limit the long-term correlation of the bubble motion in (18) and
would tend to reduce the integral time scale for dispersion due
to turbulence. The collisions may further augment the velocity
fluctuations at higher frequencies. The determining factor is the
average time interval between collisions for a bubble as compared
to the turbulence time scale Te. The collision rate is higher for lar-
ger particles (or bubbles) in this size range as reported by ten Cate
et al. (2004). The collision rate also scales with the concentration as
/2, so that these effects will be more pronounced as the void frac-
tion increases.

The bubble-bubble collisions also contribute to the particle-
phase stress on the fluid. The contact barrier (8) is a conservative
force, acting along the line of centers, and in the absence of a pre-
ferred orientation, this leads to an effective dispersive pressure
field PB. This effect is well known in the context of granular flows
and is referred to as the Bagnold dispersive stress (Campbell,
1990), and is encountered too in fluidized beds. Collision-induced
pressures in solid–liquid flows have been measured by Zenit
et al. (1997) and the different possible representations of this effect
in bubble column dynamics are discussed by Minev et al. (1999).
The dispersive pressure field depends on both the strength of the
contact forces and the frequency of bubble contacts. Batchelor
(1988) proposed a model for the mean pressure as

PB ¼ qu2
0/

/
/�

1� /
/�

� �
ð19Þ

where u0 is an appropriate velocity scale. In the limit of close pack-
ing, / ¼ /�, the dispersive pressure drops to zero, while at low void
fraction it is proportional to /2. Although there is considerable scat-
ter in the measurements reported by Zenit et al. (1997) their results
do support this trend for the normalized pressure with a peak value
at void fractions of about 30%.

In the present simulations of homogeneous turbulence with
uniform seeding of the bubbles the ensemble-averaged pressure
PB is uniform. Each collision between a pair of bubbles produces
a local force dipole acting on the fluid. For bubbles m,n that are
in contact there is a corresponding local force density

fðx; tÞ ¼ Fmn
C D x� YðmÞðtÞ

� �
� D x� YðnÞðtÞ

� �n o
ð20Þ

where we use the fact that Fmn
C ¼ �Fnm

C as in (8). In terms of the sep-
aration vector between the two bubbles, this is approximately

fiðx; tÞ ¼ Fmn
iC Y ðmÞj � Y ðnÞj

� � @

@xj
D x� Y ðmÞj þ Y ðnÞj

� �
=2

� �
ð21Þ

which has the form of a stress tensor with fi ¼ @
@xj

rB
ij. This bubble

stress tensor rB
ij at any instant is then a sum over all the contacting

bubbles. The pressure PB may be estimated from a volume average
over the flow domain as

PB ¼
1
3
rB

ii

� �
ð22Þ

¼ 1
3L3

XN

m¼1

XN

n¼mþ1

Fmn
iC Y ðmÞi � Y ðnÞi

� �
ð23Þ

The results for the dispersive bubble pressure are given in Table
3 for the void fraction of 6.0%. The pressure is indeed greatest for
the largest bubbles and decreases with bubble size, consistent with
a decrease in the collision frequency with bubble size. The results
are scaled by q/2u02. The variation within the range of 0.8–1.5
shows that the rms turbulent fluctuation velocity u0 is an appropri-
ate choice for the velocity scale in (19).
4. Turbulence modulation

In this section we consider the ways in which the Eulerian char-
acteristics of the fluid flow are modified by the presence of the
bubbles or particles. As buoyancy forces are excluded, the main is-
sues are the inertial forces associated with a particle (or bubble),
which determine the force monopole, and the stresslet component
of the force dipole in response to local velocity gradients, specifi-
cally the rate of strain. Both the monopole and the stresslet are
associated with the finite volume effect of the particles. Generally,
a particle moves with the surrounding fluid (5) and motion relative
to an otherwise uniform far-field flow arises from inertial forces for
a bubble or solid particle. The finite volume effect of a neutrally
buoyant particle is associated with the stresslet. The questions
we consider are the length scales at which the particle phase and
fluid phase interact and how the evolution of the energy spectrum
of the fluid phase is modified by the particles. These interactions
may be individual or the collective effect of many particles locally.

We compare several different simulations with bubbles, neu-
trally buoyant particles and solid slightly inertial particles. The
important parameters are collected in Table 2. The single phase flow
characteristics are identical on the two grids used ð1283;1923Þ and
the turbulent Reynolds number Rek stays in the range of 57–60. This
is similar to the conditions for the simulations by ten Cate et al.
(2004) of inertial particles in homogeneous turbulence. In order to
compare directly with these simulations, we simulate a specific con-
figuration S2 with solid inertial particles of density qP ¼ 1:4q. All the
particles are small compared to the Taylor microscale but larger than
the Kolmogorov dissipation length scale g, with particle radius a
varying between 3.8 and 5:6g.

Analyzing the results collected in Table 2, we see that both the
turbulent intensity of the flow and the rate of kinetic energy dissi-
pation by viscosity are essentially constant with small variations of
4% for u0 and 7% for �. A general comment is that the turbulence
intensity in all cases is similar because the forcing parameters
are kept constant. The total energy input by the forcing is balanced
by the turbulent dissipation rate. This is a particular feature of the
simulation where all the scales of the flow are resolved. Depar-
tures from this may occur due to limited scale separation between
the range of forced wavenumbers and those in the dissipation
range or where there is a direct interaction of the particle phase
and the forcing scales. In two-way coupling simulations using
point particles (Boivin et al., 1998; Squires and Eaton, 1990), the
particles act as a sink of turbulent kinetic energy. Unresolved
scales of the order of the particle diameter are modeled by an
interphase coupling term. The dissipation by the particles is gov-
erned by the slip velocity of the particles relative to the local fluid
velocity of the resolved part of the flow. In the fully resolved sim-
ulations by ten Cate et al. (2004), they also obtained the result that
the rate of energy dissipation is constant over the various two-
phase flow conditions studied and that this balances the random
forcing power input.

In Figs. 3 and 4, we plot the energy spectra resulting from the
simulations with the two different sizes of particles, corresponding
to scale ratios a=g ¼ 5:5 (B1,N1,S1) and a=g ¼ 3:9 (B2,N2,S3). The
wavenumbers are scaled by kd, based on the particle diameter
d ¼ 2a and kdd ¼ 2p, following the proposal by ten Cate et al.
(2004). We observe that the large scale kinetic energy content
(low wavenumbers) behave similarly because their dynamics are
fixed by the forcing scheme and the level of kinetic energy input
at low wavenumbers is essentially the same for all the simulations.
We expect that the presence of bubbles or particles will lead to
interactions with smaller scales. Indeed, a significant increase of
kinetic energy at higher wavenumbers is seen for k=kd > 0:78 for
the larger particles ða ¼ 0:37kÞ and k=kd > 0:65 for the smaller par-
ticles ða ¼ 0:26kÞ. Similar features are obtained in the dissipation
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Fig. 3. Energy (a) and dissipation (b) spectra (grid 1283). Solid line, single phase
flow; dashed line with circles, bubbles B1; dash dot line with triangles, neutral
particles N1; dotted line with diamonds, solid particles S1.
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Fig. 4. Energy (a) and dissipation (b) spectra (grid 1923). Solid line, single phase
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spectra also shown in Figs. 3 and 4. This enhancement is more clo-
sely related to finite size effects than momentum transfer as it is
seen equally with bubbles, neutrally buoyant and inertial solid par-
ticles. Simulations with only the force monopole term lead to only
a weak modification of the energy spectrum, see case S2–M in
Fig. 4. It was unexpected that all three types of particle would in-
duce similar modifications of energy and dissipation spectra
regardless of their particular dispersion characteristics and net
momentum transfer (monopole). The dynamics instead are more
directly controlled by the stresslet contribution. This enforces a
zero local rate of strain within the spherical Gaussian envelope
so that the flow responds as a solid body within the fluid volume
occupied by bubbles or particles. This in turn leads to a significant
enhancement of small scale kinetic energy and rate of viscous dis-
sipation near each particle surface as local flow variations are de-
flected around the particle. The local perturbation of the flow by
the dispersed phase occurs on the scale of the particle diameter.

At larger scales, k=kd < 0:6, the kinetic energy level is slightly
reduced over a range of intermediate wavenumbers. This behavior
has already been observed by many authors (Mazzitelli and Lohse,
2003; ten Cate et al., 2004; Boivin et al., 1998) although the phys-
ical origins differ. Buoyancy, for example, plays a major role in the
studies of Mazzitelli and Lohse (2003). It is important to note that
the pivoting wavenumber kp, where the transition between en-
hanced and reduced kinetic energy is different when the size of
the bubbles changes. ten Cate et al. (2004) investigated distinct
configurations varying the volumetric concentration and particle
inertia but with constant characteristics of the turbulence (Rek ¼
61) and a fixed particle size a=g ¼ 3:95. Varying the density ratio
and the particle concentration, led to the striking result that the
pivoting wavenumber kp always corresponded to kp=kd ¼ 0:72.
This is very similar to our results, where for case S2: kp=kd ¼ 0:65
and for this particle size the results for B2, N2 and S2 give kp=kd

clustered around this value.
The question is whether kd characterizes the value of kP as the

particle size varies. In Fig. 5, we show the dissipation spectra for
the neutral particles N1 and N2 with the wavenumbers scaled
now by the Kolmogorov length scale g. Here the pivoting
wavenumber is kpg ¼ 0:45 for the larger particles (N1) and
kpg ¼ 0:56 for the smaller particles (N2). As expected, the value
of kpg is larger for the smaller particle, but the increase is only
a factor of 1.25 compared to the 1.43 factor for the particle sizes.
The observed values of kp=kd are 0.78 (N1) and 0:68 (N2) and
these differ by a factor of 0.87. The outcome then is that the scal-
ing of kp by the particle size is a better correlation than a simple
scaling with g but the results are not conclusive. Our values for
kp=kd bracket those of ten Cate et al. (2004) so there may be fluc-
tuation errors. But it is likely that there is a more subtle Reynolds
number effect, based on the particle size, which modifies the cor-
relation with particle size.
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The simulations of ten Cate et al. (2004) were performed using a
lattice-Boltzmann approach. In analyzing the energy and dissipa-
tion spectra, see Fig. 4, we note that significant oscillations occur
in the high wavenumber content that are related to discontinuities
in the velocity gradient across particle interfaces. Discontinuities
lead to a k�4 scaling of the tail of the energy spectrum and k�2

for the dissipation spectrum. Although the authors argued that this
part of the spectrum contains only 1% of the total energy or dissi-
pation, such oscillations may affect the precise determination of
the pivoting wavenumber. There are inherent challenges to mea-
suring and interpreting Fourier spectra in the spatial domain for
dispersed two-phase flow. In the present FCM simulations, the
spectra remain smooth as the velocity and velocity gradients are
continuously defined throughout the whole domain. (Post-pro-
cessing of the computed volumetric flow field may be used to
reconstruct the discontinuous variations.)

As we identify the stresslet as being the main contribution to
flow modulation, we consider how this may contribute to the en-
ergy transfer between scales. We can use the momentum Eq. (2)
and the force decomposition (3) to derive an evolution equation
for the energy spectrum EðkÞ in wavenumber space. Since the flow
is statistically stationary, there is a balance of energy input at large
scales by the random forcing FRðkÞ, direct viscous dissipation DðkÞ,
the usual nonlinear energy transfer TðkÞ and the contributions
from the force monopoles MðkÞ and the force dipoles HðkÞ. The lat-
ter two depend on the correlation, in spectral space, of the particle
body force fðx; tÞ and the fluid velocity uðx; tÞ. The balance is
0 ¼ FRðkÞ � DðkÞ þ TðkÞ þMðkÞ þ HðkÞ ð24Þ
1

where the dissipation spectrum function is DðkÞ ¼ 2mk2EðkÞ. The
values of MðkÞ and HðkÞ can be evaluated directly from the simula-
tion data. First we write
k/kd
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Fig. 6. Determination of the effective viscosity. (a) Solid line, dissipation rate
spectra (N1); dashed line, dipole energy transfer (N1); dash dot line, corresponds to
madd=m ¼ 0:150. (b) Solid line, dissipation rate spectra (N2); dashed line, dipole
energy transfer (N2); dash dot line corresponds to madd=m ¼ 0:105.
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Then, the monopole MðkÞ and the dipole energy transfer func-
tions HðkÞ are defined as
MðkÞ ¼
X

k�1
26jkj<kþ1

2
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i ðkÞûið�kÞ ð27Þ
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in which ŵ is the Fourier coefficient of a variable w.
Fig. 6 shows the scaled values of the dissipation spectrum DðkÞ

and dipole energy-transfer spectrum HðkÞ for the two cases N1 and
N2. The results with bubbles (B) or inertial particles (S) are very
similar. The dipole energy-transfer spectrum HðkÞ shows that the
particle stresslets extract energy from large-scale motions and sup-
ply it to the small scales.

At low wavenumbers, the dipole contribution acts as an addi-
tional dissipation which is consistent with the classical concept
of an enhanced effective viscosity in a particulate suspension as
noted in Section 2.1. Analogous to the suspension viscosity effect,
we define madd so as to approximate HðkÞ by �2maddk2EðkÞ and then

DðkÞ � HðkÞ ¼ 2meff k
2EðkÞ ¼ 2ðmþ maddÞk2EðkÞ ð29Þ

This approximation is used in the low wavenumber range,
k=kd < 0:3, to estimate the additional viscosity madd by scaling
HðkÞ with the dissipation spectra. Table 4 gives madd for all the sim-
ulations. The derived approximations for H(k) are included in Fig. 6,
where we compare results for the neutrally buoyant particles. The
values of madd are consistent for the larger particles with the
Stokes–Einstein estimate (11) at this volume fraction. However
for the smaller particles (N2,S2) and bubbles (B2), the values of
madd are significantly lower. It seems that the additional viscosity
is not only dependent on the volumetric concentration but also



Table 4
Additional effective viscosity in turbulent two-phase flow simulations.

Case B1 N1 S1 B2 N2 S2

madd=m 0.142 0.154 0.148 0.101 0.108 0.105
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on the particle or bubble size. We have no explanation for this at
present. There is no inherent reason for the Stokes–Einstein esti-
mate to be applicable here in this inherently unsteady, finite Rey-
nolds number context. Additionally, there is no clear separation of
scales between the particle size and the scale on which the velocity
gradients vary. This is discussed further in Section 6.

The inertial forces on solid particles (S1,S2) and the bubbles
(B1,B2) contribute to MðkÞ and this force monopole spectral energy
transfer term similarly extracts energy from low wavenumbers
and supplies this at high wavenumbers. Even in the absence of
inertial forces, short-range collision forces between neutral parti-
cles generate a force monopole contribution MðkÞ. Tests were made
to evaluate this and the effect of varying the collision force param-
eters in (8). For both cases N1 and N2, there was very little varia-
tion in MðkÞ with the collision parameters and its effect is
limited to a narrow range of wavenumbers around k � 0:1kd. The
values of MðkÞ are smaller than for HðkÞ. Inertial collisions between
particles will contribute to the particle-phase stress acting on the
flow and will become more significant at higher concentration
levels.

A question may be posed as to whether there is a direct effect of
the random forcing of the turbulence on the particle–turbulence
dynamics. We did turn off the random forcing in some test cases
for a short interval after a statistically stationary state was ob-
tained to see if the correlations would change before the turbu-
lence decayed. By and large there was little difference. For
example, some spurious artifacts in the monopole contribution
MðkÞ to the energy spectrum transfer at the lowest wave numbers
disappeared. The results for H(k) shown in Fig. 6 did not change.

5. Lagrangian statistics

Further details on the Lagrangian statistics of bubbles, neutrally
buoyant and solid particles are now presented for the cases B1 to
S2. Each of the Lagrangian statistics were obtained from ensemble
averages over 107 trajectories. Table 5 shows the rms fluctuation
(in dimensional form) of the particle velocity, V 0 and the particle
acceleration A0, together with the corresponding flatness factors,
FV and FA. The values of V 0 are only slightly smaller than u0 and
the flatness factor FV for all cases is close to 3, indicating that the
velocity fluctuations have an essentially Gaussian distribution.
The velocity statistics are not sensitive to the type of particle and
the values are consistent with the Eulerian statistics.

Unlike the velocity statistics, the acceleration statistics show
clear differences. The Lagrangian acceleration is an intermittent
quantity and particles may experience large accelerations during
Table 5
Lagrangian data following the particles or bubbles for: rms velocity fluctuation, V 0 ;
flatness factor for the velocity fluctuations, FV ; rms fluctuation in the acceleration, A0 ;
flatness factor for the acceleration fluctuations, FA ; rms angular velocity, X0 . The last
column gives the value of C�0 , estimated from the maximum values in Fig. 9.

Case V 0 FV A0 FA X0 C�0

B1 19.0 2.95 1308.4 6.50 42.7 2.60
N1 18.4 2.83 967.7 5.55 33.4 2.07
S1 18.1 2.79 857.1 5.19 31.1 1.77
B2 19.0 2.95 1400.8 8.07 48.6 2.64
N2 19.1 2.84 1145.0 6.66 38.7 2.43
S2 18.7 2.81 1023.2 6.24 35.6 2.15
the sweeping motion within a vortex, as noted by Porta et al.
(2001), Lee et al. (2004) and Yeung et al. (2006a). As bubbles tend
to accumulate in the high vorticity regions, the fluctuation levels
for the acceleration A0 are much larger for the bubbles than the
other particles. On the other hand, solid particles tend to accumu-
late in the low-vorticity (high-strain rate) regions rather than with-
in vortices (Calzavarini et al., 2008), which results in the lowest
value of A0. As the inertia of the solid particle is moderate
ðqp=q ¼ 1:4Þ, the difference in the statistics between solid and neu-
trally buoyant particles is weaker than it would be for a gas–solid
flow.

The rms fluctuations in the particle acceleration A0 may be com-
pared to the level of values for a Lagrangian fluid tracer. Yeung and
Pope (1989) obtained a relation for the acceleration of a tracer par-
ticle as A02T ¼ 1:92ð�3=mÞ1=2 at this Reynolds number. This corre-
sponds to A0T ¼ 1508. The particle accelerations A0 for the neutral
particles (N1) and (N2) are significantly less, reflecting the finite
size of the particles and the limited response to turbulence on
scales smaller than the particle.

The rms fluctuations in the particle angular velocity X0, defined
as hX2

1i
1=2 are also consistent with the above description of parti-

cles interacting with vortices in the turbulence. The rms data for
X0, in Table 5, show similar features for the neutral particles (cases
N1 and N2) and the solid inertial particles (cases S1 and S2). The
neutral particles showed no tendency to accumulate. There is a
6–8% reduction in the values of X0 for the solid particles as com-
pared to neutral particles cases N1 and N2. The reduction is a
weaker effect than the corresponding increase for bubbles. This is
in part because the density ratio qP=q ¼ 1:4 corresponds to slightly
inertial particles with ðmP �mFÞ=mF ¼ 0:4 while for bubbles this
ratio equals �1.

The rms fluctuations in the particle angular velocity X0 may also
be compared with those for a Lagrangian tracer particle, which will
rotate with an angular velocity equal to half the local fluid vortic-
ity. On this basis, the rms fluctuating angular velocity of a tracer
particle would be X0T ¼ 62. The finite size of a neutrally buoyant
particle would, according to (13), reduce this estimate for X0 to
44.5 for (N1) and to 50 for (N2) using the corresponding dissipation
spectra. A further factor is the finite Reynolds number of the parti-
cle motion. Poe and Acrivos (1975) demonstrated that the angular
velocity of a spherical particle freely suspended in a shear flow is
reduced at finite Reynolds number relative to the estimate at zero
Reynolds number of half the fluid vorticity. This experimental
observation is consistent with numerical simulations (Bagchi and
Balachandar, 2002; Wang, 2009). In the present conditions, this
would lead to a further reduction of 15–25% in the angular velocity.
FCM captures this effect at low Reynolds numbers (Wang, 2009)
and the results for X0 for the neutral particles in Table 5 fit this gen-
eral picture.

The Lagrangian velocity auto-correlation function qvðtÞ is
shown in Fig. 7. The auto-correlations qv ðtÞ for the two different
sizes of bubbles are almost identical and decay faster when com-
pared to neutrally buoyant and solids particles at early time
ðt=sK < 15Þ. However, later t=sK > 15, the rate of decay for neu-
trally buoyant particles becomes similar to bubbles, while qvðtÞ
of solid particles is always larger than the two others. Once trapped
in a vortex, bubbles move toward the vortex core exhibiting rota-
tional motion that results in the faster decay of qvðtÞ at early time.
The inertial solid particles are swept outside these small-scale
structures of the turbulence. As a result, qv decays more slowly
as compared to bubbles and neutrally buoyant particles. Collision
contacts between bubbles are more likely than between the other
particles due to the effects of local accumulations and this would
further influence the relative correlation time scales.

Fig. 8 shows the probability density function (pdf) of the
acceleration. The pdf has very long tails compared to a Gaussian
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distribution indicating a high level of intermittency of the acceler-
ation (Porta et al., 2001) (events of high intensity are more proba-
ble than the Gaussian estimate). When scaled by corresponding
rms accelerations ra the pdf’s are very similar in the central region,
jaj=ra < 3. This indicates that the differences in the acceleration
statistics between the different particles or bubbles, and different
sizes, come from the intermittent events, which are closely related
to the coherent vortical structures (Lee et al., 2004). These features
of the pdf’s are consistent with the experimental observations, ob-
tained at higher Reynolds numbers (Qureshi et al., 2007; Volk et al.,
2008; Xu and Bodenschatz, 2008).

The Lagrangian acceleration correlation function for fluid trac-
ers is known to decay much faster than the velocity correlation
and has zero integral time scale. Yeung and Pope (1989) found that
the acceleration auto-correlation crosses zero at about 2sK and this
varies only slightly with the turbulent Reynolds number. Mordant
et al. (2002) showed that the auto-correlation of the acceleration
magnitude decays slowly and argued that this long-time correla-
tion is a key feature of intermittency in turbulence. Lee et al.
(2004) suggested that this different behavior of acceleration and
acceleration magnitude comes from the rotational motion of parti-
cles in a vortex in that the zero-crossing time of the acceleration
auto-correlation is related to the rotational time scale of a particle
as it is swept around in a vortex.

The acceleration auto-correlation function qAðtÞ is presented in
Fig. 9. The zero-crossing time of the auto-correlation function for
smaller bubbles (B1) and larger bubbles (B2) are, respectively,
2.33 and 2:50sK . These values are smaller than for neutrally buoy-
ant and solid particles. At early times ðt < 2sKÞ;qAðtÞ for the neu-
trally buoyant and the solid particles are only slightly different.
Due to the effects of inertia, qAðtÞ for the solid particles decays
more slowly than for the neutrally buoyant particles. Both Volk
et al. (2008) and Xu and Bodenschatz (2008) have measured the
acceleration auto-correlations for a range of isolated particles
and particle sizes at high Reynolds numbers. The first zero-crossing
for bubbles, a=g ¼ 4:4, is earlier than for neutral or denser particles
and for larger neutrally buoyant particles, a=g ¼ 7:4 the auto-cor-
relation extends further (Volk et al., 2008). Both observations are
consistent with the present simulations but it is not possible to
make a quantitative comparison.

Finally we examine the Lagrangian velocity structure function.
Fig. 10 shows the velocity structure function DLðtÞ,

DLðtÞ ¼ hðVðsþ tÞ � VðsÞÞ2i ð30Þ

where DLðtÞ is normalized by �t. In a high Reynolds number inertial
sub-range DLðtÞ=�t would be a constant C0. The results shown for
the two different sizes of bubbles are similar. For both neutrally
buoyant and solid particles, the maximum value of DLðtÞ is greater
for the smaller particle size while the time at which the maximum
is attained is shorter. For the present simulations there is no inertial
sub-range as the Reynolds number is too low. From the normalized
velocity structure function, we can provisionally evaluate C�0 as a
low Reynolds number analog to the Kolmogorov constant C0 (Yeung
and Pope, 1989; Sawford, 1991) for comparison purposes. Estimates
of C�0 are given in Table 5, based on the maximum values shown in
Fig. 10. The estimates of C�0 for the bubbles (cases B1 and B2) are
about 2.6, which is similar to that of a fluid particle (Yeung and
Pope, 1989). The peak value for the bubbles is observed at approx-
imately 4:3sK .
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6. Conclusions

In this paper we have examined a number of issues relating to
the dynamics of finite size particles at low to moderate volume
fractions in liquid–solid or liquid-bubble turbulence. The results
for the dissipation spectra in Section 4 show that the particles en-
hance the small scale turbulence at length scales below the particle
size. This is determined primarily by the finite size of the particle
and not by the specific density of the particle. The scaling of the
pivoting wavenumber kP by the particle diameter, through kd, as
proposed by ten Cate et al. (2004), is consistent with the present
results but does not fully match them. There may be an additional
dependence for example on d=g.

In describing the dynamics of the energy spectra, it would ap-
pear possible to represent the transfer of energy from large scales
to small scales by the particle phase through the use of an effective
suspension viscosity, at least for scales substantially larger than
the particle. The characteristics of this viscosity are more complex
than a simple application of the Stokes–Einstein result for dilute
suspensions. There is limited fundamental information at present
on the rheology of particle suspensions at finite Reynolds numbers.
Recent numerical simulations by Kulkarni and Morris (2008) for
neutrally buoyant particles in a steady Couette flow indicate that
the Stokes–Einstein estimate should still apply at volume fractions
of 5%.

The contribution HðkÞ from the force dipoles to the spectral en-
ergy transfer in (24) represents a sum over the stresslet compo-
nents of all the particles. The particle contribution to the bulk
stress in a finite Reynolds number flow depends not only on this
but also a local volume average of the symmetric moments of
the particle accelerations and a Reynolds stress term (Batchelor,
1970; Kulkarni and Morris, 2008). The latter is for the smaller-scale
disturbance flow around each particle relative to the local volume
averaged flow velocity. In the present formulation these other
terms are included in the nonlinear inertial transfer term TðkÞ.

The effective viscosity of viscous suspension flows depends too
on the relative positions of particles and localized concentrations
of particles should have an observable effect (Hinch, 1977). In
the present context, the bulk concentration of 6%, or less, is still rel-
atively low and such effects may be limited as seen in the small
variation of meff in Table 4, even though the bubbles and solid par-
ticles have some tendency to cluster. The dynamics of viscous sus-
pensions are governed by the velocity fluctuations created by the
disturbance flows of the individual particles randomly dispersed
in the flow and the correlations between these flows is important.
Particle suspensions in turbulent flow are subject to the underlying
turbulence and the correlations of the disturbance flows with the
turbulence are more significant.

The Lagrangian statistics of the particle motion have also been
investigated. At finite volume fractions, collisions and contact
forces between particles (or bubbles) will inherently limit local
accumulations and the ‘‘collisional pressure” will contribute to
the particle-phase stress. This pressure will also enhance particle
dispersion if there are spatial variations in the mean concentration.
In other respects, in homogeneous systems, the collisions will limit
the correlation times for the particle motion. These effects will in-
crease significantly with particle concentration.

There is evidence too for the spatial filtering effect from the
finite particle size on the response to the turbulent motion. For
example, for a neutrally buoyant particle, this is a function of the
particle size relative to the Kolmogorov scale, or to the Taylor
microscale. As indicated in (16), the Stokes number St is closely re-
lated to the ratio of the particle size to the Taylor microscale. Sim-
ilarly the ratio sP=sK is closely related to the ratio of the particle
size to the Kolmogorov length scale. The present simulations are
at too low a Reynolds number to establish an inertial sub-range
but the particle diameters are 7–11 times larger than the Kolmogo-
rov scales and so fall within the transition range described by
(Qureshi et al., 2007). This is in addition to any inertial response
linked to the specific density of the particle.

These results given here are preliminary in many respects and
we hope that they will stimulate future work to explore these
issues more fully.
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