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We present a numerical scheme for approximating the incompressible Navier-Stokes 
equations based on an auxiliary variable associated with the total system energy. By 
introducing a dynamic equation for the auxiliary variable and reformulating the Navier-
Stokes equations into an equivalent system, the scheme satisfies a discrete energy stability 
property in terms of a modified energy and it allows for an efficient solution algorithm 
and implementation. Within each time step, the algorithm involves the computations 
of two pressure fields and two velocity fields by solving several de-coupled individual 
linear algebraic systems with constant coefficient matrices, together with the solution of 
a nonlinear algebraic equation about a scalar number involving a negligible cost. A number 
of numerical experiments are presented to demonstrate the accuracy and the performance 
of the presented algorithm.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

We focus on the numerical approximation of the incompressible Navier-Stokes equations, which form the basis for sim-
ulations of single-phase incompressible flows and turbulence [23,26,10,6]. The momentum equations for two-phase and 
multiphase flow problems [36,1,12,9] often take a form analogous to the incompressible Navier-Stokes equations with a 
similar mathematical structure. Developing efficient and effective algorithms for incompressible Navier-Stokes equations 
therefore can have implications in fields far beyond incompressible flows.

An essential tradeoff confronting a practitioner of computational fluid dynamics (CFD) is between the desire to be able to 
use larger time step sizes (permitted by accuracy/stability) and the computational cost. On one end of the spectrum, uncon-
ditionally energy-stable schemes (see e.g. [29,32,34,24,11,27,18,3], among others) can alleviate the time step size constraint, 
and one can concentrate on the accuracy requirement when choosing a time step size in a simulation task. This however 
comes with a downside. Within each time step energy-stable schemes typically involve the solution of a system of non-
linear algebraic equations or a system of linear algebraic equations with a variable and time-dependent coefficient matrix, 
inducing a high computational cost due to the Newton nonlinear iterations and the need for frequent re-computations of the 
coefficient matrices. This can render the overall approach inefficient, and therefore such schemes are not often used in large-
scale production simulations in practice, especially for dynamic problems. On the other end of the spectrum, semi-implicit 
splitting type (or fractional-step) schemes (see e.g. [5,33,21,19,2,35,16,25,17,28], the review article [15], and the references 
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therein) de-couple the computations for the velocity and the pressure fields, and all the coefficient matrices are constant 
and can be pre-computed. Such schemes have a low computational cost per time step. But they are only conditionally sta-
ble, and the time step size that can be used is restricted by e.g. CFL type conditions. Thanks to their low cost, semi-implicit 
schemes are very popular in large-scale production simulations for flow physics investigations (see e.g. [26,10,7,14]).

We present in this work a numerical scheme for the incompressible Navier-Stokes equations that in a sense resides 
somewhere between the two extremes on the spectrum of methods. The salient feature of this scheme is the introduction 
of an auxiliary variable (which is a scalar number) associated with the total energy of the Navier-Stokes system. This idea 
is inspired by a recent work [30] for gradient-type dynamical systems. The incompressible Navier-Stokes equations are then 
reformulated into an equivalent system employing the auxiliary energy variable, and a numerical scheme is devised to 
approximate the reformulated system. Within a time step, the algorithm requires the computations of two pressure fields 
and two velocity fields, as well as the solution of a nonlinear algebraic equation about a scalar number. The computation 
for each of the pressure/velocity fields involves a linear algebraic system with a constant coefficient matrix that can be 
pre-computed. Solving the nonlinear algebraic equation requires Newton iterations, but its cost is negligible (accounting for 
about 4% of the total cost per time step) because this nonlinear equation is about a scalar number, not a field function. This 
scheme can be shown to satisfy a discrete energy stability property in terms of a modified energy. Numerical experiments 
show that the algorithm allows the use of large (or fairly large) time step sizes and produces stable computation results in 
flow simulations. The amount of operations (and the computational cost) of this algorithm per time step is approximately 
twice that of the semi-implicit scheme from [8], which is only conditionally stable.

The novelties of this work lie in several aspects: (i) the introduction of the auxiliary energy variable into and the re-
sultant reformulation of the Navier-Stokes system; (ii) the numerical scheme for approximating the reformulated system of 
equations; and (iii) the efficient solution procedure for overcoming the difficulty caused by the unknown auxiliary variable 
in the implementation of the scheme.

The rest of this paper is structured as follows. In Section 2 we introduce an auxiliary energy variable and reformulate the 
Navier-Stokes equations based on this variable. A numerical scheme is presented for approximating the reformulated equiv-
alent system. We then discuss how to implement the scheme, and in particular how to overcome the challenge caused by 
the unknown auxiliary variable in the implementation. In Section 3 we present several representative numerical simulations 
to test the accuracy and performance of the algorithm. Section 4 concludes the presentation with some closing remarks.

2. Auxiliary variable-based algorithm for incompressible Navier-Stokes equations

2.1. Reformulated equations and numerical scheme formulation

Consider an incompressible flow contained in some domain � in two or three dimensions, whose boundary is denoted 
by ∂�. The dynamics of the flow is described by the incompressible Navier-Stokes equations, given in a non-dimensional 
form as follows,

∂u

∂t
+ N(u) + ∇p − ν∇2u = f, (1a)

∇ · u = 0, (1b)

where x and t denote the spatial coordinate and time, u(x, t) and p(x, t) are respectively the normalized velocity and 
pressure, f(x, t) is an external body force, and N(u) is the convection term, N(u) = u · ∇u. ν denotes the inverse of the 
Reynolds number Re,

ν = 1

Re
= ν f

U0L
(2)

where U0 is the characteristic velocity scale, L is the characteristic length scale, and ν f is the kinematic viscosity of the 
fluid. On the domain boundary ∂� we assume that the velocity is known

u = w(x, t), on ∂� (3)

where w denotes the boundary velocity. The system is supplemented by the initial condition

u(x,0) = uin(x) (4)

where the initial velocity distribution uin is assumed to be compatible with the boundary condition (3) on ∂� and satisfies 
the equation (1b). In the governing equations (1a)–(1b), only the pressure gradient ∇p is physically meaningful, and the 
absolute pressure value is not fixed (pressure can be shifted by an arbitrary constant). In order to fix the pressure values in 
the numerical solution we impose the following often-used condition∫

p = 0. (5)
�
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Consider a shifted total energy of the system, in non-dimensional form,

E(t) = E[u] = C0 +
∫
�

1

2
|u|2 (6)

where C0 is a chosen non-dimensional constant such that E(t) > 0 for all t � 0. In dimensional form, C0 is a chosen energy 
constant, to be non-dimensionalized by ρU 2

0 Ld (ρ denotes the fluid density, and d = 2 or 3 is the dimension in space). The 
goal of C0 is to shift the energy value so that the term 1√

E(t)
(to be used subsequently) is well defined for all t � 0. We 

include the constant C0 in (6) to ensure that the term 1√
E(t)

is well defined even in certain extreme cases, e.g. zero initial 
velocity field.

Define an auxiliary variable R(t) by

R(t) =√E(t). (7)

Then

2R
dR

dt
= dE

dt
=
∫
�

∂u

∂t
· u =

∫
�

(
∂u

∂t
+ u · ∇u

)
· u −

∫
∂�

(n · u)
1

2
|u|2 (8)

where n is the outward-pointing unit vector normal to the boundary ∂�, and we have used integration by part, the equa-
tion (1b), and the divergence theorem. It should be emphasized that both R(t) and E(t) are scalar variables, not field 
functions. At t = 0,

R(0) =
⎛
⎝C0 +

∫
�

1

2
|uin|2

⎞
⎠

1
2

. (9)

In light of the definition (7), we re-write equation (1a) into an equivalent form

∂u

∂t
+ R(t)√

E(t)
N(u) + ∇p − ν∇2u = f. (10)

We also re-write equation (8) into an equivalent form

2R
dR

dt
=
∫
�

[
∂u

∂t
+ R(t)√

E(t)
N(u)

]
· u −

∫
∂�

(n · u)
1

2
|u|2. (11)

The original system consisting of the equations (1a)–(1b), (3) and (4) is equivalent to the reformulated system consisting 
of equations (10), (1b), (11), together with the boundary condition (3) and the initial conditions (4) and (9), in which E(t)
is given by (6). We next focus on this reformulated equivalent system of equations, and present a numerical scheme for 
approximating this system.

Let n � 0 denote the time step index, and (·)n denote the variable (·) at time step n. Let J ( J = 1 or 2) denote the 
temporal order of accuracy of the scheme. We set

u0 = uin(x), R0 =√E(0) =
√√√√C0 +

∫
�

1

2
|u0|2. (12)

Then given (un , pn , Rn), we compute (un+1, pn+1, Rn+1) through the following scheme

γ0un+1 − û

�t
+ Rn+1

√
En+1

N(ūn+1) + ∇pn+1 − ν∇2un+1 = fn+1, (13a)

∇ · un+1 = 0, (13b)

2Rn+1 γ0 Rn+1 − R̂

�t
=
∫
�

[
γ0un+1 − û

�t
+ Rn+1

√
En+1

N(ūn+1)

]
· un+1 −

∫
∂�

(n · un+1)
1

2
|un+1|2, (13c)

un+1 = wn+1, on ∂�, (13d)

En+1 =
∫

1

2

∣∣un+1
∣∣2 + C0, (13e)
�
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∫
�

pn+1 = 0. (13f)

�t is the time step size in the above equations. If χ denotes a generic variable, then in the above equations 1
�t (γ0χ

n+1 − χ̂ )

is the approximation of ∂χ
∂t

∣∣∣n+1
based on the J -th order backward differentiation formula (BDF), with γ0 and χ̂ defined 

specifically by

χ̂ =
{

χn, J = 1,

2χn − 1
2χn−1, J = 2; γ0 =

{
1, J = 1,

3/2, J = 2.
(14)

ūn+1 denotes a J -th order explicit approximation of un+1, given by

ūn+1 =
{

un, J = 1,

2un − un−1, J = 2.
(15)

Taking the L2 inner product between un+1 and equation (13a) leads to

∫
�

[
γ0un+1 − û

�t
+ Rn+1

√
En+1

N(ūn+1)

]
· un+1 +

∫
∂�

(n · un+1)pn+1

− ν

∫
∂�

(n · ∇un+1) · un+1 + ν

∫
�

‖∇un+1‖2 =
∫
�

fn+1 · un+1 (16)

where we have used integration by part, the divergence theorem, and the equation (13b). Sum up equations (13c) and (16), 
and we have

2Rn+1 γ0 Rn+1 − R̂

�t
= −ν

∫
�

‖∇un+1‖2 +
∫
�

fn+1 · un+1 +
∫
∂�

(
−pn+1n + νn · ∇un+1 − 1

2
|wn+1|2n

)
· wn+1 (17)

where we have used equation (13d), and

‖∇u‖2 =
d∑

i, j=1

∂iu j∂iu j (d denoting the dimension in space). (18)

Note the following relations

2Rn+1(γ0 Rn+1 − R̂) = 2Rn+1(Rn+1 − Rn) = |Rn+1|2 − |Rn|2 + |Rn+1 − Rn|2, if J = 1; (19a)

2Rn+1(γ0 Rn+1 − R̂) =2Rn+1
(

3

2
Rn+1 − 2Rn + 1

2
Rn
)

=1

2

(
|Rn+1|2 − |Rn|2

)
+ 1

2

(∣∣2Rn+1 − Rn
∣∣2 − ∣∣2Rn − Rn−1

∣∣2)
+ 1

2

∣∣Rn+1 − 2Rn + Rn−1
∣∣2 , if J = 2.

(19b)

Combining the above equations, we obtain the following stability result about the scheme:

Theorem 2.1. In the absence of the external force f and with zero boundary velocity w, the scheme represented by equations 
(13a)–(13f) satisfies the following property:

Q n+1 − Q n = − ∣∣Dn+1
∣∣2 − ν�t

∫
�

‖∇un+1‖2 (20)

where

Q n =
{ |Rn|2, J = 1,

1
2

(|Rn|2 + |2Rn − Rn−1|2) , J = 2; Dn+1 =
{

Rn+1 − Rn, J = 1,

1√
2

(
Rn+1 − 2Rn + Rn−1

)
, J = 2.

(21)
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2.2. Solution algorithm and implementation

We next consider how to implement the algorithm represented by the equations (13a)–(13f). Even though Rn+1 and 
En+1 are both implicit and En+1 involves the integral of the unknown field function un+1 over the domain, the scheme 
can be implemented in an efficient way, thanks to the fact that Rn+1 and En+1 are scalar numbers, not field functions. We 
employ C0 spectral elements [31,20,37,4] for spatial discretizations in the current work.

Let

S = Rn+1

√
En+1

, E(S) = En+1 =
∫
�

1

2
|un+1|2 + C0. (22)

Then equation (13a) can be written as

γ0

�t
un+1 + ∇pn+1 − ν∇2un+1 = Gn+1 − SN(ūn+1) (23)

where Gn+1 = fn+1 + û
�t . In light of (13b), equation (23) can be transformed into

γ0

�t
un+1 + ∇pn+1 = Gn+1 − SN(ūn+1) − ν∇ × ∇ × un+1. (24)

We would like to derive the weak forms for the pressure and velocity in the spatially continuous space first. The discrete 
function spaces for these variables will be specified later. Let q(x) denote an arbitrary test function in the continuous space. 
Taking the L2 inner product between ∇q and equation (24), we get∫

�

∇pn+1 · ∇q =
∫
�

[
Gn+1 − SN(ūn+1)

] · ∇q − ν

∫
∂�

n × ωn+1 · ∇q − γ0

�t

∫
∂�

n · wn+1q, ∀q, (25)

where ω = ∇ × u is the vorticity, and we have used the integration by part, the divergence theorem, equations (13b) and 
(13d), and the identity 

∫
�

∇ × ω · ∇q = ∫
∂�

n × ω · ∇q. Equation (25) couples the pressure and the velocity because of the 
vorticity ωn+1 (tangent component) on the boundary. In order to simplify the implementation, we will make the following 
approximation, n × ωn+1

∣∣
∂�

≈ n × ω̄n+1
∣∣∣
∂�

, where ω̄n+1 = ∇ × ūn+1 is the vorticity based on the explicitly approximated 
velocity defined in (15). This only slightly reduces the robustness in terms of stability, but significantly simplifies the imple-
mentation and reduces the computations. Employing this approximation, we transform (25) into∫

�

∇pn+1 · ∇q =
∫
�

[
Gn+1 − SN(ūn+1)

] · ∇q − ν

∫
∂�

n × ω̄n+1 · ∇q − γ0

�t

∫
∂�

n · wn+1q, ∀q. (26)

This equation, together with equation (13f), can be solved for pn+1, provided that the unknown scalar value S = Rn+1√
En+1

is 
given.

Exploiting the fact that S is a scalar number (not a field function), we solve equations (26) and (13f) for pn+1 as follows. 
Define two field variables pn+1

1 and pn+1
2 as solutions to the following two problems:

For pn+1
1 :∫
�

∇pn+1
1 · ∇q =

∫
�

Gn+1 · ∇q − ν

∫
∂�

n × ω̄n+1 · ∇q − γ0

�t

∫
∂�

n · wn+1q, ∀q. (27a)

∫
�

pn+1
1 = 0. (27b)

For pn+1
2 :∫
�

∇pn+1
2 · ∇q = −

∫
�

N(ūn+1) · ∇q, ∀q. (28a)

∫
�

pn+1
2 = 0. (28b)

Then it is straightforward to verify that the solution to equations (26) and (13f) is given by

pn+1 = pn+1 + Spn+1 (29)
1 2
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where S is to be determined later.
In light of (29), we re-write equation (23) as

γ0

ν�t
un+1 − ∇2un+1 = 1

ν
(Gn+1 − ∇pn+1

1 ) − S

ν

[
N(ūn+1) + ∇pn+1

2

]
. (30)

Let ϕ(x) denote an arbitrary test function that vanishes on ∂�, i.e. ϕ|∂� = 0. Taking the L2 inner product between ϕ and 
the equation (30), we obtain the weak form about un+1,

γ0

ν�t

∫
�

un+1ϕ +
∫
�

∇ϕ · ∇un+1 = 1

ν

∫
�

(Gn+1 − ∇pn+1
1 )ϕ − S

ν

∫
�

[
N(ūn+1) + ∇pn+1

2

]
ϕ, ∀ϕ with ϕ|∂� = 0,

(31)

where we have used integration by part, the divergence theorem, and the fact that ϕ|∂� = 0. This equation, together with 
equation (13d), can be solved for un+1, provided that S is known.

We again exploit the fact that S is a scalar number, and solve these equations for un+1 as follows. Define two field 
variables un+1

1 and un+1
2 as solutions to the following two problems:

For un+1
1 :

γ0

ν�t

∫
�

un+1
1 ϕ +

∫
�

∇ϕ · ∇un+1
1 = 1

ν

∫
�

(Gn+1 − ∇pn+1
1 )ϕ, ∀ϕ with ϕ|∂� = 0. (32a)

un+1
1 = wn+1, on ∂�. (32b)

For un+1
2 :

γ0

ν�t

∫
�

un+1
2 ϕ +

∫
�

∇ϕ · ∇un+1
2 = − 1

ν

∫
�

[
N(ūn+1) + ∇pn+1

2

]
ϕ, ∀ϕ with ϕ|∂� = 0. (33a)

un+1
2 = 0, on ∂�. (33b)

Then the solution un+1 to equations (31) and (13d) is given by

un+1 = un+1
1 + Sun+1

2 , (34)

where S is to be determined.
Note that equation (13c) is equivalent to equation (17). We rewrite equation (17) into

2

�t
Rn+1(γ0 Rn+1 − R̂)

Rn+1

√
En+1

+ νRn+1

√
En+1

∫
�

‖∇un+1‖2 − Rn+1

√
En+1

∫
�

fn+1 · un+1

− Rn+1

√
En+1

∫
∂�

(
−pn+1n + νn · ∇un+1 − 1

2
|wn+1|2n

)
· wn+1 = 0 (35)

where we have multiplied both sides of equation (17) by Rn+1√
En+1

. We observe that this can improve the robustness of the 
scheme when the time step size �t becomes large. This is a scalar nonlinear equation, and it will be solved for S .

In light of equation (34), we have

En+1 = E(S) = C0 +
∫
�

1

2
|un+1|2 = A0 + A1 S + A2 S2, (36)

where

A0 = C0 +
∫
�

1

2
|un+1

1 |2, A1 =
∫
�

un+1
1 · un+1

2 , A2 =
∫
�

1

2
|un+1

2 |2. (37)

In light of equations (22), (13d), (29) and (34), we can transform equation (35) into

F (S) = 2γ0

�t
S3 E(S) − 2R̂

�t
S2
√

E(S) + B0 S + B1 S2 + B2 S3 = 0 (38)

where R̂ is defined by (14), and
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0 = ν

∫
�

‖∇un+1
1 ‖2 −

∫
�

fn+1 · un+1
1 −

∫
∂�

(
−pn+1

1 n + νn · ∇un+1
1 − 1

2
|wn+1|2n

)
· wn+1

B1 = 2ν

∫
�

∇un+1
1 : ∇un+1

2 −
∫
�

fn+1 · un+1
2 −

∫
∂�

(
−pn+1

2 n + νn · ∇un+1
2

)
· wn+1

B2 = ν

∫
�

‖∇un+1
2 ‖2,

(39)

and ‖u‖2 is defined by equation (18) and ∇u : ∇v =∑d
i, j=1 ∂iu j∂i v j . Equation (38) is a nonlinear scalar equation about S . It 

can be solved for S using the Newton’s method with an initial guess S = 1. The cost of this computation is very small and 
is essentially negligible compared to the total cost within a time step, which will be shown by the numerical experiments 
in Section 3. With S known, En+1 can be computed based on equation (36), and Rn+1 can be computed using equation (22). 
The velocity un+1 and pressure pn+1 are then given by equations (34) and (29).

Remark 1. It is important to note that when computing S (or Rn+1) we have employed equation (35) in the implementation, 
which is based on the transformed equation (17) rather than the original equation (13c). While the equations (13c) and 
(17) are mathematically equivalent, we find that the scheme is much more robust using the transformed equation (17), and 
stable simulations can be achieved with large time step sizes for both steady-state and unsteady (dynamic) flow problems. 
On the other hand, with the implementation based on equation (13c) stable results can be obtained with large time step 
sizes only for steady-state problems, and it encounters difficulties for unsteady flows with large time step sizes in practice.

Let us now consider the spatial discretization of the equations (27a)–(28b) and (32a)–(33b). We discretize the domain 
� with a mesh consisting of Nel conforming spectral elements. Let the positive integer K denote the element order, which 
represents a measure of the highest polynomial degree in the polynomial expansions of the field variables within an ele-
ment. Let �h denote the discretized domain, ∂�h denote the boundary of �h , and �e

h (1 � e � Nel) denote the element e. 
Define two function spaces{

X = { v ∈ H1(�h) : v is a polynomial characterized by K on �e
h, for 1 � e � Nel },

X0 = { v ∈ X : v|∂�h
= 0 }. (40)

In the following let d (d = 2 or 3) denote the spatial dimension, and the subscript in (·)h denote the discretized version 
of the variable (·). The fully discretized equations corresponding to (27a)–(28b) are:
For pn+1

1h : find pn+1
1h ∈ X such that∫

�h

∇pn+1
1h · ∇qh =

∫
�h

Gn+1
h · ∇qh − ν

∫
∂�h

nh × ω̄n+1
h · ∇qh − γ0

�t

∫
∂�h

nh · wn+1
h qh, ∀qh ∈ X . (41a)

∫
�h

pn+1
1h = 0. (41b)

For pn+1
2h : find pn+1

2h ∈ X such that∫
�h

∇pn+1
2h · ∇qh = −

∫
�h

N(ūn+1
h ) · ∇qh, ∀qh ∈ X . (42a)

∫
�h

pn+1
2h = 0. (42b)

The fully discretized equations corresponding to (32a)–(33b) are:
For un+1

1h : find un+1
1h ∈ [X]d such that

γ0

ν�t

∫
�h

un+1
1h ϕh +

∫
�h

∇ϕh · ∇un+1
1h = 1

ν

∫
�h

(
Gn+1

h − ∇pn+1
1h

)
ϕh, ∀ϕh ∈ X0. (43a)

un+1
1h = wn+1

h , on ∂�h. (43b)

For un+1: find un+1 ∈ [X]d such that
2h 2h
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γ0

ν�t

∫
�h

un+1
2h ϕh +

∫
�h

∇ϕh · ∇un+1
2h = − 1

ν

∫
�h

[
N(ūn+1

h ) + ∇pn+1
2h

]
ϕh, ∀ϕh ∈ X0. (44a)

un+1
2h = 0, on ∂�h. (44b)

Combining the above discussions, we arrive at the final solution algorithm. It involves the following steps:

(i) Solve equations (41a)–(41b) for pn+1
1 ;

Solve equations (43a)–(43b) for un+1
1 .

(ii) Solve equations (42a)–(42b) for pn+1
2 ;

Solve equations (44a)–(44b) for un+1
2 .

(iii) Compute the coefficients A0, A1 and A2 based on (37);
Compute the coefficients B0, B1 and B2 based on (39).

(iv) Solve equation (38) for S using the Newton’s method with an initial guess S = 1.
(v) Compute un+1 from equation (34);

Compute pn+1 from equation (29);
Compute En+1 from equation (36);
Compute Rn+1 by Rn+1 = S

√
En+1.

It is noted that the linear algebraic systems for pn+1
1 , pn+1

2 , un+1
1 , and un+1

2 all involve constant and time-independent 
coefficient matrices, which can be pre-computed during pre-processing.

3. Representative numerical examples

We next use several numerical examples in two dimensions to test the performance and the accuracy of the algorithm 
presented in the previous section. The spatial and temporal convergence rates of the scheme will first be demonstrated using 
a contrived analytic solution to the incompressible Navier-Stokes equations. Then we will employ the method to study a 
steady-flow problem (Kovasznay flow) and the flow past a circular cylinder in a periodic channel for a range of Reynolds 
numbers with various time step sizes.

3.1. Convergence rates

In this subsection we employ a manufactured analytic solution to the incompressible Navier-Stokes equations to investi-
gate the spatial and temporal convergence rates of the algorithm developed herein.

Consider a rectangular domain 0 � x � 2 and −1 � y � 1, and the following solution to the Navier-Stokes equations 
(1a)–(1b) and (5) on this domain:⎧⎪⎨

⎪⎩
u = 2 cos(π y) sin(πx) sin t,

v = −2 sin(π y) cos(πx) sin t,

p = 2 sin(π y) sin(πx) cos t,

(45)

where u and v are the two components of the velocity u. In equation (1a) the external body force f is chosen such that the 
expressions in (45) satisfy this equation.

We simulate this problem using the algorithm from Section 2. The domain is discretized with two uniform elements 
along the x direction. On the domain boundary we impose the Dirichlet boundary condition (3), in which the boundary 
velocity w is chosen based on the analytic expressions in (45). The initial velocity uin is chosen according to the analytic 
expressions in (45) by setting t = 0.

We integrate the Navier-Stokes equations in time from t = 0 to t = t f (t f to be specified next). Then we compare the 
numerical solutions of different flow variables at t = t f with the analytic expressions from (45), and the errors in different 
norms are computed and recorded. The element order and the time step size �t are varied systematically in the simulations 
in order to study their effects on the numerical errors. We employ a non-dimensional viscosity ν = 0.01 for this problem, 
and the constant C0 in equation (6) is fixed at C0 = 1.0 in the simulations.

In the spatial convergence tests, we employ a fixed t f = 0.1 and �t = 0.001, and vary the element order systematically 
between 2 and 20. The errors at t = t f between the numerical solution and the analytic solution in L∞ and L2 norms 
have been computed corresponding to all these element orders. Fig. 1(a) shows these numerical errors as a function of the 
element order for this group of tests. For element orders 12 and below we observe an exponential decrease in the numerical 
errors as the element order increases. As the element order increases beyond 14, we observe a saturation in the numerical 
errors due to the temporal truncation error. The error curves for different flow variables level off approximately at a level 
around 10−7. These results are indicative of an exponential convergence rate in space for the current method.

In the temporal convergence tests, we fix the integration time at t f = 0.2 and the element order at a large value 16, 
and then vary the time step size systematically between �t = 0.1 and �t = 1.953125 × 10−4. Fig. 1(b) shows the L∞



L. Lin et al. / Journal of Computational Physics 388 (2019) 1–22 9
Fig. 1. Convergence tests: (a) Numerical errors vs. element order (fixed �t = 0.001 and t f = 0.1). (b) Numerical errors vs. �t (fixed element order 16 and 
t f = 0.2).

Fig. 2. Kovasznay flow: (a) Flow domain and mesh of 6 quadrilateral elements; (b) Streamlines.

and L2 errors of the velocity and pressure as a function of �t , plotted in logarithmic scales for both axes. A second-order 
convergence rate in time is clearly observed with the method developed herein.

3.2. Kovasznay flow

In this subsection we test the proposed method using a steady-state problem, the Kovasznay flow [22], for which the 
exact solution of the flow field is available.

Specifically, we consider the domain −0.5 � x � 1 and −0.5 � y � 0.5, as depicted in Fig. 2(a). The Kovasznay flow 
solution to the Navier-Stokes equations (1a)–(1b) (with f = 0) is given by the following expressions for the velocity u = (u, v)

and pressure:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = 1 − eλx cos(2π y),

v = λ

2π
eλx sin(2π y),

p = 1

2
(1 − e2λx),

(46)

where the constant λ = 1
2ν −

√
1

4ν2 + 4π2. The flow pattern for this solution is illustrated by the streamlines shown in 
Fig. 2(b), which is similar to that behind an obstacle. We employ a non-dimensional viscosity ν = 0.025 for this problem.

To simulate the problem, we discretize the domain using 6 quadrilateral elements as shown in Fig. 2(a). The element 
orders and the time step sizes are varied in the tests and will be specified subsequently. In the Navier-Stokes equation 
(1a) the external body force is set to f = 0. On the four boundaries Dirichlet type conditions are imposed for the velocity 
according to the expression given in (46). We set a zero initial velocity, uin = 0, in the initial condition (4). The simulations 
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Fig. 3. Kovasznay flow: L∞ and L2 errors of the steady-state velocity as a function of the element order. Results are obtained with �t = 0.005 and C0 = 0.01.

Fig. 4. Effect of C0 value on the simulation errors of Kovasznay flow: (a) Time histories of L2 errors of the x velocity obtained with C0 = 0.01 and C0 = 500. 
(b) Numerical errors of the steady-state velocities as a function of C0. Results are obtained using �t = 0.005 and an element order 14.

have been performed for a sufficiently long time until the steady state is reached. Then the errors of the numerical solutions 
against the exact solution as given by (46) are computed, as well as the norms of the flow variables.

Fig. 3 shows the L∞ and L2 errors of the steady-state velocity from the simulations as a function of the element order. 
In this group of tests the time step size is fixed at �t = 0.005, and the constant C0 in equation (6) is C0 = 0.01, while the 
element order has been varied systematically between 2 and 20. The errors of the steady-state velocity decrease exponen-
tially with increasing element order, until they saturate at a level about 10−13 as the element order increases to 14 and 
beyond.

We observe that the value for the constant C0 in (6) appears to have some influence on the error history and the error 
level of the steady-state solution to this problem. This is shown by the results in Fig. 4. Fig. 4(a) shows the L2 errors 
of the x velocity component as a function of time as the simulation proceeds. These results are for two constant values, 
C0 = 0.01 and C0 = 500. The time step size is �t = 0.005 and the element order is 14 in these simulations. Three stages 
can be observed from the error history curves: an initial stage when the error decreases rapidly (t � 2), followed by an 
intermediate stage when the error decreases at a slower rate, and then the level-off of the error curves. At the initial 
stage the history curves with C0 = 0.01 and 500 essentially overlap with each other. This stage ends around t ∼ 2. At the 
intermediate stage, the error histories for C0 = 0.01 and 500 exhibit quite different characteristics. The error corresponding 
to C0 = 0.01 decreases quickly and reaches its final level (between 10−14 and 10−13) around t ∼ 30. On the other hand, the 
error corresponding to C0 = 500 decreases extremely slowly at this stage, and it appears to essentially stagnate for a finite 
window in time. The error for C0 = 500 reaches its final level (∼ 10−11) at about t ≈ 8500. The error curves corresponding 
to other moderate C0 values exhibit a similar behavior to that of C0 = 500, with an extremely slow error decrease at the 
intermediate stage. On the other hand, the error histories corresponding to small or very large C0 values are similar to that 
of C0 = 0.01, and reach the final error level rather quickly. Fig. 4(b) is a study of the C0 effect on the final error levels of the 
numerically-obtained steady-state solutions. We vary C0 between 0.001 and 1015, and for each C0 value the errors of the 
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Table 1
Kovasznay flow: L2 errors of x component of steady-state velocity 
versus �t , computed with fixed C0 = 0.01 and element orders 10
and 16.

�t Element order 10 Element order 16

0.001 9.57e − 9 1.08e − 13
0.002 8.92e − 9 5.52e − 14
0.003 8.69e − 9 3.78e − 14
0.004 8.57e − 9 1.88e − 14
0.005 8.49e − 9 2.28e − 14
0.006 8.43e − 9 5.25e − 3
0.007 8.38e − 9 1.55e − 2
0.008 8.34e − 9 2.39e − 2
0.009 8.31e − 9 3.06e − 2
0.01 1.16e − 2 3.57e − 2
0.03 1.14e − 1 1.12e − 1
0.05 1.42e − 1 1.39e − 1
0.1 1.68e − 1 1.85e − 1
0.5 2.67e − 1 2.58e − 1
1.0 2.76e − 1 2.91e − 1

Fig. 5. Kovasznay flow: Time histories of the L2 norm of the x velocity obtained using several �t values using (a) the semi-implicit scheme of [8], and (b) 
the current scheme.

steady-state velocity is computed and recorded. In Fig. 4(b) we show the errors of the steady-state velocity as a function of 
C0. Fixed values of �t = 0.005 and an element order 14 are employed in these tests. As C0 increases from 10−3 to about 
10, the numerical errors remain essentially the same (around 10−13). Then as C0 increases from 10 to about 106 there is 
a gradual increase in the numerical errors, reaching a peak level between 10−8 and 10−7 with C0 ≈ 106. Beyond C0 ≈ 106, 
the numerical errors decrease with increasing C0 until around C0 = 1012. As C0 increases beyond 1012, the numerical errors 
remain essentially the same, at a level around 10−13. These results suggest that using a small C0 or a very large C0 in the 
algorithm may be more favorable for the Kovasznay flow. We employ a constant value C0 = 0.01 for the results reported 
subsequently in this subsection.

The energy stability property of the current scheme (see Theorem 2.1) is conducive to the stability of computations. 
We observe that this scheme allows the use of fairly large or large time step sizes (�t) in the simulations. In Table 1
we have listed the L2 errors of the x component of the steady-state velocity computed with different �t values, ranging 
from �t = 0.001 to �t = 1.0. In this set of simulations C0 = 0.01 and two element orders (10 and 16) have been used. 
We observe that for a given spatial resolution (element order) the computation result becomes less accurate or inaccurate 
when �t becomes too large. But the current scheme produces stable computations with all these �t values. In contrast, 
we observe that with the often-used semi-implicit type schemes, the computation will become unstable for moderately 
increased �t values. In Fig. 5 we show the time histories of the L2 norm of the x component of the velocity computed 
using the semi-implicit scheme of [8] (Fig. 5(a)) and the current scheme (Fig. 5(b)). These results correspond to an element 
order 10, and for the current scheme also C0 = 0.01 in the simulations. The computation using the semi-implicit scheme 
blows up when �t is beyond about 0.01, while the current scheme exhibits a different behavior and produces stable 
computations even with much larger �t values.

Fig. 6 shows the time histories of the L2 norm of the x velocity of the Kovasznay flow obtained using the current scheme 
with several large time step sizes ranging from �t = 1.0 to �t = 1000. The element order is 10 and C0 = 0.01 in these 
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Fig. 6. Kovasznay flow: Time histories of the L2 norm of the x velocity obtained using several large �t values: (a) �t = 1 and 10, (b) �t = 100 and 1000. 
Results correspond to an element order 10 and C0 = 0.01.

simulations. While we cannot expect accuracy in these results because of the large �t values, the computations using the 
current scheme are nonetheless stable with these large �t for the Kovasznay flow.

In Fig. 7 we plot the time histories of two variables: E(t) defined by (6), and [R(t)]2 computed by solving (11) from the 
current scheme. These two variables are supposed to be equal due to equation (7). With small �t values, the two quantities 
resulting from the computations are indeed the same, which is evident from the time histories obtained with �t = 0.005
in Fig. 7(a). The initial difference between the curves for E(t) and R2(t) in Fig. (7)(a) is due to the initial condition, because 
the zero initial velocity field is not compatible with the Dirichlet boundary condition (non-zero velocity) on the domain 
boundary. When �t becomes moderately large or very large, we can observe a difference between the computed E(t) and 
R2(t), and the discrepancy between them becomes larger with increasing �t (Figs. 7(b)-(d)). Both E(t) and R2(t) fluctuate 
over time in the simulations using large �t values. While the computed E(t) approximately stays at a constant mean level, 
R(t) appears to be driven toward zero with very large �t in the simulations (Fig. 7(d)). These results suggest that when 
�t becomes large the dynamical system consisting of equations (13a)–(13f) seems to be able to automatically adjust the 
R(t) and the R(t)√

E(t)
levels. The term R(t)√

E(t)
places a control on the explicitly-treated nonlinear term in the Navier-Stokes 

equation (13a). With very large �t values, the system drives R(t)√
E(t)

toward zero, thus making the computation more stable 
or stabilizing the computation. This seems to be the mechanism by which the current scheme produces stable simulations 
with large �t for the Kovasznay flow.

3.3. Flow past a circular cylinder in a periodic channel

In this section we investigate the flow past a circular cylinder inside a periodic channel, which is driven by a constant 
pressure gradient along the channel direction. We employ this problem to test the algorithm developed herein.

Consider a circular cylinder of diameter D placed inside a horizontal channel occupying the domain −2.5D � x � 6.5D
and −1.5D � y � 1.5D , as depicted in Fig. 8(a). The top and bottom of the domain (y = ±1.5D) are the channel walls. A 
pressure gradient is imposed along the x direction to drive the flow. The flow domain and all the physical variables are 
assumed to be periodic in the horizontal direction at x = −2.5D and x = 6.5D . The center of the cylinder coincides with the 
origin of the coordinate system. This setting is equivalent to the flow past an infinite sequence of circular cylinders inside 
an infinitely long horizontal channel.

We use the cylinder diameter D as the characteristic length scale. Let �P
D denote the pressure gradient (body force) 

that drives the flow along the x direction, and let g0 denote a unit body force magnitude. Then the non-dimensional body 
force in equation (1a) has the magnitude |f| = �P

g0 D and points along the x direction. We use U0 =
√

g0 D
ρ , where ρ is the 

fluid density, as the characteristic velocity scale. All the length variables are normalized by D , and all velocity variables are 
normalized by U0.

Fig. 8(a) shows the spectral element mesh used to discretize the domain, which consists of 720 quadrilateral elements. 
The element order has been varied between 2 and 6 in the simulations to test the effect of spatial resolutions on the 
simulation results. On the top and bottom channel walls, as well as on the cylinder surface, a no-slip condition is imposed 
on the velocity, that is, the boundary condition (3) with w = 0. In the horizontal direction (at x/D = −2.5 and 6.5) periodic 
conditions are imposed for all the flow variables. Long-time simulations have been performed using the algorithm from 
Section 2 for a range of Reynolds numbers (or ν) and the driving force |f|. The simulation is started at a low Reynolds 
number with a zero initial velocity field at the very beginning. Then the Reynolds number is increased incrementally. A 
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Fig. 7. Kovasznay flow: time histories of E(t) and R2(t) obtained using several time step sizes: (a) �t = 0.005, (b) �t = 0.01, (c) �t = 0.05, (d) �t = 1.0. 
Results correspond to C0 = 0.01 and an element order 10 in the simulations.

snapshot of the flow field from a lower Reynolds number is used as the initial condition in the simulation of the next larger 
Reynolds number. At each Reynolds number, a long-time simulation is performed (with typically 100 flow-through times), 
such that the flow has reached a statistically stationary state for that Reynolds number and the initial condition will have 
no effect on the flow. A range of values for �t and C0 have been tested in the simulations.

An overview of the flow features is provided by Figs. 8(b) and (c), in which the contours of the instantaneous vorticity 
have been shown for two Reynolds numbers corresponding to ν = 0.01 and ν = 0.005 and a non-dimensional driving 
pressure gradient |f| = 0.02. The dashed curves denote negative vorticity values. With ν = 0.01 the flow reaches a steady 
state eventually. The pattern of the vorticity contours around the cylinder is typical of the cylinder flow [10] at low Reynolds 
numbers. Due to presence of the channel, we can also observe a certain level of vorticity distribution near the upper/lower 
channel walls above or below the cylinder. With ν = 0.005 an unsteady flow is observed, with periodic vortex shedding 
from the cylinder into the wake. Because of the periodicity in the horizontal direction, the vortices shed to the cylinder 
wake will re-enter the domain on the left side and influence the flow upstream of the cylinder. These upstream vortices 
interact with the cylinder, leading to more complicated dynamics and flow structures in the cylinder wake.

The effect of the spatial mesh resolution on the simulation results is demonstrated by Table 2. We have computed the 
total forces acting on the walls (sum of those on the cylinder surface and channel wall surfaces) from the simulations. This 
table lists the time-averaged mean drag (or drag if steady flow), root-mean-square (rms) drag, mean lift, and rms lift on 
the walls corresponding to a non-dimensionalized driving pressure gradient �P

g0 D = 0.02. Several element orders, ranging 
from 2 to 6, are tested in the simulations. The results for two Reynolds numbers corresponding to ν = 0.01 and ν = 0.001
have been included in the table, and they are obtained using �t = 0.01 for ν = 0.01 and �t = 0.001 for ν = 0.001 in the 
simulations. The total driving force on the flow is �P

g0 D × V� = 0.02 × 26.2146 ≈ 0.524, where V� = ((6.5 + 2.5) × (1.5 +
1.5) − π/4) ≈ 26.2146 is the normalized volume (or area) of the flow domain. At steady state or statistically stationary 
state of the flow, this driving force will be balanced by the total force exerted on the flow by the walls. This will give 
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Fig. 8. Cylinder flow in a periodic channel: (a) Mesh of 720 quadrilateral elements. Vorticity contours at ν = 0.01 (b) and ν = 0.005 (c), with the flow 
driven by a normalized pressure gradient of 0.02.

Table 2
Effect of spatial resolution on the computed forces acting on channel/cylinder walls. Drag refers to the force in the x direction and lift refers to the force in 
the y direction. Driving force is the normalized total force driving the flow due to the imposed pressure gradient.

ν Element order Mean-drag rms-drag Mean-lift rms-lift Driving force

0.01 2 0.487 0 0 0 0.524
3 0.527 0 0 0 0.524
4 0.524 0 0 0 0.524
5 0.524 0 0 0 0.524
6 0.524 0 0 0 0.524

0.001 2 0.352 0.155 4.13e − 4 0.272 0.524
3 0.519 0.258 6.41e − 4 2.95e − 2 0.524
4 0.529 0.273 3.39e − 4 1.40e − 2 0.524
5 0.529 0.264 −2.69e − 5 3.75e − 3 0.524
6 0.524 0.287 −7.20e − 5 1.69e − 3 0.524

rise to a total mean drag acting on the walls with the same value as the total driving force. Therefore, we expect that 
the time-averaged mean drag (or the drag if steady flow) obtained from the simulations should be equal or close to the 
total driving force in the flow domain. This can be used to check the accuracy of the simulations. With very low element 
orders, we observe a discrepancy between the computed drag from the simulations and the expected value. As the element 
order increases in the simulations, this discrepancy decreases and becomes negligible or completely vanishes. For ν = 0.01, 
the computed drag becomes very close to the expected value for element order 3, and with element orders 4 and above 
the computed drag matches the expected value. For ν = 0.001, the difference between the computed mean-drag and the 
expected value becomes very small with element orders 4 and above.

Fig. 9 shows a comparison of the profiles of the steady-state stream-wise velocity along the centerline of the domain 
(y = 0), as well as along the cross-flow direction at several downstream locations x/D = 1, 3, and 5 for the Reynolds num-
ber corresponding to ν = 0.01 and computed with several element orders in the simulations. The total driving force in the 
domain is 0.524. While some difference can be observed between the profile corresponding to element order 2 and the 
other profiles, all the velocity profiles obtained with the element orders 3 and above basically overlap with one another, 
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Fig. 9. Comparison of stream-wise velocity profiles (ν = 0.01) computed using different element orders along the centerline of domain (a), and at down-
stream locations (b) x/d = 1.0, (c) x/d = 3.0, (d) x/d = 5.0. Results are obtained with �t = 0.01 and C0 = 1000 in the simulations.

Fig. 10. Effect of the time step size �t (ν = 0.01): stream-wise velocity profiles at downstream locations (a) x/D = 1.0 and (b) x/D = 5.0 obtained with 
different time step sizes.

suggesting the independence with respect to the spatial resolutions. In light of these observations, the majority of simula-
tions reported below are performed using an element order 4, and for higher Reynolds numbers the results corresponding 
to an element order 5 are also employed in the simulations.

The effect of the time step size �t on the simulation results is illustrated by Fig. 10, in which we compare the stream-
wise velocity profiles along the y direction at the downstream locations x/D = 1 and 5 obtained with time step sizes 
ranging from �t = 0.005 to �t = 1.0. These results are computed with an element order 4 for the Reynolds number cor-
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Fig. 11. C0 effect: Comparison of stream-wise velocity profiles (ν = 0.01) at (a) x = 3.0 and (b) along the centerline, obtained using a range of C0 values in 
the algorithm.

Table 3
Comparison of the forces on the cylinder/channel walls from the simulations and the imposed pressure gradient and total driving force.

ν Mean-drag rms-drag Mean-lift rms-lift Pressure gradient Driving force

0.01 0.131 0 0 0 0.005 0.131
0.262 0 0 0 0.01 0.262
0.524 0 0 0 0.02 0.524
0.787 0 0 0 0.03 0.786
1.049 0 0 0 0.04 1.049
1.311 0 0 0 0.05 1.311

0.002 0.131 0.0105 9.65e − 5 3.18e − 4 0.005 0.131
0.264 0.0487 −1.97e − 6 9.14e − 4 0.01 0.262
0.529 0.150 −9.83e − 5 4.22e − 3 0.02 0.524
0.796 0.293 2.24e − 4 8.99e − 3 0.03 0.786
1.060 0.425 1.03e − 3 1.48e − 2 0.04 1.049
1.325 0.565 3.57e − 4 2.13e − 2 0.05 1.311

responding to ν = 0.01, and the total driving force is 0.524 in the domain. The profiles obtained with time step sizes 
�t = 0.04 and smaller all overlap with one another. With larger �t values (e.g. �t = 0.1, 0.5 and 1.0), our method is also 
able to produce stable simulations at this Reynolds number. But the obtained velocity profiles exhibit a marked difference 
when compared with those computed using smaller �t values, indicating that these results are no longer accurate. From 
numerical experiments we observe that the current method is able to produce stable computations, even with very large 
�t values in the simulations, as have been shown here and in Section 3.2. For the results reported subsequently, the sim-
ulations are performed mostly with �t = 0.01 for lower Reynolds numbers (ν � 0.005), and with �t = 0.001 for higher 
Reynolds numbers (�t = 2.5e − 4 or varied for the Reynolds number corresponding to ν = 0.0002).

The constant C0 in the current algorithm has been observed to have some influence on the accuracy of the steady-state 
solution for the Kovasznay flow in the previous section. It is further noted that the error levels are all very low (10−13 ∼
10−7) corresponding to the entire range of C0 values there. For practical flow situations it seems very unlikely for these 
minuscule differences in the flow field to have any effect on the meaningful physical quantities. This is indeed what we 
have observed with the cylinder in channel problem. Whether C0 affects the accuracy of results for the current problem 
has also been studied, and we observe no apparent effect of the C0 value on the forces or the flow field distributions. For 
the Reynolds number corresponding to ν = 0.01 and a total driving force 0.524, we have performed simulations with the 
C0 constant ranging from C0 = 0.01 to C0 = 1000 in the algorithm. The computed forces on the cylinder/channel walls from 
all these simulations match the total force imposed to drive the flow. Fig. 11 compares the stream-wise velocity profiles 
at the downstream location x/D = 3 and along the centerline of the domain (y = 0) computed using different C0 values 
in the current algorithm. The results correspond to an element order 4 and time step size �t = 0.01 in the simulations. 
The velocity profiles for different cases exactly overlap with one another, suggesting that the computed velocity field is not 
sensitive to C0 in the simulations. In the discussions of subsequent results, a value C0 = 1000 has been employed in the 
simulations unless otherwise specified.

We have varied the magnitude of the driving pressure gradient systematically ranging from �P
g0 D = 0.005 to 0.05, and 

carried out simulations corresponding to each of the force values. In Table 3 we list the drag and lift on the walls obtained 
from the simulations for two fixed Reynolds numbers corresponding to ν = 0.01 and ν = 0.002. The imposed pressure 
gradient and the total driving force in the flow domain have also been shown. These results are obtained with an element 
order 4, and a time step size �t = 0.01 for ν = 0.01 and �t = 0.001 for ν = 0.002 in the simulations. Note that physically 
the mean drag from the simulations is expected to match the imposed total driving force. At the lower Reynolds number 
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Fig. 12. Time histories of the drag and lift on the cylinder/channel walls for (a) ν = 0.005, (b) ν = 0.001, and (c) ν = 0.0002. The total driving force in the 
domain is 0.524.

(ν = 0.01) the computed mean drag on the walls is essentially the same as the total driving force for different cases. At the 
higher Reynolds number (ν = 0.002) the computed mean-drag values also agree well with the driving forces. The maximum 
discrepancy is a little over 1% for the range of driving forces considered here. The mean lift is zero or essentially zero, and 
the rms lift is also observed to be small.

Fig. 12 shows a window of the time histories of the drag and lift on the domain walls at three Reynolds numbers 
corresponding to ν = 0.005, 0.001 and 0.0002 with a non-dimensional driving force 0.524 in the domain. Periodic vortex 
shedding behind the cylinder can be observed at ν = 0.005 (see Fig. 8(c) for the vorticity distribution), resulting in a 
periodic drag signal fluctuating about a constant mean value. As the viscosity decreases, vortices shed to the cylinder wake 
persist downstream and can be observed to re-enter the domain through the left boundary. The interactions between these 
upstream vortices and the cylinder cause the vortex shedding from the cylinder and the forces acting on the walls to 
become highly irregular. At the higher Reynolds numbers corresponding to ν = 0.001 and ν = 0.0002 one can observe 
chaotic fluctuations in the time histories of the drag and lift on the channel/cylinder walls (Fig. 12(b,c)). Because of the 
confinement effect of the channel, the total lift acting on the domain walls appears quite insignificant, and it does not 
exhibit the large fluctuations as typically observed in the flow past a cylinder in an open domain (see e.g. [10,13]).

We have simulated this flow problem for a range of Reynolds numbers corresponding to viscosities ranging from ν =
0.02 to ν = 0.0002, with the total driving force fixed at 0.524 (corresponding to a non-dimensional pressure gradient 
0.02). Table 4 lists the mean and rms forces acting on the walls obtained from the simulations corresponding to different 
Reynolds numbers. In the simulations the element order is 5 for the case ν = 0.0002 and 4 for the other cases. As expected, 
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Table 4
Forces on cylinder/channel walls obtained with different fluid viscosities. Simulations are performed with an element order 5 for ν = 0.0002 and 4 for the 
other ν values.

ν Mean-drag rms-drag Mean-lift rms-lift Driving force

0.02 0.524 0.0 0.0 0.0 0.524
0.01 0.524 0.0 0.0 0.0 0.524
0.005 0.525 0.0157 −1.94e − 8 3.87e − 4 0.524
0.00333 0.526 0.0751 2.71e − 4 9.92e − 4 0.524
0.002 0.529 0.150 −9.83e − 5 4.22e − 3 0.524
0.001 0.529 0.273 3.39e − 4 1.40e − 2 0.524
0.0005 0.523 0.388 2.24e − 4 3.56e − 2 0.524
0.0002 0.528 0.538 6.03e − 4 5.59e − 2 0.524

Table 5
Forces on cylinder/channel walls computed with various �t values for Reynolds numbers corresponding to ν = 0.001 and 0.0002. Driving force is 0.524, 
and the element order is 4 with ν = 0.001 and 5 with ν = 0.0002 in the simulations.

ν �t Mean-drag rms-drag Mean-lift rms-lift

0.001 5e-4 0.530 0.276 -7.00e-4 1.62e-2
7.5e-4 0.528 0.265 5.49e-4 1.48e-2
1e-3 0.529 0.273 3.39e-4 1.40e-2
2.5e-3 0.529 0.121 -1.32e-5 2.69e-3
5e-3 0.528 0.114 2.26e-4 2.29e-3
1e-2 0.527 0.0923 -7.32e-5 1.33e-3

0.0002 5e-5 0.528 0.535 2.94e-3 6.14e-2
1e-4 0.528 0.538 6.03e-4 5.59e-2
2.5e-4 0.528 0.549 6.09e-4 4.69e-2
5e-4 0.534 0.404 1.14e-3 1.89e-2
1e-3 0.537 0.420 -1.51e-4 1.60e-2
5e-3 0.524 0.233 -2.02e-4 4.70e-2
1e-2 0.527 0.205 1.61e-4 8.93e-3

the mean drag values obtained from the simulations are close to or the same as the driving force for different Reynolds 
numbers, indicating that the method has captured the flow quite well. The rms drag is observed to increase significantly 
with increasing Reynolds number (decreasing ν), while the rms lift remains insignificant for the range of Reynolds numbers 
considered here.

The dynamics of this flow is illustrated by the temporal sequence of snapshots of the velocity fields shown in Fig. 13 for 
the Reynolds number corresponding to ν = 0.0002. In addition to the multitude of vortices permeating the cylinder wake, a 
prominent feature of this flow lies in the upstream vortices and their interactions with the cylinder. Such interactions give 
rise to complicated dynamics of the flow. Some upstream vortices can simply squeeze through the gap between the cylinder 
and the channel wall and move downstream into the wake. However, at times this interaction can be more complicated and 
help spawn new vortices. This is illustrated by the vortex just in front of the cylinder and near the centerline in Figs. 13(a) 
and (b). This incoming vortex appears to collide with the cylinder (Figs. 13(b)), generating a strong shear layer near the 
lower front shoulder of the cylinder. This subsequently spawns a new vortex at the lower front shoulder of the cylinder, 
which is evident from Fig. 13(c). Other processes, e.g. the coalescence of vortices as evidenced by Figs. 13(a)-(d) with the 
two vortices near the rear upper shoulder of the cylinder, can also be observed in the cylinder wake.

Thanks to the discrete energy stability property (Theorem 2.1), our algorithm can achieve stable simulations with fairly 
large time step sizes. In Table 5 we have listed the mean and rms drag and lift forces on the cylinder/channel walls for 
two Reynolds numbers corresponding to ν = 0.001 and ν = 0.0002 obtained with a number of time step sizes ranging from 
�t = 5e − 5 to �t = 0.01. The element orders are 4 and 5 for these two Reynolds numbers, respectively, and C0 = 1000
in the simulations, with a total driving force 0.524 in the domain. The values of the time-averaged mean drag obtained 
from the simulations are close to the driving force. When the time step size is small, the computed mean and rms drags 
corresponding to different �t values are close to one another, exhibiting a sense of convergence. As �t becomes large, we 
observe a decrease in the computed rms drag when compared with those corresponding to small �t values. These results 
indicate that, while the simulations with all these �t values are stable, the simulation results can become less accurate or 
inaccurate when �t is too large for a given Reynolds number.

Finally we look into the computational cost of the scheme developed in this work. For the cylinder flow problem in a 
periodic channel we have monitored the wall clock time per time step in the simulations. In Table 6 we list the typical wall 
time it takes the current scheme to compute one time step (in seconds) on a single processor for the Reynolds number 
corresponding to ν = 0.0002, as well as the wall time spent in the Newton solver for solving the scalar equation (38). These 
wall-time numbers are collected on a Linux cluster in the authors’ institution. The cost of the Newton solver is insignificant, 
accounting for about 4% of the total cost of the current scheme per time step. Essentially all this time is spent on computing 
the coefficients given in equation (39) in preparation for the Newton iteration, while the actual time spent in the Newton 
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Fig. 13. Temporal sequence of snapshots of the velocity fields (ν = 0.0002, total driving force 0.524) at time (a) t = 4886, (b) t = 4886.5, (c) t = 4887, 
(d) t = 4887.5, (e) t = 4888. Velocity vectors are plotted on every eighth quadrature points in each direction within each element.

Table 6
Computational cost: comparison of wall time per time step (single processor) between the current 
scheme and the semi-implicit scheme of [8] for the flow past a cylinder in a periodic channel with 
ν = 0.0002 (element order 5, �t = 2.5e − 4). The total wall time contains the Newton solver time for 
the current scheme.

Newton-solver time/step (seconds) Total wall time/step (seconds)

Current scheme 0.00654 0.161
Semi-implicit scheme [8] – 0.0883
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Fig. 14. Effect of velocity extrapolation on the nonlinear term (ν = 0.001, �t = 0.0005): (a) Time histories of the extrapolation coefficient, 
√∫

� |un ·∇un |2∫
� |ũn ·∇ũn |2 , 

where un denotes the true velocity at time step n, and ũn is the extrapolated velocity given by ũn = 2un−N − un−2N . (b) Time-averaged extrapolation 
coefficient as a function of N�t .

iteration is negligible. For comparison the table also includes the wall clock time per time step of the semi-implicit scheme 
from [8]. The current scheme requires the solution of two pressure fields pn+1

1 and pn+1
2 and two velocity fields un+1

1 and 
un+1

2 , which involves approximately twice as many operations as the semi-implicit scheme. The computational cost of the 
current scheme is roughly twice that of the semi-implicit scheme, as is evident from Table 6.

4. Concluding remarks

We have presented an algorithm for approximating the incompressible Navier-Stokes equations based on an auxiliary 
variable associated with the total energy of the system. This auxiliary variable is a scalar number (not a field function), and 
a dynamic equation for this variable has been introduced. This leads to a reformulated equivalent system consisting of the 
modified incompressible Navier-Stokes equations and the dynamic equation for the auxiliary variable. The numerical scheme 
for the reformulated system satisfies a discrete energy stability property in terms of a modified energy. Within each time 
step, the algorithm requires the computations in a de-coupled fashion of (i) two pressure variables pn+1

1 and pn+1
2 , (ii) two 

velocity variables un+1
1 and un+1

2 , and (iii) the scalar auxiliary variable. Computing the pressure variables and the velocity 
variables involves only the usual Poisson equations and Helmholtz equations with constant coefficient matrices. Computing 
the auxiliary variable requires the solution of a nonlinear scalar algebraic equation based on the Newton’s method. The cost 
for the Newton solution is insignificant and essentially negligible (accounting for a few percent of the total cost per time 
step), because the nonlinear equation is about a scalar number, not a field function.

The current algorithm employs a reformulated form of the nonlinear term,

Rn+1

√
En+1

N(ūn+1) = Rn+1

√
En+1

(ūn+1 · ∇ūn+1) =
⎛
⎝
√

Rn+1
√

En+1
ūn+1

⎞
⎠ · ∇

⎛
⎝
√

Rn+1
√

En+1
ūn+1

⎞
⎠= u∗ · ∇u∗ (47)

where ūn+1 = 2un − un−1 (for 2nd-order) is the extrapolated velocity, and u∗ =
√

Rn+1√
En+1

ūn+1 is a modified extrapolated 
velocity. The above equation indicates that the current scheme uses the modified extrapolated velocity u∗ , instead of the 
extrapolated velocity ūn+1, for the computation of the nonlinear term. Numerical experiments indicate that when �t is 
small the modification coefficient 

√
Rn+1√
En+1

equals the unit value, and for large �t the modification coefficient can be less 
than the unit value (see Section 3.2). This is consistent with one’s intuitions. The extrapolated velocity ūn+1 only approxi-
mates un+1 well when �t is small (2nd-order approximation). For large �t , ūn+1 is a poor approximation of un+1, and will 
introduce large errors when it is used to compute the nonlinear term. Therefore, for large �t some suitable modification 
to ūn+1 will be expected if this is used for computing the nonlinear term. In the current algorithm this is modified by the 
coefficient 

√
Rn+1√
En+1

, which is computed based on a dynamic equation.

The error in the nonlinear term computation and the need for a modification to the extrapolated velocity at large �t
when it is used to compute the nonlinear term are demonstrated by Fig. 14 with the cylinder flow in a periodic channel 
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problem (see Section 3.3). Here the flow field data for ν = 0.001 with a total driving force 0.524 obtained using the semi-
implicit scheme of [8] with a small time step size �t = 0.0005 are post-processed to compute the nonlinear term using an 
extrapolated velocity and using the true velocity. More specifically, at a time step n we compute the nonlinear term in two 
ways when post-processing the flow data: (i) 

∫
�

|un ·∇un|2, where un is the velocity at step n from the simulation and is re-
ferred to as the “true” velocity; (ii) 

∫
�

|ũn ·∇ũn|2, where ũn = 2un−N −un−2N . Note that ũn is the velocity at step n obtained 
by extrapolating the velocity fields at steps (n − N) and (n − 2N), where N is a prescribed integer. ũn therefore mimics an 

extrapolated velocity corresponding to a “larger” time step size N�t . We refer to the ratio 
√∫

� |un·∇un|2∫
� |ũn·∇ũn|2 as the extrapolation 

coefficient at time step n. In a sense, the extrapolation coefficient reflects the accuracy of the computed nonlinear term us-
ing the extrapolated velocity corresponding to a nominal time step size “N�t”. A unit value for the extrapolation coefficient 
means that using such extrapolated velocity results in a perfectly accurate nonlinear term. If the extrapolation coefficient is 
significantly less than 1.0, it means that using such extrapolated velocity to compute the nonlinear term tends to produce a 
value substantially larger than the true value in magnitude. Fig. 14(a) shows time histories of the extrapolation coefficient 
corresponding to several N�t values, and Fig. 14(b) shows the time-averaged extrapolation coefficient as a function of N�t . 
With N�t = 2�t = 0.001, the extrapolation coefficient is essentially the unit value, indicating that the nonlinear term com-
puted using this extrapolated velocity accurately approximates the true nonlinear term. With increasing N�t , we observe a 
generally smaller value (< 1) for the extrapolation coefficient. With large N�t the extrapolation coefficient is substantially 
smaller than the unit value. For example, with N�t = 400�t = 0.2 the extrapolation coefficient fluctuates about the value 
0.67, suggesting that a modified extrapolated velocity for the nonlinear term computation, 0.67ũn · ∇ũn , would likely result 
in a better result. The trend exhibited by these results is qualitatively consistent with the spirit of the current algorithm, and 
demonstrates the need for a modification of the extrapolated velocity if it is used to compute the nonlinear term at large 
time step sizes. However, it should be noted that the extrapolation coefficient value obtained above cannot be compared 
quantitatively with the quantity Rn+1√

En+1
from the current algorithm. This is because the above extrapolation coefficient is 

obtained by post-processing the simulation data and by always extrapolating the underlying stable simulated velocity fields, 
no matter how large N�t is. In this process, the extrapolated velocity field with step size N�t is never used to calculate 
the flow at a new step, as occurs in actual simulations when using the current algorithm.

The current algorithm has been implemented based on a C0 spectral element technique in this work, and several numer-
ical examples have been presented to test its accuracy and performance. The method is observed to exhibit a second-order 
convergence rate in time and an exponential convergence rate in space (for smooth field solutions). It can capture the 
flow field accurately when the time step size is not too large. The method also allows the use of large time step sizes in 
computations, and stable simulation results can be produced.

The presented scheme has an attractive energy stability property, and it can be implemented in an efficient fashion. The 
algorithm involves only constant and time-independent coefficient matrices in the resultant linear algebraic systems, which 
is unlike other energy-stable schemes for Navier-Stokes equations (see e.g. [32,24,11], among others). This algorithm can 
serve as an alternative to the semi-implicit schemes for production simulations of incompressible flows and flow physics 
studies.
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