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We present an unconditionally stable splitting scheme for incompressible Navier–Stokes
equations based on the rotational velocity-correction formulation. The main advantages
of the scheme are: (i) it allows the use of time step sizes considerably larger than the
widely-used semi-implicit type schemes: the time step size is only constrained by accu-
racy; (ii) it does not require the velocity and pressure approximation spaces to satisfy
the usual inf–sup condition: in particular, the equal-order finite element/spectral element
approximation spaces can be used; (iii) it only requires solving a pressure Poisson equation
and a linear convection–diffusion equation at each time step. Numerical tests indicate that
the computational cost of the new scheme for each time step, under identical time step
sizes, is even less expensive than the semi-implicit scheme with low element orders.
Therefore, the total computational cost of the new scheme can be significantly less than
the usual semi-implicit scheme.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In practical flow simulations the time step size is usually chosen based on considerations of accuracy and stability. Often-
times, the maximum time step size that can be used in a simulation is restricted by the stability concern, which is especially
true for high Reynolds-number simulations of turbulent flows. With the often-used semi-implicit type schemes, in which the
nonlinear term of the Navier–Stokes equations is treated explicitly and the viscous term is treated implicitly, the maximum
allowable time step size, Dtmax, is dictated by the CFL number. Consider a spectral-type spatial discretization, and let s de-
note the Kolmogorov time scale, which is the smallest time scale in turbulence and needs to be resolved for accurate sim-
ulations. The ratio of the maximum allowable time step size to the Kolmogorov time scale scales as a function (see [38])
Dtmax

s
/ Re1=2�3a=4; ð1Þ
where Re is the Reynolds number and a is a parameter related to the spectral discretization (a = 1 for a Fourier discretization,
a = 2 for a Chebyshev discretization, and a � 3/2 for a spectral/hp element discretization [38]). It is evident from this equa-
tion that at high Reynolds numbers the maximum allowable time step size dictated by stability can be orders of magnitude
smaller than the Kolmogorov time scale (required for accuracy). Therefore, the time step sizes with semi-implicit type
schemes widely employed in current incompressible flow simulations can be overly small to be computationally efficient.
. All rights reserved.
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The time step size constraint can be alleviated by employing unconditionally stable schemes for Navier–Stokes equa-
tions. Indeed, the Navier–Stokes equations can be formulated in such a way that the discrete energy can be proven to be
bounded at each time step [32,20]. The fully implicit versions of such algorithms are nonlinear, and entail the solution of
nonlinear algebraic systems with Newton iterations, which renders the overall approach computationally inefficient. Par-
ticularly interesting are the linear versions of these algorithms, in the sense that the resulting boundary value problem is
linear with respect to the velocity and pressure. As a result, only linear algebraic systems need to be solved at each time
step. However, the velocity and the pressure are coupled in these formulations [20], even though the overall algebraic sys-
tem is linear. This entails a nested iteration (or sub-iteration) when solving the coupled linear system [32], which is com-
putationally not efficient.

The focus of this paper is a new splitting scheme that enables the use of large time step sizes and at the same time is
computationally efficient by decoupling the linear solve of the velocity and the pressure. Splitting schemes, often referred
to in the literature as projection methods, are attractive in terms of computational efficiency because only the decoupled
elliptic equations for the velocity and the pressure need to be solved. The projection methods can be traced back to Chorin
[4] and Temam [34] in the 1960s, and have since witnessed significant developments in various aspects. The main focus has
revolved around improving the temporal accuracy of the velocity and pressure. The various techniques can be broadly clas-
sified into three categories [12]: pressure-correction type, velocity-correction type, and consistent splitting type. With the
pressure-correction type method, an intermediate velocity is first computed from the momentum equation by ignoring
the continuity requirement and treating the pressure explicitly, and subsequently it is projected to the space of diver-
gence-free velocity field. The pressure correction idea was introduced in [7] with several subsequent improvements on
the temporal accuracy [36,35], which have often been referred to as the standard and rotational forms of the pressure-cor-
rection schemes. The term ‘‘rotational form” here is with respect to the viscous term, not to be confused with the rotational
form of the nonlinear term. The method of Kim and Moin [18] is equivalent to the rotational form of the pressure-correction
scheme [12]. Analysis of the pressure-correction schemes can be found in [3,6,29,33]. The notion of velocity correction was
introduced in [14]. With this type of schemes, the viscous term is first treated explicitly, and a correction to the velocity is
made subsequently. Standard and rotational forms of the velocity-correction schemes have been identified with differing
accuracy in the pressure approximation. The scheme of Karniadakis et al. [16] is equivalent to the velocity-correction scheme
in rotational form [14]. The consistent splitting scheme was introduced in [13]. The main idea in computing the pressure is to
directly test the momentum equation against a velocity gradient, and the incompressibility of the velocity is enforced only in
the weak sense. Full second-order accuracy in pressure is realized with this scheme. It is shown in [12] that the consistent
splitting scheme is equivalent to the gauge method [5]. The scheme of [15] in which the pressure is computed explicitly
bears a conceptual similarity to the consistent splitting scheme. All three categories of the above schemes are based on a
splitting of the Navier–Stokes equations, sometimes referred to as differential splitting in the literature. There is still another
class of methods based on inexact factorization of the discretized system (sometimes referred to as algebraic splitting) after
the velocity boundary conditions have been applied [8,26,28,21]. These schemes appear attractive because they do not
explicitly involve the pressure boundary condition. However, it has been shown recently [12] that the inexact factorization
methods weakly enforce an artificial boundary condition of the pressure and do not provide a better accuracy than the pres-
sure-correction schemes.

In this paper we present a new unconditionally stable splitting scheme which does not require the velocity and pressure
approximation spaces to satisfy the usual inf–sup condition. We note that it is very easy to construct an unconditionally sta-
ble splitting scheme based on the pressure-correction formulation, a simple example is the scheme (5.1) and (5.2) in [30].
However, it is well-known that pressure-correction schemes require the velocity and pressure approximation spaces to sat-
isfy the usual inf–sup condition [12]. Therefore, they are not very convenient to use in practical applications.

Our new scheme is based on the rotational velocity-correction formulation. Previous implementations of the rotational
velocity-correction scheme (cf., for instance, [14,16]) all treat the nonlinear term explicitly, leading to a CFL type stability
constraint. In the new scheme, the nonlinear term is treated explicitly in the first substep but corrected with a linearly im-
plicit treatment in the second substep.

To implement this scheme, a high-order spectral element approach employing Jacobi-polynomial based shape functions
[17] has been used to discretize the Navier–Stokes equations in space. We compare the new splitting scheme, and the semi-
implicit scheme of [16] implemented in the spectral element package NejTar (see [17]), for test problems with analytic solu-
tions as well as the flow past a circular cylinder at several Reynolds numbers. These tests demonstrate that accurate solu-
tions can be obtained using the new splitting scheme at time step sizes considerably larger than the maximum allowable
time step size of the semi-implicit scheme. It is also shown that the new scheme is very competitive in terms of computa-
tional cost compared to the semi-implicit scheme.

The rest of this paper is organized as follows. In Section 2 we introduce the new splitting scheme for the incompressible
Navier–Stokes equations, and discuss related implementation issues, in particular, the efficient computation of the velocity
coefficient matrix. In Section 3 the temporal second-order accuracy of the new scheme is demonstrated using an analytic
solution of the Navier–Stokes equations. In Section 4 we compare the new splitting scheme and the semi-implicit scheme
for the Kovasznay flow and the flow past a circular cylinder. It is shown that accurate solutions can be obtained using the
new scheme at considerably larger time step sizes compared to the semi-implicit scheme; Computational costs between
the new splitting scheme and the semi-implicit scheme have also been compared. Finally, Section 5 provides some conclud-
ing remarks.
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2. A new splitting scheme

2.1. Description of the scheme

Let X � Rd (d = 2 or 3) be an open bounded domain, and set C = oX. We consider the incompressible Navier–Stokes equa-
tions on this domain,
@u
@t þ u � ru� mr2uþrp ¼ f;
r � u ¼ 0;
ujC ¼ w;

8><
>: ð2Þ
where t denotes time; u and p are respectively the velocity and pressure (divided by density); f represents the external body
force; m is the fluid kinematic viscosity; w is the velocity Dirichlet boundary condition. The above equation is supplemented
by the initial condition u = u0(x) (x 2X) at t = 0, which is assumed to be divergence free and compatible with the boundary
velocity w.

Given u0 = u0, the new velocity-correction scheme for (2) consists of two sub-steps: substep one
1
Dt

c~ukþ1 �
XJ�1

m¼0

amuk�m

 !
þrpkþ1 þ uk � ruk þ mr�r� uk ¼ fkþ1

; ð3aÞ

r � ~ukþ1 ¼ 0; ð3bÞ
n � ~ukþ1jC ¼ n �wkþ1; ð3cÞ
and substep two
c
Dt
ðukþ1 � ~ukþ1Þ � mr2ukþ1 þ ~ukþ1 � rukþ1 � uk � ruk � mr�r� uk ¼ 0; ð4aÞ

ukþ1jC ¼ wkþ1: ð4bÞ
In the above, k represents the time level; Dt is the time step size; n is the outward-pointing directional vector on C. The
coefficients c and am (m = 0, . . . , J � 1; J = 1 or 2) are chosen such that 1

Dt Dvkþ1 ¼ 1
Dt cvkþ1 �

PJ�1
m¼0amvk�m

� �
represents the

Jth order backward differentiation formula (BDF) that approximates @v
@t at time step k + 1, where v is a generic variable. More

precisely,
Dvkþ1 ¼
vkþ1 � vk; if J ¼ 1;
3
2 vkþ1 � 2vk þ 1

2 vk�1; if J ¼ 2:

(
ð5Þ
We note that the new feature of this scheme is the treatment of the nonlinear term. It is treated explicitly in the first sub-
step, with a correction term in the second substep which is linearly implicit. We note that in existing implementations of
velocity-correction schemes, the nonlinear term is generally treated explicitly as a forcing function in the first substep
and it does not appear in the second substep. We shall refer to these schemes as semi-implicit velocity-correction schemes,
and it is clear that a CFL type condition is needed for these schemes to be stable. However, our numerical results and a heu-
ristic argument below show that the new scheme is unconditionally stable despite the explicit treatment of the nonlinear
term in the first substep.

We now comment on the accuracy of the scheme (3a)–(4b). Summing up the two sub-steps (3a)–(4b) we find:
1
Dt cukþ1 �

PJ�1

m¼0
amuk�m

� �
þrpkþ1 þ ~ukþ1 � rukþ1 � mr2ukþ1 ¼ fkþ1

;

r � ~ukþ1 ¼ 0;
n � ~ukþ1jC ¼ n �wkþ1;

8>>><
>>>:

ð6Þ
In the absence of the nonlinear term, it is shown in [14] that for J = 2, the scheme (3a)–(4b) is of second order for the
velocity in the L2 norm but of order 3

2 for the pressure in L2 norm and velocity in H1 norm. Moreover, ~ukþ1 and uk+1 are of
the same order accuracy as approximation of u(tk+1). Therefore, it is reasonable to expect from (6) that the scheme (3a)–
(4b) is of the same accuracy as the corresponding scheme without the nonlinear term.

2.2. Implementation of the scheme

It is not convenient to implement the scheme (3a)–(4b) in its current form. First of all, (3a)–(3c) is a coupled system for
ð~ukþ1; pkþ1Þ which needs to be properly decoupled. Secondly, the term mr�r� uk cannot be computed directly with a C0

finite element discretization. Therefore, we shall first reformulate the scheme (3a)–(4b) into a weak form which is more con-
venient for implementation.

Given (uk,pk), we determine (uk+1,pk+1) as follows. We set
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û ¼
XJ�1

m¼0

amuk�m þ Dt fkþ1 � uk � ruk
� �

: ð7Þ
Let us denote the vorticity by x =r� u. Taking the L2-inner product of Eq. (3a) with rq and using the identity
r�x � rq =r � (x �rq), we obtain the following Poisson equation in the weak form for pk+1:
Z

X
rpkþ1 � rq ¼ 1

Dt

Z
X

û � rq�
Z

C
n � c

Dt
wkþ1qþ mxk �rq

� �
; 8q 2 H1ðXÞ: ð8Þ
Then, the intermediate velocity ~ukþ1 can be expressed as
~ukþ1 ¼ ^̂u� mDt
c
r�xk with ^̂u ¼ 1

c
û� Dtrpkþ1� �

: ð9Þ
We can then reduce Eq. (4a) to
c
mDt

ukþ1 �r2ukþ1 þ 1
m

^̂u � rukþ1 � Dt
c
r�xk
� �

� rukþ1 ¼ c
mDt

^̂uþ 1
m

uk � ruk: ð10Þ
Using the identity,
ðr �xÞ � ð/rvÞ ¼ r � /x�rvð Þ � r/�xð Þ � rv
and integration by parts, we obtain the weak form of the above equation for uk+1:
c
mDt

Z
X

/ukþ1 þ
Z

X
r/ � rukþ1 þ 1

m

Z
X

/^̂u � rukþ1 þ Dt
c

Z
X
ðr/�xkÞ � rukþ1 ¼

Z
X

/ð c
mDt

^̂uþ 1
m

uk � rukÞ;

8/ 2 H1
0ðXÞ

d
;ukþ1jC ¼ wkþ1; ð11Þ
where H1
0ðXÞ ¼ fv 2 H1ðXÞ : v jC ¼ 0g.

Therefore, the reformulated scheme consists of only a Poisson Eq. (8) for pk+1 and a linear convection–diffusion Eq. (11) for
each component of uk+1. The intermediate velocity ~ukþ1 is not explicitly needed. These equations are in weak form, and so can
be easily adopted to Galerkin finite-element or spectral element discretizations.

We now consider the spatial discretization of (8) and (11). Let Xh denote the partitioned domain X using a spectral ele-
ment mesh, and Ch denote the boundary of Xh. Let Xh � H1(Xh)d and Mh � H1(Xh) respectively denote the approximation
spaces of the velocity, ukþ1

h , and pressure, pkþ1
h . Then the fully discretized version of the system (8) and (11) is:

Find ukþ1
h 2 Xh and pk+1 2Mh such that
Z

Xh

rpkþ1
h � rqh ¼

1
Dt

Z
Xh

ûh � rqh �
Z

Ch

n � c
Dt

wkþ1
h qh þ mxk

h �rqh

� �
; 8qh 2 Mh; ð12Þ
and
c
mDt

Z
Xh

/hukþ1
h þ

Z
Xh

r/h � rukþ1
h þ 1

m

Z
Xh

/h
^̂uh � rukþ1

h þ Dt
c

Z
Xh

r/h �xk
h

� �
� rukþ1

h

¼
Z

Xh

/hð
c

mDt
^̂uh þ

1
m

uk
h � ruk

hÞ; 8/h 2 Xh0;ukþ1
h jC ¼ wkþ1

h ; ð13Þ
where the subscript in (�)h denotes the discretized version of (�), and Xh0 ¼ fv 2 Xh : v jCh
¼ 0g.

It is well-known that the discrete approximation spaces for the velocity and pressure should satisfy an inf-sup condition
for compatibility, otherwise spurious modes for the pressure may result. On the other hand, ample evidences have shown
that several types of schemes can work properly with approximation spaces that do not satisfy the usual inf-sup condition
(such as with equal-order approximation for the velocity and pressure); see e.g. [16,13,17,12,23,22] for the velocity-correc-
tion scheme, consistent splitting scheme, and the scheme with explicit treatment of pressure. Our numerical experiments
show that the splitting scheme represented by Eqs. (12) and (13) with spectral element discretizations can work properly
with equal-order approximations for the velocity and the pressure. No spurious pressure modes are observed. In our imple-
mentation and the flow tests in Section 4, the same orders of expansion polynomials have been used to approximate the
velocity and the pressure in the spectral element discretization. We note also that another advantage of the velocity-correc-
tion schemes, compared with the pressure-correction schemes, is that no initial pressure approximation is required to
achieve second-order accuracy.

Note that a different semi-implicit treatment of the nonlinear term was suggested in (6.1) and (6.2) of [14] but was never
implemented. This scheme is also unconditionally stable but the suggested implementation (3.9), (3.7) and (6.4) in [14] re-
quires that the inf-sup condition be satisfied due to (3.7). Another difference is that a second-order extrapolation is used as
the convective velocity in (6.1) and (6.2) of [14] while an updated intermediate velocity is used as the convective velocity in
our scheme.
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We note that a consistent full discretization of the velocity-correction scheme for the linear Stokes equations is presented
and analyzed in [10]. However, the formulation in [10] requires the inf–sup condition be satisfied by the velocity–pressure
approximation pair.

In our implementation we employ the basis functions based on Jacobi polynomials [17] to take advantage of their tensor-
product nature for efficient evaluation of the velocity coefficient matrix. Fast computation of the velocity coefficient matrix is
crucial for achieving numerical efficiency with the algorithm. Let Xe denote the domain occupied by an element. According
to Eq. (13), a generic entry of the elemental velocity coefficient matrix, Mmn, predominantly involves the computation of the
following terms:
Z

Xe

c
mDt

wn þ
1
m

^̂u � rwn

� �
wm þ

Z
Xe

rwn þ
Dt
c

xk �rwn

� �
� rwm ¼

Z
Xe

Fnwm þ Gn � rwmð Þ; ð14Þ
where wi (i = 1, . . . ,Nm) denotes the modal expansion basis function, and Nm is the total number of modes in Xe; In the above
equation, Fn ¼ c

mDt wn þ 1
m

^̂u � rwnand Gn ¼ rwn þ Dt
c xk �rwn. These terms can be transformed such that their evaluation can

efficiently take advantage of the tensor-product nature of the expansion basis functions and the sum factorization technique
[25]. We illustrate below using two-dimensional quadrilateral elements how to transform the right-hand-side (RHS) of Eq.
(14) into a form amenable to sum factorization and to minimize the number of evaluations. With other types of elements the
generalized tensor-product nature of the basis functions allows for the handling in a similar fashion. We will compute the
elemental coefficient matrix, Mmn, one column at a time (i.e. m = 1, . . . ,Nm, and n is fixed). The index n in Eq. (14) will there-
fore be dropped below. The RHS of Eq. (14) can be written as
Z

Xe

Fwm þ G � rwmð Þ ¼
Z

Xst

Ja Fwm þ G � rn1
@wm

@n1
þ G � rn2

@wm

@n2

� �
¼
X

i;j

f wm þ G1
@wm

@n1
þ G2

@wm

@n2

� �
n1i ;n2jð Þ

; ð15Þ
where (n1,n2) are coordinates of the standard element Xst, and (n1i,n2j) are the quadrature points; Ja is the Jacobian; Both Ja

and rni (i = 1,2) are determined by the mapping between Xe and Xst, and are pre-computed; f = FJaW and Gi = (G � rni)JaW
(i = 1,2), where W is the weight function. Thanks to the tensor-product nature, the basis function can be written as
wm(n1,n2) = ur(n1)us(n2), where u are the basis functions in one direction, m = 1, . . . ,Nm, r = 1, . . . ,nr, s = 1, . . . ,ns, and nr and
ns are the number of modes in n1 and n2 directions. Let uD ¼ du

dn , which are also pre-computed. Eq. (15) can then be trans-
formed to
X

i;j

f ðn1i; n2jÞurðn1iÞ þ G1ðn1i; n2jÞuD
r ðn1iÞ

� 	
usðn2jÞ þ

X
i;j

G2ðn1i; n2jÞurðn1iÞuD
s ðn2jÞ: ð16Þ
The sum factorization technique can be used to efficiently evaluate the expression in the above equation, which amounts to
matrix–matrix multiplications involving level-3 BLAS calls.

The discretized pressure Eq. (12) leads to a linear algebraic system with a symmetric coefficient matrix, and is solved with
the conjugate gradient (CG) solver. The velocity Eq. (13) results in a linear algebraic system with a non-symmetric coefficient
matrix, and in our implementation is solved using the conjugate gradient squared (CGS) solver or the bi-conjugate gradient
stabilized (BiCGSTAB) solver. All linear equation solvers are preconditioned with diagonal scaling. Two-dimensional numer-
ical examples will be used in subsequent sections to demonstrate the performance of the scheme.

2.3. A stability result

In this subsection, we shall provide some theoretical justification for the stability of the scheme (3a)–(4b). Unfortu-
nately, we are unable to prove the stability for the scheme (3a)–(4b) itself, so we will prove a stability result for a slightly
modified scheme with a similar explicit treatment of the nonlinear term in the first substep. Since it is very technical to
deal with the rotational form and the second-order BDF term, and our main concern is the effect of explicit treatment of
the nonlinear term in the first substep, we shall consider the first-order standard velocity-correction form of a slightly
modified scheme:
1
Dt

~ukþ1 � uk
� �

� mr2uk þ ~uk � ruk þrpkþ1 ¼ fkþ1
;

r � ~ukþ1 ¼ 0;

n � ~ukþ1jC ¼ 0;

8>><
>>: ð17Þ

1
Dt ðukþ1 � ~ukþ1Þ � mr2ðukþ1 � ukÞ þ ~ukþ1 � rukþ1 � ~uk � ruk ¼ 0;

ukþ1jC ¼ 0:

(
ð18Þ
Note that the only difference, compared with the first-order standard velocity-correction form of the scheme (3a)–(4b) is
that the explicit nonlinear term uk � ruk is replaced by ~uk � ruk. For the sake of simplicity, we assumed in the above a homo-
geneous Dirichlet boundary condition for the velocity.

Theorem 2.1. The scheme (17) and (18) is unconditionally stable in the sense that for all n P 0 we have
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kunþ1k2
0;X þ mDt

Xn

k¼0

krukþ1k2
0;X 6 ku0k2

0;X þ ðDtÞ2k � mr2u0 þ ~u0 � ru0k2
0;X þ CDt

Xn

k¼0

kfkþ1k2
0;X;
where kvk2
0;X ¼

R
X jv j

2 and C is a constant.
Proof. Let us denote wk ¼ �mr2uk þ ~uk � ruk. Take the inner product of (17) with 2Dt~ukþ1 and integrate over X, we obtain
k~ukþ1k2
0;X � kukk2

0;X þ k~ukþ1 � ukk2
0;X þ 2Dtðwk; ~ukþ1Þ ¼ 2Dtðfkþ1

; ~ukþ1Þ; ð19Þ
On the other hand, we rearrange (18) as
ukþ1 þ Dtwkþ1 ¼ ~ukþ1 þ Dtwk: ð20Þ
We recall that if r � u = 0 and u � njC = 0, then
Z
X
ðu � rvÞ � v ¼ 0 8v 2 H1ðXÞ:
We derive from the above that
ðwkþ1;ukþ1Þ ¼ mkrukþ1k2
0;X:
Now taking the inner product of (20) with itself on both sides and using the above relation, we obtain
kukþ1k2
0;X þ ðDtÞ2kwkþ1k2

0;X þ 2mDtkrukþ1k2
0;X ¼ k~ukþ1k2

0;X þ ðDtÞ2kwkk2
0;X þ 2Dtðwk; ~ukþ1Þ: ð21Þ
Summing up (19) and (21), we obtain
kukþ1k2
0;X � kukk2

0;X þ k~ukþ1 � ukk2
0;X þ ðDtÞ2ðkwkþ1k2

0;X � kwkk2
0;XÞ þ 2mDtkrukþ1k2

0;X ¼ 2Dtðfkþ1
; ~ukþ1Þ

6 mDtkrukþ1k2
0;X þ CDtkfkþ1k2

0;X:
The last inequality is derived using the Cauchy–Schwarz inequality and Poincaré inequality. We can then conclude the de-
sired result by summing up the above inequality for k = 0,1, . . . ,n. h

While we only provided a rigorous proof for the first-order standard velocity-correction scheme (17) and (18), but based on
this proof and the stability proof for the second-order rotational velocity-correction scheme for linear Stokes equations in [14],
one can speculate that similar result holds for the second-order rotational velocity-correction scheme (3a)–(4b) with J = 2,
since the second-order and rotational treatments only add technical difficulties unrelated to the treatment of nonlinear terms.

We note that the implementation of the modified scheme is not as convenient as the original scheme (3a)–(4b) due to the
fact that we cannot avoid the intermediate velocity ~ukþ1 whose computation requires an extra projection step onto the
approximation space Yh (which is often different from Xh for uk+1) for ~ukþ1 (cf. [11,10]). In any event, our numerical results
indicate that the modified scheme and the original scheme have essentially the same stability and accuracy characteristics.

3. Convergence characteristics

We next demonstrate the temporal convergence characteristics of the splitting scheme presented in Section 2 using an
analytic solution to the incompressible Navier–Stokes equations. Consider a rectangular domain, X = {(x,y):0 6 x 6 2,
� 1 6 y 6 1}, and the incompressible flow on X. We employ the following unsteady analytic solution to the Navier–Stokes
equations in the convergence tests,
u ¼ Ap
a cos ax cos py sin bt;

v ¼ A sin ax sinpy sin bt;

p ¼ A sin ax sin py cos bt;

8><
>: ð22Þ
where A, a and b are prescribed constants. The fluid density is assumed to be a unit value, q = 1. The flow experiences the
following time-dependent body-force field, f = (fx, fy), which is determined in a way such that the solution given by Eq.
(22) satisfies the Navier–Stokes equations,
fx ¼ Apb
a cospy cos ax cos bt � A2p2

a cos ax sin ax sin2 bt þ mApa 1þ p2

a2

� �
cos py cos ax sin bt

þAa sinpy cos ax cos bt;

fy ¼ Ab sinpy sin ax cos bt þ A2p cospy sin py sin2 bt þ mAðp2 þ a2Þ sinpy sin ax sin bt

þpA cos py sin ax cos bt:

8>>>>><
>>>>>:

ð23Þ
Dirichlet boundary conditions based on the solution (22) are applied on the boundaries of X. Initial condition for the velocity
field is given by setting t = 0 to the analytic solution.
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Fig. 1. Temporal convergence: L1 and L2 errors of the velocity (x-component u) and pressure (p) as a function of time step size Dt, for an analytic solution.
Computed using the new scheme with J = 2 in Eq. (3a).
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We partition the domain along the x direction into two quadrilateral elements of equal size. The Navier–Stokes equations
are integrated in time using the splitting scheme presented in Section 2, and discretized in space employing the spectral ele-
ment approach. We use a sufficiently high fixed element order, 15, for each element so that the temporal error will be dom-
inant. Then we systematically vary the time step size Dt. With each Dt value the flow field is simulated in time from t = 0 to
tf, and then at t = tf we compute the L1 and L2 errors of the velocity and the pressure on X between the numerical solution
and the exact solution given by Eq. (22). In Fig. 1 we plot the errors of the x-velocity component and the pressure as a func-
tion of Dt, computed using the new splitting scheme with J = 2 (see Eq. (3a)). The results correspond to a problem with the
following parameters:
A ¼ 2; a ¼ p; b ¼ 1; tf ¼ 1:0; m ¼ 1: ð24Þ
Second-order temporal convergence has been observed for the velocity. The convergence rate for the pressure is slightly be-
low second order; The L1 error of the pressure exhibits a convergence rate of about 1.5, and the L2 error of the pressure
shows a rate of about 1.85. These numerical results are consistent with the error estimates in [14] for the linear Stokes prob-
lem, and it indicates that the new scheme for the nonlinear Navier–Stokes equations has the same order of accuracy as the
scheme in [14] for the linear Stokes problem.
4. Representative numerical tests

We test the new splitting scheme with two representative problems in this section. The first problem, Kovasznay flow, is a
steady-state flow with an analytic solution; This problem allows us to quantify the errors of the scheme at large time step
sizes. The second problem, flow past a circular cylinder, is a canonical test problem; We consider the cylinder flow at several
Reynolds numbers, in both the steady-state regime and the unsteady regime with vortex shedding. We compare the second-
order versions of the new splitting scheme and the semi-implicit scheme of [16], in terms of the effects of time step sizes and
the computational cost.

4.1. Kovasznay flow

In the first test we consider the Kovasznay flow, which is a steady-state problem with an analytic expression. The velocity
and pressure fields are given by the following equations [19],
u ¼ 1� ekx cos 2py;

v ¼ k
2p ekx sin 2py;

p ¼ 1
2 ð1� e2kxÞ:

8><
>: ð25Þ
where k ¼ 1
2m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4m2 þ 4p2
q

. We choose m = 1/40 for this test problem. The pattern of the flow is shown by the streamlines in
Fig. 2(a).

We consider the Kovasznay flow on the domain X = {(x,y):�0.5 6 x 6 1, � 0.5 6 y 6 0.5}, which is discretized with four
quadrilateral spectral elements (see Fig. 2(b)). Element orders of 10 and 16 have been used for all elements in the following



Fig. 2. Kovasznay flow: (a) streamlines and (b) domain discretized with four quadrilateral elements.
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test results. Dirichlet conditions based on Eq. (25) are imposed on the boundaries of X for the velocity. The initial velocity
field is set to be zero.

We solve the Navier–Stokes equations using the second-order versions of the new splitting scheme and the semi-implicit
scheme [16]. With the semi-implicit scheme, the nonlinear term is treated explicitly with an extrapolation, and the viscous
term is treated implicitly; The resultant linear algebraic systems are symmetric for both the velocity and the pressure, and
are solved with the conjugate gradient solver preconditioned with a diagonal scaling.

With the new splitting scheme, the BiCGSTAB solver preconditioned with diagonal scaling has been used for the velocity
linear system solve for this problem. We monitor the time histories of the errors between the numerical and exact solutions,
as well as the norms of the numerical solution.

We vary the time step size Dt systematically, and with each Dt value integrate the Navier–Stokes equations in time until
the flow reaches the steady state. The errors of the steady-state solution against the exact solution are then computed and
compared. Table 1 summarizes the H1 errors of the x-component of the velocity corresponding to different time step sizes for
both the new splitting scheme and the semi-implicit scheme.

Let us first consider the computations with an element order 10. With the semi-implicit scheme, accurate steady-state
solutions have been obtained with time step sizes Dt = 0.01 and lower. With Dt > 0.01 the computation with the semi-im-
plicit scheme is unstable, and at large Dt values it blows up only a few time steps into the simulation. Fig. 3(a) shows time
Table 1
Kovasznay flow: H1 errors of the x-velocity of the steady-state solution computed using the semi-implicit scheme and
the new splitting scheme. Dt is the time step size.

Dt Element order 10 Element order 16

Semi-implicit scheme New scheme Semi-implicit scheme New scheme

0.004 2.382e�12 2.229e�12
0.005 4.703e�13 1.740e�12
0.006 (Unstable) 1.565e�12
0.007 (Unstable) 1.075e�12
0.008 2.813e�8 2.600e�8 (Unstable) 4.929e�13
0.01 2.965e�8 2.768e�8 (Unstable) 6.730e�13
0.02 (Unstable) 3.616e�8 (Unstable) 3.095e�13
0.03 (Unstable) 4.403e�8 (Unstable) 1.711e�13
0.04 (Unstable) 5.126e�8 (Unstable) 2.002e�13
0.05 (Unstable) 5.799e�8 (Unstable) 1.538e�13
0.06 (Unstable) 6.431e�8 (Unstable) 1.635e�13
0.07 (Unstable) 7.033e�8 (Unstable) 1.979e�13
0.08 (Unstable) 7.609e�8 (Unstable) 1.582e�13
0.1 (Unstable) 8.705e�8 (Unstable) 1.428e�13
0.12 (Unstable) 9.745e�8 (Unstable) 1.403e�13
0.14 (Unstable) 1.075e�7 (Unstable) 1.399e�13
0.16 (Unstable) 1.172e�7 (Unstable) 1.389e�13
0.18 (Unstable) 1.268e�7 (Unstable) 1.403e�13
0.2 (Unstable) 1.363e�7 (Unstable) 1.421e�13
0.25 (Unstable) 1.603e�7 (Unstable) 1.580e�13
0.3 (Unstable) 1.856e�7 (Unstable) 1.683e�13
0.35 (Unstable) 2.150e�7 (Unstable) 1.873e�13
0.4 (Unstable) 2.593e�7 (Unstable) 5.619e�1
0.45 (Unstable) 4.267e�7 (Unstable) 8.430e�1



Fig. 3. Kovasznay flow: time histories of the solution norms with different time step sizes computed using (a) the semi-implicit scheme, and (b) the new
splitting scheme. Element order is 10.
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histories of the H1 norms of the x-velocity obtained with time step sizes Dt = 0.01, 0.012 and 0.02 using the semi-implicit
scheme. With Dt larger than 0.01, the solution norm rapidly grows unbounded.

On the other hand, stable and accurate solutions have been obtained employing the new splitting scheme with time step
sizes up to Dt = 0.45 (see Table 1), which is over 40 times larger than the maximum allowable time step size with the semi-
implicit scheme. Fig. 3(b) shows time histories of the H1 norms of the x-velocity obtained with time step sizes Dt = 0.01, 0.02
and 0.2 using the new splitting scheme. It demonstrates the stability of the new scheme at a Dt value 10 times of those in
Fig. 3(a) using the semi-implicit scheme. As the time step size increases to 0.5 and larger, the computation using the new
splitting scheme becomes inaccurate, but it does not blow up. Fig. 4(a) shows time histories of the H1 norms of the x-velocity
computed with time step sizes Dt = 1.0 and 10.0, and Fig. 4(b) shows results with even larger time step sizes Dt = 100.0 and
1000.0. The solution norm becomes highly fluctuational at these large time step sizes, but is bounded throughout time. This
characteristic is very different from that of the semi-implicit scheme.
Fig. 4. Kovasznay flow: time histories of solution norms computed with the new splitting scheme at large time step sizes, (a) Dt = 1.0 and 10.0, (b)
Dt = 100.0 and 1000.0. The computation becomes inaccurate, but does not blow up. Element order is 10.
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The errors of the steady-state solutions computed with the new scheme that are discussed above, albeit small, exhibit
values on the order of magnitude of 10�8–10�7. These are primarily errors due to the spatial discretization. In Table 1 we
have also shown the H1 errors of the steady-state solution of the x velocity computed using an increased element order,
16, in the spatial discretization with both the semi-implicit and the new splitting schemes. The trend demonstrated by
the data is similar to that with the lower element order 10. However, the errors of the steady-state solution have dropped
to nearly machine zero. Note that a tolerance of 10�14 has been used in the iterative solvers. The semi-implicit scheme works
fine with Dt up to 0.005. With the new scheme, the solution has an error around 10�13 for a range of Dt values, and it be-
comes inaccurate with Dt = 0.4 and larger.

We next comment on the effect of the time step size on how fast the steady-state solution is approached. Fig. 5 shows the
convergence histories of the semi-implicit and the new schemes for this problem. Plotted are the H1 errors of the x velocity as
a function of the time step index, computed using the semi-implicit scheme with Dt = 0.005 (the maximum allowable Dt)
and the new scheme with several larger Dt values. The general observation is that, within a certain range (about 10 times
the maximum allowable Dt of the semi-implicit scheme), as Dt increases the number of time steps its takes to reach the
steady-state solution is decreased proportionately. For example, the semi-implicit scheme takes about 1300–1400 time steps
to approach the steady-state solution with Dt = 0.005. Using the new splitting scheme, with a time step size twice as large,
Dt = 0.01, it takes about 640 time steps to reach the steady-state solution; with a time step size 10 times as large, Dt = 0.05,
this takes about 140 time steps. On the other hand, as Dt further increases beyond 10 times the maximum allowable Dt of
the semi-implicit scheme, the number of time steps it takes to reach the steady-state solution stays approximately the same,
with a slight increase with increasing Dt. For example, with Dt = 0.1 (20 times the maximum allowable Dt of semi-implicit
scheme) it takes about 160 time steps to reach the steady-state solution, and with Dt = 0.2 this takes about 210 time steps.
The actual time it takes to reach the steady-state solution will of course depend on the computational cost of each time step,
which will be compared between the semi-implicit scheme and the new scheme systematically in the next section for the
flow past a cylinder.
4.2. Flow past a circular cylinder

In the second test we consider the two-dimensional flow past a circular cylinder. Three Reynolds numbers have been
studied in different regimes: Re = 40 is characterized by a steady-state flow with two re-circulation bubbles behind the cyl-
inder; Re = 200 and Re = 500 are characterized by unsteady flows with periodic vortex shedding in the cylinder wake. Fig. 6
shows contours of the instantaneous vorticity at these three Reynolds numbers computed using the new splitting scheme,
demonstrating the flow features to be simulated in the following tests.

The setting of problem is as follows. We consider the flow domain, �10 6 x 6 40, �10 6 y 6 10, in the x–y plane. The cen-
ter of the cylinder coincides with the origin of the coordinate system, and its diameter is a unit value, D = 1. The incoming
free-stream flow is assumed to be uniform with a unit magnitude; so the Dirichlet boundary condition u = (U0,0) = (1,0) is
imposed at the inlet (x = �10) for the velocity, where U0 is the free-stream velocity. At the outlet (x = 40), zero flux boundary
condition @u

@n ¼ 0 is imposed for the velocity, and the pressure is assumed to be zero. In the cross-flow direction the flow is
assumed to be periodic at y = 10 and y = �10. No-slip boundary condition is imposed on the cylinder surface. The Reynolds
number is defined based on the free-stream velocity and the cylinder diameter, Re = U0D/m.
Fig. 5. Kovasznay flow: decrease of the H1 errors of x velocity as a function of the time step index, computed with an element order 16 for all elements.



Fig. 6. Cylinder flow: instantaneous vorticity contours at Reynolds numbers Re = 40 (a), 200 (b), and 500 (c), computed with the new splitting scheme.
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The incompressible Navier–Stokes equations are discretized in time using the new splitting scheme of Section 2 and the
semi-implicit scheme [16], both of second-order temporal accuracy. The spectral element approach has been employed for
spatial discretization. We first discretize the flow domain with a spectral element mesh. Four meshes have been considered
in this test, respectively consisting of 740, 1380, 2240 and 2850 quadrilateral elements, which are shown in Fig. 7. The ele-
ment order has been varied between 3 and 7 in the following tests. Long-time simulations have been performed at each Rey-
nolds number, in order for the flow to reach a steady state (Re = 40) or a statistically stationary state (Re = 200 and 500). We
then record the forces on the cylinder at the steady state or statistically stationary states, together with the wall time per
step the computation takes for comparison.

4.2.1. Computational cost
Let us first consider the computational cost of the new splitting scheme against that of the semi-implicit scheme. With

the new splitting scheme, because the velocity coefficient matrix involves the term ~ukþ1 � rukþ1 (Eq. (4a)), it needs to be up-
dated or re-computed every time step, which is undesirable in terms of the increased computational cost. The algorithm can
be easily modified to allow for the re-computation of coefficient matrix once every certain number of time steps to reduce
the associated cost. For example, one can replace Eq. (4a) with the following modified equation,
c
Dt
ðukþ1 � ~ukþ1Þ � mr2ukþ1 þ ~uk0 � rukþ1 � uk � ruk � mr�r� uk ¼ ~uk0 � ~ukþ1� �

� ru�;kþ1; ð26Þ
where u*,k+1 is an explicit approximation of uk+1 such as u*,k+1 = 2uk � uk�1, and ~uk0 corresponds to time step k0. This allows k0,
and therefore the velocity coefficient matrix, to be updated once every specified number of time steps. However, we will not
consider this cost improvement here. We will compare the cost of the new splitting scheme, with the velocity coefficient
matrix re-computed every time step, with that of the semi-implicit scheme. Note that in the semi-implicit scheme, if the
fluid viscosity is constant, the velocity coefficient matrix does not change over time and can therefore be pre-computed,
as is considered in the current test. The re-computation of the velocity coefficient matrix is an extra cost induced by the



Fig. 7. Cylinder flow: Four spectral element meshes consisting of (a) 740, (b) 1380, (c) 2240, and (d) 2850 quadrilateral elements.
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new splitting scheme. In some situations, the coefficient matrix in the semi-implicit scheme would also need to be updated
or re-computed, for example, if the computational mesh moves over time such as in arbitrary Lagrangian Eulerian compu-
tations. In this case, the new scheme would induce no extra cost compared to the semi-implicit scheme.

Note that with both the new splitting scheme and the semi-implicit scheme, the coefficient matrix for the pressure equa-
tion stays the same over time, and is therefore pre-computed.

The extra cost of computing the velocity coefficient matrix in the new scheme would induce a higher overall cost com-
pared to the semi-implicit scheme. If the problem size is not so large, a direct solver may be used for the resulting linear
algebraic equations; the new scheme would entail extra factorizations of the velocity coefficient matrix. For large problem
sizes (e.g. 3D problems in general, or 2D problems with a large number of elements), an iterative solver will be preferred; We
will subsequently concentrate on this situation, anticipating that this will be the more common mode of usage. The question
of interest is how more costly the new scheme is compared to the semi-implicit scheme under identical time step sizes.

We next compare the cost of the new splitting scheme, with the pressure coefficient matrix pre-computed and the veloc-
ity coefficient matrix re-computed every time step, with that of the semi-implicit scheme, with both the pressure and veloc-
ity coefficient matrices pre-computed. Iterative solvers will be used for the linear algebraic equations resulting from the
discretization. Tables 2–4 summarize the wall time (in seconds) per time step of the new and semi-implicit schemes with
various grid resolutions at Reynolds numbers Re = 40, 200 and 500.

All four spectral element meshes have been tested at each Reynolds number, and the element order ranges from 3 to 7.
The same time step size has been used for both the new splitting scheme and the semi-implicit scheme for each grid reso-
lution; the time step sizes are Dt = 0.005, 0.002 and 0.001 corresponding to the three Reynolds numbers Re = 40, 200 and
500, respectively. The computer time was collected on an Intel Xeon Linux workstation cluster (on a single processor),
and the application codes for the new scheme and the semi-implicit scheme were compiled with identical optimization flags.
The wall-time value listed in the table is an average over a number of time steps for each grid resolution.

The wall-time data in these three tables show some clear trends about the computational cost. The costs for both schemes
increase with increasing element order, but the increase with the new scheme is more rapid. For a fixed mesh size, at low
Table 2
Cylinder flow (computational cost): comparison of wall time per time step (in seconds) between the new and semi-implicit schemes with various grid
resolutions at Re = 40. ‘‘New” refers to the new splitting scheme, and ‘‘semi” refers to the semi-implicit scheme.

Order/elements 740 1380 2240 2850

New Semi New Semi New Semi New Semi

3 0.0328 0.0364 0.0636 0.147 0.107 0.271 0.141 0.528
4 0:0975 0:108 0.186 0.313 0.305 0.804 0.397 1.165
5 0.218 0.205 0:408 0:579 0.671 1.324 0.854 1.724
6 0.515 0.325 0.962 0.856 1:573 1:665 2:011 2:281
7 0.970 0.458 1.804 1.248 2.983 2.238 3.744 3.004



Table 3
Cylinder flow (computational cost): comparison of wall time per time step (in seconds) at Re = 200.

Order/elements 740 1380 2240 2850

New Semi New Semi New Semi New Semi

3 0:0839 0:0911 0.157 0.202 0.301 0.397 0.443 0.694
4 0.167 0.167 0:334 0:381 0:634 0:935 0.821 1.358
5 0.417 0.288 0.938 0.752 1.697 1.621 2:085 2:329
6 0.718 0.410 1.683 1.077 2.485 2.271 3.231 3.054
7 1.561 0.694 3.176 1.685 5.010 3.094 5.916 3.984

Table 4
Cylinder flow (computational cost): comparison of wall time per time step (in seconds) at Re = 500.

Order/elements 740 1380 2240 2850

New Semi New Semi New Semi New Semi

3 0:0842 0:0888 0.163 0.193 0.284 0.378 0.432 0.615
4 0.157 0.154 0:349 0:352 0.718 0.827 0.835 1.275
5 0.354 0.263 0.777 0.695 1:406 1:448 1:746 2:078
6 0.678 0.377 1.387 1.025 2.357 1.935 2.938 2.873
7 1.465 0.573 2.799 1.502 4.390 2.702 5.674 3.793
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element orders the cost of the new scheme tends to be lower than that of the semi-implicit scheme. As the element order
increases above a certain value, the new scheme becomes more expensive than the semi-implicit scheme. So for a given
spectral element mesh there exists a cross-over element order, beyond which the new splitting scheme is more expensive.
For example, with the 1380-element mesh the cross-over element orders are respectively 5, 4, and 4 for the Reynolds num-
bers Re = 40, 200 and 500. The locations of the cross-over element orders are marked by the boxed values in the three tables.
We observe that the cross-over element order increases as the mesh size (i.e. the number of elements) increases. For exam-
ple, at Re = 40 the cross-over element order increases from 4 to 6 as the number of elements in the mesh increases from 740
to 2850; At Re = 200 and 500, the cross-over element order increases from 3 to 5 as the number of elements increases from
740 to 2850. This indicates that with regard to computational cost the new splitting scheme can be more favorable with a
large mesh size and low to moderate element orders when compared to the semi-implicit scheme. We note that in practical
simulations of computational fluid dynamics moderate element orders will usually be used. Very high element orders are
rarely used for large-scale problems because of the pronounced increase in computational cost associated with the p-type
refinement (i.e. increase in element order) of spectral element computations. The common practice is that for large simula-
tion problems one usually increases the number of elements in the mesh while keeping the element order approximately
within a range of moderate values. This suggests that for large-scale problems the new splitting scheme will be very com-
petitive, and will likely be more favorable than the semi-implicit scheme.

Note that the new splitting scheme involves a computation of the N2
m (Nm � P2, P being the element order) entries of the

velocity coefficient matrix on each element. For a given spectral element mesh (with a fixed number of elements), this cost
increases with respect to the element order and will be dominant as the element order becomes large. This explains the exis-
tence of a cross-over element order for a given spectral element mesh.

It is interesting to note that for a given mesh size, even though the velocity coefficient matrix is re-computed every time
step, the new splitting scheme is computationally less expensive than the semi-implicit scheme with low element orders.
This results from the performance difference of the two schemes in the linear system solves. Examination of the linear equa-
tion solvers shows that with the semi-implicit scheme the pressure equation requires a substantially larger number of iter-
ations for the CG solver to converge to a specified tolerance; For the velocity linear algebraic system, the number of CG
iterations per time step in the semi-implicit scheme is also larger than the number of CGS iterations in the new splitting
scheme, although the difference is not as substantial. For example, with the 2850-element mesh and element order 4, the
pressure solve in the semi-implicit scheme requires approximately 300 and 270 CG iterations per time step for the Reynolds
numbers Re = 200 and 500, respectively; On the other hand, the velocity solve requires about 20 CG iterations/step at both
Reynolds numbers with the semi-implicit scheme. In contrast, with the same mesh and element order and the same time
step size, the pressure solve in the new splitting scheme requires about 50 CG iterations per time step at both Re = 200
and 500, and the velocity solve requires about 13 CGS iterations/step at both Reynolds numbers. Note that the CG solver
has been used to solve the pressure linear algebraic system in both the new and semi-implicit schemes, and it is precondi-
tioned with diagonal scaling in both cases. For the velocity solves, both the CG solver in the semi-implicit scheme and the
CGS solver in the new splitting scheme are preconditioned with diagonal scaling. The same tolerance (10�8) has been used
for both velocity and pressure in both the new and semi-implicit schemes. At Reynolds number Re = 40 (on the same 2850-
element mesh), the semi-implicit scheme involves about 290 CG iterations/step for the pressure solve, and only one CG iter-
ation/step for the velocity solve. On the other hand, the new splitting scheme involves one CG iteration/step for the pressure,
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and one CGS iteration/step for the velocity. We have monitored the time histories of the velocity and pressure at several
points in the flow domain. With the semi-implicit scheme, at the steady state of Re = 40 we observe that while the numerical
values of the velocity on the history points remain exactly the same over time, the numerical values of the pressure fluctuate
around the fifth digit (10�5) from time step to time step. This fluctuation seems to perpetuate forever; It does not change in
intensity or disappear, even after a very long-time simulation. In contrast, with the new splitting scheme, at the steady state
of Re = 40 the numerical values of the velocity and the pressure on the history points remain exactly the same over time.
4.2.2. Effect of time step size
We next investigate the effects of the time step size Dt on the accuracy and stability of the computations. For all three

Reynolds numbers Re = 40, 200 and 500, we vary Dt systematically from small to fairly large values, and carry out a long-
time simulation at each Dt. The spectral element mesh with 2850 quadrilateral elements (Fig. 7d) has been used in the fol-
lowing tests, and the element order is 4 for all elements. The fluid forces acting on the cylinder have been monitored in time,
and compared in the following tests.

Table 5 summarizes the drag coefficient corresponding to various time step sizes computed with the new splitting
scheme and the semi-implicit scheme at Re = 40. The drag coefficient is defined by Fd

1
2qU2

0
, where Fd is the steady-state total drag

force (pressure and friction) on the cylinder and q is the fluid density. Stable flow solutions are obtained with Dt 6 0.03 using
the semi-implicit scheme; Beyond Dt = 0.03 the semi-implicit scheme becomes unstable and the computation blows up.
Table 5
Cylinder flow at Re = 40: comparison of drag coefficient between the semi-
implicit and the new splitting schemes.

Dt Semi-implicit scheme New scheme

0.01 1.612 1.612
0.02 1.612 1.612
0.03 1.612 1.612
0.04 (Unstable) 1.612
0.05 (Unstable) 1.612
0.06 (Unstable) 1.612
0.08 (Unstable) 1.612
0.1 (Unstable) 1.612
0.15 (Unstable) 1.612
0.2 (Unstable) 1.612
0.25 (Unstable) 1.612
0.3 (Unstable) 1.612
0.35 (Unstable) 1.612
0.4 (Unstable) 1.620
0.45 (Unstable) 1.632

Table 6
Cylinder flow at Re = 200: comparison of mean drag coefficient (‘‘drag-coeff”) and r.m.s. lift
coefficient (‘‘lift-coeff”) between the semi-implicit and the new splitting schemes.

Dt Semi-implicit scheme New scheme

Drag-coeff Lift-coeff Drag-coeff Lift-coeff

0.004 1.379 0.498 1.378 0.497
0.005 1.379 0.498 1.378 0.497
0.006 1.348 0.548 1.378 0.497
0.007 (Unstable) – 1.379 0.498
0.008 (Unstable) – 1.379 0.498
0.009 (Unstable) – 1.379 0.498
0.01 (Unstable) – 1.379 0.497
0.02 (Unstable) – 1.379 0.498
0.03 (Unstable) – 1.380 0.498
0.04 (Unstable) – 1.381 0.499
0.05 (Unstable) – 1.382 0.500
0.06 (Unstable) – 1.383 0.501
0.08 (Unstable) – 1.385 0.503
0.1 (Unstable) – 1.388 0.504
0.15 (Unstable) – 1.393 0.505
0.2 (Unstable) – 1.397 0.494
0.25 (Unstable) – 1.404 0.486
0.3 (Unstable) – 1.419 0.485
0.35 (Unstable) – 1.459 0.506
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With the new splitting scheme, stable solutions have been obtained at much larger Dt values (up to the maximum Dt = 0.45
considered in this test). The drag coefficient obtained using the new splitting scheme is identical to that from the semi-im-
plicit scheme for time step sizes up to Dt = 0.35, which is over 10 times the maximum allowable Dt value with the semi-im-
plicit scheme. At even larger time step sizes the flow solution obtained from the new splitting scheme is inaccurate. Beyond
Dt = 0.35, the flow computed with the new splitting scheme at Re = 40 becomes unsteady, and the drag coefficient values at
Dt = 0.4 and 0.45 in Table 5 are the mean values averaged over time. Although these values are very close to those computed
with smaller Dt, the unsteady nature of the flow solution is unphysical for this Reynolds number.

Tables 6 and 7 summarize the mean drag coefficient and root-mean-square (r.m.s.) lift coefficient corresponding to var-
ious Dt at Reynolds numbers Re = 200 and 500. The r.m.s. lift coefficient is defined by FL

1
2qU2

0
, where FL is the r.m.s. lift force on

the cylinder. At these Reynolds numbers the flow is unsteady and characterized by periodic vortex shedding behind the cyl-
inder (Fig. 6). The unsteady drag and lift forces on the cylinder have been averaged over a long-time simulation to obtain the
drag and lift coefficients.

At Re = 200 stable flow solutions have been obtained using the semi-implicit scheme with time step sizes up to
Dt = 0.006; the semi-implicit scheme is unstable beyond Dt = 0.006. With the new splitting scheme stable solutions have
been obtained at significantly larger Dt values. With time step sizes up to about 30 times the maximum allowable Dt of
Table 7
Cylinder flow at Re = 500: Comparison of mean drag coefficient (‘‘drag-coeff”) and r.m.s. lift coefficient (‘‘lift-
coeff”) between the semi-implicit and the new splitting schemes.

Dt Semi-implicit scheme New scheme

Drag-coeff Lift-coeff Drag-coeff Lift-coeff

0.002 1.466 0.851 1.466 0.851
0.003 1.467 0.851 1.466 0.850
0.004 (Unstable) – 1.466 0.849
0.005 (Unstable) – 1.466 0.850
0.006 (Unstable) – 1.466 0.850
0.007 (Unstable) – 1.466 0.850
0.008 (Unstable) – 1.466 0.850
0.01 (Unstable) – 1.467 0.850
0.02 (Unstable) – 1.468 0.850
0.03 (Unstable) – 1.469 0.850
0.04 (Unstable) – 1.472 0.850
0.05 (Unstable) – 1.474 0.850
0.06 (Unstable) – 1.477 0.850
0.08 (Unstable) – 1.479 0.847
0.1 (Unstable) – 1.465 0.837
0.12 (Unstable) – 1.458 0.825

Fig. 8. Cylinder flow at Re = 500: Time histories of the drag and lift forces computed using the semi-implicit scheme with Dt = 0.003 (a), and the new
splitting scheme with Dt = 0.03 (b).
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the semi-implicit scheme, the drag and lift coefficients obtained with the new scheme are essentially the same as those from
the semi-implicit scheme (with much lower Dt). With even larger time step sizes, the drag and lift coefficients computed
using the new splitting scheme become less accurate compared to those obtained with small Dt values; Their differences
become more pronounced. To place these Dt values into the context of CFL numbers, at Re = 200 a time step size
Dt = 0.006 corresponds to a CFL number approximately (a little less than) 2 and Dt = 0.1 corresponds to a CFL number about
33. The data exhibit a similar trend with regard to Dt for the higher Reynolds number Re = 500. At Re = 500 the semi-implicit
scheme has a maximum allowable time step size Dt = 0.003. The new splitting scheme has produced drag and lift coefficients
essentially the same as the semi-implicit scheme with time step sizes up to about 20 to 30 times larger than the maximum
allowable Dt of the latter. With even larger Dt, more significant differences in the drag and lift coefficient values are observed
when compared to those obtained with a small Dt. Fig. 8 shows time histories of the drag and lift forces on the cylinder at
Re = 500 computed using the semi-implicit scheme with Dt = 0.003 (Fig. 8(a)), and using the new splitting scheme with a
time step size 10 times larger, Dt = 0.03 (Fig. 8(b)). No apparent difference can be discerned from the force histories.

5. Concluding remarks

We have presented an unconditionally stable splitting scheme for incompressible Navier–Stokes equations based on the
rotational velocity-correction formulation. The new scheme enjoys a number of features, including (i) it allows the use of
time step sizes considerably larger than widely-used semi-implicit type schemes; (ii) it does not require the velocity and
pressure approximation spaces to satisfy the usual inf-sup condition; (iii) it only requires solving a pressure Poisson equation
and a linear convection–diffusion equation at each time step. Extensive numerical tests indicate that accurate flow solutions
can be obtained using the new scheme with time step sizes 20 or 30 times larger than the maximum allowable time step size
of the semi-implicit scheme; the time step size of the new scheme is only constrained by the accuracy not stability.

The new scheme is very competitive with regard to computational efficiency. It involves solving linear equations only,
and the velocity and pressure computations are decoupled. This avoids the deficiencies of some known unconditionally sta-
ble schemes, e.g. the expensive nonlinear algebraic equations of fully implicit schemes, and the expensive coupling between
the velocity and pressure of the linear-type schemes [20,32].

In terms of computational cost, numerical tests using the spectral element package NejTar [17] indicate that the com-
putational cost of the new scheme for each time step is less expensive than the semi-implicit scheme with low element or-
ders, even though the velocity coefficient matrix is re-computed every time step in the new scheme. However, when the
element order increases beyond a certain value, the extra cost for computing the velocity coefficient matrix will dominate,
and the new scheme will become more costly than the semi-implicit scheme. Numerical tests indicate that the value of this
cross-over element order increases as the mesh size increases. So the new scheme can be more favorable for large-scale
problems, which are usually characterized by a large mesh size and moderate element orders. We plan in the future to ex-
plore to combine more advanced preconditioning techniques [9,2] and the new splitting scheme to further improve the com-
putational efficiency.

An alternative approach for dealing with increased time step sizes in solving Navier–Stokes equations is the semi-
Lagrangian method; see e.g. [27,1,38,31] and the references therein. The basic idea is to treat the material derivative (con-
vection term) in the Lagrangian frame and the viscous term in the usual Eulerian frame. This requires the solution at the foot
of the characteristic (departure point) from each discrete mesh point. This can be done either by a backward particle tracking
or by solving an auxiliary advection equation, respectively referred to as the strong form and the auxiliary form of the semi-
Lagrangian method in [37]. The strong form requires backward integrations of the characteristic equation, and interpola-
tions, at every mesh point. It is capable of using increased time step sizes, but the cost of interpolations at every mesh point
can be very substantial [39,38]; Due to the particular structure of the error term, the overall error of the method is not mono-
tonic with respect to the time step size Dt, leading to the fact that the error does not approach zero and can grow as Dt ? 0
with a fixed spatial resolution. In the auxiliary form (sometimes referred to as the operator integration factor splitting
scheme [24]), instead of backward particle tracking, the solution at the departure point is obtained by solving a pure advec-
tion equation in the Eulerian form in an explicit fashion. The time step size in the auxiliary form is subject to the CFL con-
straint due to the explicit integration of the advection problem. Its efficiency depends on the ratio of the computational costs
of the advection step and the diffusion step. Techniques to reduce the cost of the advection step by using diagonal mass
matrices have been discussed in several studies [24,31].
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