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We present a set of effective outflow/open boundary conditions and an associated 
algorithm for simulating the dynamics of multiphase flows consisting of N (N � 2) 
immiscible incompressible fluids in domains involving outflows or open boundaries. These 
boundary conditions are devised based on the properties of energy stability and reduction 
consistency. The energy stability property ensures that the contributions of these boundary 
conditions to the energy balance will not cause the total energy of the N-phase system to 
increase over time. Therefore, these open/outflow boundary conditions are very effective 
in overcoming the backflow instability in multiphase systems. The reduction consistency 
property ensures that if some fluid components are absent from the N-phase system 
then these N-phase boundary conditions will reduce to those corresponding boundary 
conditions for the equivalent smaller system. Our numerical algorithm for the proposed 
boundary conditions together with the N-phase governing equations involves only the 
solution of a set of de-coupled individual Helmholtz-type equations within each time 
step, and the resultant linear algebraic systems after discretization involve only constant 
and time-independent coefficient matrices which can be pre-computed. Therefore, the 
algorithm is computationally very efficient and attractive. We present extensive numerical 
experiments for flow problems involving multiple fluid components and inflow/outflow 
boundaries to test the proposed method. In particular, we compare in detail the simulation 
results of a three-phase capillary wave problem with Prosperetti’s exact physical solution 
and demonstrate that the method developed herein produces physically accurate results.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this work we focus on the dynamics and interactions of a system of N (N � 2) immiscible incompressible fluids in an 
unbounded flow domain. In order to numerically simulate such problems it is necessary to truncate the domain to a finite 
size. Consequently, part of the boundary in the computational domain will be open, in the sense that the fluids can freely 
leave (or even enter) the domain through such boundaries, and appropriate boundary conditions will be required on the 
open (or outflow) portions of the domain boundary. We are particularly concerned with situations in which the multitude of 
fluid interfaces formed in the system will pass through the open domain boundaries. Following the notation of our previous 
works [11,14,15], we refer to such problems as N-phase outflows. Here N denotes the number of different fluid components 
in the system, not necessarily the number of material phases.
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N-phase outflows and open boundaries pose a number of issues to numerical simulations. First, the problem involves 
multiple fluid interfaces at the open/outflow boundary, which are associated with multiple surface tensions and the contrasts 
in densities and viscosities of these fluids. How to deal with the surface tensions, and the density and viscosity contrasts 
in the N-phase open/outflow boundary conditions (OBC) poses the foremost issue. Second, backflow instability is another 
crucial issue confronting N-phase outflow simulations. Backflow instability refers to the numerical instability associated 
with strong vortices or backflows at the open/outflow boundary, which causes computations to blow up instantly when 
strong vortices or backflows occur at the outflow boundary. The backflow instability issue is not unique to multiphase flows. 
This issue is well-known in single-phase outflow problems [16,18,13], but it becomes much worse for two-phase [12,19]
and multiphase outflows because of the density contrasts and viscosity contrasts at the outflow boundary. Third, N-phase 
problems with N � 3 pose the so-called reduction consistency issue on the design of outflow/open boundary conditions [15]. 
Reduction consistency refers to the property that, if only M (2 � M � N − 1) fluid components are present in the N-phase 
system (while the other fluid components are absent), the governing equations and the boundary conditions for the N-phase 
system should reduce to those for the corresponding smaller M-phase system [15]. The reduction consistency of N-phase 
outflow/open boundary conditions is an issue unique to multiphase outflow and open-boundary problems.

The development of effective outflow/open boundary conditions is an important problem in computational fluid dynam-
ics. For single-phase problems, this has been under intensive investigations for decades and a large volume of literature 
exists; see e.g. [20,36] for a comprehensive review of related literature and [16,13] and the references therein for a sample 
of more recent works. On the other hand, for two-phase (N = 2) outflows and open boundaries the existing work in the 
literature is very limited, and for multiphase outflow and open-boundary problems involving three or more (N � 3) fluid 
components, there is no existing work available in the literature to the best of our knowledge. The zero-flux (Neumann) and 
extrapolation boundary conditions from single-phase flows have been used for the two-phase Lattice-Boltzmann equation 
in [29]. The zero-flux condition has also been employed for the outflow boundary with a level-set type method in [2,38]. 
The outflow condition for two immiscible fluids is considered for a porous medium in [26], and for one-dimensional two-
phase compressible flows in [31,9]. In [12,19] we have developed a set of two-phase open boundary conditions having the 
attractive property that these conditions ensure the energy stability of the two-phase system, which is therefore effective 
for dealing with two-phase open boundaries.

In the current paper we consider the multiphase outflow and open-boundary problem with N (N � 3) immiscible incom-
pressible fluid components in the system, and present a set of effective outflow/open boundary conditions and an associated 
numerical algorithm for such problems within the phase field framework. The proposed open boundary conditions are de-
signed based on considerations of two properties: energy stability and reduction consistency. By looking into the energy 
balance of the N-phase system, we design the open boundary conditions in such a way to ensure that their contributions 
shall not cause the total energy of the N-phase system to increase over time, regardless of the flow state at the outflow/open 
boundary. This energy-stable property holds even in situations where strong vortices or backflows occur at the open bound-
ary. As a result, these boundary conditions are very effective in overcoming the backflow instability. We then look into the 
reduction consistency of these boundary conditions, and study how these conditions transform if some fluid components 
are absent from the N-phase system. The reduction consistency property limits the choice and the form of those boundary 
conditions that ensure the energy stability. The N-phase outflow/open boundary conditions and also the inflow boundary 
conditions proposed herein satisfy both the energy stability and the reduction consistency.

The outflow/open boundary conditions proposed herein are developed in the context of an N-phase physical formulation 
we developed recently in [15]. This formulation is based on a phase field model for the N-fluid mixture that is more general 
than a previous model [11]. The thermodynamic consistency and the reduction consistency of this formulation have been 
extensively studied in [15]. The formulation rigorously satisfies the mass conservation, momentum conservation, the second 
law of thermodynamics, and the Galilean invariance principle. This formulation is fully reduction consistent, provided that 
an appropriate potential free energy density function satisfying certain properties is employed for the N-phase system [15]. 
The reduction consistency of a set of Cahn–Hilliard type equations for a three-component and multi-component system 
(without hydrodynamic interactions) has previously been considered in [6,8]. The thermodynamic consistency of two-phase 
and multiphase systems has also been considered in [30,25,1,21,11,27,14,39]. We refer the reader to e.g. [4,28,41,7,24,42,5,
40,43] for other contributions to two-phase and multiphase flow problems.

We further present an efficient numerical algorithm for the proposed outflow and inflow boundary conditions together 
with the N-phase governing equations. This is a semi-implicit splitting type scheme. Special care is taken in the numerical 
treatments of the open/ouflow boundary conditions such that the computations for different flow variables and the com-
putations for the (N − 1) phase field functions have all been de-coupled. The algorithm involves only the solution of a set 
of individual de-coupled Helmholtz-type equations (including Poisson) within each time step. The resultant linear algebraic 
systems after discretization involves only constant and time-independent coefficient matrices, which can be pre-computed 
during pre-processing, even when large density contrasts and large viscosity contrasts are involved in the N-phase system.

The novelties of this paper lie in two aspects: (i) the set of N-phase energy-stable and reduction-consistent outflow/open 
boundary conditions and inflow boundary conditions, and (ii) the numerical algorithm for treating the proposed set of 
outflow and inflow boundary conditions.

The rest of this paper is structured as follows. In the rest of this section we provide a summary of the general phase 
field model developed in [15] for the N-fluid mixture. This model provides the basis for the N-phase energy balance relation 
and the development of energy-stable boundary conditions. In Section 2 we propose a set of outflow and inflow boundary 
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conditions based on considerations of energy stability and reduction consistency of the N-phase system, and present an 
efficient algorithm for numerically treating these boundary conditions together with the N-phase governing equations. In 
Section 3 we present several representative numerical examples involving multiple fluid components and inflow/outflow 
boundaries to demonstrate the effectiveness of the proposed outflow/open boundary conditions and the performance of the 
numerical algorithm herein. Section 4 then concludes the discussion with some closing remarks.

1.1. A thermodynamically consistent N-fluid mixture model

We summarize below the phase field model proposed in [15] for an isothermal mixture of N (N � 2) immiscible incom-
pressible fluids. This model modifies and generalizes the N-phase model developed in [11], and it satisfies the conservations 
of mass and momentum, the second law of thermodynamics, and the Galilean invariance principle. This model forms the 
basis for the development of outflow/open boundary conditions in subsequent sections.

Consider a mixture of N (N � 2) immiscible incompressible fluids contained in some flow domain � with boundary ∂�. 
Let ρ̃i and μ̃i (1 � i � N) denote the constant densities and constant dynamic viscosities of these N pure fluids (before 
mixing). Define auxiliary parameters

γ̃i = 1

ρ̃i
, 1 � i � N; � =

N∑
i=1

γ̃i; �μ =
N∑

i=1

μ̃i

ρ̃i
. (1)

Let φi (1 � i � N − 1) denote the (N − 1) independent order parameters, or interchangeably the phase field variables, that 
characterize the system, and �φ = (φ1, . . . , φN−1). Let ρi( �φ) and ci( �φ) (1 � i � N) denote the density and volume fraction of 
fluid i within the mixture, and let ρ( �φ) denote the density of the N-phase mixture. Then we have the relations [11]

ci = ρi

ρ̃i
, 1 � i � N;

N∑
i=1

ci = 1; ρ =
N∑

i=1

ρi . (2)

Let W ( �φ, ∇ �φ) denote the free energy density function of the system which satisfies the condition, 
∑N−1

i=1 ∇φi ⊗ ∂W
∂(∇φi)

=∑N−1
i=1

∂W
∂(∇φi)

⊗ ∇φi , where ⊗ denote the tensor product. Then the motion of this N-phase system is described by the 
following equations [15]:

ρ( �φ)

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ ·

[
μ( �φ)D(u)

]
−

N−1∑
i=1

∇ ·
(

∇φi ⊗ ∂W

∂(∇φi)

)
, (3a)

∇ · u = 0, (3b)
N−1∑
j=1

∂ϕi

∂φ j

(
∂φ j

∂t
+ u · ∇φ j

)
=

N−1∑
j=1

∇ ·
[
m̃i j( �φ)∇C j

]
, 1 � i � N − 1, (3c)

where u(x, t) is velocity, p(x, t) is pressure, D(u) = ∇u + ∇uT (superscript T denoting transpose), x and t are respectively 
the spatial and temporal coordinates. m̃i j (1 � i, j � N − 1) are coefficients and the matrix formed by these coefficients

m̃ = [
m̃i j

]
(N−1)×(N−1)

(4)

is required to be symmetric positive definite (SPD) [15]. ϕi( �φ) are defined by

ϕi ≡ ρi( �φ) − ρN( �φ) = ϕi( �φ), 1 � i � N − 1. (5)

The chemical potentials Ci( �φ, ∇ �φ) (1 � i � N − 1) are given by the following linear algebraic system

N−1∑
j=1

∂ϕ j

∂φi
C j = ∂W

∂φi
− ∇ · ∂W

∂(∇φi)
, 1 � i � N − 1, (6)

which can be solved given W ( �φ, ∇ �φ) and ϕi( �φ). J̃( �φ, ∇ �φ) takes the form

J̃ = −
N−1∑
i, j=1

(
1 − N

�
γ̃i

)
m̃i j( �φ)∇C j . (7)

The density of fluid i within the mixture ρi , the volume fraction ci , and the mixture density ρ and dynamic viscosity μ, 
are given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi( �φ) = 1

�
+

N−1∑
j=1

(
δi j − γ̃ j

�

)
ϕ j( �φ), 1 � i � N,

ci( �φ) = γ̃iρi( �φ) = γ̃i

�
+

N−1∑
j=1

(
γ̃iδi j − γ̃i γ̃ j

�

)
ϕ j( �φ), 1 � i � N,

ρ( �φ) =
N∑

i=1

ρi = N

�
+

N−1∑
i=1

(
1 − N

�
γ̃i

)
ϕi( �φ),

μ( �φ) =
N∑

i=1

μ̃ici( �φ) = �μ

�
+

N−1∑
i=1

(
μ̃i − �μ

�

)
γ̃iϕi( �φ)

(8)

where δi j is the Kronecker delta.
In this model the functions ϕi( �φ), the free energy density function W ( �φ, ∇ �φ), and the coefficients m̃i j (1 � i, k � N − 1) 

remain to be specified. Once they are known, all the other quantities can be computed. Note that the equation (5) is to 
define the set of order parameters �φ. Once ϕi( �φ) is given, the set of order parameters φi (1 � i � N − 1) will be fixed.

2. N-phase energy-stable open boundary conditions

In this section we propose a set of N-phase outflow/open (and also inflow) boundary conditions based on considerations 
of energy stability and reduction consistency, and develop an algorithm for numerically treating the proposed boundary 
conditions together with the N-phase governing equations.

2.1. N-phase energy balance and energy-stable boundary conditions

We first derive the energy balance relation for the N-phase model represented by (3a)–(3c), and then based on this 
relation look into possible forms for the boundary conditions to ensure the energy stability of the N-phase system.

It is straightforward to verify that the ρ( �φ) given by (8) and J̃( �φ, ∇ �φ) given by (7) satisfy the following relation

∂ρ

∂t
+ u · ∇ρ = −∇ · J̃ (9)

where we have used equations (3c) and (5). Let T = −pI + μD(u) denote the stress tensor, where I is the identity tensor. 
Then equation (3a) can be written as

ρ
Du

Dt
+ J̃ · ∇u = ∇ · T −

N−1∑
i=1

∇ ·
(

∇φi ⊗ ∂W

∂(∇φi)

)
, (10)

where D
Dt = ∂

∂t + u · ∇ denote the material derivative. Taking the L2 inner product between equation (10) and u leads to

∂

∂t

∫
�

1

2
ρ|u|2 = −

∫
�

μ

2
‖D(u)‖2 −

∫
�

N−1∑
i=1

[
∇ ·

(
∇φi ⊗ ∂W

∂∇φi

)]
· u

+
∫
∂�

[
n · T · u − 1

2
(n · J̃)|u|2 − 1

2
ρ|u|2n · u

] (11)

where n is the outward-pointing unit vector normal to ∂�, and we have used the divergence theorem, the equations (3b)
and (9), and the following relations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(∇ · T) · u = ∇ · (T · u) − T : (∇u)T = ∇ · (T · u) + p∇ · u − μ

2
‖D(u)‖2,

ρ
Du

Dt
· u = D

Dt

(
1

2
ρ|u|2

)
− Dρ

Dt

(
1

2
|u|2

)
,

(
J̃ · ∇u

)
· u = ∇ ·

(
1

2
|u|2 J̃

)
− ∇ · J̃

(
1

2
|u|2

)
.

(12)

Take the L2 inner product between equation (3c) and Ci , sum over i from 1 to (N − 1), and we arrive at∫ N−1∑
j=1

(
∂W

∂φ j
− ∇ · ∂W

∂∇φ j

)
Dφ j

Dt
= −

∫ N−1∑
i, j=1

m̃i j∇Ci · ∇C j +
∫ N−1∑

i, j=1

m̃i j(n · ∇C j)Ci (13)
� � ∂�
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where we have used the integration by part, the divergence theorem, and the equation (6). By noting the relations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂W

∂t
=

N−1∑
i=1

∂W

∂φi

∂φi

∂t
+

N−1∑
i=1

∂W

∂∇φi
· ∇ ∂φi

∂t

∇ · ∂W

∂∇φi

∂φi

∂t
= ∇ ·

(
∂W

∂∇φi

∂φi

∂t

)
− ∂W

∂∇φi
· ∇ ∂φi

∂t
,

(14)

equation (13) can be transformed into

∫
�

∂W

∂t
+

∫
�

N−1∑
i=1

(
∂W

∂φi
− ∇ · ∂W

∂∇φi

)
u · ∇φi −

∫
∂�

N−1∑
i=1

n · ∂W

∂∇φi

∂φi

∂t

= −
∫
�

N−1∑
i, j=1

m̃i j∇Ci · ∇C j +
∫
∂�

N−1∑
i, j=1

m̃i j(n · ∇C j)Ci (15)

where we have used the divergence theorem. With the help of the relations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ·
(

∇φi ⊗ ∂W

∂∇φi

)
· u = ∇ ·

(
∂W

∂∇φi
⊗ ∇φi

)
· u = ∇ · ∂W

∂∇φi
(u · ∇φi) + ∂W

∂∇φi
· ∇∇φi · u

u · ∇W =
N−1∑
i=1

∂W

∂φi
u · ∇φi +

N−1∑
i=1

∂W

∂∇φi
· ∇∇φi · u

u · ∇W = ∇ · (uW )

(16)

we can further transform (15) into

∂

∂t

∫
�

W = −
∫
�

N−1∑
i, j=1

m̃i j∇Ci · ∇C j +
∫
�

N−1∑
i=1

∇ ·
(

∇φi ⊗ ∂W

∂∇φi

)
· u

+
∫
∂�

N−1∑
i, j=1

m̃i j(n · ∇C j)Ci +
∫
∂�

N−1∑
i=1

n · ∂W

∂∇φi

∂φi

∂t
−

∫
∂�

W (n · u)

(17)

where we have used the divergence theorem and equation (3b).
Summing up equations (11) and (17), we obtain the energy balance equation for the N-phase system described by 

(3a)–(3c):

∂

∂t

∫
�

[
1

2
ρ|u|2 + W

]
= −

∫
�

μ

2
‖D(u)‖2 −

∫
�

N−1∑
i, j=1

m̃i j∇Ci · ∇C j

+
∫
∂�

[
n · T · u − 1

2
(n · J̃)|u|2 − 1

2
ρ|u|2n · u − W n · u

]
︸ ︷︷ ︸

boundary term (I)

+
∫
∂�

N−1∑
i, j=1

m̃i j(n · ∇C j)Ci

︸ ︷︷ ︸
boundary term (II)

+
∫
∂�

N−1∑
i=1

n · ∂W

∂∇φi

∂φi

∂t︸ ︷︷ ︸
boundary term (III)

.

(18)

Since the free energy form W ( �φ, ∇ �φ) and the order parameters φi (1 � i � N −1) are unspecified, the above energy balance 
holds for any specific form of W ( �φ, ∇ �φ) and any specific choice of the order parameters.

In the above energy balance equation, the left hand side (LHS) is the time derivative of the total energy of the N-phase 
system. On the right hand side (RHS), the volume-integral terms are always dissipative by noting the symmetric positive 
definiteness of the matrix formed by m̃i j (1 � i, j � N − 1). The boundary-integral terms, on the other hand, can be positive 
or negative, depending on the boundary conditions.

We are interested in boundary conditions for the flow and phase field variables which ensure that the boundary-integral 
terms (I), (II) and (III) in the energy balance equation (18) are non-positive. In other words, the contributions of the bound-
ary terms will be dissipative under these conditions. As such, the total energy of the system will not increase over time, and 
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this ensures the energy stability of the N-phase system. We refer to such boundary conditions as energy-stable boundary 
conditions.

We look into the following choices that ensure the dissipativeness of the boundary term (I) in equation (18):

u = 0, on ∂�; (19a)

n · T − W n − 1

2
(n · J̃)u − 1

2
ρ|u|2n = 0, on ∂�; (19b)

n · T − W n − 1

2
(n · J̃)u

− ρ

[
θ

1

2
(u · u)n + (1 − θ)

1

2
(n · u)u − C1(n,u)u + C2(n,u)n

]
�0(n,u) = 0, on ∂�; (19c)

where θ is a constant parameter satisfying 0 � θ � 1, and C1(n, u) � 0 and C2(n, u) � 0 are two non-negative constants or 
functions. �0(n, u) is a smoothed step function given in [18], expressed as follows,

�0(n,u) = 1

2

(
1 − tanh

n · u

U0δ

)
, lim

δ→0
�0(n,u) = �s0(n,u) =

{
1, if n · u < 0
0, otherwise

(20)

where U0 is a velocity scale, and δ > 0 is a small positive parameter that controls the sharpness of the smoothed step 
function. As δ → 0, �0 approaches the step function �s0, taking unit value when n ·u < 0 and zero otherwise. The boundary 
condition (19b) ensures the energy stability. But it prohibits the kinetic energy from being convected out of the domain in 
the presence of inflow/outflows, resulting in poor physical results. The form of the �0 term in condition (19c) is inspired 
by the boundary condition developed in [18] for the single-phase incompressible Navier–Stokes equations; see also [12,19]
for two-phase flows. The condition (19c) ensures the energy dissipation of the boundary term (I) as δ → 0, i.e. when δ is 
sufficiently small, because with this condition

n · T · u − 1

2
(n · J̃)|u|2 − 1

2
ρ|u|2n · u − W n · u

=
{ −C1ρ|u|2 + C2ρn · u � 0, where n · u < 0,

− 1
2ρ|u|2n · u � 0, where n · u � 0,

on ∂�, as δ → 0.

(21)

We look into the following choices that ensure the energy dissipation of the boundary term (II) in equation (18):

N−1∑
i=1

m̃i jCi = 0, 1 � j � N − 1, on ∂�; (22a)

N−1∑
j=1

m̃i jn · ∇C j = 0, 1 � i � N − 1, on ∂�; (22b)

N−1∑
j=1

m̃i jn · ∇C j = −
N−1∑
j=1

dijC j, 1 � i � N − 1, on ∂�; (22c)

In (22c) dij (1 � i, j � N − 1) are chosen coefficients, and the (N − 1) × (N − 1) matrix formed by dij is required to be 
symmetric semi-positive definite. Because the matrix m̃ formed by m̃i j is SPD, the boundary conditions (22a) and (22b) are 
equivalent to Ci = 0 and n · ∇Ci = 0 (1 � i � N − 1) on ∂�, respectively.

We look into the following choices to ensure the dissipativeness of the boundary term (III) in equation (18):

∂φi

∂t
= 0, 1 � i � N − 1, on ∂�; (23a)

n · ∂W

∂∇φi
= 0, 1 � i � N − 1, on ∂�; (23b)

n · ∂W

∂∇φi
= −

N−1∑
j=1

qij
∂φ j

∂t
, 1 � i � N − 1, on ∂�; (23c)

In (23c) qij (1 � i, j � N −1) are chosen coefficients, and the matrix formed by qij is required to be symmetric semi-positive 
definite.
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Remark 1. In the governing equations (3a)–(3c) the pressure can only be determined uniquely up to an additive constant. 
Replacing p by (p − p0), where p0 is a constant reference pressure, still satisfies the governing equations. Incorporation of 
the reference pressure does not alter the form of the energy balance equation (18), except that the stress tensor will now 
be given by T = −(p − p0)I + μD(u). Note that the reference pressure p0 in T has zero contribution to the energy balance 
in (18), because∫

∂�

n · T · u =
∫
∂�

n · [−pI + μD(u)] · u + p0

∫
�

∇ · u =
∫
∂�

n · [−pI + μD(u)] · u. (24)

The inclusion of p0 in the boundary conditions (19b) and (19c) (through the stress tensor T) therefore does not change the 
energy stability property of these conditions, but it allows one to set a reference pressure level in the domain based on 
the application needs. One can for example choose p0 such that 

∫
�

p = 0. In the current paper we have implicitly chosen a 
reference pressure p0 = 0, and therefore will omit p0 in the presentations.

The boundary conditions (19a)–(19c), (22a)–(22c), and (23a)–(23c) are favorable from the energy stability standpoint. 
Additionally, the boundary conditions should satisfy the reduction consistency property for the N-phase systems, as pointed 
out by [15]. The reduction consistency consideration can place restrictions on the form of these boundary conditions. In the 
subsequent section we look into the implications of the reduction consistency property on these boundary conditions, and 
in particular we suggest conditions for the inflow and outflow boundaries taking account of both reduction consistency and 
energy stability.

2.2. Reduction consistency and inflow/outflow boundary conditions

The reduction consistency of N-phase formulations has been investigated extensively in [15]. Let us first define reduction 
consistency according to [15], and then apply this requirement to the energy-stable boundary conditions from the previous 
subsection. A physical entity (e.g. variable, equation, or condition) for the N-phase system is said to be reduction consistent 
if it has the following property: If only a set of M (2 � M � N − 1) fluid components are present in the N-phase system, 
then the physical entity for the N-phase system reduces to that for the corresponding equivalent M-phase system.

We insist that the formulation for the N-phase system should honor the reduction consistency property, namely, the 
N-phase formulation should be reduction consistent. Issues of reduction consistency have been considered recently in [15]
for the N-phase governing equations (coupled system of momentum and phase-field equations); see also [6,8] for an in-
vestigation of the consistency issues of a system of Cahn–Hilliard type equations (without hydrodynamic interaction). The 
consistency properties explored in [15] can be summarized as the following three:

(C1): The N-phase free energy density function should be reduction consistent;
(C2): The N-phase governing equations should be reduction consistent;
(C3): The boundary conditions for the N-phase system should be reduction consistent.

The goal of this subsection is to investigate the implications of the consistency property (C3) on the energy-stable boundary 
conditions from the previous subsection.

To make the presentation more concrete, hereafter we will specifically employ the volume fractions of the first (N − 1) 
fluids as the set of order parameters, namely,

φi ≡ ci, φi ∈ [0,1], 1 � i � N − 1; �φ = �c = (c1, c2, . . . , cN−1)
T . (25)

Then with this choice, equation (5) is given by (see [14] for details)

ϕi(�c) =
N−1∑
j=1

aijc j − ρ̃N , 1 � i � N − 1; aij = ρ̃iδi j + ρ̃N , 1 � i, j � N − 1 (26)

where δi j is the Kronecker delta. Let A1 = [aij](N−1)×(N−1) . It is straightforward to verify that A1 is symmetric positive 
definite and thus non-singular. It should be noted that the boundary conditions and numerical algorithms presented below 
can be formulated similarly in terms of the class of general order parameters introduced in [14].

Following [15], we employ the following general form for the free energy density function

W (�c,∇�c) =
N−1∑
i, j=1

λi j

2
∇ci · ∇c j + H(�c) (27)

where the constants λi j (1 � i, j � N − 1) are referred to as the mixing energy density coefficients, and the matrix A =
[λi j](N−1)×(N−1) is required to be symmetric positive definite. H(�c) is referred to as the potential energy density function, 
and is to be specified later. In this work we assume that the coefficients m̃i j (1 � i, j � N − 1) in (3c) are constants.



40 Z. Yang, S. Dong / Journal of Computational Physics 366 (2018) 33–70
The following are the conditions obtained in [15] about λi j , H(�c), and m̃i j based on the reduction consistency properties 
(C1) and (C2):

(DC-1): λi j are given by

λi j = 3√
2
η(σiN + σ jN − σi j), 1 � i, j � N − 1 (28)

where η is the characteristic interfacial thickness, σi j (1 � i �= j � N) is the surface tension between fluids i and j, 
and σii = 0 (1 � i � N).

(DC-2): m̃i j are given by

[m̃i j](N−1)×(N−1) = m̃ = m0A1A−1AT
1 (29)

where the constant m0 > 0 is the mobility coefficient, A1 is the matrix formed by aij as given in (26), and A is the 
matrix formed by λi j .

(DC-3): H(�c) is reduction consistent.
(DC-4): If any one fluid k (1 � k � N) is absent from the N-phase system, i.e. ck ≡ 0, then H(�c) is chosen such that⎧⎪⎪⎨

⎪⎪⎩
L(N)

k = 0

L(N−1)
i = L(N)

i , 1 � i � k − 1,

L(N−1)
i = L(N)

i+1, k � i � N − 1,

(30)

where L(N)
i (1 � i � N) is defined by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
L(N)

i =
N−1∑
j=1

ζ
(N)
i j

∂ H (N)

∂c(N)
j

, 1 � i � N − 1, where
[
ζ

(N)
i j

]
(N−1)×(N−1)

= A−1;

L(N)
N = −

N−1∑
i=1

L(N)
i .

(31)

In the above equations the superscript N in (·)(N) accentuates the point that the variable is with respect to the 
N-phase system.

It is shown in [15] that, with λi j and m̃i j given by (28) and (29) respectively, and H(�c) satisfying (DC-3) and (DC-4), 
the N-phase governing equations represented by (3a)–(3c) and the free energy density function given by (27) satisfy the 
reduction consistency properties (C1) and (C2).

In subsequent discussions, whenever necessary, we will use the superscript notation (·)(N) to signify that the variable is 
with respect to the N-phase system, but will drop the superscript where no confusion arises.

2.2.1. Reduction consistency of boundary conditions
We employ the λi j and m̃i j values given by (28) and (29), and assume that the potential energy density function H(�c)

satisfies the conditions (DC-3) and (DC-4). Let us now look into the energy-stable boundary conditions from Section 2.1 in 
light of the reduction consistency requirement (C3).

We insist that the boundary conditions (19a)–(19c), (22a)–(22c) and (23a)–(23c) should satisfy the consistency property 
(C3). To ensure the reduction consistency between the N-phase and M-phase (2 � M � N −1) systems, it suffices to consider 
only the reduction between N-phase and (N − 1)-phase systems, i.e. if only one fluid component is absent from the system.

Consider first the conditions (19a)–(19c). The condition (19a) is evidently reduction consistent because no phase field 
variable is involved. The conditions (19b) and (19c) are reduction consistent because, as shown in [15], the variables ρ(�c)
and μ(�c) given by (8) are reduction consistent, and the J̃ given by (7) is also reduction consistent under the condition 
(DC-4). Note also that the free energy density function W (�c, ∇�c) given by (27) satisfies the consistency property (C1) under 
the condition (DC-3), as mentioned earlier.

We next consider the boundary conditions (22a)–(22c). Define

�C = [Ci](N−1)×1 ,
∂ H

∂�c =
[

∂ H

∂ci

]
(N−1)×1

, D = [
dij

]
(N−1)×(N−1)

. (32)

In light of the equations (26), (27) and (28), the chemical potentials Ci can be obtained from equation (6) in a matrix form,

�C = A−T
1

(
∂ H

� − A∇2�c
)

. (33)

∂c
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So boundary condition (22a) is transformed into⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ∇2�c + A−1 ∂ H

∂�c = 0, on ∂�, or equivalently

− ∇2ci +
N−1∑
j=1

ζi j
∂ H

∂c j
= 0, 1 � i � N − 1, on ∂�

(34)

where we have used (29). Boundary conditions (22b) can be transformed into⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n · ∇
(

−∇2�c + A−1 ∂ H

∂�c
)

= 0, on ∂�, or equivalently

n · ∇
⎛
⎝−∇2ci +

N−1∑
j=1

ζi j
∂ H

∂c j

⎞
⎠ = 0, 1 � i � N − 1, on ∂�.

(35)

Equations (34) and (35) are reduction consistent under the condition (DC-4). It suffices to consider only (34). Suppose the 
fluid k (for any 1 � k � N) is absent from the N-phase system, i.e. c(N)

k ≡ 0. Let χi denote a variable from the set of variables 
{ci, ρi, ρ̃i, μ̃i, γ̃i}, and the following correspondence relations hold between the N-phase system and the (N − 1)-phase 
system without fluid k:

χ
(N−1)
i =

{
χ

(N)
i , 1 � i < k

χ
(N)
i+1, k � i � N − 1.

(36)

Therefore, for 1 � i = k � N − 1, the equation (34) becomes an identity,

−∇2c(N)

k +
N−1∑
j=1

ζ
(N)

kj

∂ H (N)

∂c(N)
j

= −∇2c(N)

k + L(N)

k = 0 (37)

in light of the equation (30) under the condition (DC-4). For 1 � i � k − 1, the equation (34) becomes

0 = −∇2c(N)
i +

N−1∑
j=1

ζ
(N)
i j

∂ H (N)

∂c(N)
j

= −∇2c(N)
i + L(N)

i = −∇2c(N−1)
i + L(N−1)

i

= −∇2c(N−1)
i +

N−2∑
j=1

ζ
(N−1)
i j

∂ H (N−1)

∂c(N−1)
j

, 1 � i � k − 1

(38)

where we have used the correspondence relation (36) and the equation (30) under the condition (DC-4). Therefore,

−∇2c(N)
i +

N−1∑
j=1

ζ
(N)
i j

∂ H (N)

∂c(N)
j

= 0 =⇒ −∇2c(N−1)
i +

N−2∑
j=1

ζ
(N−1)
i j

∂ H (N−1)

∂c(N−1)
j

= 0, 1 � i � k − 1. (39)

For k + 1 � i + 1 � N , equation (34) becomes

0 = −∇2c(N)
i+1 +

N−1∑
j=1

ζ
(N)
i+1, j

∂ H (N)

∂c(N)
j

= −∇2c(N)
i+1 + L(N)

i+1 = −∇2c(N−1)
i + L(N−1)

i

= −∇2c(N−1)
i +

N−2∑
j=1

ζ
(N−1)
i j

∂ H (N−1)

∂c(N−1)
j

, k � i � N − 1

(40)

where we have used (36) and (30). Therefore,

−∇2c(N)
i+1 +

N−1∑
j=1

ζ
(N)
i+1, j

∂ H (N)

∂c(N)
j

= 0 =⇒ −∇2c(N−1)
i +

N−2∑
j=1

ζ
(N−1)
i j

∂ H (N−1)

∂c(N−1)
j

= 0, k � i � N − 1. (41)

Combining the above results, we conclude that if any fluid is absent then the boundary condition (34) for the N-phase 
system will reduce to that for the corresponding (N − 1)-phase system. So it is reduction consistent. It follows that the 
boundary condition (35) is also reduction consistent under the condition (DC-4).
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The boundary condition (22c) can be written in matrix form as

m̃(n · ∇ �C) = −D �C =⇒ m0n · ∇
(

−∇2�c + A−1 ∂ H

∂�c
)

= −A−1
1 DA−T

1 A
(

−∇2�c + A−1 ∂ H

∂�c
)

(42)

where we have used (33) and (29). Let A−1
1 DA−T

1 A = [
bij

]
(N−1)×(N−1)

. Then the above equation can be written in terms of 
the component terms as

m0n · ∇
⎛
⎝−∇2ci +

N−1∑
j=1

ζi j
∂ H

∂c j

⎞
⎠ = −

N−1∑
j=1

bij

(
−∇2c j +

N−1∑
k=1

ζ jk
∂ H

∂ck

)
, 1 � i � N − 1. (43)

Note that the terms 
(
−∇2ci + ∑N−1

j=1 ζi j
∂ H
∂c j

)
for 1 � i � N − 1 are reduction consistent, as shown in the above discussions. 

Therefore, a sufficient condition for the equation (43) to be reduction consistent is that the matrix formed by bij be diagonal,

A−1
1 DA−T

1 A = diag(ê1, . . . , êN−1) = G (44)

for some êi (1 � i � N − 1). It then follows that

A−1
1 DA−T

1 = GA−1 (45)

The left hand side of this equation is a symmetric semi-positive definite matrix, because A1 is non-singular and D is required 
to be symmetric semi-positive definite. Note that on the right hand side G is diagonal and A is a general SPD matrix. We 
therefore conclude that

G = e0I (46)

where I is the identity matrix and e0 � 0 is a non-negative constant. Consequently

D = A1GA−1AT
1 = e0A1A−1AT

1 = e0

m0
m̃. (47)

So the boundary condition (22c) is transformed into

n · ∇
⎛
⎝−∇2ci +

N−1∑
j=1

ζi j
∂ H

∂c j

⎞
⎠ = − e0

m0

(
−∇2ci +

N−1∑
k=1

ζik
∂ H

∂ck

)
, 1 � i � N − 1, (48)

and these conditions are reduction consistent.
Let us now consider the boundary conditions (23a)–(23c). The condition (23a) implies that

ci(x, t) = cbi(x), 1 � i � N − 1; cN(x, t) = 1 −
N−1∑
i=1

cbi(x) = cbN(x), on ∂�. (49)

If a fluid k is absent from the N-phase system throughout time, then the reduction consistency requires that cbk(x) ≡ 0. 
Indeed, if cbi(x) is non-zero on the boundary for any fluid i, that fluid cannot be absent from the system.

In light of (27), the boundary condition (23b) is transformed into

N−1∑
j=1

λi jn · ∇c j = 0, 1 � i � N − 1 =⇒ n · ∇ci = 0, 1 � i � N − 1, on ∂� (50)

by noting that the matrix A formed by λi j (1 � i, j � N − 1) is non-singular. The boundary condition (50) is reduction 
consistent. Note that this boundary condition implies n · ∇cN = − 

∑N−1
i=1 n · ∇ci = 0. Let us suppose a fluid k (1 � k � N) is 

absent from the N-phase system, i.e. c(N)

k ≡ 0. Then n · ∇c(N)

k = 0 becomes an identity. Based on the correspondence relation 
(36), for 1 � i � k − 1,

n · ∇c(N)
i = 0 =⇒ n · ∇c(N−1)

i = 0; (51)

for k � i � N − 1,

n · ∇c(N)
i+1 = 0 =⇒ n · ∇c(N−1)

i = 0. (52)

Therefore, if any one fluid is absent, the boundary condition (50) (together with n · ∇cN = 0) is reduced to n · ∇c(N−1)
i = 0

for 1 � i � N − 1.
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The boundary condition (23c) can be transformed into

N−1∑
j=1

λi jn · ∇c j = −
N−1∑
j=1

qij
∂c j

∂t
, or A(n · ∇�c) = −Q

∂�c
∂t

(53)

where the matrix Q = [qij](N−1)×(N−1) is required to be symmetric semi-positive definite. Let A−1Q = [ri j](N−1)×(N−1) . The 
above condition can be further transformed into

n · ∇ci = −
N−1∑
j=1

ri j
∂c j

∂t
, 1 � i � N − 1. (54)

Noting that both n · ∇ci = 0 (1 � i � N) and ∂ci
∂t = 0 (1 � i � N) are reduction consistent, we impose the condition that the 

matrix A−1Q be diagonal in order to facilitate the reduction consistency of equation (54), i.e.

A−1Q = diag(r̂1, . . . , r̂N−1) = E, or Q = AE (55)

for some r̂i (1 � i � N − 1). Note that Q is required to be symmetric semi-positive definite, A is a general SPD matrix, and 
E is diagonal. We then conclude that

E = d0I (56)

where d0 � 0 is a non-negative constant. Therefore, the boundary condition (23c) is reduced to

n · ∇ci = −d0
∂ci

∂t
, 1 � i � N − 1, on ∂�. (57)

This implies that

n · ∇cN = −
N−1∑
i=1

n · ∇ci = d0

N−1∑
i=1

∂ci

∂t
= −d0

∂cN

∂t
, on ∂�. (58)

The condition (57), together with (58), is reduction consistent. To demonstrate this point, let us assume that fluid k
(1 � k � N) is absent from the system, i.e. c(N)

k ≡ 0. Then for 1 � i � k − 1,

n · ∇c(N)
i + d0

∂c(N)
i

∂t
= 0 =⇒ n · ∇c(N−1)

i + d0
∂c(N−1)

i

∂t
= 0 (59)

where we have used the correspondence relation (36). For k � i � N − 1,

n · ∇c(N)
i+1 + d0

∂c(N)
i+1

∂t
= 0 =⇒ n · ∇c(N−1)

i + d0
∂c(N−1)

i

∂t
= 0 (60)

where the correspondence relation (36) is again used. One also notes that the condition n · ∇c(N)

k + d0
∂c(N)

k
∂t = 0 becomes an 

identity.

2.2.2. Outflow and inflow boundary conditions
The above discussions involve general considerations of the energy stability and reduction consistency properties of the 

N-phase system and the implications of these properties on the boundary conditions. The resultant boundary conditions are 
applicable to any type of boundary. We next focus on the outflow and inflow boundaries specifically, and use these results 
to suggest specific outflow and inflow boundary conditions.

With λi j given by (28), m̃i j given by (29) and the free energy density given by (27), the governing equations (3a) and 
(3c) are reduced into, in terms of volume fractions ci (1 � i � N − 1) as the order parameters,

ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · [μD(u)] −

N−1∑
i, j=1

∇ · (λi j∇ci ⊗ ∇c j
) + f(x, t), (61)

∂ci

∂t
+ u · ∇ci = m0∇2

⎛
⎝−∇2ci +

N−1∑
j=1

ζi j
∂ H

∂c j

⎞
⎠ + gi(x, t), 1 � i � N − 1 (62)

where we have added an external body force f to the momentum equation, and a source term gi to each of the N − 1
phase field equations. gi (1 � i � N − 1) are for the purpose of numerical testing only, and will be set to gi = 0 in actual 
simulations. J̃ is given by (simplified from equation (7))
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J̃ = −m0

N−1∑
i=1

(
ρ̃i − ρ̃N

)∇
⎛
⎝−∇2ci +

N−1∑
j=1

ζi j
∂ H

∂c j

⎞
⎠ . (63)

We assume that the domain boundary consists of three types which are non-overlapping with one another: ∂� = ∂�i ∪
∂�w ∪ ∂�o , where

• ∂�i is the inflow boundary, on which the velocity distribution and the fluid-material distributions are known.
• ∂�w is the wall boundary with certain wetting properties, on which the velocity distribution (e.g. zero velocity) and 

the contact angles are known.
• ∂�o is the outflow (or open) boundary, on which none of the flow variables (velocity, pressure, phase field variables) is 

known.

Since the phase field equations (62) are of fourth spatial order, two independent boundary conditions will be needed on 
each type of boundary for the phase field variables ci .

On the outflow/open boundary ∂�o we propose the boundary conditions (35) and (57) for the phase field equations, i.e.

n · ∇
⎛
⎝−∇2ci +

N−1∑
j=1

ζi j
∂ H

∂c j

⎞
⎠ = 0, 1 � i � N − 1, on ∂�o, (64a)

n · ∇ci = −d0
∂ci

∂t
, 1 � i � N − 1, on ∂�o. (64b)

For the momentum equation we propose the boundary condition (19c) on ∂�o . Note that the combination of equations (63)
and (64a) leads to n · J̃ = 0 on ∂�o . We will consider the following choice for C1(n, u) and C2(n, u) in (19c) in the present 
work, analogous to the outflow condition for single-phase Navier–Stokes equations in [18],

C1(n,u) = −α1

2
n · u, C2(n,u) = α2

2
u · u

where α1 � 0 and α2 � 0 are constants. Therefore, the boundary condition (19c) is reduced to

− pn + μn · D(u) −
⎡
⎣ N−1∑

i, j=1

λi j

2
∇ci · ∇c j + H(�c)

⎤
⎦n

− ρ

[
1

2
(θ + α2)(u · u)n + 1

2
(1 − θ + α1)(n · u)u

]
�0(n,u) = 0, on ∂�o (65)

where 0 � θ � 1, α1 � 0 and α2 � 0 are constant parameters. The open boundary conditions (64a)–(65) are reduction con-
sistent, and they ensure the energy dissipativity on the open/outflow boundary ∂�o even when strong vortices or backflows 
occur on ∂�o .

Equation (65) represents a family of boundary conditions for ∂�o with (θ, α1, α2) as the parameters. The term involving 
�0 in (65) is critical to the energy stability when strong vortices or backflows occur at the open boundary. This term 
is similar in form to that of the open boundary conditions developed in [18] for single-phase flows. It is observed from 
single-phase flow simulations of [18] that, among the family represented by (θ, α1, α2), the condition corresponding to 
(θ, α1, α2) = (1, 1, 0) produces overall the best results in terms of the smoothness of the velocity field at the outflow 
boundary and the distortion of flow structures when they exit the domain. We specifically list below this particular open 
boundary condition corresponding to (θ, α1, α2) = (1, 1, 0) among those given by (65),

− pn + μn · D(u) −
⎡
⎣ N−1∑

i, j=1

λi j

2
∇ci · ∇c j + H(�c)

⎤
⎦n − 1

2
ρ [(u · u)n + (n · u)u] �0(n,u) = 0, on ∂�o. (66)

The majority of numerical simulations presented in Section 3 will be performed with this boundary condition for ∂�o .
Let us make a comment on the boundary condition (64b). This condition is analogous to a convective type condition on 

the outflow boundary if d0 > 0,

∂ci

∂t
+ Ucn · ∇ci = 0, 1 � i � N − 1, on ∂�o, where Uc = 1

d0
. (67)

Therefore, 1
d0

plays the role of a convection velocity at the open/outflow boundary. In practical simulations, one could first 
estimate a convection velocity scale Uc > 0 at the outflow boundary based on physical considerations (e.g. mass conserva-
tion) or by preliminary simulations using e.g. d0 = 0. Then one can determine d0 based on d0 = 1 .
Uc
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On the inflow boundary ∂�i the material distribution is known, implying a Dirichlet type condition

ci = cbi(x, t), 1 � i � N − 1, on ∂�i (68)

where cbi is boundary volume-fraction distribution. For the other boundary condition on ∂�i for the phase field equations, 
we propose the condition (34), i.e.

−∇2ci +
N−1∑
j=1

ζi j
∂ H

∂c j
= 0, 1 � i � N − 1, on ∂�i . (69)

When a solid-wall boundary ∂�w is present, in the current paper we will assume that the wall is of neutral wettability 
to all fluids, that is, the contact angles for all fluid interfaces are 900. This corresponds to the condition (50), namely,

n · ∇ci = 0, 1 � i � N − 1, on ∂�w . (70)

For N-phase flows bounded by solid walls with more general wetting properties we refer the reader to [15] for a method 
to deal with general contact angles. We employ the condition (35) for the other boundary condition for the phase field 
function on ∂�w , i.e.

n · ∇
⎛
⎝−∇2ci +

N−1∑
j=1

ζi j
∂ H

∂c j

⎞
⎠ = 0, 1 � i � N − 1, on ∂�w . (71)

In addition, the velocity distribution on the inflow and wall boundaries are assumed to be known, leading to a Dirichlet 
type condition

u = w(x, t), on ∂�i ∪ ∂�w , (72)

where w is the boundary velocity.
Finally, the initial distributions for the velocity (uin) and the phase field functions (cin

i ) are assumed to be known,

u(x,0) = uin(x), (73a)

ci(x,0) = cin
i (x), 1 � i � N − 1. (73b)

2.3. Algorithm formulation

The equations (61)–(62) and (3b), supplemented by the boundary conditions (72), (68)–(69), (70), (71), (65), (64a)–(64b), 
together with the initial conditions (73a)–(73b), constitute the system to be solved in numerical simulations. In the current 
paper, we employ the same potential energy density function H(�c) as in [15] (originally suggested by [8]), given by

H(�c) = 3√
2η

N∑
i, j=1

σi j

2

[
f (ci) + f (c j) − f (ci + c j)

]
, with f (c) = c2(1 − c)2 (74)

where η is the characteristic interfacial thickness of the diffuse interfaces. As pointed out in [15], this function is reduction 
consistent, but satisfies only a subset of the (DC-4) property. It ensures the reduction consistency between N-phase systems 
and M-phase systems for M = 2.

To numerically test with manufactured analytic solutions, we will modify several boundary conditions by adding certain 
prescribed source terms. Define hi = ∂ H/∂ci , 1 � i � N − 1. We modify (69) as

−∇2ci +
N−1∑
j=1

ζi jh j = gai(x, t), 1 � i � N − 1, on ∂�i, (75)

where gai (1 � i � N − 1) are prescribed functions. We combine (64a) and (71) and re-write them as

n · ∇
(

− ∇2ci +
N−1∑
j=1

ζi jh j

)
= gbi(x, t), 1 � i � N − 1, on ∂�w ∪ ∂�o (76)

where gbi (1 � i � N − 1) are prescribed functions. We modify (70) as

n · ∇ci = gci(x, t), 1 � i � N − 1, on ∂�w (77)

where gci (1 � i � N − 1) are prescribed functions. The boundary condition (64b) is modified as
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n · ∇ci = −d0
∂ci

∂t
+ gei, 1 � i � N − 1, on ∂�o (78)

where gei (1 � i � N − 1) are prescribed functions. The prescribed source terms gai , gbi , gci and gei in the above equations 
(75)–(78) are for numerical testing only and will be set to zero in actual simulations.

We re-write the momentum equation (61) as

∂u

∂t
+ u · ∇u + 1

ρ
J̃ · ∇u = − 1

ρ
∇ P + μ

ρ
∇2u + 1

ρ
∇μ · D(u) − 1

ρ

N−1∑
i, j=1

λi j(∇2c j)∇ci + f

ρ
(79)

where P = p + 1
2

∑N−1
i, j=1 λi j∇ci · ∇c j and will also be loosely referred to as the pressure. The boundary condition (65) is 

re-written as

−P n + μn · D(u) − H(�c)n − E(n,u,ρ) = fb(x, t), on ∂�o (80)

where E(n, u, ρ) = 1
2 ρ [(θ + α2)(u · u)n + (1 − θ + α1)(n · u)u] �0(n, u), and fb is a prescribed function for numerical testing 

only and will be set to fb = 0 in actual simulations.
We next present an algorithm for solving the equations consisting of (79), (3b) and (62), the boundary conditions con-

sisting of (72), (80), (68), (75), (77), (76) and (78), together with the initial conditions (73a) and (73b). The treatment 
for the governing equations follows a similar scheme as in [15]. Our emphasis below is on the numerical treatment and 
implementation of various outflow and inflow boundary conditions.

Let J ( J = 1 or 2) denote the temporal order of accuracy, �t denote the time step size, and n (n � 0) denote the time 
step index. Let χ denote a generic variable. Then χn represents the variable at time step n in the following, and we define

χ∗,n+1 =
{

χn, J = 1,

2χn − χn−1, J = 2; χ̂n =
{

χn, J = 1,

2χn − 1
2χn−1, J = 2; γ0 =

{
1, J = 1,

3/2, J = 2.
(81)

Given (un, Pn, cn
i ), we compute cn+1

i , Pn+1 and un+1 successively in a de-coupled fashion as follows.

For cn+1
i :

γ0cn+1
i − ĉn

i

�t
+ u∗,n+1 · ∇c∗,n+1

i

= m0∇2

⎡
⎣−∇2cn+1

i + S

η2

(
cn+1

i − c∗,n+1
i

)
+

N−1∑
j=1

ζi jh j(�c∗,n+1)

⎤
⎦ + gn+1

i , 1 � i � N − 1 (82a)

−∇2cn+1
i +

N−1∑
j=1

ζi jh j(�cn+1) = gn+1
ai , 1 � i � N − 1, on ∂�i (82b)

cn+1
i = cn+1

bi , 1 � i � N − 1, on ∂�i (82c)

n · ∇
⎡
⎣−∇2cn+1

i + S

η2
(cn+1

i − c∗,n+1
i ) +

N−1∑
j=1

ζi jh j(�c∗,n+1)

⎤
⎦ = gn+1

bi , 1 � i � N − 1, on ∂�w ∪ ∂�o (82d)

n · ∇cn+1
i = gn+1

ci , 1 � i � N − 1, on ∂�w (82e)

n · ∇cn+1
i = −d0

∂ci

∂t

∣∣∣∣n+1

exp
+ gn+1

ei , 1 � i � N − 1, on ∂�o (82f)

n · ∇cn+1
i = −d0

γ0cn+1
i − ĉn

i

�t
+ gn+1

ei , 1 � i � N − 1, on ∂�o (82g)

For Pn+1:
γ0ũn+1 − ûn

�t
+ u∗,n+1 · ∇u∗,n+1 + 1

ρn+1 J̃n+1 · ∇u∗,n+1 + 1

ρ0
∇ Pn+1 =(

1

ρ0
− 1

ρn+1

)
∇ P∗,n+1 − μn+1

ρn+1 ∇ × ∇ × u∗,n+1 + 1

ρn+1 ∇μn+1 · D(u∗,n+1)

− 1

ρn+1

N−1∑
λi j∇2cn+1

i ∇cn+1
i + 1

ρn+1 fn+1

(83a)
i, j=1
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∇ · ũn+1 = 0 (83b)

n · ũn+1 = n · wn+1, on ∂�i ∪ ∂�w (83c)

Pn+1 = μn+1n · D(u∗,n+1) · n − H(�cn+1) − n · E(n,u∗,n+1,ρn+1) − fn+1
b · n, on ∂�o (83d)

For un+1:
γ0un+1 − γ0ũn+1

�t
− νm∇2un+1 = νm∇ × ∇ × u∗,n+1 (84a)

un+1 = wn+1, on ∂�i ∪ ∂�w (84b)

n · ∇un+1 =
(

1 − μn+1

μ0

)
n · D(u∗,n+1) + 1

μ0

[
Pn+1n + H(�cn+1)n + E(n,u∗,n+1,ρn+1)

+fn+1
b − μ0(∇ · u∗,n+1)n

]
− n · (∇u∗,n+1)T , on ∂�o.

(84c)

In the above equations, ũn+1 is an auxiliary velocity approximating un+1, and S is a chosen positive constant that 
satisfies a condition to be specified later. ρ0 is a chosen constant that satisfies the condition 0 < ρ0 � min(ρ̃1, . . . , ρ̃N ). 
νm is a chosen constant that is sufficiently large, and we employ νm � max

(
μ̃1
ρ̃1

, . . . ,
μ̃N
ρ̃N

)
in the current paper. μ0 is a 

chosen constant satisfying the condition that μ0 = μ̃1 if μ̃1 = μ̃2 = · · · = μ̃N , and otherwise μ0 > min(μ̃1, . . . , μ̃N ). In 

(82f) ∂ci
∂t

∣∣∣n+1

exp
is an explicit approximation of the time derivative given by

∂ci

∂t

∣∣∣∣n+1

exp
=

{
1
�t (cn

i − cn−1
i ), J = 1,

1
�t (

5
2 cn

i − 4cn−1
i + 3

2 cn−2
i ), J = 2.

(85)

Several comments on the above algorithm are in order at this point:

• To solve the set of phase field variables, an extra term S
η2 (cn+1

i − c∗,n+1
i ) has been added to the semi-discretized phase 

field equations (82a). This term is equivalent to zero to the J -th order accuracy in time. This term enables the re-
formulation of the (N − 1) semi-discretized 4th-order phase field equations into 2(N − 1) de-coupled Helmholtz-type 
equations [15]. This is an often-used strategy for two-phase flow simulations (see e.g. [17,10]). It is crucial for spatial 
discretizations with C0 continuous spectral elements employed in the current paper.

• In the discrete boundary condition (82d) the same extra zero term is added. This term is crucial, and without it signifi-
cant loss of mass for some fluid phases can be observed.

• The discrete conditions (82f) and (82g) result from an explicit and an implicit treatment of the inertial term ∂ci
∂t in the 

boundary condition (78). These two approximations will be employed to implement the outflow condition at different 
stages of the implementation, which will become clear from later discussions.

• The equations (83a) and (84a) constitute a rotational velocity correction scheme for the momentum equation (79). The 
scheme adopts a reformulation of the pressure term and the viscous term in the same fashion as in [17],

1

ρ
∇ P ≈ 1

ρ0
∇ P +

(
1

ρ
− 1

ρ0

)
∇ P∗, μ

ρ
∇2u ≈ νm∇2u +

(
νm − μ

ρ

)
∇ × ∇ × u∗

where P∗ and u∗ are explicit approximations of P and u respectively. These reformulations lead to time-independent 
coefficient matrices for the pressure and velocity linear algebraic systems after discretization, which is crucial for nu-
merical efficiency.

• Equation (83d) is a discrete Dirichlet type condition for the pressure on the outflow boundary ∂�o . It results from 
taking the inner product between the boundary condition (80) and the directional vector n normal to ∂�o and treating 
the velocity in an explicit fashion.

• The discrete condition (84c) is essentially a combination of the following two approximations:⎧⎪⎪⎨
⎪⎪⎩

n · ∇un+1 = n · D(un+1) − n · (∇u∗,n+1)T

μ0n · D(un+1) = (μ0 − μ)n · D(u∗,n+1)

+
[

Pn+1n + H(�cn+1)n + E(n,u∗,n+1,ρn+1) + fn+1
b

]
, on ∂�o.

The second approximation above stems from the outflow boundary condition (80), but with the terms involving μ0
incorporated. The construction with the μ0 terms was first introduced in [12] for two-phase outflows. This construc-
tion is crucial for the stability of the scheme when large viscosity ratios among the fluids occur at the outflow/open 
boundary. Note also that an extra term involving (∇ · u)n is incorporated into the discrete condition (84c).
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2.4. Implementation with spectral elements

We next implement the algorithm given by (82a)–(84c) using C0 continuous high-order spectral elements [37,23,44]. 
We first derive the weak forms for different flow variables in the spatially continuous sense. Then we will specify the 
approximation spaces and provide the fully discrete formulation.

Thanks to the term involving S
η2 , each of the (N − 1) equations in (82a) can be equivalently reformulated into two 

de-coupled Helmholtz-type equations (see [15] for details):

∇2ψn+1
i −

(
α + S

η2

)
ψn+1

i = Q i + ∇2 Ri, 1 � i � N − 1, (86a)

∇2cn+1
i + αcn+1

i = ψn+1
i , 1 � i � N − 1, (86b)

where ψn+1
i is an auxiliary variable defined by (86b), and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q i = 1

m0

(
gn+1

i − u∗,n+1 · ∇c∗,n+1
i + ĉn

i

�t

)
, 1 � i � N − 1,

Ri = − S

η2
c∗,n+1

i +
N−1∑
j=1

ζi jh j(�c∗,n+1), 1 � i � N − 1,

α = S

2η2

⎡
⎣−1 +

√
1 − 4γ0

m0�t

(
η2

S

)2
⎤
⎦ .

(87)

The reformulation also results in the following condition that the chosen constant S must satisfy, S � η2
√

4γ0
m0�t . It is noted 

that this condition implies α < 0 and α + S
η2 > 0 in (86a) and (86b).

Let ϕ(x) denote an arbitrary function on � with sufficient regularity and satisfying the condition

ϕ(x) = 0, on ∂�i . (88)

Taking the L2 inner product between ϕ and equation (86a) leads to∫
�

∇ψn+1
i · ∇ϕ +

(
α + S

η2

)∫
�

ψn+1
i ϕ = −

∫
�

Q iϕ +
∫
�

∇Ri · ∇ϕ

+
∫

∂�w

(
n · ∇ψn+1

i − n · ∇Ri

)
ϕ +

∫
∂�o

(
n · ∇ψn+1

i − n · ∇Ri

)
ϕ, ∀ϕ,

(89)

where we have used integration by part, the divergence theorem and the condition (88). In light of (86b) and (82e), the 
condition (82d) can be transformed into

n · ∇ψn+1
i − n · ∇Ri =

(
α + S

η2

)
gn+1

ci − gn+1
bi , on ∂�w . (90)

Similarly, for ∂�o the condition (82d) can be transformed into

n · ∇ψn+1
i − n · ∇Ri =

(
α + S

η2

)(
−d0

∂ci

∂t

∣∣∣∣n+1

exp
+ gn+1

ei

)
− gn+1

bi , on ∂�o (91)

where we have used (86b) and (82f). Substitution of the above two expression into (89) leads to the weak form for ψn+1
i ,∫

�

∇ψn+1
i · ∇ϕ +

(
α + S

η2

)∫
�

ψn+1
i ϕ = −

∫
�

Q iϕ +
∫
�

∇Ri · ∇ϕ −
∫

∂�w∪∂�o

gn+1
bi ϕ

+
(
α + S

η2

) ∫
∂�w

gn+1
ci ϕ +

(
α + S

η2

) ∫
∂�o

(
−d0

∂ci

∂t

∣∣∣∣n+1

exp
+ gn+1

ei

)
ϕ, 1 � i � N − 1, ∀ϕ.

(92)

In light of (86b) and (82c), the discrete condition (82b) can be transformed into
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ψn+1
i = αcn+1

bi +
N−1∑
j=1

ζi jh j(�cn+1
b ) − gn+1

ai , 1 � i � N − 1, on ∂�i, (93)

where �cb = (cb1, cb2, . . . , cbN−1).
Take the L2 inner product between ϕ(x) and equation (86b), and we have∫

�

∇cn+1
i · ∇ϕ − α

∫
�

cn+1
i ϕ = −

∫
�

ψn+1
i ϕ +

∫
∂�w

n · ∇cn+1
i ϕ +

∫
∂�o

n · ∇cn+1
i ϕ, ∀ϕ (94)

where we have used integration by part, the divergence theorem and equation (88). Substitution of the expressions (82e)
and (82g) into the above equation leads to the weak form for cn+1

i ,∫
�

∇cn+1
i · ∇ϕ − α

∫
�

cn+1
i ϕ + γ0d0

�t

∫
∂�o

cn+1
i ϕ = −

∫
�

ψn+1
i ϕ +

∫
∂�w

gn+1
ci ϕ

+
∫

∂�o

(
d0

�t
ĉn

i + gn+1
ei

)
ϕ, 1 � i � N − 1, ∀ϕ. (95)

We re-write (83a) into

γ0

�t
ũn+1 + 1

ρ0
∇ Pn+1 = Gn+1 − μn+1

ρn+1 ∇ × ω∗,n+1 (96)

where the vorticity is ω = ∇ × u and

Gn+1 = 1

ρn+1

⎡
⎣fn+1 − J̃n+1 · ∇u∗,n+1 + ∇μn+1 · D(u∗,n+1) −

N−1∑
i, j=1

λi j

(
ψn+1

j − αcn+1
j

)
∇cn+1

i

⎤
⎦

− u∗,n+1 · ∇u∗,n+1 + ûn

�t
+

(
1

ρ0
− 1

ρn+1

)
∇ P∗,n+1

(97)

Let q(x) denote an arbitrary function with sufficient regularity and satisfying the condition

q(x) = 0, on ∂�o. (98)

Taking the L2 inner product between equation (96) and ∇q leads to

1

ρ0

∫
�

∇ Pn+1 · ∇q =
∫
�

Gn+1 · ∇q −
∫
�

μn+1

ρn+1 ∇ × ω∗,n+1 · ∇q − γ0

�t

∫
∂�i∪∂�w

n · wn+1q, ∀q (99)

where we have used integration by part, the divergence theorem and the condition (98). In light of the identity μ
ρ ∇ × ω ·

∇q = ∇ ·
(

μ
ρ ω × ∇q

)
− ∇

(
μ
ρ

)
× ω · ∇q, the above equation is transformed into the weak form about Pn+1

∫
�

∇ Pn+1 · ∇q =ρ0

∫
�

[
Gn+1 + ∇

(
μn+1

ρn+1

)
× ω∗,n+1

]
· ∇q

− ρ0

∫
∂�i∪∂�w∪∂�o

μn+1

ρn+1 n × ω∗,n+1 · ∇q − γ0ρ0

�t

∫
∂�i∪∂�w

n · wn+1q, ∀q.

(100)

Sum up equations (84a) and (83a) and we get

γ0

νm�t
un+1 − ∇2un+1 = 1

νm

(
Gn+1 − 1

ρ0
∇ Pn+1

)
− 1

νm

(
μn+1

ρn+1 − νm

)
∇ × ω∗,n+1. (101)

Let �(x) be an arbitrary scalar function with sufficient regularity and satisfying the condition

�(x) = 0, on ∂�i ∪ ∂�w . (102)

Taking the L2 inner product between �(x) and equation (101) leads to
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γ0

νm�t

∫
�

un+1� +
∫
�

∇� · ∇un+1 = 1

νm

∫
�

(
Gn+1 − 1

ρ0
∇ Pn+1

)
�

− 1

νm

∫
�

(
μn+1

ρn+1 − νm

)
∇ × ω∗,n+1� +

∫
∂�o

n · ∇un+1�, ∀�

(103)

where we have used integration by part, the divergence theorem and the condition (102). Noting the relation

∫
�

(
μ

ρ
− νm

)
∇ × ω� =

∫
�

(
μ

ρ
− νm

)
ω × ∇� −

∫
�

∇
(

μ

ρ

)
× ω� +

∫
∂�

(
μ

ρ
− νm

)
n × ω�

and in light of (84c), we can transform (103) into

γ0

νm�t

∫
�

un+1� +
∫
�

∇� · ∇un+1

= 1

νm

∫
�

(
Gn+1 − 1

ρ0
∇ Pn+1 + ∇

(
μn+1

ρn+1

)
× ω∗,n+1

)
�

− 1

νm

∫
�

(
μn+1

ρn+1 − νm

)
ω∗,n+1 × ∇� − 1

νm

∫
∂�o

(
μn+1

ρn+1 − νm

)
n × ω∗,n+1�

+
∫

∂�o

{
−n · (∇u∗,n+1)T +

(
1 − μn+1

μ0

)
n · D(u∗,n+1)

+ 1

μ0

[
Pn+1n + H(�cn+1)n + E(n,u∗,n+1,ρn+1) + fn+1

b − μ0(∇ · u∗,n+1)n
]}

�, ∀�

(104)

which is the weak form about un+1.
Let H1(�) denote the set of globally continuous square-integrable functions on � with square-integrable derivatives. 

Define⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H1
c0(�) = {

v ∈ H1(�) : v|∂�i = 0
}
,

H1
p0(�) = {

v ∈ H1(�) : v|∂�o = 0
}
,

H1
u0(�) = {

v ∈ H1(�) : v|∂�i∪∂�w = 0
}
.

(105)

We require that the equations (92) and (95) hold for all ϕ ∈ Hc0(�), and that equation (100) holds for all q ∈ H p0(�), and 
that equation (104) holds for all � ∈ Hu0(�).

To discretize these equations using C0 spectral elements, we first partition the domain � using a spectral element 
mesh. Let �h denote the discretized �, �h = ∪Nel

e=1�
e
h , where �e

h (1 � e � Nel) denotes the element e and Nel is the 
number of elements in the mesh. Let ∂�h , ∂�ih , ∂�wh and ∂�oh denote the discretized boundaries of different types, 
∂�h = ∂�ih ∪ ∂�wh ∪ ∂�oh . Let d (d = 2 or 3) denote the dimension in space, and �K (�e

h) denote the linear space of 
polynomials defined on �e

h whose degrees are characterized by K (K is referred to the element order hereafter). Define

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xh = { v ∈ H1(�h) : v|�e
h
∈ �K (�e

h), 1 � e � Nel },
Xu

h0 = { v ∈ Xh : v|∂�ih∪∂�wh = 0 },
X p

h0 = { v ∈ Xh : v|∂�oh = 0 },
Xc

h0 = { v ∈ Xh : v|∂�ih = 0 }.

(106)

In the following we use subscript in (·)h to represent the discretized version of (·). The fully discretized equations consists 
of the following:
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For ψn+1
ih : find ψn+1

ih ∈ Xh such that∫
�h

∇ψn+1
ih · ∇ϕh +

(
α + S

η2

)∫
�h

ψn+1
ih ϕh = −

∫
�h

Q ihϕh +
∫
�h

∇Rih · ∇ϕh

−
∫

∂�wh∪∂�oh

gn+1
bih ϕh +

(
α + S

η2

) ∫
∂�wh

gn+1
cih ϕh

+
(
α + S

η2

) ∫
∂�oh

(
−d0

∂cih

∂t

∣∣∣∣n+1

exp
+ gn+1

eih

)
ϕh, 1 � i � N − 1, ∀ϕh ∈ Xc

h0,

(107)

and

ψn+1
ih = αcn+1

bih +
N−1∑
j=1

ζi jh j(�cn+1
bh ) − gn+1

aih , 1 � i � N − 1, on ∂�ih. (108)

For cn+1
ih : find cn+1

ih ∈ Xh such that∫
�h

∇cn+1
ih · ∇ϕh − α

∫
�h

cn+1
ih ϕh + γ0d0

�t

∫
∂�oh

cn+1
ih ϕh = −

∫
�h

ψn+1
ih ϕh +

∫
∂�wh

gn+1
cih ϕh

+
∫

∂�oh

(
d0

�t
ĉn

ih + gn+1
eih

)
ϕh, 1 � i � N − 1, ∀ϕh ∈ Xc

h0, (109)

and

cn+1
ih = cn+1

bih , 1 � i � N − 1, on ∂�ih. (110)

For Pn+1
h : find Pn+1

h ∈ Xh such that

∫
�h

∇ Pn+1
h · ∇qh = ρ0

∫
�h

[
Gn+1

h + ∇
(

μn+1
h

ρn+1
h

)
× ω∗,n+1

h

]
· ∇qh

− ρ0

∫
∂�ih∪∂�wh∪∂�oh

μn+1
h

ρn+1
h

nh × ω∗,n+1
h · ∇qh − γ0ρ0

�t

∫
∂�ih∪∂�wh

nh · wn+1
h qh, ∀qh ∈ X p

h0,

(111)

and

Pn+1
h = μn+1

h nh · D(u∗,n+1
h ) · nh − H(�cn+1

h ) − nh · E(nh,u∗,n+1
h ,ρn+1

h ) − fn+1
bh · nh, on ∂�oh. (112)

For un+1
h : find un+1

h ∈ [Xh]d such that

γ0

νm�t

∫
�h

un+1
h �h +

∫
�h

∇�h · ∇un+1
h

= 1

νm

∫
�h

(
Gn+1

h − 1

ρ0
∇ Pn+1

h + ∇
(

μn+1
h

ρn+1
h

)
× ω∗,n+1

h

)
�h

− 1

νm

∫
�h

(
μn+1

h

ρn+1
h

− νm

)
ω∗,n+1

h × ∇�h − 1

νm

∫
∂�oh

(
μn+1

h

ρn+1
h

− νm

)
nh × ω∗,n+1

h �h

+
∫

∂�oh

{
−nh · (∇u∗,n+1

h )T +
(

1 − μn+1
h

μ0

)
nh · D(u∗,n+1

h )

+ 1

μ0

[
Pn+1

h nh + H(�cn+1
h )nh + E(nh,u∗,n+1

h ,ρn+1
h ) + fn+1

bh − μ0(∇ · u∗,n+1
h )nh

]}
�h,

∀� ∈ Xu ,

(113)
h h0
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Table 1
Normalization of flow variables and simulation parameters. L is a length scale, U0 is a velocity scale, and �d

is a density scale.

Variables/parameters Normalization constant Variables/parameters Normalization constant
x, η L t, �t L/U0

u, w U0 ρ, ρi , ρ̃i ,ρ0, ϕi �d

S, ci , cbi 1 gi U0/L

α, gai 1/L2 gbi 1/L3

gci , gei 1/L d0 1/U0

gr U 2
0/L f �dU 2

0/L

P , p, f b �dU 2
0 μ, μ̃i , μ0 �dU0 L

�μ, νm U0 L γ̃i , � 1/�d

λi j �dU 2
0 L2 σi j �dU 2

0 L

m0 U0 L3 ζi j 1/�d U 2
0 L2

and

un+1
h = wn+1

h , on ∂�ih ∪ ∂�wh. (114)

So the final solution procedure is as follows. Given (un
h, Pn

h, ψn
ih, cn

ih), we compute ψn+1
ih , cn+1

ih , Pn+1
h and un+1

h successively 
through these steps:

• Solve (107), together with the Dirichlet condition (108), for ψn+1
ih ;

• Solve (109), together with the Dirichlet condition (110), for cn+1
ih ;

• Solve (111), together with the Dirichlet condition (112), for Pn+1
h ;

• Solve (113), together with the Dirichlet condition (114), for un+1
h .

When implementing the Dirichlet condition (112), it should be noted that a projection of the computed pressure data onto 
H1(∂�oh) is needed with C0 elements because of the spatial derivatives involved in the D(u) term.

It can be noted that the final algorithm only requires the solution of a number of de-coupled individual Helmholtz-type 
equations (including Poisson) within a time step. The linear algebraic systems after discretization involve only constant 
and time-independent coefficient matrices for all flow variables, even though large density contrasts and large viscosity 
contrasts may be present with the different fluids. Therefore these coefficient matrices can be pre-computed, which makes 
the computation very efficient in cases with large density ratios and large viscosity ratios.

3. Representative numerical examples

In this section we provide extensive numerical results for several flow problems involving multiple fluid components 
and inflow/outflow boundaries in two dimensions to test the set of open/outflow boundary conditions and the numerical 
algorithm developed in the previous section. The results demonstrate that the proposed method can serves as an accurate 
and reliable tool for the investigation of multi-phase flow problems in unbounded domains. Note that all numerical simula-
tions presented here are performed by using the volume fractions ci (1 ≤ i ≤ N − 1) as the order parameters, as defined in 
(5).

To begin with, we briefly comment on the normalization of physical variables and parameters, which has been addressed 
in detail in the previous works [11,14,15]. Let L denote a length scale, U0 denote a velocity scale and �d denote a density 
scale. By consistently normalizing the physical variables and parameters based on the normalization constants given in 
Table 1, the resultant non-dimensionalized problem (governing equations, boundary/initial conditions) will retain the same 
form as its dimensional problem. Hereafter, all the flow variables and parameters have been appropriately normalized based 
on Table 1, unless otherwise specified.

3.1. Convergence rates

The goal of this subsection is to demonstrate numerically the spatial and temporal convergence rates of the method 
developed herein using a contrived analytic solution with the proposed N-phase energy-stable open boundary conditions.

Consider the computational domain � = ABC D := {(x, y)|0 ≤ x ≤ 2, −1 ≤ y ≤ 1} shown in Fig. 1(a) and a four-fluid 
(i.e., N = 4) mixture contained in this domain. We assume the following analytic expressions for the flow variables of this 
four-phase system,
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Fig. 1. Spatial/temporal convergence tests: (a) Problem configuration; (b) L2 errors of flow variables versus element order (fixed �t = 0.001 and t f = 0.1); 
(c) L2 errors of flow variables versus �t (fixed element order 16 and t f = 0.1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = A0 sin(ax) cos(π y) sin(ω0t) ,

v = −(A0a/π) cos(ax) sin(π y) sin(ω0t) ,

P = A0 sin(ax) sin(π y) cos(ω0t) ,

c1 = 1

6

[
1 + A1 cos(a1x) cos(b1 y) sin(ω1t)

]
,

c2 = 1

6

[
1 + A2 cos(a2x) cos(b2 y) sin(ω2t)

]
,

c3 = 1

6

[
1 + A3 cos(a3x) cos(b3 y) sin(ω3t)

]
,

c4 = 1 − c1 − c2 − c3,

(115)

where (u, v) are the two components of the velocity u. The above expressions satisfy the system of equations with appro-
priate choice of the source terms. The source term f in (79) is chosen such that the analytic expressions given in (115)
satisfy equation (79). We choose gi (i = 1, 2, 3) in equations (62) such that (115) satisfies each of the equations (62). The ini-
tial conditions (73a)–(73b) are imposed for the velocity and phase field functions, respectively, where uin and cin

i (i = 1, 2, 3)

are chosen by letting t = 0 at the contrived solution (115).
The flow domain � is discretized using two quadrilateral spectral elements of equal size (AE F D and E BC F ). On the 

sides AD, AB, BC , we impose Dirichlet boundary condition (72) for the velocity field, where the boundary velocity w
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Table 2
Simulation parameter values for the convergence-rate tests.

Parameter Value Parameter Value

a, a1, a2, a3 π b1, b2, b3 π
A0 2.0 A1, A2, A3 1.0
ω0, ω1 1.0 ω2 1.2
ω3 0.8 η, t f 0.1
ρ̃1 1.0 ρ̃2 3.0
ρ̃3 2.0 ρ̃4 4.0
μ̃1 0.01 μ̃2 0.02
μ̃3 0.03 μ̃4 0.04
σ12 6.236 × 10−3 σ13 7.265 × 10−3

σ14 3.727 × 10−3 σ23 8.165 × 10−3

σ24 5.270 × 10−3 σ34 6.455 × 10−3

α1, θ 1.0 α2 0
δ 0.05 d0 0.2
m0 1.0 × 10−5 μ0 max(μ̃1, · · · , μ̃4)

ρ0 min(ρ̃1, · · · , ρ̃4) νm
1
2

[
max{ μi

ρi
}4

i=1 + min{ μi
ρi

}4
i=1

]
J (temporal order) 2 Number of elements 2
�t (varied) Element order (varied)

is chosen according to the analytic expressions in (115). For the phase field functions, we impose the wall contact-angle 
conditions (76) and (77) on AD and BC , and impose the Dirichlet conditions (68) and (75) on AB . On the side DC we 
impose the open boundary conditions (80) with (θ, α1, α2) = (1, 1, 0) for the momentum equations, and (76) and (78)
for the phase field functions. The source terms gai, gbi, gci, gei, cbi, (i = 1, 2, 3) and f b therein are chosen such that the 
contrived solution in (115) satisfies the boundary conditions.

The numerical algorithm from Section 2.3–2.4 is employed to integrate in time the governing equations for this four-
phase system from t = 0 to t = t f . Then the numerical solution and the exact solution as given by (115) at t = t f are 
compared, and the errors in the L2 norm for various flow variables are computed. All the physical and numerical param-
eters involved in the simulation of this problem, including the values of constants Ai and ωi (i = 0, · · · , 3), a, ai and bi
(i = 1, 2, 3) in the contrived solution (115), are tabulated in Table 2.

Both spatial and temporal convergence tests have been performed to demonstrate the reliability of the proposed algo-
rithm. In the first test, we fix the integration time at t f = 0.1 and the time step size at �t = 0.001 (100 time steps), and 
vary the element order systematically between 2 and 20. The same element order has been used for these two spectral 
elements. Fig. 1(b) plots the numerical errors at t = t f in L2 norm for different flow variables as a function of the element 
order. It is evident that within a specific range of the element order (below around 12), the errors decrease exponentially 
when increasing element order, displaying an exponential convergence rate in space. Beyond the element order of about 12, 
the error curves level off as the element order further increases, showing a saturation caused by the temporal truncation 
error.

In the second test, we fix the integration time at t f = 0.1 and the element order at a large value 16, and vary the time 
step size systematically between �t = 1.953125 × 10−4 and �t = 0.025. Fig. 1(c) shows the numerical errors at t = t f in L2

norm for different variables as a function of �t in logarithmic scales. It can be observed that the numerical errors exhibit a 
second order convergence rate in time.

The above numerical results indicate that the numerical algorithm developed herein has a spatial exponential conver-
gence rate and a temporal second-order convergence rate for multi-phase problems with energy-stable open boundary 
conditions.

3.2. Capillary wave – comparison with Prosperetti’s physical solution

3.2.1. A three-phase capillary wave problem
In this subsection, we use a three-phase capillary wave problem as a benchmark to test the physical accuracy of the 

current method with energy-stable open boundary conditions.
The problem setting is as follows. We consider three immiscible incompressible fluids contained in an infinite domain 

(see Fig. 2(a) for an illustration). The upper portion of the domain is occupied by the lightest fluid (fluid #1), and the 
lower portion of the domain is occupied by the heaviest fluid (fluid #3), and the middle is occupied by fluid #2. The 
gravity is assumed to be in the downward direction. The interfaces formed between fluid #1 and fluid #2 (interface #1) 
and between fluid #2 and fluid #3 (interface #2) are perturbed from their horizontal equilibrium positions by a small 
amplitude sinusoidal wave form, and start to oscillate at t = 0. The objective here is to study the motion of the interfaces 
over time.

Although this is a three-phase problem, if the two interfaces are far part and the capillary-wave amplitudes are suffi-
ciently small compared with the distance between the interfaces and the dimension of the domain in the vertical direction, 
the interaction between the interfaces will be weak. The motion of each interface will therefore be essentially the same as 
that of the interface alone in a two-phase setting, i.e. with the third fluid absent. This allows us to compare qualitatively 
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Fig. 2. Three-phase capillary wave problem: (a) Computational domain and configuration. (b) Spectral element mesh of 800 quadrilateral elements.

and quantitatively the numerical results for the three-phase capillary-wave simulations with e.g. Prosperetti’s exact physical 
solution (see [33]) for two-phase capillary-wave problems. In [33] an exact time-dependent standing-wave solution to the 
two-phase capillary-wave problem was derived, given that the two fluids must have matched kinematic viscosities (but 
their densities and dynamic viscosities can be different).

In what follows, we will simulate the three-phase capillary-wave problem under the following settings: (i) the two 
interfaces are far apart; (ii) the capillary amplitudes are small compared with both the distance between the interfaces and 
the vertical dimension of the domain; and (iii) the kinematic viscosity ν satisfies ν = μ̃1

ρ̃1
= μ̃2

ρ̃2
= μ̃3

ρ̃3
.

Specifically, the simulation setting is illustrated in Fig. 2(a). We consider the computational domain � = {(x, y)|0 ≤ x ≤
1, −3 ≤ y ≤ 1}. The bottom side of the domain is a solid wall of neutral wettability, and the top side is open where the 
fluid can freely leave (or enter) the domain. On the left and right sides, all the variables are assumed to be periodic at x = 0
and x = 1. The equilibrium positions of the fluid interface #1 and interface #2 are assumed to coincide with y = 0 and 
y = −2, respectively. The initial perturbed profile of the fluid interface #1 and interface #2 are given by y = H0 cos(kw x)
and y = y1 + H0 cos(kw x), respectively, where y1 = −2, H0 = 0.01 is the initial amplitude, λw = 1 is the wavelength of the 
perturbation profiles, and kw = 2π/λw is the wave number. Note that the initial capillary amplitude H0 is small compared 
with the dimension of the domain in the vertical direction and the distance between the two fluid interfaces. Therefore, 
the effect of the wall at the domain bottom and the influence of the third fluid on the motion of the fluid interface will be 
small.

The computational domain is partitioned with 800 quadrilateral elements, with 10 and 80 elements respectively in x
and y directions (Fig. 2(b)). The elements are uniform in the x direction, and are non-uniform and clustered around the 
regions −0.012 ≤ y ≤ 0.012 and −2.012 ≤ y ≤ −1.988. In the simulations, the external body force f in equation (79) is 
set to f = ρgr , where gr is the gravitational acceleration, and the source terms in (62) are set to gi = 0 (i = 1, 2). On the 
bottom wall, the boundary condition (72) with w = 0 is imposed for the velocity, and the boundary conditions (76) and (77)
with gbi = gci = 0 (i = 1, 2) are imposed for the phase field functions. On the top domain boundary, the energy-stable open 
boundary condition (80) with f b = 0 and (θ, α1, α2) = (1, 0, 0) is imposed for the momentum equation, and the conditions 
(76) and (78) with gbi = gei = 0 (i = 1, 2) and d0 = 0 are imposed for the phase field functions. The initial velocity is set to 
zero, and the initial volume fractions are prescribed as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1 = 1

2

[
1 + tanh

y − H0 cos(kw x)√
2η

]
,

c2 = 1

2

[
tanh

y − y1 − H0 cos(kw x)√
2η

− tanh
y − H0 cos(kw x)√

2η

]
,

c3 = 1 − c1 − c2.

(116)

We list in Table 3 the values for the physical and numerical parameters involved in this problem.
Let us first focus on a matched density for the three fluids, i.e., ρ̃1 = ρ̃2 = ρ̃3 = 1, and study the effects of several pa-

rameters on the simulation results. We have performed extensive tests to ensure that our simulation results have converged 
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Table 3
Simulation parameter values for the three-phase capillary wave problem.

Parameter Value Parameter Value

H0 0.01 kw (wave number) 2π
σi j (1 ≤ i �= j ≤ 3) 1.0 |gr | (gravity) 1.0
ρ̃1 1.0 ρ̃2, ρ̃3 (varied)

μ̃1 0.01 μ̃2 μ̃1
ρ̃2
ρ̃1

μ̃3 μ̃1
ρ̃3
ρ̃1

ν = μ̃1
ρ̃1

= μ̃2
ρ̃2

= μ̃3
ρ̃3

(kinematic viscosity) 0.01

δ 0.05 μ0 max(μ̃1, μ̃2, μ̃3)

θ 1.0 α1, α2 0
d0 0 Element order 8
ρ0 min(ρ̃1, · · · , ρ̃3) νm 0.01
J (temporal order) 2 Number of elements 800

m0 (varied) η (varied)
�t (varied)

Fig. 3. Three-phase capillary wave problem (matched density ρ̃1 = ρ̃2 = ρ̃3 = 1). (a)–(b): Effect of spatial resolution (element order) on the capillary 
amplitude history. Simulation results are obtained with a fixed time step size �t = 10−4, interfacial thickness η = 0.01, mobility m0 = 10−5 and various 
element orders. (c)–(d): Effect of time step size on the capillary amplitude history. Simulation results are obtained with a fixed element order 8, interfacial 
thickness η = 0.005, mobility m0 = 10−5 and various time step sizes �t .

with respect to the spatial and temporal resolutions. Fig. 3(a)–(b) show a spatial resolution test. Here we compare the time 
histories of the capillary wave amplitudes of the interfaces #1 and #2 obtained with several element orders ranging from 6 
to 12 in the simulations. The history curves corresponding to different element orders overlap with one another, suggesting 
independence of the results with respect to the grid resolution. Fig. 3(c)–(d) show a temporal resolution test. We compare 
the capillary wave amplitude histories obtained using several time step sizes. The results obviously indicate the convergence 
with respect to �t .
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Fig. 4. Capillary wave problem (matched density ρ̃1 = ρ̃2 = ρ̃3 = 1). (a)–(b): Comparison of capillary amplitude histories corresponding to different mobility 
m0 values and Prosperetti’s exact solution [33]. Simulation results correspond to a time step size �t = 10−4, element order 8, and interfacial thickness 
η = 0.005. (c)–(d): Comparison of capillary amplitude histories corresponding to different interfacial thickness η values and Prosperetti’s exact solution. 
Simulation results correspond to a time step size �t = 10−4, element order 8, and mobility m0 = 5 × 10−7.

These resolution tests indicate that an element order 8 and a time step size �t = 10−4 will be sufficient for the spatial 
and temporal resolutions with current spectral element mesh. Therefore, the majority of subsequent simulations will be 
conducted using these parameter values.

The effect of the mobility coefficient m0 on the simulation results is shown by Fig. 4(a)–(b), in which we compare 
the time histories of the capillary wave amplitudes of the two interfaces obtained with a fixed interfacial thickness scale 
η = 0.005 and various mobility values ranging between m0 = 3 × 10−5 and m0 = 10−8. The exact physical solution given 
by [33] for this case is also included in the figure for comparison. It is observed that the computation becomes unstable if 
m0 is too large (larger than around m0 = 3 × 10−5). As m0 decreases from 3 × 10−5 to 10−8, we initially observe an effect 
on the amplitude and phase of the history signals obtained from the simulations. But as m0 becomes sufficiently small, the 
difference in the simulated capillary amplitude histories becomes very small, and the history curves converge to the exact 
solution by [33]. In fact, when m0 decreases below 10−6, the difference between the numerical results and the theoretic 
solution is negligible.

Fig. 4(c)–(d) show the effect of the interfacial thickness scale η on the simulation results. In this figure we compare 
time histories of the capillary amplitude obtained with the interfacial thickness scale parameter η ranging from 0.02 to 
0.003 with a fixed mobility m0 = 5 × 10−7. The exact physical solution is also included in the plots. Some influence on the 
amplitude and the phase of the history curves can be observed as η decreases from 0.02 to 0.01. As η decreases further to 
η = 0.0075 and below, on the other hand, the history curves essentially overlap with one another and little difference can 
be discerned among them, suggesting a convergence of the results with respect to η.

Let us next investigate the effect of density ratios on the motion of the fluid interfaces. In these tests we vary the 
densities and dynamic viscosities of the fluid #2 and fluid #3 (ρ̃2, ρ̃3 and μ̃2, μ̃3) systematically while the relation 
ν = μ̃1 = μ̃2 = μ̃3 is maintained as required by the theoretic solution in [33]. In Fig. 5, we show the time histo-
ρ̃1 ρ̃2 ρ̃3
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Fig. 5. Three-phase capillary wave (different density ratios): Comparison of time histories of the capillary wave amplitude between simulation and Pros-
peretti’s exact solution for densities (ρ̃1, ρ̃2, ρ̃3) = (1, 10, 10) ((a)–(b)), (1, 10, 100) ((c)–(d)), (1, 100, 100) ((e)–(f)), (1, 10, 1000) ((g)–(h)), and (1, 1, 1000)

((i)–(j)). The simulation results are obtained with a time step size �t = 10−4 for (a)–(f), �t = 2 × 10−5 for (g)–(j), an element order 8, interfacial thickness 
η = 0.003, and mobility m0 = 5 × 10−7.

ries of the capillary amplitudes corresponding to five density contrasts, (ρ̃1, ρ̃2, ρ̃3) equal (a)–(b): (1, 10, 10), (c)–(d): 
(1, 10, 100), (e)–(f): (1, 100, 100), (g)–(h): (1, 10, 1000), and (i)–(j): (1, 1, 1000), and compare them with the theoretic solu-
tions from [33]. The simulation results are obtained with an element order 8, interfacial thickness η = 0.003, and mobility 
m0 = 5 × 10−7. The time step size in the simulations is �t = 10−4 for the plots (a)–(f), and a smaller �t = 2 × 10−5 for 
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Fig. 5. (continued)

the cases involving ρ̃3 = 1000 (plots (g)–(j)) in order to ensure the stability of simulations. We observe that the density 
contrasts have a dramatic effect on the motions of the interfaces, and the dynamics of the two interfaces have become very 
different. Under the same density ratio, increase in the density values appears to cause the period of oscillation to increase 
and the attenuation of the oscillation amplitude to be more pronounced; see e.g. Figs. 5(c) and (d). Increase in the density 
ratio seems to have a similar effect with respect to the oscillation amplitude and period; compare e.g. Figs. 5(a) and (e). It 
can also be observed that the history curves from the simulations essentially overlap with those of the exact solutions for 
all the density contrasts and little difference can be perceived, indicating that our method has captured the dynamics of the 
fluid interfaces correctly.

The three-phase capillary wave problem and in particular the comparisons with Prosperetti’s exact solution for this 
problem demonstrate that the N-phase formulation with the proposed open boundary conditions and the numerical method 
developed herein (with N = 3) have produced physically accurate results for a wide range of density ratios (up to density 
ratio 1000 tested here).

3.2.2. Three-phase capillary wave with one absent fluid component
In this subsection we consider a modified three-phase capillary wave configuration, in which one fluid component is 

absent from the system. So this three-phase problem is physically equivalent to a two-phase capillary wave problem. Thanks 
to the reduction consistency property of our method, we expect that the three-phase numerical solution from our method 
will be the same as the two-phase numerical solution for the equivalent two-phase problem, and that both numerical 
solutions should match Prosperetti’s physical solution. In particular, we expect that the fluid component that is initially 
absent from the three-phase system should remain absent (or extremely small) in the numerical solution over time.

Specifically, we consider the flow domain shown in Fig. 6(a), 0 � x � 1 and −1 � y � 1, which is basically the top half 
of the domain considered in Section 3.2.1. The setting here is in accordance with that of Section 3.2.1. The bottom of the 
domain is a solid wall of neutral wettability. The top boundary is open. In the horizontal direction the domain and all 
physical variables are periodic. We consider three immiscible incompressible fluids in this domain, with the second fluid 
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Fig. 6. Three-phase capillary wave problem with one absent fluid component: (a) computational domain and configuration; (b) spectral element mesh of 
400 quadrilateral elements.

(fluid #2) however absent from the system at t = 0. The lighter fluid #1 occupies the top half and the heavier fluid #3 
occupies the bottom half of the domain. The interface formed between these two fluids is perturbed by a small-amplitude 
sinusoidal wave form at t = 0, and starts to evolve over time due to gravity and the surface tensions. The physical parameter 
values follow those of Section 3.2.1; see Table 3. The physical solution for this problem consists of the capillary wave motion 
of the interface between fluids #1 and #3, together with the identically zero volume-fraction field for fluid #2.

We have simulated this problem in two ways: (i) by treating this problem as a two-phase flow consisting of fluid #1 
and fluid #3 (N = 2 in algorithm); (ii) by treating this as a three-phase problem (N = 3 in algorithm), in which fluid #2 is 
absent at t = 0.

To simulate the problem, the domain is discretized using a spectral element mesh of 400 quadrilateral elements as 
shown in Fig. 6(b), which corresponds to half of the mesh from Section 3.2.1. The simulation configuration follows that of 
Section 3.2.1, but with one main difference in terms of the initial volume fraction distributions. We employ the following 
initial distributions when treating this as a three-phase problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c1 = 1

2

[
1 + tanh

y − H0 cos(kw x)√
2η

]
,

c2 = 0,

c3 = 1 − c1 − c2 = 1

2

[
1 − tanh

y − H0 cos(kw x)√
2η

]
.

(117)

The initial volume fractions when treating this as a two-phase problem are set accordingly based on the above field distri-
butions.

We have considered two cases: (i) ρ̃1 = ρ̃2 = ρ̃3 = 1; (ii) ρ̃1 = 1 and ρ̃2 = ρ̃3 = 5. Note that the kinematic viscosities of 
the three fluids are identical. In light of the convergence tests from Section 3.2.1, the simulation results in the following are 
obtained with an element order 8, η = 0.003, �t = 10−4, and m0 = 10−7.

We first compare the capillary motion obtained from the simulations with Prosperetti’s physical solutions [33]. Figs. 7(a) 
and (b) are comparisons of the time histories of the capillary wave amplitude obtained from the three-phase simulation with 
one absent fluid component, the two-phase simulation, and the exact physical solution of [33] for the cases (ρ̃1, ρ̃2, ρ̃3) =
(1, 1, 1) and (ρ̃1, ρ̃2, ρ̃3) = (1, 5, 5). The insets in these plots are magnified views of a section of the history curves. It can 
be observed that the three-phase curve and the two-phase curve overlap with each other, and the difference between these 
curves and the exact physical solution is very small. These results indicate that the three-phase simulation (with one absent 
fluid) produces the same result for the capillary wave dynamics as the two-phase simulation of the equivalent two-phase 
system, and both agree well with Prosperetti’s physical solution.

We next look into the errors of the volume fraction (c2) for the absent fluid (i.e. fluid #2) from the three-phase sim-
ulations. While c2 should be identically zero physically, the computed solution will nonetheless contain non-zero values 
because of the numerical errors. We expect this error to be small with our algorithm, because of the reduction consistency 
property of the method. In Figs. 8(a) and (b) we show the time histories of the maximum error, c2,max(t) = maxx∈� |c2(x, t)|, 
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Fig. 7. Comparison of time histories of the capillary wave amplitude between simulations (three-phase simulation with one absent fluid, and two-phase 
simulation) and Prosperetti’s exact solution for densities (a) (ρ̃1, ρ̃2, ρ̃3) = (1, 1, 1), (b) (ρ̃1, ρ̃2, ρ̃3) = (1, 5, 5). The insets are magnified views of a section 
of the curves.

Fig. 8. Time histories of volume-fraction errors of the absent fluid (fluid #2) for the three-phase capillary wave problem: (a) (ρ̃1, ρ̃2, ρ̃3) = (1, 1, 1), (b) 
(ρ̃1, ρ̃2, ρ̃3) = (1, 5, 5).

and the L2 average error, c2,ave(t) =
√

1
V�

∫
�

|c2(x, t)|2dx (V� denoting the volume of the domain �), for the two density 
cases (ρ̃1, ρ̃2, ρ̃3) = (1, 1, 1) and (ρ̃1, ρ̃2, ρ̃3) = (1, 5, 5). We observe that the maximum and average magnitudes of c2 from 
the simulations are on the order of magnitude 10−17, basically the machine zero. This demonstrates that the fluid #2, which 
is initially absent, remains absent over time from the numerical solutions with our method.

3.3. Interaction of two liquid jets in ambient water

In this subsection, we test the proposed open boundary conditions and the numerical method by considering the inter-
actions of two fluid jets in an infinite expanse of ambient water. The two jets consists of two different liquids. One of the 
jets is oil, and the other is a liquid referred to as “F1”. The F1 liquid is assumed to be lighter than water and immiscible with 
both oil and water. This test problem involves multiphase inflow/outflow boundaries. How to deal with such boundaries is 
critical to the successful simulation of this problem.

Specifically, we consider a rectangular flow domain � = {(x, y)| − 0.5L ≤ x ≤ 0.5L, 0 ≤ y ≤ 1.5L} where L = 6cm, as 
shown in Fig. 9. The bottom side of the domain (y = 0) is a solid wall of neutral wettability. The other three sides of the 
domain are all open where the fluids can enter or leave the domain freely. The domain initially contains water inside. The 
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Fig. 9. Configuration of the interaction of F1-oil jets in water.

Table 4
Physical property values of fluids F1, water and oil.

Density [kg/m3]: F1 – 600 water – 998.2071 oil – 400 or 100
Dynamic viscosity [kg/(m · s)]: F1 – 2 × 10−2 water – 1.002 × 10−3 oil – 9.15 × 10−2

Surface tension [kg/s2]: F1/water – 4.5 × 10−2 F1/oil – 4.8 × 10−2 oil/water – 4.4 × 10−2

Gravity [m/s2]: 9.8

bottom wall has two orifices, each having a diameter 0.2L. The centers of two orifices are located at (x1, y1) = (−0.2L, 0)

and (x2, y2) = (0.2L, 0), respectively. A jet of a certain fluid labeled by F1 enters the domain through the left orifice, and 
a jet of oil is introduced into the domain through the right orifice. The gravity gr is assumed to point downward (−y
direction). The configuration of this problem models the motion of the F1 jet and the oil jet in an infinite expanse of water. 
The two jets rise through the water due to buoyancy, interact with each other, and move out of the domain through the 
open boundaries. The goal here is to investigate the long-time behavior of this three-phase system.

The physical properties (including the densities, viscosities, pair-wise surface tensions) of F1, water, and oil employed in 
this problem, as well as the gravitational acceleration, are listed in Table 4. We choose L = 6 cm as the length scale, the 
density of F1 as the density scale �d , and the centerline velocity at the orifices as the velocity scale U0. Then the prob-
lem is non-dimensionalized based on Table 1. In what follows, all physical and numerical parameters have been properly 
normalized.

In the numerical experiments, we specify F1, water and oil as the first, second, and the third fluids, with the normalized 
densities ρ̃1, ρ̃2, and ρ̃3, respectively. We discretize the computational domain with a mesh of 600 quadrilateral elements 
of uniform size, with 20 elements in the x direction and 30 elements in the y direction. The element order is 6 for all 
the elements. The time step size is chosen as �t = 2 × 10−5 and all the simulation results afterwards are obtained with 
interfacial thickness η = 0.01, and mobility m0 = 10−8. To balance the gravity of the water, in the simulations we also apply 
an external pressure gradient pointing upward (y direction) in the whole domain with a magnitude ρw |gr |, where ρw is the 
density of water. As a result, the region occupied by water has no net external body force exerted on it. The external body 
force f in equation (79) is set to f = ρgr − ρ̃2 gr , where ρ̃2 and gr are the normalized density of water and gravitational 
acceleration, respectively. The source term in (62) are set to gi = 0 (i = 1, 2). On the bottom wall (excluding the fluid inlets), 
we impose the Dirichlet boundary condition (72) for the velocity with w = 0 and the boundary conditions (76) and (77)
with gbi = gci = 0 (i = 1, 2) for the phase field variables. At the F1 and oil inlets, we assume a parabolic profile for the 
velocity, i.e. w = (0, w y) in (72) with

w y = U0

[
1 −

( x − x1

R

)2
]

, x ∈ (x1 − R, x1 + R); w y = U0

[
1 −

( x − x2

R

)2
]

, x ∈ (x2 − R, x2 + R), (118)

where R = 0.1L is the radius of the orifice and U0 = 24.49cm/s is the centerline velocity at the orifices. For the phase field 
functions we impose the following distributions at the two fluid inlets,

c1 = 1, c2 = 0, x ∈ (x1 − R, x1 + R); c1 = 0, c2 = 0, x ∈ (x2 − R, x2 + R). (119)

This distribution means that only the F1 fluid is present at the left inlet, and only the oil is present at the right inlet. On the 
other three sides, we impose the open boundary conditions (80), (76) and (78), respectively for the velocity and the phase 
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Table 5
Simulation parameter values for the interaction of two liquid jets in ambient water.

Parameter Value Parameter Value
x1 −0.2 x2 0.2
R 0.1 d0 0.5
α1, θ 1 α2 0
δ 0.01 μ0 max(μ̃1, μ̃2, μ̃3)

ρ0 min(ρ̃1, · · · , ρ̃3) νm 1.56 × 10−2

m0 1 × 10−8 η 0.01
J (temporal order) 2 Number of elements 600
�t 2 × 10−5 Element order 6

Fig. 10. Time histories of the maximum and average velocity magnitudes for the case (ρ̃1, ρ̃2, ρ̃3) = (1, 1.664, 0.667), showing that the flow has reached a 
statistically stationary state.

field functions, where f b = 0, gbi = gei = 0, (i = 1, 2), and (θ, α1, α2) = (1, 1, 0). In (80), the d0 value is determined by the 
following procedure. We first perform a preliminary simulation using d0 = 0, and then estimate a convection velocity scale 
at the outlet boundary. The d0 is then set as the inverse of this convection velocity scale. For the current problem, d0 is set 
to 0.5 based on this procedure.

The initial velocity is set to zero, and the initial volume fractions are set as follows:⎧⎪⎨
⎪⎩

c1 = [
H(x − x1 + R) − H(x − x1 − R)

][
H(y) − H(y − 2R)

]
,

c2 = 1 − c1 − c3,

c3 = [
H(x − x2 + R) − H(x − x2 − R)

][
H(y) − H(y − 2R)

]
,

(120)

where H(x) is the Heaviside step function, taking the unit value if x � 0 and vanishing otherwise. It should be noted that 
these initial distributions for the phase field functions and the velocity have no effect on the long-term behavior of the 
system. Any transient influence will be convected out of the domain eventually. The values for the simulation parameters in 
this problem are collected in Table 5.

We have considered two cases, corresponding to two different density values for the oil: 400 kg/m3 in the first case, 
and 100 kg/m3 in the second case.

Let us first consider the case with an oil density 400 kg/m3. The normalized densities for F1, water and oil are 
(ρ̃1, ρ̃2, ρ̃3) = (1, 1.664, 0.667) for this case. We have performed a long-time simulation of the problem so that the flow 
has reached a statistically stationary state. We have monitored the following maximum magnitudes Umax, V max and average 
magnitudes (Uave, V ave) of the x and y components of velocity at each time step:

Umax(t) = maxx∈�|u(x, t)|, V max(t) = maxx∈�|v(x, t)|;

Uave(t) =
( 1

V�

∫
�

|u|2d�
) 1

2
, V ave(t) =

( 1

V�

∫
�

|v|2d�
) 1

2
,

(121)

where V� = ∫
�

d� is the volume of the domain. Fig. 10 shows a temporal window of the time histories of these velocity 
magnitudes. It can be observed that while these physical quantities fluctuate over time, their fluctuations are all around 
some constant mean values, indicating that the flow has reached a statistically stationary state.

We look into the dynamical characteristics of the fluid F1 and oil jets in water. Fig. 11 shows a temporal sequence of 
snapshots of the fluid interfaces, visualized by contours of the volume fractions ci = 1/2 (i = 1, 2, 3) for the three fluids. 
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Fig. 11. Temporal sequence of snapshots of fluid interfaces, visualized by the volume-fraction contours ci = 1/2 (i = 1, 2, 3), showing the interaction of two 
liquid jets of F1 and oil in water, with the normalized densities (ρ̃1, ρ̃2, ρ̃3) = (1, 1.664, 0.667). The jet inlets are centered at x = −0.2, 0.2, respectively 
with radius 0.1.

First we observe that at the bottom wall the F1 fluid and the oil coming out of the orifices spread on the wall and fill up 
the space in between. As a result, the two fluids touch each other on the bottom wall and form a compound oil-F1 jet. 
Note that the base of the compound oil-F1 jet is broader than the combined size of the two orifices. The compound jet 
exhibits distinct characteristics in different regions. In the region near the orifices (y/L � 0.5 in this case), the compound 
jet maintains a relatively stable configuration. The jet tapers off along the vertical direction in this region, due to the 
velocity increase caused by the buoyancy. This is reminiscent of the behavior of a single oil jet in ambient water studied 
in [12]. Beyond this stable region, the compound jet exhibits a wavy pattern in its profile. The jet diameter modulates 
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Fig. 12. Temporal sequence of snapshots of velocity distributions of two liquid jets in water with normalized densities (ρ̃1, ρ̃2, ρ̃3) = (1, 1.664, 0.667). 
Velocity vectors are plotted on every eighth quadrature points in each direction within each element.

along the vertical direction, and bulges form around the jet continually and periodically (Figs. 11(a)–(b), (f)–(h)) due to a 
Plateau–Rayleigh instability [32,35]. Further downstream, the dynamics of the jet becomes very complicated. The compound 
jet and the bulges along its profile appear to fold back in certain regions at times, causing very large deformations of the 
jet; see e.g. Figs. 11(e)–(g) and (j)–(l). We observe that the regions occupied by the F1 fluid and by the oil in the compound 
jet are not symmetric. It can also be observed that our method allows the compound oil-F1 jet and the fluid interfaces to 
exit the domain through the open boundary in a fairly natural fashion; see e.g. Figs. 11(a)–(d) and (h)–(k).

Fig. 12 shows a temporal sequence of snapshots of the velocity fields of this flow, taken at identical time instants as 
those of the volume-fraction plots of Fig. 11. Several characteristics are evident from these plots. First, the velocity patterns 
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Fig. 13. Two liquid jets in water: time histories of the maximum and average velocity magnitudes with normalized densities (ρ̃1, ρ̃2, ρ̃3) =
(1, 1.664, 0.1664), showing that the flow has reached a statistically stationary state.

clearly indicate that the streams of the F1 fluid and the oil bend toward each other after exiting the orifices, and merge to 
form a flow stream of the compound jet. The velocity in the region between the two orifices near the wall is very weak. 
Note that this region is occupied by the F1 and the oil. Second, the region occupied by the compound jet stream, as shown 
by the velocity patterns, is wider than the actual region the material oil/F1 occupy (see Fig. 11), especially in the regions 
more downstream and near the upper open boundary. This suggests that the water in the vicinity of compound F1-oil jet 
has been accelerated to form a wider high-speed region. Third, the jet stream exhibits a lateral spread along the streamwise 
direction, as can be observed from the velocity patterns, and pairs of vortices can be observed to form along the jet profile. 
These vortices reside behind the F1-oil bulges, form periodically as new bulges emerge, and travel downstream along with 
the bulges. Finally, we note that on the side boundaries the velocity generally points into the domain, indicating that the 
water has in general been sucked into the domain from both sides. The velocity patterns of Fig. 12 indicate that the method 
developed herein allows the flow to pass through the open/outflow boundaries in a smooth and natural way.

Let us next consider the second case, with an oil density 100 kg/m3. The normalized densities for F1, water and oil are 
(ρ̃1, ρ̃2, ρ̃3) = (1, 1.664, 0.1664). All the other physical parameters are the same as in the first case. Long-time simulations 
have been performed for this case, and Fig. 13 shows time histories of the maximum and average velocity magnitudes 
defined in (121), indicating that the flow has reached a statistically stationary state. Figs. 14 and 15 are the temporal 
sequence of snapshots of the fluid interfaces and the velocity fields corresponding to this case. The general characteristics 
of the dynamics of jets and the velocity distributions are similar to those of the first case. But some marked differences 
can be noticed. The compound oil-F1 jet becomes notably more unstable because of the stronger buoyancy force in the oil 
region. We observe a smaller region (y/L � 0.3) with a relatively stable jet profile near the base of the jet. Downstream of 
this region, the deformation of the jet profiles is much more pronounced than in the first case, and droplets of the oil and 
F1 fluid are observed to break off from the compound jet. The velocity field in the region occupied by the compound oil-F1
jet appear stronger and more violent compared with that of the first case. Vortices and backflows can also be observed 
at the upper or side boundaries at times; see Fig. 15(a)–(d). The results indicate that with the proposed method the fluid 
interfaces and the flow structures appear to be able to pass through the open/outflow boundaries smoothly and seamlessly.

4. Concluding remarks

We have developed a set of effective outflow/open boundary conditions (and also inflow boundary conditions) for sim-
ulating multiphase flows consisting of N (N � 2) immiscible incompressible fluids in domains involving outflow and inflow 
boundaries. These boundary conditions are designed to satisfy two properties: energy stability and reduction consistency. 
The proposed boundary conditions ensure that, at the continuum level, their contributions to the N-phase energy balance 
will not cause the total system energy to increase over time, regardless of the flow state at the outflow/open boundary. In 
other words, this property holds even in situations where strong vortices or backflows occur at the outflow/open boundary. 
This is the reason why the proposed boundary conditions are effective in overcoming the backflow instability in N-phase 
flow problems. The reduction consistency of the boundary conditions is a physical consistency requirement for N-phase 
formulations [15]. This property means that the boundary conditions honor the inherent equivalence relations between 
N-phase systems and the resultant smaller multiphase systems when some fluid components were absent from the N-phase 
system.

We have also presented an efficient numerical algorithm for the proposed outflow/inflow boundary conditions together 
with the N-phase governing equations. The main issue lies in the numerical treatments of the inertia term in the open 
boundary conditions for the phase field equations and the variable viscosity in the open boundary condition for the mo-
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Fig. 14. Temporal sequence of snapshots of fluid interfaces, visualized by the volume-fraction contours ci = 1/2 (i = 1, 2, 3), showing the interaction of two 
liquid jets in water, with the normalized densities (ρ̃1, ρ̃2, ρ̃3) = (1, 1.664, 0.167).

mentum equation. With appropriate reformulations and treatments of such terms in our algorithm, the computations for 
different flow variables and the computations for different phase field variables have been completely de-coupled. The pro-
posed algorithm involves only the solution of a number of Helmholtz-type equations within each time step. The linear 
algebraic systems resulting from discretizations involve only constant and time-independent coefficient matrices, which can 
be pre-computed, even though large density contrasts and large viscosity contrasts may be present in the N-phase system. 
These characteristics make the algorithm computationally very efficient and attractive.

We have tested the proposed method with extensive numerical experiments for several problems involving multiple fluid 
components and in domains with outflow and inflow boundaries. In particular, we have compared in detail our simulation 
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Fig. 15. Temporal sequence of snapshots of velocity distributions of two liquid jets in water problem, with normalized densities (ρ̃1, ρ̃2, ρ̃3) =
(1, 1.664, 0.167). Velocity vectors are plotted on every eighth quadrature points in each direction within each element.

results for the three-phase capillary wave problem with Prosperetti’s exact physical solution [33] under various physical and 
simulation parameters. These comparisons demonstrate that the proposed method produces physically accurate results.

Multiphase flows involving inflow/outflow boundaries are an important class of problems, which have widespread appli-
cations in oil/gas industries, carbon sequestration, microfluidics and optofluidics [22,34,3]. These problems are also critical 
to the study of long-time behaviors and statistical features of multiphase flows. The key technique for simulating multi-
phase inflow/outflow problems lies in how to deal with the multiphase outflow/open boundaries. The method developed in 
the current work provides an effective and powerful tool for simulating this class of problems. We anticipate that it will 
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be useful and instrumental in the investigation of long-time statistics of multiphase problems and in the development a 
number of related areas.

While the outflow/open boundary conditions proposed here ensure the energy stability of the N-phase system at the 
continuum level, this property is not guaranteed by the numerical algorithm presented here at the discrete level. The 
current algorithm is only conditionally stable, and requires sufficient spatial resolution and small enough time step size 
to achieve stable and accurate simulations. An interesting question is how to devise an algorithm for these outflow/open 
boundary conditions together with the N-phase governing equations to guarantee the energy stability at the discrete level. 
This problem seems to be highly non-trivial. It would be an interesting problem to contemplate for future research.
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