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We present a reduction-consistent and thermodynamically consistent formulation and an 
associated numerical algorithm for simulating the dynamics of an isothermal mixture 
consisting of N (N � 2) immiscible incompressible fluids with different physical properties 
(densities, viscosities, and pair-wise surface tensions). By reduction consistency we refer to 
the property that if only a set of M (1 � M � N − 1) fluids are present in the system 
then the N-phase governing equations and boundary conditions will exactly reduce to 
those for the corresponding M-phase system. By thermodynamic consistency we refer 
to the property that the formulation honors the thermodynamic principles. Our N-phase 
formulation is developed based on a more general method that allows for the systematic 
construction of reduction-consistent formulations, and the method suggests the existence 
of many possible forms of reduction-consistent and thermodynamically consistent N-phase 
formulations. Extensive numerical experiments have been presented for flow problems 
involving multiple fluid components and large density ratios and large viscosity ratios, and 
the simulation results are compared with the physical theories or the available physical 
solutions. The comparisons demonstrate that our method produces physically accurate 
results for this class of problems.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

This paper concerns the formulation and simulation of isothermal multiphase flows consisting of N (N � 2) immiscible 
incompressible fluids with possibly very different physical properties (e.g. densities, dynamic viscosities, and pair-wise sur-
face tensions). Following our previous works [14,17,18] and with a slight abuse of notation, we will refer to such problems 
as N-phase flows, where N denotes the number of different fluid components in the system, not necessarily the number 
of material phases. Our primary concern is the reduction consistency and thermodynamic consistency in the formulation 
of such problems. By thermodynamic consistency we refer to the property that the formulation should honor the thermo-
dynamic principles (e.g. mass conservation, momentum conservation, second law of thermodynamics, Galilean invariance). 
Reduction consistency is rooted in the following simple observation about N-phase systems:
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• Given an N-phase system, if some fluid components are absent from the system such that only M (1 � M � N − 1) 
fluids are present, then this N-phase system is equivalent to the smaller M-phase system consisting of the fluids that 
are present.

We insist that the mathematical formulation for the N-phase system should correspondingly satisfy the same property, 
namely,

(C0): If only M (1 � M � N − 1) fluids are present in the N-phase system (while the other fluids are absent), then the 
N-phase formulation should reduce to the corresponding M-phase formulation.

We refer to this property as the reduction consistency.
The overall approach taken in this work falls into the phase field (or diffuse interface) framework, and we are primarily 

interested in the simulation of N-phase systems with three or more fluid components (i.e. N � 3). For two-phase flows 
we refer to several comprehensive reviews (see e.g. [2,36,39,35,38,43] and the references therein) of this and related ap-
proaches. Multiphase problems involving three or more fluid components have attracted a growing interest, and a number 
of researchers have contributed to the advance of this field; see e.g. [32,6,29,7,30,27,14,5,17,10,34,46,3,31,44], among others. 
Among the past studies, a handful of phase field models (e.g. [32,27,14]) have been developed that take into account the 
conservation laws and the constitutive relations dictated by thermodynamic principles. Reduction consistency issues are 
investigated for a three-phase and a multi-phase Cahn–Hilliard model (without hydrodynamic interactions) [6,8], and these 
studies have signified the importance in the form of the free energy density function. Other types of phase field models 
also exist in the literature. For example, in [34,31] a set of Cahn–Hilliard or Allen–Cahn type equations are combined with 
a modified Navier–Stokes equation to model the multiphase system, and a continuous surface force model [29] is used to 
account for the surface tension effect. A more effective reduction in the spurious phase formation is observed in [34] with 
a set of modified Lagrange multipliers. While the current work focuses on the hydrodynamic interactions of multiple fluids, 
certain consistency issues encountered here can be analogous to those facing the materials community for multi-component 
materials (see e.g. [41,23,4,42]).

In a previous work [14] we have proposed a general phase field model for formulating an isothermal system of N (N � 2) 
immiscible incompressible fluids. The model is derived based on and honors the mass conservation of the N individual fluid 
components, the momentum conservation, the second law of thermodynamics, and the Galilean invariance principle. In such 
a sense it is a thermodynamically consistent model. This model is formulated based on a volume-averaged mixture velocity, 
which can be rigorously shown to be divergence free [14]. It is fundamentally different from those of [32,27], which are 
based on a mass-averaged velocity (not divergence free). This N-phase model is generalized in [17], and a class of general 
order parameters has been introduced to formulate the N-phase system.

While the model of [14,17] is thermodynamically consistent, it nonetheless falls short with respect to the reduction 
consistency. Motivated by this inadequacy and inspired by the discussions of consistency issues in [8], we have very recently 
in [18] combined a modified thermodynamically consistent N-phase model and the reduction-consistency considerations, 
and developed a method for simulating wall-bounded N-phase flows and N-phase contact angles. We have specifically 
considered the following set of reduction-consistency conditions on the N-phase formulation [18]:

If only a set of M (1 � M � N − 1) fluids are present in the N-phase system, then

(C1): the N-phase free energy density function should reduce to the corresponding M-phase free energy density function;
(C2): the set of N-phase governing equations should reduce to that for the corresponding M-phase system, together with a set of 

identities corresponding to the absent fluids;
(C3): the set of boundary conditions for the N-phase system should reduce to that for the corresponding M-phase system, together 

with a set of identities corresponding to the absent fluids.

Note that the consistency conditions (C2) and (C3) are imposed for both the momentum equations and the phase field 
equations.

By assuming a constant mobility matrix in the formulation, we have explored in [18] the implications of the above 
consistency conditions on the N-phase governing equations and boundary conditions. It is found that to satisfy the 
reduction-consistency conditions the mobility matrix should take a particular form (specific form given in [18]) and that 
the “multi-well” potential free energy density function needs to satisfy a set of properties as given in [18]. The reduction-
consistency problem is thus boiled down to the following:

• Given an arbitrary set of pairwise surface tension values, how does one construct the multi-well potential free energy 
density function to satisfy the properties given in [18]?

If one could construct such a multiwell potential energy density function, a fully reduction-consistent N-phase formulation 
could be obtained. This construction problem is unfortunately highly non-trivial and challenging, and it so far remains an 
open question. It is noted that in [8] the consistency of a Cahn–Hilliard model (no hydrodynamic interactions) is studied 
under a set of weaker consistency conditions. The resultant property on the potential energy density function from [8]
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is weaker (it is a subset of the required properties), and does not ensure the reduction consistency of the momentum 
equations. Due to the lack of an appropriate potential free energy density function to ensure full reduction consistency, in 
[18] a particular potential free energy density form has been adopted to arrive at a specific N-phase formulation, which 
ensures only a partial reduction consistency of the governing equations (between N phases and two phases only). In [18]
we have also developed a set of reduction-consistent N-phase contact-angle boundary conditions based on the consistency 
property (C3).

Recognizing the enormous challenge with the approach of [18] to fulfill the reduction consistency, we present in this 
paper a different approach to achieve full reduction consistency and thermodynamic consistency for the N-phase formula-
tions. The key distinction lies in dropping the assumption that the mobility matrix be constant. This allows us to devise 
the mobility matrix and the free energy density function individually in an untangled fashion, which can satisfy certain 
appropriate reduction properties separately. Full reduction consistency for the set of N-phase governing equations can then 
be guaranteed based on these individual reduction properties.

More specifically, we present developments in the following aspects in this work:

• We present a thermodynamically consistent phase field model, which is different from those of [14,18], for the hydro-
dynamic interactions of the N-fluid mixture. The development process of this model mirrors that of [14], but it leads 
to a different model due to a different representation of the mass balances of individual fluid components and different 
constitutive relations to satisfy the second law of thermodynamics. This model serves as the starting point for reduction 
consistency considerations in this work, and it is critical to the success in achieving full reduction consistency in the 
N-phase formulation.

• We introduce the concepts of reduction compatibility and reduction consistency for a set of variables, functions, and 
equations, and look into some useful properties of reduction-consistent and reduction-compatible functions/variables.

• We provide a method (Theorem 2.1) that guarantees the reduction consistency of the set of N-phase governing equa-
tions from the aforementioned phase field model. The method consists of a set of sufficient conditions with regard 
to the reduction consistency and reduction compatibility of the mobility matrix and terms involving the free energy 
density function. The method is quite general, and suggests many ways to construct reduction-consistent and thermo-
dynamically consistent N-phase formulations.

• We suggest a specific form for the mobility matrix and the free energy density function that satisfy the reduction prop-
erties dictated by the method. This leads to a specific reduction-consistent and thermodynamically consistent N-phase 
formulation.

• We present a numerical algorithm for solving the governing equations of this N-phase formulation, together with a set 
of reduction-consistent boundary conditions. In particular, we look into how to algorithmically deal with the variable 
mobility matrix involved therein.

The novelties of this paper lie in several aspects: (i) the method (Theorem 2.1) to systematically construct reduction-
consistent N-phase governing equations; (ii) the specific reduction-consistent and thermodynamically consistent N-phase 
formulation; and (iii) the numerical algorithm for solving the set of reduction-consistent and thermodynamically consistent 
N-phase phase field equations with a variable mobility matrix. To the best of the author’s knowledge, the N-phase formula-
tion presented herein is the first fully reduction-consistent and thermodynamically consistent mathematical formulation for 
the hydrodynamic interactions of incompressible N-phase flows.

The rest of this paper is structured as follows. In Section 2 we introduce the ideas of reduction compatibility and reduc-
tion consistency for a set of functions and equations, and present a method that allows for the systematic construction of 
reduction-consistent N-phase governing equations. We also present a specific reduction-consistent and thermodynamically 
consistent N-phase formulation based on this method. In Section 3 we present an efficient numerical algorithm for solving 
the N-phase phase field equations with a variable mobility matrix. This, together with the algorithm for the N-phase mo-
mentum equations summarized in Appendix E, provides an effective method for simulating incompressible N-phase flows 
with the reduction-consistent and thermodynamically consistent formulation. In Section 4 we provide extensive numerical 
experiments to test the method developed herein, and the simulation results are compared with physical theories and exact 
physical solutions for problems involving multiple fluid components and large contrasts in densities and viscosities. Section 5
then concludes the paper with some closing remarks. In Appendix A we outline the development of the thermodynamically 
consistent phase field model for an isothermal mixture of N (N � 2) immiscible incompressible fluids, on which the current 
work is based. We summarize the key steps in the derivation of the model based on the mass conservation, momentum 
conservation, and the second law of thermodynamics. In Appendix B we provide proofs for several useful properties about 
reduction-consistent and reduction compatible functions listed in Section 2. Appendix C and Appendix D provide proofs for 
the Theorems 2.1 and 2.2 given in the main body of the text. Appendix E summarizes a numerical algorithm for solving the 
N-phase momentum equations.

2. Reduction-consistent and thermodynamically consistent N-phase formulation

Consider an isothermal mixture of N (N � 2) immiscible incompressible fluids contained in some flow domain. In this 
section we present a reduction-consistent and thermodynamically-consistent formulation for this system. The formulation 
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is developed based on a thermodynamically consistent phase field model for the N-fluid mixture. In the Appendix A we 
have outlined the derivation of this N-phase model based on the mass conservation, momentum conservation, and the 
second law of thermodynamics. The development process for this model mirrors that for the model of [14]. However, owing 
to a different way to represent the mass balances and to specify the constitutive relations to ensure the second law of 
thermodynamics, here we arrive at a model that is different from those of [14,18]. In this model the dynamics of the 
N-phase mixture is described by the equations (86a)–(86c) in Appendix A. For the sake of readability we re-state these 
equations here:

ρ(�c)
(

∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · [μ(�c)D(u)

]−
N∑

i=1

∇ ·
[
∇ci ⊗ ∂W

∂(∇ci)

]
, (1a)

∇ · u = 0, (1b)

∂ci

∂t
+ u · ∇ci =

N∑
j=1

∇ ·
[

mij(�c)∇
(

∂W

∂c j
− ∇ · ∂W

∂∇c j

)]
, 1 � i � N, (1c)

where u is the volume-averaged mixture velocity (see Appendix A), p is the pressure, and ci (1 � i � N) is the volume 
fraction of fluid i within the mixture, and �c = (c1, c2, . . . , cN). The free energy density function W (�c, ∇�c) must satisfy the 
condition (79), and the coefficients mij(�c) (1 � i, j � N) are required to satisfy the condition (83) and the matrix formed by 
them is required to be symmetric positive semi-definite. The mixture density ρ(�c) and mixture dynamic viscosity μ(�c) are 
given by (87) and (89), respectively. J̃ is given by (88).

This model honors the mass conservation of the N individual fluid components, the momentum conservation and the 
second law of thermodynamics, and it is Galilean invariant. Therefore it is said to be thermodynamically consistent. This 
model admits the following energy law (see Appendix A), assuming all flux terms vanish on the domain boundary,

∂

∂t

∫
�

[
1

2
ρ(�c)|u|2 + W (�c,∇�c)

]
= −

∫
�

1

2
μ(�c)‖D(u)‖2

−
∫
�

N∑
i, j=1

mij(�c)∇
(

∂W

∂ci
− ∇ · ∂W

∂∇ci

)
· ∇

(
∂W

∂c j
− ∇ · ∂W

∂∇c j

)
. (2)

We refer the reader to the Appendix A for the details in the derivation of this model based on thermodynamic princi-
ples. This model serves as the starting point, and in subsequent developments we concentrate on how to fulfill reduction 
consistency with this model.

Given a mixture of N (N � 2) immiscible incompressible fluids, let ρ̃i (1 � i � N) and μ̃i (1 � i � N) denote the constant 
density and constant dynamic viscosity of pure fluid i (before mixing), respectively. Let σi j (1 � i �= j � N) denote the 
constant surface tension associated with the interface formed between fluid i and fluid j, satisfying the following property⎧⎪⎨

⎪⎩
σi j = σ ji, 1 � i, j � N,

σi j > 0, 1 � i < j � N,

σii = 0, 1 � i � N.

(3)

Let ρi(x, t) (1 � i � N) denote the density of fluid i within the mixture. Note that the variables ρi(x, t), ci(x, t) are field 
functions of space x and time t . These and other related variables are defined in more detail in the Appendix A.

2.1. Reduction compatibility and reduction consistency

As mentioned in the Introduction section, certain equivalence relations exist between an N-phase system and smaller 
M-phase systems (1 � M � N − 1). If some fluid components are absent, then the N-phase system is physically equivalent 
to a smaller multiphase system consisting of the fluids that are present. We next explore these equivalence relations and 
introduce the concepts of reduction consistency and reduction compatibility for a set of variables/functions and equations. 
This provides the basis for the study of reduction consistency of N-phase governing equations.

To make the idea more concrete, let us first consider the case in which one fluid component is absent from the N-phase 
system. Suppose the k-th fluid (1 � k � N) is absent from the N-phase system, i.e. the system is characterized by

c(N)

k ≡ 0, ρ
(N)

k ≡ 0 for some 1 � k � N, (4)

where the superscript in (·)(N) accentuates the point that the variable is with respect to the N-phase system. We will use 
this convention about the superscript throughout this paper and, if possible, will omit this superscript for brevity where no 
confusion arises.
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We assume that the ordering of the fluids in the resultant (N − 1)-phase system follows that of the original N-phase 
system (excluding fluid k). In other words, the following correspondence relations for the volume fractions ci (1 � i � N) 
hold:

c(N)
i =

⎧⎪⎨
⎪⎩

c(N−1)
i , 1 � i � k − 1,

0, i = k,

c(N−1)
i−1 , k + 1 � i � N,

or

⎧⎪⎪⎨
⎪⎪⎩

c(N−1)
i =

{
c(N)

i , 1 � i � k − 1,

c(N)
i+1, k � i � N − 1,

c(N)

k = 0.

(5)

The density of fluid i within the mixture, ρi (1 � i � N), has a correspondence relation analogous to the above between 
the original N-phase and the resultant (N − 1)-phase systems. On the other hand, the constant density of pure fluid i, ρ̃i

(1 � i � N), has a similar correspondence relation but with some difference:

ρ̃
(N)
i =

{
ρ̃

(N−1)
i , 1 � i � k − 1,

ρ̃
(N−1)
i−1 , k + 1 � i � N,

or ρ̃
(N−1)
i =

{
ρ̃

(N)
i , 1 � i � k − 1,

ρ̃
(N)
i+1, k � i � N − 1.

(6)

The critical difference lies in that even though fluid k is absent from the system (c(N)

k = 0, ρ(N)

k = 0), the density of pure fluid 
k remains the same non-zero constant (ρ̃(N)

k �= 0). The constant dynamic viscosities μ̃i (1 � i � N) have a correspondence 
relation analogous to (6).

The correspondence relations (5) and (6) characterize two different types of variables. The distinction between them 
lies in that in the latter type there is no constraint on the k-th variable of the original N-phase system if fluid k is absent 
from the system. It is important to distinguish these two types of correspondence relations and the two types of variables. 
Equations (5) and (6) describe how the variables ci (1 � i � N) and ρ̃i (1 � i � N) transform, respectively, if any fluid k
(1 � k � N) is absent from the N-phase system.

Let us now look into how a given set of functions of �c = (c1, · · · , cN) defined on the N-phase system transforms if any 
one fluid k (1 � k � N) is absent from the system. Intuitively, if these functions transform in a way similar to ci , we say that 
they are reduction consistent. If they transform in a way similar to ρ̃i , we say that they are reduction compatible.

More specifically, we consider the set of variables v(N)
i (�c(N)) (1 � i � N) defined on the N-phase system for all N =

1, 2, 3, . . . , and investigate their transformations if any fluid is absent from the N-phase system for N � 2. Similarly, we 
also study the transformations of the sets of variables v(N)

i j (�c(N)) (1 � i, j � N; N � 1) and v(N)(�c(N)) (N � 1) if any fluid 
is absent from the system. We define the reduction compatibility and reduction consistency of these sets of variables (or 
functions) as follows.

Definition 2.1. A set of variables v(N)
i (�c(N)) (1 � i � N; N = 1, 2, 3 . . . ) is said to be reduction-compatible if for any N � 2, 

this set transforms as follows when any fluid k (1 � k � N) is absent from the N-phase system:

v(N)
i =

{
v(N−1)

i , 1 � i � k − 1,

v(N−1)
i−1 , k + 1 � i � N,

(7)

where v(N)
i = v(N)

i (�c(N)) and v(N−1)
i = v(N−1)

i (�c(N−1)), and �c(N) and �c(N−1) are connected by the correspondence relation (5).

Definition 2.2. A set of variables v(N)
i (�c(N)) (1 � i � N; N = 1, 2, 3 . . . ) is said to be reduction-consistent if (i) this set is 

reduction-compatible, and (ii) for any N � 2, this set satisfies the following additional property when any fluid k (1 � k � N) 
is absent from the N-phase system:

v(N)

k = 0, (8)

where v(N)

k = v(N)

k (�c(N)).

Definition 2.3. A set of variables v(N)
i j (�c(N)) (1 � i, j � N; N = 1, 2, 3 . . . ) is said to be reduction-compatible if for any N � 2, 

this set transforms as follows when any fluid k (1 � k � N) is absent from the N-phase system:

v(N)
i j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v(N−1)
i j , 1 � i � k − 1, 1 � j � k − 1,

v(N−1)
i j−1 , 1 � i � k − 1, k + 1 � j � N,

v(N−1)
i−1 j , k + 1 � i � N, 1 � j � k − 1,

v(N−1)
i−1 j−1, k + 1 � i � N, k + 1 � j � N,

(9)

where v(N) = v(N)
(�c(N)) and v(N−1) = v(N−1)

(�c(N−1)), and �c(N) and �c(N−1) are connected by the correspondence relation (5).
i j i j i j i j
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Definition 2.4. A set of variables v(N)
i j (�c(N)) (1 � i, j � N; N = 1, 2, 3 . . . ) is said to be reduction-consistent if (i) this set is 

reduction-compatible, and (ii) for any N � 2, this set satisfies the following additional property when any fluid k (1 � k � N) 
is absent from the N-phase system:

v(N)

ki = v(N)

ik = 0, 1 � i � N (10)

where v(N)

ik = v(N)

ik (�c(N)) and v(N)

ki = v(N)

ki (�c(N)).

Definition 2.5. A set of variables v(N)(�c(N)) (N = 1, 2, 3 . . . ) is said to be reduction consistent if for any N � 2, it transforms 
as follows when any fluid k (1 � k � N) is absent from the N-phase system:

v(N)(�c(N)) = v(N−1)(�c(N−1)) (11)

where �c(N) and �c(N−1) are connected by the correspondence relation (5).

Remark 1. For a reduction-consistent set of functions v(N)
i (1 � i � N) defined on the N-phase system, if any fluid k (1 � k �

N) is absent from the N-phase system, then the k-th function in this set will vanish while the other (N − 1) functions will 
reduce to the corresponding functions v(N−1)

i (1 � i � N −1) for the smaller (N −1)-phase system. For a reduction-consistent 
function v(N) defined on the N-phase system, if any fluid k (1 � k � N) is absent from the system, then this function will 
reduce to the corresponding function v(N−1) for the smaller (N − 1)-phase system. For example, according to the definitions 
∇2ci (1 � i � N) is a reduction-consistent set of variables, and ρ(�c) = ∑N

i=1 ρ̃ici is a reduction-consistent function.

Based on the transformation properties of variables, we can look into how a given set of equations of the N-phase system 
transforms if any fluid k (1 � k � N) is absent from the system. Specifically, we define the reduction consistency of a set of 
equations as follows.

Definition 2.6. A set of equations

v(N)
i (�c(N)) = 0, 1 � i � N; N = 1,2,3 . . .

is said to be reduction-consistent if the set of variables v(N)
i (�c(N)) (1 � i � N; N = 1, 2, 3 . . . ) is reduction-consistent.

Definition 2.7. A set of equations

v(N)(�c(N)) = 0, N = 1,2,3 . . . (12)

is said to be reduction-consistent if the set of variables v(N)(�c(N)) (N = 1, 2, 3 . . . ) is reduction-consistent.

Remark 2. For a reduction-consistent set of equations v(N)
i = 0 (1 � i � N) defined on the N-phase system, if any fluid k

(1 � k � N) is absent, then the k-th equation in this set will reduce to an identity and the other (N −1) equations will reduce 
to the corresponding equations v(N−1)

i = 0 (1 � i � N − 1) for the smaller (N − 1)-phase system. For a reduction-consistent 
equation v(N) = 0 defined on the N-phase system, if any fluid k (1 � k � N) is absent, then this equation will reduce to the 
corresponding equation v(N−1) = 0 for the smaller (N − 1)-phase system.

We next write down some useful properties about the reduction-compatible and reduction-consistent variables/functions 
of the N-phase system. It is straightforward to verify these properties based on the definitions. In the following we omit 
the superscript (N) and assume that the variables are defined for all N-phase systems (N = 1, 2, 3 . . . ). For example, the 
statement below “vi(�c) (1 � i � N) is a reduction-consistent set of functions” refers to “v(N)

i (�c(N)) (1 � i � N; N = 1, 2, 3 . . . ) 
is a reduction-consistent set of functions” to be exact, and the statement below “v(�c) is a reduction-consistent function” 
refers to “v(N)(�c(N)) (N = 1, 2, 3 . . . ) is a reduction-consistent set of functions”, etc.

(T1): Reduction consistency implies reduction compatibility. The reverse is not true.
(T2): If vi(�c) (1 � i � N) and wi(�c) (1 � i � N) are two reduction-consistent sets of functions, then avi(�c) + bwi(�c)

(1 � i � N) form a reduction-consistent set of functions, where a and b are constants. The same property holds for 
reduction consistent sets of functions vij(�c) (1 � i, j � N) and wij(�c) (1 � i, j � N).

(T3): If vi(�c) (1 � i � N) and wi(�c) (1 � i � N) are two reduction-compatible sets of functions, then avi(�c) + bwi(�c)
(1 � i � N) form a reduction-compatible set of functions with constants a and b. The same property holds for two 
reduction-compatible sets of functions vij(�c) (1 � i, j � N) and wij(�c) (1 � i, j � N).

(T4): If vi(�c) (1 � i � N) are a reduction-consistent set of functions and wi(�c) (1 � i � N) are a reduction-compatible set 
of functions, then vi(�c)wi(�c) (1 � i � N) form a reduction-consistent set of functions.
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(T5): If v(�c) and w(�c) are two reduction-consistent functions, then av(�c) + bw(�c) is a reduction consistent function for 
constants a and b, and v(�c)w(�c) is also a reduction-consistent function.

(T6): If vi(�c) (1 � i � N) are a reduction-consistent set of functions and w(�c) is a reduction-consistent function, then 
vi(�c)w(�c) (1 � i � N) form a reduction-consistent set of functions.

(T7): If vij(�c) (1 � i, j � N) are a reduction-consistent set of functions, and wi(�c) (1 � i � N) are a reduction-compatible 
set of functions, then 

∑N
j=1 vij w j (1 � i � N) and 

∑N
i=1 vij wi (1 � j � N) form two reduction-consistent sets of 

functions.
(T8): If vij(�c) (1 � i, j � N) are a reduction-compatible set of functions, and wi(�c) (1 � i � N) are a reduction-consistent 

set of functions, then 
∑N

j=1 vij w j (1 � i � N) and 
∑N

i=1 vij wi (1 � j � N) form two reduction-compatible sets of 
functions.

(T9): If vi(�c) (1 � i � N) are a reduction-consistent set of functions, then 
∑N

i=1 vi(�c) is a reduction-consistent function.
(T10): If vij(�c) (1 � i, j � N) are a reduction-consistent set of functions, then 

∑N
j=1 vij(�c) (1 � i � N) and 

∑N
i=1 vij(�c)

(1 � j � N) are two reduction-consistent sets of functions, and 
∑N

i, j=1 vij(�c) is a reduction-consistent function.
(T11): If vij(�c) (1 � i, j � N) are a reduction-compatible set of functions and wi(�c) (1 � i � N) are a reduction-consistent 

set of functions, then 
∑N

i, j=1 vij wi w j is a reduction-consistent function.
(T12): If vij(�c) (1 � i, j � N) are a reduction-consistent set of functions and wi(�c) (1 � i � N) are a reduction-compatible 

set of functions, then 
∑N

i, j=1 vij wi w j is a reduction-consistent function.
(T13): If v(�c), vi(�c) (1 � i � N), and vij(�c) (1 � i, j � N) are reduction-consistent (resp. reduction-compatible) sets of 

functions, then Pv , Pvi (1 � i � N), and Pvij (1 � i, j � N) are also reduction-consistent (resp. reduction-compatible) 
sets of functions, where P stands for one of the operators ∂

∂t , ∇ , or ∇2. If v , vi and vij are vector functions, then P
can also be divergence and curl operators.

(T14): If a function v is independent of �c, then it is a reduction consistent function.
(T15): ci (1 � i � N) and ρi(�c) (1 � i � N) are two reduction-consistent sets of variables; ρ(�c) and μ(�c) (given by (87) and 

(89)) are each a reduction-consistent function.
(T16): ρ̃i (1 � i � N) and μ̃i (1 � i � N) are two reduction-compatible sets of variables. σi j (1 � i, j � N) are a reduction-

compatible set of variables.

A proof of the properties (T7)–(T12) is provided in the Appendix B.
Let us now consider how reduction-consistent functions transform if more than one fluid components are absent from 

the N-phase system. If any one fluid is absent from the system, then a reduction-consistent function v(N) will reduce to 
the function v(N−1) for the corresponding (N − 1)-phase system. By repeatedly applying this property, we conclude that if 
K (1 � K � N − 1) fluid components are absent from the N-phase system then a reduction-consistent function v(N) will 
reduce to the function v(N−K ) for the corresponding (N − K )-phase system.

Similarly, given a reduction-consistent set of functions v(N)
i (1 � i � N) for the N-phase system, if any one fluid is absent, 

then the function in this set with the index corresponding to the absent fluid will vanish identically while the other (N − 1) 
functions will reduce to the functions v(N−1)

i (1 � i � N − 1) for the corresponding (N − 1)-phase system. By repeatedly 
applying this property to the resultant (N − 1)-phase, (N − 2)-phase, . . . systems, we conclude that if K (1 � K � N − 1) 
fluid components are absent from the N-phase system, then those K functions in this set with indices corresponding to the 
absent fluids will vanish identically while the other (N − K ) functions will reduce to the functions v(N−K )

i (1 � i � N − K ) 
for the corresponding (N − K )-phase system.

It then follows from the above discussions that, given a reduction-consistent set of equations for the N-phase system, if K
(1 � K � N −1) fluid components are absent from the system, then those K equations in this set with indices corresponding 
to the absent fluids will each reduce to an identity, while the other (N − K ) equations will reduce to the corresponding 
equations for the smaller (N − K )-phase system.

2.2. Reduction consistency of N-phase governing equations

Let us now look into the reduction consistency of the governing equations given by (1a)–(1c) for the N-phase system 
(N = 1, 2, 3 . . . ), that is, how these equations transform if any fluid component is absent from the system. Define

M(�c) = ρ(�c)
(

∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u + ∇p − ∇ · [μ(�c)D(u)

]+
N∑

i=1

∇ ·
[
∇ci ⊗ ∂W

∂(∇ci)

]
, (13a)

N(�c) = ∇ · u, (13b)

Fi(�c) = ∂ci

∂t
+ u · ∇ci −

N∑
j=1

∇ ·
[

mij(�c)∇
(

∂W

∂c j
− ∇ · ∂W

∂∇c j

)]
, 1 � i � N, (13c)

Hi(�c) = ∂W
, 1 � i � N, (13d)
∂ci
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Gi(�c) = ∂W

∂(∇ci)
, 1 � i � N, (13e)

Ii(�c) = ∇ · ∂W

∂(∇ci)
, 1 � i � N. (13f)

We have the following result.

Theorem 2.1. If

• mij(�c) (1 � i, j � N) are a reduction-consistent set of variables,
• Hi(�c) (1 � i � N) are a reduction-compatible set of variables, and
• Gi(�c) (1 � i � N) are a reduction-compatible set of variables,

then

• Equation (1a) is a reduction-consistent equation;
• Equation (1b) is a reduction-consistent equation;
• The N equations in (1c) are a reduction-consistent set of equations.

A proof of this theorem is provided in Appendix C.

Remark 3. This theorem provides a set of sufficient conditions for the reduction consistency of the N-phase governing 
equations. If one can choose a reduction-consistent set of functions for the coefficients mij(�c), and choose a free energy 
density function W (�c, ∇�c) such that Hi(�c) and Gi(�c) each forms a reduction-compatible set of variables, then the theorem 
guarantees that the resultant N-phase governing equations are reduction consistent. In other words, if K fluids (1 � K �
N − 1) are absent from the N-phase system, then the N-phase governing equations will exactly reduce to the (N − K )-phase 
governing equations that correspond to the (N − K )-phase system formed by those (N − K ) fluids that are present, together 
with K additional identities, identically satisfied by the zero volume-fraction fields corresponding to the absent fluids.

Remark 4. Suppose the free energy density function takes the following form

W (�c,∇�c) =
N∑

i, j=1

λi j

2
∇ci · ∇c j + (multiwell potential term)

where the constants λi j are called the mixing energy density coefficients (symmetric), and can be related to other physical 
parameters such as the pairwise surface tensions by invoking the consistency condition (C1) (see e.g. [17,18]). The multiwell 
potential term is assumed to be independent of ∇�c. Then Gi(�c) = ∑N

j=1 λi j∇c j (1 � i � N). Therefore, if λi j (1 � i, j � N) 
are a reduction-compatible set, Gi(�c) (1 � i � N) will be a reduction-compatible set of variables according to the property 
(T8) from Section 2.1. Similarly, if the free energy density function takes the form

W (�c,∇�c) =
N∑

i=1

λi

2
|∇ci|2 + (multiwell potential term)

where λi are constants, then Gi(�c) = λi∇ci (1 � i � N). If λi (1 � i � N) is a reduction-compatible set, Gi(�c) (1 � i � N) 
will form a reduction-consistent (and thus also reduction-compatible) set of variables according to property (T4) from 
Section 2.1.

We next suggest a specific form for mij(�c) and for W (�c, ∇�c) that satisfy the conditions for Theorem 2.1. Let f (c) denote 
a non-negative continuous function with the property{

f (c) = 0, if c � 0;
f (c) > 0, if c > 0.

(14)

In the current work we will use the following function for f (c),

f (c) =
{

0, if c < 0
2c, if c � 0.

(15)

Let m̃i j (1 � i, j � N) denote a set of non-negative constants with the property m̃i j = m̃ ji (1 � i, j � N) and m̃ii = 0 (1 �
i � N), and that they form a reduction-compatible set of variables for N = 1, 2, 3, · · · . Some specific examples for such a set 
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of constants are m̃i j = ρ̃iρ̃ j(1 − δi j), μ̃iμ̃ j(1 − δi j), or σi j , where δi j denotes the Kronecker delta. In this work we use the 
following m̃i j ,

m̃i j = m0(1 − δi j) =
{

m0, 1 � i �= j � N,

0, 1 � i = j � N
(16)

where m0 > 0 is a positive constant. These m̃i j can be shown to form a reduction-compatible set in a straightforward fashion 
based on the definition. We then define mij(�c) as follows,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

mij(�c) = −m̃i j f (ci) f (c j), 1 � i �= j � N

mii(�c) = −
N∑

j=1
j �=i

mij(�c) = f (ci)

N∑
j=1
j �=i

m̃i j f (c j), 1 � i � N. (17)

Note that mij(�c) (1 � i, j � N) as defined above satisfy the conditions (83) and (85). So the matrix m (see equation (82)) 
formed by these mij(�c) is symmetric positive semi-definite.

For the free energy density function we consider the following form

W (�c,∇�c) =
N∑

i, j=1

λi j

2
∇ci · ∇c j + β

N∑
i, j=1

σi j

2

[
g(ci) + g(c j) − g(ci + c j)

]
(18)

where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λi j = − 3√
2
ησi j, 1 � i, j � N,

β = 3√
2

1

η
,

g(c) = c2(1 − c)2

(19)

and η is the scale of characteristic interfacial thickness of the diffuse interfaces. We assume that the values for the pairwise 
surface tensions σi j among the N fluids are such that the N × N symmetric matrix formed by λi j is positive semi-definite 
in order to ensure the non-negativity of the first term on the right hand side of (18). This free energy density function is 
equivalent to a form originally suggested in [8].

With the mij(�c) and W (�c, ∇�c) defined above, we have the following result:

Theorem 2.2. (a) The functions mij(�c) (1 � i, j � N) as defined by (17) are a reduction-consistent set of functions. (b) The free energy 
density function W (�c, ∇�c) defined in (18) is a reduction-consistent function. (c) With W (�c, ∇�c) given by (18), the functions Hi(�c)
(1 � i � N) as defined by (13d) and the functions Gi(�c) (1 � i � N) as defined by (13e) are each a reduction-compatible set of 
functions.

A proof of this theorem is provided in Appendix D.
We conclude based on Theorems 2.1 and 2.2 that, with mij(�c) given by (17) and W (�c, ∇�c) given by (18), the N-phase 

governing equations (1a)–(1c) are fully reduction-consistent. With these forms for mij(�c) and W (�c, ∇�c), equations (1a) and 
(1c) are transformed into

ρ(�c)
(

∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · [μ(�c)D(u)

]−
N∑

i, j=1

∇ · (λi j∇ci ⊗ ∇c j
)
, (20)

∂ci

∂t
+ u · ∇ci =

N∑
j=1

∇ ·
[

mij(�c)∇
(

−
N∑

k=1

λ jk∇2ck +H j(�c)
)]

, 1 � i � N, (21)

where ρ(�c) and μ(�c) are given by (87) and (89), respectively, λi j (1 � i, j � N) are given in (19), and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

J̃ = −
N∑

i, j=1

ρ̃imij(�c)∇
[
−

N∑
k=1

λ jk∇2ck +H j(�c)
]

,

Hi(�c) = ∂W

∂ci
= β

N∑
σi j

[
g′(ci) − g′(ci + c j)

]
, 1 � i � N.

(22)
j=1
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The N-phase formulation represented by (20), (1b) and (21) fully satisfies the reduction consistency conditions (C1) and 
(C2). This formulation is reduction-consistent and thermodynamically consistent.

Remark 5. The mij(�c) and W (�c, ∇�c) functions suggested above are only one way to fulfill the conditions of Theo-
rem 2.1. We would like to point out that it is possible to choose other forms for f (c), the constants m̃i j , or the free 
energy density function W (�c, ∇�c) to satisfy these conditions, thus leading to other reduction-consistent and thermody-
namically consistent N-phase formulations. For example, the free energy density form (analogous to the one from [17]) 
W (�c, ∇�c) = ∑N

i, j=1

i j
2 ∇ci · ∇c j + b 

∑N
i=1 c2

i (1 − ci)
2, where 
i j ∼ −σ 2

i j (1 � i, j � N) and b is some constant, also leads to 
Hi(�c) and Gi(�c) functions that are reduction compatible. One can also employ for example

f (c) =
{

0, c < 0
(2c)k, c � 0

(k � 2 is an integer), or f (c) =
⎧⎨
⎩

0, c < 0
1 − cos(πc), 0 � c � 1
2, c > 1,

which leads to a reduction-consistent set of mij(�c) as defined in (17). The different formulations cannot be distinguished 
from the standpoint of thermodynamic and reduction consistencies. The performances of different formulations and their 
relative merits need to be explored and compared with future research.

Remark 6. The function f (c) employed in the current work (see equation (15)) is not smooth at c = 0 (derivative not 
continuous). This does not cause numerical difficulty or affect the numerical performance with the current implementation 
using C0 spectral elements (see Section 3). Spectral element implementation is based on the weak forms of the equations 
(see e.g. equation (42)), in which no derivative of mij(�c) or f (c) is involved. Note that in the discrete function space of C0

elements, the approximation ensures only the continuity of the function across element boundaries, not their derivatives.

Remark 7. If mij(�c) (1 � i, j � N) are assumed to be all constants and are not identically zeros, then based on Def-
inition 2.4 mij (1 � i, j � N) cannot be a reduction-consistent set. Therefore, in this case one has to treat the term ∑N

j=1 mij∇
[
Hi(�c) − Ii(�c)

]
in Fi(�c) as a whole, and try to construct W (�c, ∇�c) such that this expression results in a 

reduction-consistent set. This is essentially the approach taken by [8,18], and it is extremely difficult (if not impossible) 
to construct such a W (�c, ∇�c) to ensure full reduction consistency. So far, only a partial reduction consistency (e.g. between 
N phases and two phases) can be achieved with this approach for an arbitrary set of given pairwise surface tension values 
[18,8].

3. Numerical algorithm and implementation

We now look into how to numerically solve the reduction-consistent and thermodynamically consistent N-phase govern-
ing equations. Let � denote the flow domain, and ∂� denote its boundary. On ∂� we assume that the velocity distribution 
is known,

u = w(x, t), on ∂� (23)

where w is the boundary velocity. We consider the following boundary conditions for the volume fractions ci ,

N∑
j=1

mij(�c)n · ∇
[
−

N∑
k=1

λ jk∇2ck +H j(�c)
]

= 0, 1 � i � N, on ∂�, (24a)

n · ∇ci = 0, 1 � i � N, on ∂�, (24b)

where n is the outward-pointing unit vector normal to ∂�. The boundary conditions (24a) and (24b) correspond to a wall 
with neutral wettability (i.e. 90-degree contact angle) for all the fluid interfaces. We further assume that the distributions 
of the velocity u and the volume fractions ci at t = 0 are known

u(x,0) = uin(x), (25a)

ci(x,0) = cin
i (x), 1 � i � N (25b)

where uin and cin
i are the initial velocity and volume fractions.

One notes that the boundary condition (23) is a reduction-consistent equation. The N equations given in the boundary 
condition (24a) form a reduction-consistent set of equations, and the N equations given in (24b) also form a reduction-
consistent set. Therefore, the boundary conditions (23), (24a) and (24b) satisfy the reduction consistency property (C3).

The equations (20), (1b) and (21), supplemented by the boundary conditions (23)–(24b) and initial conditions 
(25a)–(25b), together constitute the system to be solved in numerical simulations. Note that among the N phase field 
equations in (21) only (N − 1) equations are independent in light of (59) and (83). Similarly, only (N − 1) equations in 
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the boundary condition (24a) and in (24b) are independent. We will employ the first (N − 1) equations in (21) and in 
(24a)–(24b) to solve for the volume fractions ci (1 � i � N − 1), and then compute cN using the relation (59).

To facilitate subsequent discussions, we re-write equation (20) in an equivalent form

∂u

∂t
+ u · ∇u + 1

ρ
J̃ · ∇u = − 1

ρ
∇ P + μ

ρ
∇2u + 1

ρ
∇μ · D(u) − 1

ρ

N∑
i, j=1

λi j∇2c j∇ci + 1

ρ
f(x, t), (26)

where P = p + ∑N
i, j=1

λi j
2 ∇ci · ∇c j is an auxiliary pressure, which hereafter will also be loosely referred to as the pressure, 

and we have added an external body force f(x, t). We re-write the first (N − 1) equations in (21) as

∂ci

∂t
+ u · ∇ci =

N∑
j=1

∇ ·
[

mij(�c)∇
(

−
N∑

k=1

λ jk∇2ck +H j(�c)
)]

+ di(x, t), 1 � i � N − 1, (27)

where we have added in each equation a source term di(x, t) (1 � i � N − 1), which is a prescribed function for the purpose 
of numerical testing only and will be set to di = 0 in actual simulations. We re-write the boundary conditions (first (N − 1) 
equations) (24a)–(24b) as follows:

N∑
j=1

mij(�c)n · ∇
[
−

N∑
k=1

λ jk∇2ck +H j(�c)
]

= dai(x, t), 1 � i � N − 1, on ∂�, (28a)

n · ∇ci = dbi(x, t), 1 � i � N − 1, on ∂�, (28b)

where dai(x, t) (1 � i � N − 1) and dbi(x, t) (1 � i � N − 1) are prescribed source terms on ∂� for the purpose of numerical 
testing only, and will be set to dai = 0 and dbi = 0 in actual simulations. In these equations mij(�c) are given by (17), in 
which m̃i j are given by (16) and f (c) is defined by (15). λi j are given in (19), and J̃ and Hi(�c) are given in (22).

The numerical algorithm presented below is for the equations (26), (1b) and (27), together with the boundary conditions 
(23), (28a) and (28b).

The momentum equations (26) and (1b) have the same structure as those encountered in previous works [14,18]. 
Therefore they can be solved using the algorithm we developed in [14,18] for the momentum equations. For the sake 
of completeness, we provide a summary of the scheme for the momentum equations in Appendix E. This is a semi-implicit 
splitting type algorithm. The computations for the pressure and velocity are de-coupled with this scheme, and it involves 
only constant and time-independent coefficient matrices for both the pressure and the velocity linear algebraic systems 
after discretization.

We present below an algorithm for numerically solving the set of phase field equations (27), together with the boundary 
conditions (28a) and (28b). The variable nature of the coefficients mij(�c) (1 � i, j � N) is a new feature compared with 
those encountered in [14,17,18], and must be dealt with in an appropriate way.

Let n � 0 denote the time step index and �t the time step size. We use (·)n to represent the variable (·) at time step n. 
Let J ( J = 1 or 2) denote the temporal order of accuracy of the algorithm, and

Ri(�c) =
N∑

j=1

mij(�c)∇
[
−

N∑
k=1

λ jk∇2ck +H j(�c)
]

, 1 � i � N. (29)

Given (un, cn
i ), we solve for cn+1

i with the algorithm as follows,

γ0cn+1
i − ĉi

�t
+ u∗,n+1 · ∇c∗,n+1

i =K0∇2
[
−∇2(cn+1

i − c∗,n+1
i ) + S(cn+1

i − c∗,n+1
i )

]
+ ∇ · Ri(�c∗,n+1) + dn+1

i , 1 � i � N − 1,

(30a)

K0n · ∇
[
−∇2(cn+1

i − c∗,n+1
i ) + S(cn+1

i − c∗,n+1
i )

]
+ n · Ri(�c∗,n+1) = dn+1

ai , 1 � i � N − 1, on ∂�, (30b)

n · ∇cn+1
i = dn+1

bi , 1 � i � N − 1, on ∂�. (30c)

If χ denotes a generic variable, then in the above equations 1
�t (γ0χ

n+1 − χ̂ ) represents an approximation of ∂χ
∂t

∣∣∣n+1
with 

the J -th order backward differentiation formula (BDF), with γ0 and χ̂ given by

χ̂ =
{

χn, J = 1,

2χn − 1
2χn−1, J = 2; γ0 =

{
1, J = 1,

3/2, J = 2.
(31)

χ∗,n+1 denotes a J -th order explicit approximation of χn+1 given by
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χ∗,n+1 =
{

χn, J = 1,

2χn − χn−1, J = 2.
(32)

The positive constant K0 is given by

K0 = Nm0

∣∣∣∣∣∣
N∑

i, j=1

λi j

∣∣∣∣∣∣ . (33)

S is a chosen constant, which must satisfy a condition to be specified later. �c∗,n+1 is defined by �c∗,n+1 = (c∗,n+1
1 , . . . , c∗,n+1

N ).
The key construction in the above algorithm lies in the two extra terms in the semi-discretized phase-field equations 

(30a) and in the boundary conditions (30b), K0∇2
[
∇2(cn+1

i − c∗,n+1
i )

]
and K0 S∇2(cn+1

i −c∗,n+1
i ), and the explicit treatment 

of the ∇ · Ri(�c) term. Note that the two extra terms are both equivalent to zeros, to the J -th order accuracy. With these 
treatments the computations for different volume fractions ci (1 � i � N −1) are de-coupled. Moreover, for each ci the extra 
terms in the algorithm allow us to transform the equation of a 4-th spatial order into two de-coupled 2nd-order equations, 
which will become clear below.

Equation (30a) can be written as

γ0

K0�t
cn+1

i + ∇2(∇2cn+1
i ) − S∇2cn+1

i = Zi =Q i + ∇2(∇2c∗,n+1
i ) − S∇2c∗,n+1

i

+ 1

K0
∇ · Ri(�c∗,n+1), 1 � i � N − 1,

(34)

where

Q i = 1

K0

(
dn+1

i + ĉi

�t
− u∗,n+1 · ∇c∗,n+1

i

)
, 1 � i � N − 1. (35)

Each of the above equations has a form similar to that encountered in two-phase flows (see e.g. [21]). Therefore each of 
them can be transformed into two de-coupled Helmholtz-type equations using the same idea as in two-phase flows [21]. By 
adding/subtracting a term α∇2cn+1

i (α denoting a constant to be determined) on the left hand side (LHS), we can transform 
(34) into

∇2
[
∇2cn+1

i + αcn+1
i

]
− (α + S)

[
∇2cn+1

i − γ0

(α + S)K0�t
cn+1

i

]
= Zi, 1 � i � N − 1. (36)

By requiring that α = − γ0
(α+S)K0�t , we obtain

α = 1

2

[
−S +

√
S2 − 4γ0

K0�t

]
, and the condition S �

√
4γ0

K0�t
. (37)

The chosen constant S must satisfy the above condition.
Therefore, equation (36) can be written equivalently as

∇2ψn+1
i − (α + S)ψn+1

i = Zi, 1 � i � N − 1, (38a)

∇2cn+1
i + αcn+1

i = ψn+1
i , 1 � i � N − 1, (38b)

where ψn+1
i (1 � i � N − 1) are auxiliary variables and are defined by equation (38b). The two equations (38a) and (38b)

are Helmholtz type equations, and they can be solved in a de-coupled fashion. Note that under the condition for S given in 
(37), α < 0 and α + S > 0. In order to solve (34), one can first solve (38a) for ψn+1

i and then solve (38b) for cn+1
i .

In light of equation (38b), the boundary condition (30b) can be transformed into

n · ∇ψn+1
i − (α + S)n · ∇cn+1

i = n · ∇
(
∇2c∗,n+1

i − Sc∗,n+1
i

)
+ 1

K0
n · Ri(�c∗,n+1) − 1

K0
dn+1

ai , 1 � i � N − 1. (39)

By using (30c) we can further transform the above equation into

n · ∇ψn+1
i = n · ∇

(
∇2c∗,n+1

i − Sc∗,n+1
i

)
+ 1

K0
n · Ri(�c∗,n+1) + (α + S)dn+1

bi − 1

K0
dn+1

ai , 1 � i � N − 1. (40)

These are the boundary conditions for the auxiliary variables ψn+1
i (1 � i � N − 1).

We employ the spectral element method [40,28,47] for spatial discretizations in this work. Let us now consider how 
to implement the above algorithm using C0 spectral elements. We first derive the weak forms for the equations (38a)
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and (38b), by assuming that all variables are in the continuum space. Then we restrict the test and trial functions to the 
appropriate function space for spatial discretization of the weak forms.

Let ϕ(x) denote an arbitrary (test) function. Multiply ϕ to equation (38a) and integrate over the flow domain �, and we 
get ∫

�

∇ψn+1
i · ∇ϕ + (α + S)

∫
�

ψn+1
i ϕ

= −
∫
�

Q iϕ +
∫
�

[
∇
(
∇2c∗,n+1

i − Sc∗,n+1
i

)
+ 1

K0
Ri(�c∗,n+1)

]
· ∇ϕ

+
∫
∂�

[
n · ∇ψn+1

i − n · ∇
(
∇2c∗,n+1

i − Sc∗,n+1
i

)
− 1

K0
n · Ri(�c∗,n+1)

]
ϕ,

∀ϕ, 1 � i � N − 1

(41)

where we have used integration by part and the divergence theorem. In light of the equations (38b) and (40), we can 
transform the above equation into the final weak form about ψn+1

i ,∫
�

∇ψn+1
i · ∇ϕ + (α + S)

∫
�

ψn+1
i ϕ

= −
∫
�

Q iϕ +
∫
�

[
∇
(
ψ

∗,n+1
i − (α + S)c∗,n+1

i

)

+ 1

K0

N∑
j=1

mij(�c∗,n+1)∇
(

−
N∑

k=1

λ jk

(
ψ

∗,n+1
k − αc∗,n+1

k

)
+H j(�c∗,n+1)

)⎤
⎦ · ∇ϕ

+
∫
∂�

[
(α + S)dn+1

bi − 1

K0
dn+1

ai

]
ϕ, ∀ϕ, 1 � i � N − 1,

(42)

where ψn
N is defined by ψn

N = ∇2cn
N + αcn

N .
Multiplying the test function ϕ to equation (38b) and integrating over the domain �, we get the weak form about cn+1

i ,∫
�

∇cn+1
i · ∇ϕ − α

∫
�

cn+1
i ϕ = −

∫
�

ψn+1
i ϕ +

∫
∂�

dn+1
bi ϕ, ∀ϕ, 1 � i � N − 1, (43)

where we have used the divergence theorem and the boundary condition (30c).
We discretize the domain � using a mesh of Nel non-overlapping conforming spectral elements. We use the positive 

integer K to denote the element order, which is a measure of the highest polynomial degree in field expansions within an 
element. Let �h denote the discretized domain, and �e

h (1 � e � Nel) denote the element e. Define function space

Hφ = {
v ∈ H1(�h) : v is a polynomial of degree characterized by K on �e

h, for 1 � e � Nel
}
. (44)

In the following let the subscript in (·)h denote the discretized version of the variable (·). The fully discretized equations 
are:
For ψn+1

hi : find ψn+1
hi ∈ Hφ such that∫

�h

∇ψn+1
hi · ∇ϕh + (α + S)

∫
�h

ψn+1
hi ϕh

= −
∫
�h

Q hiϕh +
∫
�h

[
∇
(
ψ

∗,n+1
hi − (α + S)c∗,n+1

hi

)

+ 1

K0

N∑
j=1

mhij(�c∗,n+1
h )∇

(
−

N∑
k=1

λ jk

(
ψ

∗,n+1
hk − αc∗,n+1

hk

)
+Hhj(�c∗,n+1

h )

)⎤
⎦ · ∇ϕh

+
∫ [

(α + S)dn+1
bhi − 1

K0
dn+1

ahi

]
ϕh, ∀ϕh ∈ Hφ, 1 � i � N − 1.

(45)
∂�h
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Table 1
Normalization of flow variables and parameters. L: a characteristic length scale; U0: a characteristic velocity scale; �d: a characteristic density scale.

variables normalization constant variables normalization constant

x, η L t, �t L/U0

u, ũ, w, dai U0 p, P , W (�c,∇�c), H(�c), Hi(�c) �dU 2
0

λi j �dU 2
0 L2 ρ , ρi , ρ̃i , ρ0 �d

μ, μ̃i �dU0 L mij(�c), m̃i j , m0, K0
L

�d U0

J̃, Ji �dU0 di U0/L

σi j �dU 2
0 L dbi 1/L

f �dU 2
0/L S , α, ψi 1/L2

ci , γ0 1 ν0 U0 L

gr (gravity) U 2
0/L

For cn+1
hi : find cn+1

hi ∈ Hφ such that

∫
�h

∇cn+1
hi · ∇ϕh − α

∫
�h

cn+1
hi ϕh = −

∫
�h

ψn+1
hi ϕh +

∫
∂�h

dn+1
bhi ϕh, ∀ϕh ∈ Hφ, 1 � i � N − 1. (46)

Therefore, we employ the following steps to compute ci (1 � i � N) within each time step, which will be referred to as 
the AdvancePhaseField procedure.
AdvancePhaseField:

• Solve equation (45) for ψn+1
i (1 � i � N − 1);

• Solve equation (46) for cn+1
i (1 � i � N − 1);

• Compute cn+1
N and ψn+1

N by

cn+1
N = 1 −

N−1∑
i=1

cn+1
i , ψn+1

N = ∇2cn+1
N + αcn+1

N = α −
N−1∑
i=1

ψn+1
i . (47)

Combining the above algorithm for the phase field equations and the algorithm outlined in Appendix E for the momen-
tum equations, we arrive at the following overall method for solving the equations (26), (1b) and (27) together with the 
boundary conditions (23), (28a) and (28b). Given (un , Pn , cn

i ), we compute cn+1
i (1 � i � N), Pn+1 and un+1 successively in 

a de-coupled fashion through the following steps:

• Compute ψn+1
i and cn+1

i (1 � i � N) using the AdvancePhaseField procedure;
• Solve equation (103) for Pn+1;
• Solve equation (104) for un+1.

Note that this method involves only the solution of linear algebraic systems with constant and time-independent coefficient 
matrices after discretization, even though the governing equations of the system involve time-dependent field variables such 
as mij(�c), ρ(�c) and μ(�c).

4. Representative numerical examples

In this section we present numerical simulations of several multiphase flow problems in two dimensions to demonstrate 
the accuracy and effectiveness of the formulation and the algorithm developed in previous sections. These problems involve 
multiple fluid components with large density contrasts and large viscosity contrasts, and the simulation results will be 
compared with theoretical results or exact physical solutions for certain cases.

A comment on the normalization of physical variables and parameters is in order. As discussed in previous works [14,
17,18], the non-dimensionalized problem (governing equations, boundary/initial conditions) will retain the same form as 
the dimensional problem as long as the variables are normalized consistently. We choose a length scale L, a velocity scale 
U0, and a density scale �d . The values for these scales will be specified when individual test problems are investigated. 
In Table 1 we list the normalization constants for the physical variables encountered in this work. According to this table, 
for instance, the non-dimensional pairwise surface tension is given by σi j

�d U 2
0 L

. Hereafter all the physical variables have been 
appropriately normalized based on Table 1. All the variables in subsequent discussions are in non-dimensional forms unless 
otherwise specified.
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Table 2
Simulation parameter values for the convergence-rate tests.

Parameter Value Parameter Value

a, a1, a2, a3 π b1, b2, b3 π

A0 2.0 A1, A2, A3 1.0
ω0, ω1 1.0 ω2 1.2
ω3 0.8 η 0.1
ρ̃1 1.0 ρ̃2 3.0
ρ̃3 2.0 ρ̃4 4.0
μ̃1 0.01 μ̃2 0.02
μ̃3 0.03 μ̃4 0.04
σ12 6.236E − 3 σ13 7.265E − 3
σ14 3.727E − 3 σ23 8.165E − 3
σ24 5.270E − 3 σ34 6.455E − 3
m0 1.0E − 3 t f 0.1 or 0.2

ρ0 min(ρ̃1, . . . , ρ̃4) ν0 max
(

μ̃1
ρ̃1

, . . . ,
μ̃4
ρ̃4

)
J (temporal order) 2 Number of elements 2
�t (varied) Element order (varied)

4.1. Convergence rates

The goal of this subsection is to numerically demonstrate the spatial and temporal convergence rates of the method 
developed in Section 3 using a contrived analytic solution to the system of governing equations (26), (1b) and (27).

Consider a rectangular domain, 0 � x � 2 and −1 � y � 1, and a four-fluid mixture contained in this domain. We assume 
the following analytic expressions for the flow variables of this four-phase system,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = A0 sin(ax) cos(π y) sin(ω0t)

v = −(A0a/π) cos(ax) sin(π y) sin(ω0t)

P = A0 sin(ax) sin(π y) cos(ω0t)

c1 = 1

6
[1 + A1 cos(a1x) cos(b1 y) sin(ω1t)]

c2 = 1

6
[1 + A2 cos(a2x) cos(b2 y) sin(ω2t)]

c3 = 1

6
[1 + A3 cos(a3x) cos(b3 y) sin(ω3t)] ,

c4 = 1 − c1 − c2 − c3

(48)

where (u, v) are the two components of the velocity u. Ai and ωi (i = 0, . . . , 3), a, ai and bi (i = 1, 2, 3) are constant 
parameters, whose values are to be specified below. The above expressions for (u, v) satisfies the equation (1b). The external 
force f(x, t) in (26) and the source term di(x, t) (1 � i � N − 1) in (27) are chosen such that the analytic expressions in (48)
exactly satisfy the equations (26) and (27). The explicit expressions for f(x, t) and di(x, t) are provided in the Appendix F.

We impose the condition (23) for u and the conditions (28a) and (28b) for ci (1 � i � 3) on the domain boundaries, 
where the boundary velocity w(x, t) is chosen based on the analytic expressions given in (48) and the boundary source 
terms dai(x, t) and dbi(x, t) are chosen such that the analytic expressions in (48) satisfy the equations (28a) and (28b) on 
the boundary. The explicit expressions for dai(x, t) and dbi(x, t) are provided in the Appendix F. The initial conditions uin
and cin

i (1 � i � 4) are chosen based on the analytic expressions in (48) by setting t = 0.
To simulate the problem we discretize the domain using two equal-sized quadrilateral elements (domain partitioned in 

the x direction), and the element order is varied to test the spatial convergence. The numerical algorithm from Section 3 is 
employed to integrate in time the governing equations for this four-phase system from t = 0 to t = t f (t f to be specified 
later). Then the numerical solution and the exact solution as given by (48) at t = t f are compared, and the errors in the L2

norms for various flow variables are computed and recorded. The L2 error is specifically defined by

L2(φ) =
[∫

�
(φ − φex)

2d�∫
�

d�

]1/2

(49)

where � is the computational domain, φ denotes the numerical solution to any of the flow variables (velocity, pressure, 
volume fractions), and φex denotes the corresponding exact solution given in (48). Table 2 lists the physical and numerical 
parameters involved in the simulations of this problem.
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Fig. 1. Spatial and temporal convergence rates (4 fluid components): (a) L2 errors of various flow variables versus element order (with fixed �t = 0.001 and 
t f = 0.1) showing spatial exponential convergence rate. (b) L2 errors versus time step size (with fixed Element order 16 and t f = 0.2) showing temporal 
2nd-order convergence rate.

The first group of tests is to examine the spatial convergence rate of the method. We fix the final time at t f = 0.1 and 
the time step size at �t = 0.001. The element order is then varied systematically between 2 and 20. For each element order, 
the numerical solution at t = t f is then obtained and compared with the exact solution. Fig. 1(a) shows the L2 errors of the 
velocity, pressure and the four volume fractions as a function of the element order from this group of tests. The error curves 
approximately exhibit an exponential rate of decrease with increasing element order, before the element order reaches a 
certain value (10 or 12 for this case). This suggests an exponential convergence rate with respect to the element order. As 
the element order increases beyond about 12, the error curves essentially level off. The saturation is due to the fact that 
the temporal error becomes dominant as the element order becomes sufficiently large.

Fig. 1(b) summarizes results for a second group of tests. In these tests we have fixed the element order at 16 and the 
final time at t f = 0.2, and then varied the time step size systematically between �t = 0.1 and �t = 0.00078125. The figure 
shows the L2 errors of different flow variables as a function of �t . We observe a second-order convergence rate of the 
errors when �t becomes sufficiently small.

The above results suggest that the numerical method developed herein exhibits an exponential convergence rate in space 
and a second-order convergence rate in time, with the reduction-consistent and thermodynamically consistent formulation 
for multiple fluid components.

4.2. Two-phase capillary wave problem

The reduction-consistent and thermodynamically consistent formulation presented in Section 2 for N-phase systems, 
with N = 2, leads to a two-phase formulation that is different from the usual two-phase formulations (see e.g. [45,1,21]), 
because of the mij(�c) functions here. In this subsection we employ the benchmark two-phase capillary wave problem (see 
e.g. [21,22]) to test the physical accuracy of the current method for N = 2. Note that both the two-phase formulation and 
the numerical algorithm to be tested here are different from those of [21,22].

The problem setting is as follows. Consider two immiscible incompressible fluids contained in an infinite domain. The 
top half of the domain is occupied by the lighter fluid (fluid #1), and the bottom half is occupied by the heavier fluid (fluid 
#2). The gravity is assumed to be in the downward direction. The interface formed between the two fluids is perturbed 
from its horizontal equilibrium position by a small-amplitude sinusoidal wave form, and starts to oscillate at t = 0. The 
objective here is to study the motion of the interface over time. In [37] an exact time-dependent standing-wave solution 
to this problem was reported under the condition that the two fluids must have matched kinematic viscosities (but their 
densities and dynamic viscosities can be different). We will simulate the problem under this condition using the method 
developed herein for N = 2 and compare simulation results with the exact solution from [37].

The simulation setup is illustrated in Fig. 2(a). We consider the computational domain 0 � x � 1 and −1 � y � 1. The 
top and bottom sides of the domain are solid walls of neutral wettability. In the horizontal direction the domain and all 
variables are assumed to be periodic at x = 0 and x = 1. The equilibrium position of the fluid interface is assumed to 
coincide with the x-axis. The initial perturbed profile of the fluid interface is given by y = H0 cos(kw x), where H0 = 0.01
is the initial amplitude, λw = 1 is the wave length of the perturbation profile, and kw = 2π

λw
is the wave number. Note that 

the initial capillary amplitude H0 is small compared with the dimension of domain in the vertical direction. Therefore the 
effect of the walls at the domain top/bottom on the motion of the interface will be small.



S. Dong / Journal of Computational Physics 361 (2018) 1–49 17
Fig. 2. Capillary wave problem: (a) Computational domain and configuration. (b) Spectral element mesh of 400 quadrilateral elements.

Table 3
Simulation parameter values for the two-phase capillary wave problem.

Parameter Value Parameter Value

H0 0.01 λw 1.0

σ12 1.0 |gr | (gravity) 1.0

ρ̃1 1.0 μ̃1 0.01
μ̃2
ρ̃2

μ̃1
ρ̃1

ρ̃2 (varied)

μ̃2
μ̃1
ρ̃1

ρ̃2 η (varied)

m0 1.0E − 5 ρ0 min(ρ̃1, ρ̃2)

ν0 max
(

μ̃1
ρ̃1

,
μ̃2
ρ̃2

)
J (integration order) 2

�t (varied) Number of elements in mesh 400

Element order (varied)

We use the method presented in Section 3 to simulate this problem. The computational domain is discretized using a 
spectral element mesh as shown in Fig. 2(b), which consists of 400 quadrilateral elements (with 10 elements along the 
x direction and 40 elements along the y direction). The elements are uniform in the x direction, but are non-uniform 
and clustered about the region −0.012 � y � 0.012 in the y direction. There are 12 uniform elements within −0.012 �
y � 0.012 (with element size 0.002 in y direction). The element size increases gradually away from the region −0.012 �
y � 0.012, reaching a value 0.21 at the upper/lower boundaries. Because the fluid interface sweeps through the region 
−0.01 � y � 0.01, the ratio between the smallest interfacial thickness scale (η = 0.004, see below) employed in this test and 
the element size along the y direction is 2. The element order is varied to modify the spatial resolution of the simulations, 
and this will be specified below. The external body force in equation (26) is set to f = ρgr , where gr is the gravitational 
acceleration. The source terms in equation (27) are set to di = 0 (1 � i � N − 1). On the top/bottom walls, the boundary 
condition (23) with w = 0 is imposed for the velocity, and the boundary conditions (28a)–(28b) with dai = 0 and dbi = 0
(1 � i � N − 1) are imposed for the phase field variables. The initial velocity is set to zero, and the initial volume fractions 
are set as follows,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
c1 = 1

2

[
1 + tanh

y − H0 cos(kw x)√
2η

]
,

c2 = 1 − c1 = 1

2

[
1 − tanh

y − H0 cos(kw x)√
2η

]
.

(50)

We list in Table 3 the values for the physical and simulation parameters involved in this problem.
We have varied the element order, the time step size (�t) and the interfacial thickness scale (η) systematically in the 

simulations to ensure the convergence of the simulation results. Fig. 3 summarizes some of the test results with matched 
densities (ρ̃2/ρ̃1 = 1) for the two fluids. Fig. 3(a) compares the time histories of the capillary wave amplitude obtained 
with element orders ranging from 10 to 14 in the simulation. The history curves corresponding to different element orders 



18 S. Dong / Journal of Computational Physics 361 (2018) 1–49
Fig. 3. Two-phase capillary wave (matched density ρ̃2/ρ̃1 = 1): (a) Effect of spatial resolution (element order) on the capillary amplitude history. (b) Effect 
of time step size �t on the capillary amplitude history. (c) Effect of interfacial thickness (η) on the capillary amplitude history. (d) comparison between the 
current simulation (solid curve) and Prosperetti’s [37] exact theoretical solution (dashed curve). In (a), results are obtained with η = 0.005, �t = 2.5e − 5
for element orders 10 to 13 and �t = 1.0e − 5 for element order 14. In (b), η = 0.005, element order is 12. In (c), element order is 12, �t = 2.5e − 5. 
In (d), the simulation result corresponds to η = 0.004, element order 12, and �t = 2.5e − 5. In all four plots, m0 = 1.0e − 5.

overlap with one another, suggesting independence of the results with respect to the grid resolutions. Fig. 3(b) is a com-
parison of the capillary amplitude histories computed using several time step sizes. The results indicate the convergence 
with respect to �t . Fig. 3(c) shows the time histories of the capillary amplitude obtained with the interfacial thickness 
scale parameter ranging from η = 0.02 to η = 0.004. Note that the simulations become much more challenging when η
becomes small, taxing the grid resolution and the time step size. We initially observe some influence on the amplitude 
and the phase of the history curves as η decreases from 0.02 to 0.01. As η decreases further to η = 0.0075 and below, on 
the other hand, the history curves essentially overlap with one another and little difference can be observed among them, 
suggesting a convergence of the results with respect to η. In Fig. 3(d) we compare the capillary amplitude history from the 
current simulation (corresponding to η = 0.004) and the exact theoretical solution given by [37]. The history curve from the 
simulation essentially overlaps with the theoretical curve, attesting to the physical accuracy of the simulation results. The 
above results are obtained with a mobility parameter m0 = 1e − 5. Some other values for m0 have also been considered. 
The tests suggest that the computation would be unstable if m0 is too large (larger than a certain value). With decreasing 
m0 values, the simulation tends to require a smaller interfacial thickness η value for stability or accuracy, which in turn 
increases the computational challenge and demand.

To investigate the density ratio effect on the motion of the fluid interface, the density and dynamic viscosity of the 
second fluid (ρ̃2 and μ̃2) have been varied systematically while the relation μ̃2/ρ̃2 = μ̃1/ρ̃1 is maintained as required by 
the exact solution of [37]. In Fig. 4 we show the time histories of the capillary amplitude corresponding to three larger 
density ratios ρ̃2/ρ̃1 = 10, 100 and 1000 from our simulations, and compare them with the exact solutions from [37]. 
The simulation results correspond to an element order 12, time step size �t = 5.0e − 5, interfacial thickness η = 0.004, 
and m0 = 1.0e − 5 in the simulations. The history curves from the simulations essentially overlap with those of the exact 



S. Dong / Journal of Computational Physics 361 (2018) 1–49 19
Fig. 4. Two-phase capillary wave (larger density ratios): Comparison of capillary amplitude as a function of time between current simulations (solid curves) 
and the exact solutions [37] (dashed curves) for density ratios ρ̃2/ρ̃1 = 10 (a), 100 (b), and 1000 (c). The inset of plot (c) shows a magnified view of a 
section of the curves.

solutions. The inset of Fig. 4(c) is a zoomed-in view of the curves for the density ratio ρ̃2/ρ̃1 = 1000, showing some but 
small difference between the simulation and the theoretical solution. These comparisons suggest that our simulation results 
are in good agreement with the physical solution for the whole range of density ratios considered here.

The two-phase capillary wave problem and in particular the comparisons with Prosperetti’s exact solution for this prob-
lem demonstrate that the reduction-consistent formulation and the numerical method developed herein (with N = 2) have 
produced physically accurate results for a wide range of density ratios (up to density ratio 1000 tested here) and at large 
density ratios. This provides a reference, for two fluid phases, when the method is subject to subsequent tests involving 
multiple fluid components.

4.3. Three-/four-phase capillary wave with absent fluid components

In this subsection we consider a three-phase system and a four-phase system, but with some fluid components absent, 
so that they are physically equivalent to a system containing a smaller number of fluids. We employ a setting similar to 
that of Section 4.2, so these three-phase and four-phase problems are physically equivalent to the two-phase capillary wave 
problem. This allows us to compare the three-phase and four-phase simulation results with Prosperetti’s exact physical 
solution [37] for two-phase problems.

More specifically, we consider the same computational domain and the same mesh as in Section 4.2, as shown in 
Fig. 2. Consider a system of three immiscible incompressible fluids contained in this domain, but with fluid #2 absent. So this 
three-phase system is physically equivalent to a two-phase system containing fluid #1 and fluid #3. Similar to in Section 4.2, 
the interface between fluid #1 and fluid #3 is perturbed by a sinusoidal wave form of a small amplitude (H0 = 0.01) from 
its equilibrium position, and our goal is to study the motion of the interface over time. In the three-phase simulations, we 
employ periodic conditions for all flow variables in the horizontal direction. On the top/bottom walls we impose the no-slip 
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Table 4
Simulation parameter values for the three-phase and four-phase capillary wave problems.

Parameter Value Parameter Value

H0 0.01 λw 1.0

σi j (1 � i �= j � 4) 0.1 |gr | (gravity) 0.1

ρ̃1 1.0 μ̃1 0.01
μ̃2
ρ̃2

μ̃1
ρ̃1

ρ̃2 (varied)
μ̃3
ρ̃3

(three-/four-phase) μ̃1
ρ̃1

μ̃4
ρ̃4

(four-phase) μ̃1
ρ̃1

ρ̃3 (three-/four-phase) ρ̃2 ρ̃4 (four-phase) ρ̃2

μ̃2
μ̃1
ρ̃1

ρ̃2 μ̃3 (three-/four-phase) μ̃1
ρ̃1

ρ̃3

μ̃4 (four-phase) μ̃1
ρ̃1

ρ̃4 η 0.005 (or varied)

m0 1.0E − 4 ρ0 min(ρ̃1, ρ̃2, ρ̃3, ρ̃4)

ν0 max
(

μ̃1
ρ̃1

,
μ̃2
ρ̃2

,
μ̃3
ρ̃3

,
μ̃4
ρ̃4

)
J (integration order) 2

�t 1E − 4 Number of elements in mesh 400

Element order 10

condition, i.e. equation (23) with w = 0, for the velocity and the boundary conditions (28a)–(28b) with dai = 0 and dbi = 0
(i = 1, 2, 3) for the volume fractions. The source terms in equation (27) are set to di = 0 (1 � i � N − 1). The initial velocity 
is zero, and the initial volume fractions are set to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1 = 1

2

[
1 + tanh

y − H0 cos(kw x)√
2η

]
,

c2 = 0,

c3 = 1 − c1 − c2 = 1

2

[
1 − tanh

y − H0 cos(kw x)√
2η

]
.

(51)

Note that the initial volume fraction of fluid #2 is c2 = 0 (absent fluid). Therefore, the solution to this three-phase problem 
physically consists of the exact solution given by [37] for fluid #1 and fluid #3 and c2(x, t) = 0 for fluid #2.

In addition to the above three-phase problem, we also consider a four-phase system contained in this domain, in which 
fluid #2 and fluid #3 are absent. Therefore this four-phase system is physically equivalent to a two-phase system that consists 
of fluid #1 and fluid #4 only. We consider the motion of the interface between fluid #1 and fluid #4 after a perturbation 
from its equilibrium horizontal position, similar to in Section 4.2. The boundary conditions are set in an analogous way to 
the three-phase problem. We employ a zero initial velocity and the following initial volume fraction distributions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = 1

2

[
1 + tanh

y − H0 cos(kw x)√
2η

]
,

c2 = 0,

c3 = 0,

c4 = 1 − c1 − c2 − c3 = 1

2

[
1 − tanh

y − H0 cos(kw x)√
2η

]
.

(52)

Note that c2 and c3 are both identically zero initially, so physically they should be zero over time. In Table 4 we have listed 
the values of the physical and simulation parameters for the above three-phase and four-phase capillary-wave problems 
considered here.

We have varied the interfacial thickness η to look into its effect on the simulation result. Fig. 5 compares the time 
histories of the capillary amplitude of the interface formed between fluid #1 and fluid #4 for the four-phase capillary 
wave problem with ρ̃i = 1 (i = 1, 2, 3, 4), obtained using η = 0.01, 0.0075 and 0.005 in the simulations. Note that the 
pairwise surface tension values σi j and the gravity value employed here are different from those of Section 4.2, and one 
can observe that this has a notable effect on the period and attenuation of the capillary wave history (e.g. compare Figs. 5
and 3(a)). We observe from Fig. 5 that there is little difference in the simulation results corresponding to these different 
η values, suggesting the independence of the results with respect to η. The simulation results reported below for the 
three-/four-phase capillary wave problem are obtained with η = 0.005.

Let us next compare the simulations for the three-/four-phase capillary wave problems and Prosperetti’s exact solu-
tions [37] to study the accuracy of the simulation results. We have varied the fluid density values to look into their effect 
on the simulation results. Fig. 6 shows a comparison of the capillary amplitude history (of the interface formed between 
fluids #1 and #3) between the simulation and the exact solution from [37] for the three-phase capillary wave problem, 
corresponding to two density ratios ρ̃2 = ρ̃3 = 10 and ρ̃2 = ρ̃3 = 100. Fig. 7 is a comparison of the capillary amplitude 
ρ̃1 ρ̃1 ρ̃1 ρ̃1
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Fig. 5. Effect of interfacial thickness η on the capillary amplitude as a function of time for the four-phase capillary wave problem with two absent fluids, 
where ρ̃i = 1 (i = 1, . . . , 4).

Fig. 6. Three-phase capillary wave problem with one absent fluid component: Comparison of capillary amplitude versus time between simulations and the 
exact solutions [37], corresponding to fluid densities: (a) ρ̃1 = 1, ρ̃2 = ρ̃3 = 10; (b) ρ̃1 = 1, ρ̃2 = ρ̃3 = 100. In these simulations the second fluid is absent.

Fig. 7. Four-phase capillary wave problem with two absent fluid components: comparison of capillary amplitude versus time between simulations and the 
exact solutions [37] with fluid densities: (a) ρ̃1 = ρ̃2 = ρ̃3 = ρ̃4 = 1; (b) ρ̃1 = 1, ρ̃2 = ρ̃3 = ρ̃4 = 10. Fluid two and fluid three are absent in the simulations.
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Fig. 8. Time histories of volume-fraction errors of the absent fluids for the three-/four-phase capillary wave problems: (a) three-phase problem with one 
absent fluid, corresponding to ρ̃1 = 1, ρ̃2 = ρ̃3 = 10; (b) four-phase problem with two absent fluids, corresponding to ρ̃1 = 1, ρ̃2 = ρ̃3 = ρ̃4 = 10.

histories between the simulation of the four-phase capillary wave problem and the exact solution [37], corresponding to 
density ratios ρ̃2

ρ̃1
= ρ̃3

ρ̃1
= ρ̃4

ρ̃1
= 1 and ρ̃2

ρ̃1
= ρ̃3

ρ̃1
= ρ̃4

ρ̃1
= 10. It can be observed that the history curves from the simulations 

almost exactly overlap with those of the physical solutions. This indicates that our simulations of the three- and four-phase 
capillary wave problems with absent fluid components have captured the motion of the fluid interface accurately.

In the three-phase and four-phase capillary wave problems considered here, the physical solution for the absent fluids 
corresponds to a zero volume-fraction field. In the simulations, however, owing to the numerical errors the computed 
volume-fraction fields corresponding to the absent fluids will not be exactly zero, but contain very small yet non-zero 
values. The results in Fig. 8 demonstrate this point. Fig. 8(a) shows time histories of the maximum error, maxx∈� |c2(x, t)|, 
and the root-mean-squared (RMS) error, 

√
1

V�

∫
�

|c2(x, t)|2dx (V� = ∫
�

dx denoting the volume of domain �), of the volume 

fraction of fluid #2 (absent fluid) for the three-phase capillary wave problem with density ratios ρ̃2
ρ̃1

= ρ̃3
ρ̃1

= 10. It is observed 
that the errors increase initially and gradually level off over time. The maximum error approximately levels off on the order 
of magnitude 10−11, and the RMS error levels off at a level 10−14. Fig. 8(b) shows time histories of the maximum errors and 
the RMS errors of the volume fractions of fluid #2 and fluid #3 (the absent fluids) for the four-phase capillary wave problem 
with density ratios ρ̃2

ρ̃1
= ρ̃3

ρ̃1
= ρ̃4

ρ̃1
= 10. We observe a general behavior in the errors similar to that of the three-phase case. 

The curves for the maximum and RMS errors of fluid #2 basically overlap with those for fluid #3. The maximum error 
curves appear to level off on the order of magnitude 10−11 and the RMS error curves appear to level off on the order of 
magnitude 10−14.

4.4. Floating liquid lens

In this subsection we employ the so-called floating liquid lens problem to test the method developed herein. The basic 
goal is to simulate and study the equilibrium configuration of an oil drop floating on the air-water interface. There exist 
theoretical results about such three-phase problems in the literature, in particular, quantitative relations about the oil-drop 
thickness expressed in terms of the other physical parameters have been developed for the case when the gravity is domi-
nant by e.g. Langmuir and de Gennes [33,11]. We will compare our simulation results with the Langmuir-de Gennes theory 
to evaluate the accuracy of our method. The floating liquid lens problem has also been considered in some of our previous 
works (see e.g. [14,17]). It should be noted that the method to be tested here, in terms of both the formulation and the 
algorithm, is very different from those of [14,17].

4.4.1. Floating liquid lens as a three-phase problem
We first simulate the floating lens problem in the natural way, by treating it as a three-phase system consisting of air, 

water and oil. Specifically, we consider the domain sketched in Fig. 9, −L � x � L and 0 � y � 4
5 L, where L = 4 cm. The top 

and bottom sides of the domain are solid walls, and in the horizontal direction the domain is periodic at x = ±L. The walls 
are of neutral wettability, i.e. if any fluid interface intersects the top or bottom walls the contact angle at the wall will be 
900. The top half of the domain is filled with air, and the bottom half is filled with water. An oil drop, initially circular with 
a radius R0 = 1

5 L, is held at rest on the water surface, and its center is located at xc = (xc, yc) = (0, 25 L). The gravitational 
acceleration gr is assumed to be in the −y direction. At t = 0 the system is released and evolves due to the interactions 
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Fig. 9. Floating liquid lens: problem setup and initial configuration.

Table 5
Physical property values of air, water and oil.

Density [kg/m3]: air – 1.2041 water – 998.207 oil – 577
Dynamic viscosity [kg/(m · s)]: air – 1.78 × 10−5 water – 1.002 × 10−3 oil – 9.15 × 10−2

Surface tension [kg/s2]: air/water – 0.0728 air/oil – 0.055 oil/water – 0.04
Gravity [m/s2]: varied from 0 to 9.8

Table 6
Simulation parameter values for air/water/oil three-phase 
floating lens problem.

Parameters Values

λi j given by equation (19)

η/L 0.01 and 0.0075

m0�dU0/L 10−8

U0�t/L 1.0 × 10−5

ρ0 min(ρ̃1, ρ̃2, ρ̃3)

ν0 5 max
(

μ̃1
ρ̃1

,
μ̃2
ρ̃2

,
μ̃3
ρ̃3

)
K0 given by equation (33)

S
√

4γ0
K0�t

α computed by equation (37)

J (temporal order) 2

Number of elements 360

Element order 9 ∼ 13 (mostly 13)

among the three surface tensions (air/water, air/oil, water/oil) and the gravity, reaching an equilibrium state eventually. The 
objective of this problem is to study the equilibrium configuration of this three-phase system.

The physical properties (including the densities, viscosities, and surface tensions) of air, water and oil employed in this 
problem are listed in Table 5. We choose L as the length scale, the velocity scale as U0 = √

gr0L where gr0 = 1 m/s2, and 
the air density as the density scale �d . The physical variables and parameters are then normalized according to Table 1. In 
the following simulations water, oil and air are assigned as the first, the second, and the third fluid, respectively.

We employ the method described in Section 3 to simulate this problem. The flow domain is discretized using a mesh of 
360 equal-sized quadrilateral elements, with 30 elements along the horizontal direction and 12 elements along the vertical 
direction. The element orders are varied between 9 and 13, but the majority of results reported below are computed 
using an element order 13 within each element. The source terms in the phase field equations (27) are set to di = 0
(i = 1, . . . , N − 1). On the top/bottom walls the no-slip condition, equation (23) with w = 0, is imposed for the velocity, 
and the boundary conditions (28a)–(28b) with dai = 0 and dbi = 0 are imposed for the volume fractions. In the horizontal 
direction all flow variables are set to be periodic at x = ±L. The initial velocity is set to zero, and the initial volume fraction 
distributions are set as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1 = 1

2

[
1 − tanh

(
y − yc√

2η

)]
1

2

[
1 + tanh

( |x − xc| − R0√
2η

)]

c2 = 1

2

[
1 − tanh

( |x − xc| − R0√
2η

)]
c3 = 1 − c1 − c2.

(53)

The simulation parameter values are summarized in Table 6.
We observe that a smooth field for the initial volume fractions (such as those given above) is important for the current 

method. Note that in the current formulation mij(�c) are functions dependent on the volume fraction distributions. This 
places a more stringent requirement on the smoothness of the initial volume fractions. Since the initial volume fraction 
distributions are unknown physically and must be prescribed, any discontinuity in the prescribed initial volume-fraction 
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Fig. 10. Floating liquid lens (gravity |gr | = 0.5 m/s2): (a) Contour levels ci = 0.4 and 0.6 (i = 1, 2, 3), and the inset shows a magnified view of the 3-phase 
line region. Profiles of the volume fractions ci (i = 1, 2, 3) along the centerline x = 0 (b) and along the vertical line x = 0.6 (c).

distributions will affect the dynamics and may influence the time to reach the equilibrium state. For example, in [14] some 
Heaviside step functions are involved in the prescribed initial volume fractions for the floating liquid lens problem, inducing 
discontinuities in the distributions. Those initial volume-fraction distributions do not work well with the current method.

We first look into the distribution characteristics of different fluids within the domain. Fig. 10(a) shows two contour 
levels ci = 0.4 and ci = 0.6 (i = 1, 2, 3) of the three volume fractions for the equilibrium state of this three-phase system 
with a gravitational acceleration 0.5 m/s2. Note that c1, c2 and c3 correspond to water, oil and air, respectively. The result 
is computed using an interfacial thickness scale η/L = 0.01 and an element order 11. The inset of Fig. 10(a) is a zoomed-in 
view around the three-phase line region. It can be observed that, along the air/oil interface and away from the three-phase 
line region, the contours c3 = 0.6 and c2 = 0.4 coincide with each other and the contours c3 = 0.4 and c2 = 0.6 coincide 
with each other. This is consistent with the intuition as water is not present (i.e. c1 = 0) on the air-oil interface away from 
the three-phase region. Similar distribution characteristics can be observed on the water/oil and air/water interfaces away 
from the three-phase line region. Fig. 10(b) shows profiles of the three volume fractions along the centerline of the domain 
(x = 0). One can observe that in the bulk of the water region (oil region, air region) c1 = 1 (resp. c2 = 1, c3 = 1) while the 
other two volume fractions are zeros. At the water/oil interface c1 decreases from the unit value to zero and c2 increases 
from zero to the unit value, while c3 = 0 in this region. At the air/oil interface c2 decreases from the unit value to zero and 
c3 increases from zero to the unit value, while c1 = 0 in this region. Fig. 10(c) shows profiles of the three volume fractions 
along another vertical line x/L = 0.6. Since only the air and water exist in this region, one observes that c2 = 0 and that c1
transitions to c3 as the air/water interface is crossed.

Let us now look into the equilibrium configuration of this three-phase system. The physics of floating liquid lenses was 
explained in [33,11]. The equilibrium shape of the oil drop is determined by the interplay of the three pairwise surface 
tensions and the gravity, and it is also affected by the three densities. If the surface tension effects dominate (e.g. when 
the oil drop is small), the equilibrium drop shape comprises two circular caps in two dimensions (or two spherical caps 
in three dimensions). On the other hand, if the gravity effect dominates (e.g. when the oil drop is large) the oil forms a 
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Fig. 11. Floating liquid lens: equilibrium oil-drop profiles on air/water interface with (a) no gravity, (b) |gr | = 2 m/s2, and (c) |gr | = 7.5 m/s2. Fluid interfaces 
are visualized by contour levels ci = 1/2 (i = 1, 2, 3). In (a) dashed and dashed-dot curves are part of two circles.

puddle at equilibrium. To determine which effect dominates, one can compare the drop size with the three capillary lengths 
associated with the three fluid interfaces; see [11] for details.

We have varied the magnitude of the gravitational acceleration systematically, and simulated the equilibrium configu-
rations of this system corresponding to these gravity values. In Fig. 11 we show the equilibrium profiles of the oil drop 
corresponding to gravity: |gr | = 0, 2 m/s2 and 7.5 m/s2. The fluid interfaces are visualized by the contour levels ci = 1/2
(i = 1, 2, 3). These results correspond to an interfacial thickness scale η/L = 0.0075 and an element order 13 within each 
element in the simulations. In these plots one can observe a small star-shaped region around the three-phase line (where 
the three fluid regions intersect), which is due to the fact that within this region no fluid has a volume fraction larger than 
1/2. In Fig. 11(a) (zero gravity), we have also shown two reference circles (dashed and dashed-dot curves), which overlap 
with the upper and lower pieces of the oil-drop profile. This indicates that with zero gravity (surface tensions dominant) 
the computed oil-drop profile indeed consists of two circular caps, consistent with the theory [11]. With increasing gravity 
the oil lens tends to spread out on the water surface (Fig. 11(b)). With a gravity |gr | = 7.5 m/s2 the oil forms a puddle 
on the water surface under the conditions considered here, with flat upper and lower surfaces (Fig. 11(c)). The simulation 
results are qualitatively consistent with the Langmuir-de Gennes theory [33,11].

We next show some quantitative comparisons with the Langmuir-de Gennes theory. Following [14], we define the oil-
drop/-puddle thickness as the largest distance between the upper and lower boundaries of the equilibrium drop/puddle 
profile along the vertical direction. When the gravity is dominant, the asymptotic thickness of the oil puddle (denoted by 
ec) is given by the following expression [11]

ec =
√

2(σao + σow − σaw)ρw

ρo(ρw − ρo)|gr | (54)
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Fig. 12. Comparison of oil-drop/-puddle thickness as a function of the gravity between current simulations and the de Gennes theory [11].

where ρw and ρo are the water and oil densities respectively, σaw , σao and σow are the air/water, air/oil and oil/water 
surface tensions respectively, and |gr | is the magnitude of the gravitational acceleration. We have computed the oil-
drop/-puddle thickness corresponding to different gravity magnitudes. In Fig. 12 we plot the oil-drop/-puddle thickness 
as a function of the normalized gravity |gr |

U 2
0/L

= |gr |
gr0

where gr0 = 1 m/s2. The symbols denote results from current simula-

tions, and the dashed curve denotes the relation given by equation (54). The simulation results correspond to η/L = 0.0075
and element order 13 in the simulations. It is observed that when the gravity becomes large (|gr | = 5 m/s2 or larger) the 
puddle thickness values from the simulations are in good agreement with the asymptotic puddle thickness values from the 
Langmuir-de Gennes theory [11].

4.4.2. Floating liquid lens as a four-phase problem with one absent fluid
The floating liquid lens problem can also be physically considered as a multiphase system consisting of more than three 

fluid components, in which however only the three fluids air, water and oil are present. We will next treat and simulate 
the floating liquid lens problem as a four-phase system, comprising air, water, oil, and another liquid referred to as F A , in 
which the liquid F A is absent however. We assume that these four fluids are mutually immiscible. Thanks to the reduction 
consistency of our formulation, we expect that the simulation of this four-phase problem using the method developed 
herein will produce the same results as the three-phase simulation.

In addition to the physical parameters given in Table 5 for the properties of air/water/oil, we assume the following 
physical parameters involving F A :⎧⎨

⎩
F A density : 100 kg/m3

F A dynamic viscosity : 9.0 × 10−3 kg/(m · s)
Surface tension [kg/s2] : air/F A − 0.045, water/F A − 0.05, oil/F A − 0.052.

We assign water, oil, F A , and air as the first, the second, the third, and the fourth fluid in the simulations. We employ 
the same length scale, velocity scale and the density scale as in the three-phase simulations for the normalization of the 
problem.

The flow domain and the problem setting will be the same as those of the three-phase simulations. We use the same 
spectral-element mesh and the same boundary conditions for the four-phase simulations. The initial velocity is zero, and 
the initial volume fractions for the four-phase simulation are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = 1

2

[
1 − tanh

(
y − yc√

2η

)]
1

2

[
1 + tanh

( |x − xc| − R0√
2η

)]

c2 = 1

2

[
1 − tanh

( |x − xc| − R0√
2η

)]
c3 = 0

c4 = 1 − c1 − c2 − c3 = 1 − c1 − c2

(55)

where yc , R0, xc are the same as those in the three-phase simulations. Note that c3 corresponds to the liquid F A . It is set 
to zero (absent) initially, and so physically F A should remain absent over time.
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Fig. 13. Floating liquid lens simulated as a four-phase problem with one absent fluid (gravity 0.5 m/s2): (a) Equilibrium configuration visualized by con-
tour levels ci = 1/2 (i = 1, 2, 4). (b)–(d): Profiles of volume fractions ci (i = 1, 2, 3, 4) along the vertical lines x = 0 (b), x = 0.351 (c), and x = 0.6 (d). 
c3 corresponds to the absent fluid.

We consider only one case for the four-phase simulations, with a gravity 0.5 m/s2, and employ the following simulation 
parameters: η/L = 0.01, and an element order 11 for all elements. The rest of the simulation parameters are the same 
as given by Table 6. We will compare the four-phase simulation results with the three-phase simulations using the same 
simulation parameter values.

Fig. 13(a) shows the equilibrium configuration of the system (corresponding to a gravity 0.5 m/s2) from the four-phase 
simulations. The fluid interfaces are visualized by the contour lines ci = 1

2 (i = 1, 2, 4). Figs. 13(b)–(d) show the profiles of 
the four volume fractions ci (i = 1, 2, 3, 4) along three vertical lines located at x = 0, x = 0.351 and x = 0.6. Note that the 
vertical line x = 0.351 passes through the right star-shaped region around the three-phase line in Fig. 13(a). We observe 
that the distributions for c1 (water), c2 (oil) and c4 (air) are very similar to those from the three-phase simulations (see 
e.g. Fig. 10(b)–(c)). The volume fraction c3 (liquid F A ) is practically zero, with a maximum value on the order of magnitude 
10−13 in the entire domain.

In Fig. 14 we compare the volume-fraction profiles of the oil (c2) obtained from the four-phase simulation (with one 
absent fluid) and from the three-phase simulation, computed under the same simulation parameter values. The four plots 
correspond to the profiles along several vertical lines located at x = 0, 0.2, 0.351 and 0.6. The profiles from the four-phase 
simulation (solid curves) almost exactly overlap with those from the three-phase simulation (dashed curves), suggesting 
that the four-phase simulation (with one absent fluid) has produced the same results as the three-phase simulation for the 
floating liquid lens problem.

4.5. Dynamics of a four-phase problem

In this subsection we study a dynamic problem involving four fluid components as another test for the method developed 
in this work. The problem setting is illustrated by Fig. 15(a). We consider a rectangular domain −L/2 � x � L/2 and 0 �
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Fig. 14. Comparison of volume-fraction profiles of the oil (gravity 0.5 m/s2) simulated as a three-phase problem and as a four-phase problem with one 
absent fluid, along vertical lines located at (a) x = 0, (b) x = 0.2, (c) x = 0.351, (d) x = 0.6.

y � 1.6L, where L = 2 cm, and four immiscible incompressible fluids contained in this domain: air, water, liquid “F1”, and 
liquid “F2”. F1 and F2 are both heavier than air and lighter than water. The domain is bounded by two solid walls of neutral 
wettability on the top and bottom sides, and is periodic in the horizontal direction. The gravitational acceleration gr is in 
the −y direction. The top half of the domain is initially filled with air, and the bottom half is filled with water. A drop of 
the liquid F1, initially circular with a diameter 0.3L, is suspended in the air and held at rest. A drop of the liquid F2, initially 
circular with a diameter of 0.3L also, is trapped in the water and held at rest. The centers of the two drops are located at{

xF 1 = (xF 1, yF 1) = (−0.05L,1.3L) (F1 drop)

xF 2 = (xF 2, yF 2) = (0.05L,0.2L) (F2 drop)

At t = 0, the two liquid drops are released, and they fall through the air and rise through the water, and impact the water 
surface. Our goal is to study this dynamic process.

The values for the physical properties of the four fluid components employed in this problem are listed in Table 7, 
including the densities, dynamic viscosities, pair-wise surface tensions and the gravity. We assign the air, water, F1 and F2 
as the first, the second, the third and the fourth fluid in the simulations, respectively. We choose the air density as the 
density scale �d , L as the length scale, and U0 = √

gr0L as the velocity scale, where gr0 = 1 m/s2. All the variables are then 
normalized according to Table 1. The source terms in the phase field equations (27) are set to di = 0 (1 � i � 3).

We discretize the domain using a spectral element mesh of 1440 quadrilateral elements of equal sizes, with 30 elements 
along the x direction and 48 elements along the y direction. An element order 9 is used in the simulations for all elements. 
On the top/bottom walls the no slip condition, equation (23) with w = 0, is imposed on the velocity, and the boundary 
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Fig. 15. Temporal sequence of snapshots of fluid interfaces, visualized by the volume-fraction contours ci = 1/2 (i = 1, . . . , 4), showing two fluid drops 
impacting water surface (4 fluid components): (a) t = 0.072, (b) t = 0.198, (c) t = 0.27, (d) t = 0.31, (e) t = 0.41, (f) t = 0.538, (g) t = 0.614, (h) t = 0.702, 
(i) t = 0.79, (j) t = 0.862, (k) t = 0.934, (l) t = 1.01.

Table 7
Physical parameter values for the air/water/F1/F2 four-phase problem.

Density [kg/m3]: air – 1.2041 water – 998.207 F1 – 870 F2 – 50
Dynamic viscosity [kg/(m · s)]: air – 1.78E − 5 water – 1.002E − 3 F1 – 0.0915 F2 – 0.01
Surface tension [kg/s2]: air/water – 0.0728 air/F1 – 0.055 air/F2 – 0.06

water/F1 – 0.044 water/F2 – 0.045 F1/F2 – 0.048
Gravity [m/s2]: 9.8

conditions (28a) and (28b) with dai = 0 and dbi = 0 are imposed on the volume fractions ci (1 � i � 3). Periodic conditions 
are employed for all flow variables at x = ±L/2. We set the initial velocity to zero, and the initial volume fractions to the 
following functions:
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Table 8
Simulation parameter values for the air/water/F1/F2 four-
phase problem.

Parameters Values

λi j computed by equation (19)

η/L 0.005

m0�dU0/L 10−8

U0�t/L 1.0 × 10−6

ρ0 min(ρ̃1, ρ̃2, ρ̃3, ρ̃4)

ν0 10 max
(

μ̃1
ρ̃1

,
μ̃2
ρ̃2

,
μ̃3
ρ̃3

,
μ̃4
ρ̃4

)
K0 computed by equation (33)

S
√

4γ0
K0�t

α computed by equation (37)

J (temporal order) 2

Number of elements 1440

Element order 9

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = 1

2

(
1 + tanh

y − yw√
2η

)[
1 − 1

2

(
1 − tanh

|x − xF 1| − R0√
2η

)]

c2 = 1

2

(
1 − tanh

y − yw√
2η

)[
1 − 1

2

(
1 − tanh

|x − xF 2| − R0√
2η

)]

c3 = 1

2

(
1 − tanh

|x − xF 1| − R0√
2η

)

c4 = 1 − c1 − c2 − c3

(56)

where yw = 0.8L is the y coordinate of the initial water surface, and R0 = 0.15L is the initial radius of the F1 and F2 drops. 
Table 8 lists the values of the simulation parameters for this problem.

Let us look into the dynamics of this four-phase system. Fig. 15 shows a temporal sequence of snapshots of the fluid 
interfaces of the system. The interfaces are visualized by the contour lines of the volume fractions ci = 1

2 (i = 1, . . . , 4). From 
Figs. 15(a)–(c), we observe that as the system is released the F1 drop falls rapidly through the air, with little deformation 
in this process. But as the F1 drop approaches the water surface just before the impact (Fig. 15(c)), a depression on the 
water surface and a deformation of the lower side of the F1 drop can be clearly noticed. At the same time, the F2 drop 
rises through the water at a much slower speed. The deformation of the F2 drop is substantial, and its shape resembles a 
circular “cap” (Figs. 15(b)–(c)). Subsequently, the falling F1 drop impacts the water, causing a ripple on the water surface 
(Fig. 15(d)). It can be observed that the F1 drop has trapped a thin cushion of air between its underside and the water 
surface (Fig. 15(d)). The impact causes the F1 drop to deform severely, and it forms a pool of the F1 liquid floating on 
the surface of water (Fig. 15(e)–(h)). The air trapped between the F1 drop and the water surface forms a small air bubble 
at the underside of the pool of F1 fluid (Fig. 15(e)–(l)). As the F2 drop rises further and approaches the pool of F1 liquid 
that now covers a portion of the water surface, it experiences significant deformation and its shape has become highly 
irregular (Fig. 15(d)–(e)). Subsequently, it can be observed from Figs. 15(f)–(j) that the interaction between the F1 fluid and 
the F2 drop appears to cause both fluids to move sideways away from each other while the F2 drop rises further. The F2 
drop appears to glide past the pool of F1 fluid (Figs. 15(g)–(i)), and rises in an oblique direction toward the open surface 
of water (Figs. 15(j)–(l)). It can be observed that the pool of F1 fluid experiences significant deformations in this process 
(Figs. 15(g)–(l)).

The dynamical features of the flow can be further illustrated with the velocity distributions. Fig. 16 is a temporal se-
quence of snapshots of the velocity fields at the identical time instants as those of Fig. 15. For clarity the velocity vectors 
have been plotted on every ninth quadrature point in each direction within each element. Figs. 16(a)–(c) indicate that the 
falling F1 drop has induced a strong velocity field in the air. The rising F2 drop also induces a flow field inside the water, 
but it is much weaker. Note that the velocity field inside the F1 drop is essentially uniform, and the velocity inside the 
F2 drop appears also quite coherent. Prior to the impact of the F1 drop on the water surface, the air between the drop 
and water has been squeezed out, forming a strong lateral air flow just above the water surface. Upon impact, a pair of 
strong vortices forms in the air not far from the water surface and the F1 fluid (Figs. 16(d)–(e)). These vortices then travel 
upward in the air and gradually die down (Figs. 16(e)–(i)). Simultaneously, the rising F2 drop is observed to induce a pair 
of vortices behind in the water (Figs. 16(d)–(h)). The interaction between the rising F2 drop and the pool of F1 fluid has 
induced intricate and complicated velocity distributions near the water surface (Figs. 16(f)–(l)).

Finally, let us briefly look into the computational cost of our solver. With this four-phase problem, we have monitored the 
wall-clock times spent in solving the phase field equations and the momentum equations of our algorithm on four cores (or 
four cpus) of a Linux cluster (two 10-core Intel Xeon-E5 processors and 64 GB memory per node). Our code is parallelized 
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Fig. 16. Temporal sequence of snapshots of the velocity fields (4 fluid components): (a) t = 0.072, (b) t = 0.198, (c) t = 0.27, (d) t = 0.31, (e) t = 0.41, 
(f) t = 0.538, (g) t = 0.614, (h) t = 0.702, (i) t = 0.79, (j) t = 0.862, (k) t = 0.934, (l) t = 1.01. Velocity vectors are plotted on every ninth quadrature points 
in each direction within each element.

Table 9
Breakdown of computation time per time step (on 4 cpus) for the air/water/F1/F2 four-phase problem.

Solving phase-field equations Solving momentum equations Total

Wall time/step (seconds) 0.33 0.29 0.62
Percentage of computation time 53% 47% 100%

using message passing interface (MPI), and the wall-clock time is obtained using the timing routine “MPI_Wtime()” available 
from the MPI library. In Table 9 we have listed the wall-time numbers (in seconds) per time step spent on the momentum 
equations and on the phase field equations, as well as the total time per step. The percentage of computation time for 
solving these equations is also given in the table. Note that (N − 1) phase field equations are solved numerically and the 
cost of the phase-field solve scales roughly linearly with respect to N . With four fluid components (N = 4), the cost for 
solving the phase field equations is close to (slightly larger than) that for solving the momentum equations.
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5. Concluding remarks

This paper focuses on the formulation and simulation of multiphase flows consisting of N (N � 2) immiscible incom-
pressible fluids with different densities, dynamic viscosities and pair-wise surface tensions. In particular, we have explored 
how to formulate the N-phase system in a reduction-consistent and thermodynamically consistent manner. Thermodynamic 
consistency is achieved by adopting a thermodynamically consistent phase field model for the N-phase system derived based 
on the mass/momentum conservations and the second law of thermodynamics. Reduction consistency is achieved by the 
construction of the mobility matrix and the free energy density function with appropriate individual reduction properties, 
which collectively guarantee the full reduction consistency of the N-phase governing equations.

We have made two contributions in this work. The main contribution lies in the method (Theorem 2.1) provided herein, 
which allows for the systematic construction of reduction-consistent N-phase formulations. This method is quite general, 
and it suggests many possible forms for reduction-consistent and thermodynamically consistent N-phase formulations. 
Based on this method, we have developed and presented a specific reduction-consistent and thermodynamically consis-
tent formulation for incompressible N-phase (N � 2) flows, which is the second contribution of this work. This specific 
N-phase formulation, together with the boundary conditions presented in Section 3, fully satisfies the reduction consistency 
conditions (C1), (C2) and (C3).

We can compare the approach to reduction consistency in this work with that of [18], and also perhaps with that 
of [8] for a Cahn–Hilliard model (without hydrodynamic interactions). The approach of this paper allows us to treat the 
reduction properties of the mobility matrix and the free energy density function separately and individually. Therefore, it is 
considerably easier in the construction to satisfy these reduction properties. In contrast, in [18] (and also [8]) the reduction 
properties for the free energy density function are entangled with that of the mobility matrix. This poses an enormous 
challenge in the construction of the free energy density function to satisfy these reduction properties for full reduction 
consistency. Consequently, only a partial reduction consistency (between N phases and two phases) has been achieved in 
[18,8] for an arbitrary set of given pair-wise surface tensions.

For the specific reduction-consistent and thermodynamically consistent N-phase formulation presented herein, we have 
also presented an efficient numerical algorithm for solving the N-phase governing equations. This is a semi-implicit split-
ting type scheme, which de-couples the solution of different flow variables. Despite the variable mobility matrix and the 
variable mixture density/viscosity, our algorithm involves only the solution of linear algebraic systems with constant and 
time-independent coefficient matrices within each time step for all variables. In particular, when solving the system of cou-
pled fourth-order phase field equations, our algorithm only requires the solution of 2(N − 1) individual Helmholtz type 
equations in a de-coupled fashion.

Extensive numerical experiments have been presented for flow problems involving multiple fluid components, large 
density ratios and large viscosity ratios to test the performance of the method presented herein, and we have compared 
simulation results with exact physical solutions or physical theories from the literature. In particular, we have conducted 
simulations of three- or four-phase systems in which one or two fluid components are absent, and demonstrated that the 
simulation results indeed match the results obtained on the smaller systems. Comparisons with the Prosperetti’s theory and 
the Langmuir-de Gennes theory show that our method produces physically accurate results.

We next make a few comments on some practical issues of N-phase simulations. Our experience with various numer-
ical experiments seems to suggest that a nondimensional interfacial thickness η of about 0.0075 or 0.005 often provides 
reasonable or quite accurate results. A nondimensional value of about 0.01 usually leads to fairly good results, but when 
compared with exact physical solutions the results often seem not that “great” in terms of accuracy and leave a fair amount 
to be desired. For the mobility coefficient m0 in (16), numerical experiments seem to suggest that a non-dimensional value 
in the range 10−8 ∼ 10−5 often provide reasonably good results. As to the time step size �t , because our algorithm is 
only conditionally stable, �t needs to be sufficiently small for stability of computations (and also for accuracy). The choice 
of �t value is influenced by other physical and simulation parameters, for instance, the mesh resolution (element order), 
pairwise surface tensions, the density contrasts, and the interfacial thickness. Increasing the element order or decreasing the 
interfacial thickness tends to require a smaller time step size. Because of the explicit treatment of the convection terms, �t
will be restricted by a CFL type condition �t � �tc ∼ �x

Um
, where Um is the scale for the maximum velocity and �x is the 

scale of the grid size. To resolve the propagation of capillary waves on the interface between fluid i and fluid j, we expect a 

constraint on the maximum �t of the order (see e.g. [9,24,12]), �t � �t(i j)
σ ∼

√
(ρ̃i+ρ̃ j)�x3

4πσi j
, where σi j is the surface tension 

between fluids i and j. For the N-phase system, this will lead to a constraint �t � �tσ ∼
√

�x3

4π min
(

ρ̃i+ρ̃ j
σi j

)N

i, j=1
i �= j

. With the 

algorithm presented herein, further restrictions exist on the maximum �t , because the pressure term and the viscous term 
in the momentum equation, and the variable mobility term in the phase field equations are all partially explicitly treated; 
see e.g. equations (98a), (99a) and (30a). An analysis of the algorithm is expected to provide a clearer picture about these 
restrictions and their interplay, but it is elusive at the moment. In practice, a fast way to determine a suitable time step 
size for a given problem is to carry out a few preliminary simulations with the time step size varied systematically. This, 
combined with a capability in the simulation code to checkpoint the flow fields and re-start the computations, can allow 
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one to quickly estimate the time step size and simultaneously make progress toward a long-time simulation of the given 
flow problem.

In the current paper two-dimensional simulations have been employed to demonstrate the performance of our numerical 
algorithm. The algorithmic formulation presented herein, without change, also applies to three-dimensional implementa-
tions. A three-dimensional implementation of this algorithm is currently underway, and such simulations will be reported 
in a future work.

Reduction consistency and thermodynamic consistency are important physical consistency requirements. The implication 
of reduction consistency lies in the following. Given an N-phase flow problem consisting of N immiscible incompressible 
fluids, not all N fluid components will be present in any particular region of this flow. At any particular time only M
(1 � M � N − 1) fluid components may be present in a particular region. For example, only two fluids may be present 
near a fluid interface, and only three fluids may be present near a three-phase line region. Reduction consistency ensures 
that, in any particular region where only M (1 � M � N − 1) fluids are present, the N-phase governing equations will 
automatically reduce to those equations that describe the dynamics of the corresponding M phases. The properties of 
reduction consistency and thermodynamic consistency can have a profound impact on the simulation results, and the lack 
of such properties may lead to un-physical results or result in gross errors. For example, in [18] we have documented 
the detrimental effect of the lack of reduction consistency in the formulation or boundary condition on the simulation of 
wall-bounded N-phase flows and N-phase contact angles. It is observed that, due to the lack of reduction consistency, a 
“third” fluid can be artificially generated at the base of a liquid drop near the wall, causing a gross deviation of the contact 
angle from the expected value [18].
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Appendix A. Development of thermodynamically consistent N-phase model

In this Appendix we summarize the development of a thermodynamically consistent N-phase model based on the mass 
conservation, momentum conservation, and the second law of thermodynamics. The development follows a similar pro-
cedure to that for the model of [14], but we arrive at an N-phase model that is different from those of [14,18], due to 
difference in the representation of mass balances and the specification of constitutive relations to satisfy the second law of 
thermodynamics. The basic steps in the following development mirror those of [14]. We refer the reader to the appendix of 
[14] for the derivation of that model therein.

Definitions and settings Consider an iso-thermal mixture of N (N � 2) immiscible incompressible fluids in some flow domain 
in two or three dimensions. Let ρ̃i (1 � i � N) and μ̃i (1 � i � N) respectively denote the constant densities and constant 
dynamic viscosities of these N fluids. Consider an arbitrary control volume V taken from the mixture. Let Mi (1 � i � N) 
denote the mass of fluid i contained within V , ρi (1 � i � N) denote the average density of fluid i within V , and M and ρ
respectively denote the total mass and the average density of the mixture within V . Then the following relations hold,

ρi = Mi

V
, ρ = M

V
= M1 + · · · + MN

V
= ρ1 + ρ2 + · · · + ρN . (57)

We make the following assumption:

(A1): There is no volume addition or volume loss if any of these N fluids are mixed, in other words, the volume occupied 
by a given amount of mass of any single fluid i does not change after mixing.

Let V i (1 � i � N) denote the volume occupied by the pure fluid i (before mixing) of mass Mi . It follows from the above 
assumption that

V = V 1 + V 2 + · · · + V N . (58)

Let ci (1 � i � N) denote the volume fraction of fluid i within V . Then

ci = V i

V
= Mi/ρ̃i

Mi/ρi
= ρi

ρ̃i
, c1 + c2 + · · · + cN = 1. (59)

Let the control volume V → 0, and the average quantities defined above become field variables ρi(x, t), ci(x, t), ρ(x, t). 
These definitions follow those given in [14].



34 S. Dong / Journal of Computational Physics 361 (2018) 1–49
Mass balance Let Ĵi (1 � i � N) denote the mass flux vector of fluid i in the mixture. Then the mass balance of fluid i leads 
to

∂ρi

∂t
+ ∇ · Ĵi = 0, 1 � i � N. (60)

We define the individual velocity of fluid i, ui (1 � i � N), by Ĵi = ρiui . Following [14], we define the mixture (or bulk) 
velocity as the volume-averaged velocities of the individual fluids,

u =
N∑

i=1

ciui =
N∑

i=1

ρi

ρ̃i
ui =

N∑
i=1

Ĵi

ρ̃i
, (61)

where we have used (59). This mixture velocity is divergence free [14],

∇ · u =
N∑

i=1

1

ρ̃i
∇ · Ĵi = − ∂

∂t

(
N∑

i=1

ρi

ρ̃i

)
= − ∂

∂t

(
N∑

i=1

ci

)
= − ∂

∂t
1 = 0. (62)

Introduce the differential flux, Ji = Ĵi − ρiu, which is the flux of fluid i relative to the bulk motion characterized by u. Ji

satisfies the relation

N∑
i=1

1

ρ̃i
Ji =

N∑
i=1

Ĵ i

ρ̃i
−

N∑
i=1

ρi

ρ̃i
u = u −

(
N∑

i=1

ci

)
u = 0. (63)

The mass balance equation (60) is then transformed into

∂ρi

∂t
+ u · ∇ρi = −∇ · Ji, 1 � i � N (64)

where we have used (62). Sum up the N equations in (64) and we have

∂ρ

∂t
+ u · ∇ρ = −∇ · J̃, where J̃ = J1 + J2 + · · · + JN . (65)

Equation (64) can be written in terms of the volume fractions as

∂ci

∂t
+ u · ∇ci = −∇ ·

(
Ji

ρ̃i

)
, 1 � i � N. (66)

The mass balance of the N individual fluids in the system is represented by the equations (64) or (66). The forms of the 
differential fluxes Ji (1 � i � N) in these equations are to be specified by considering the second law of thermodynamics, 
and must satisfy the constraint (63).

Momentum balance Following [1,14], we make the following assumption:

(A2): The inertia and kinetic energy of the relative motion of any fluid with respect to the bulk motion is negligible, and 
the mixture can be considered as a single fluid, which satisfies the linear-momentum conservation with respect to 
the volume-averaged velocity u.

Consider an arbitrary control volume �(t), which moves with the bulk mixture velocity u. We assume that there is no 
external body force. Then the momentum conservation on this control volume is represented by

d

dt

∫
�(t)

ρu =
∫

∂�(t)

n · T −
∫

∂�(t)

N∑
i=1

(n · Ji)u (67)

where ∂�(t) denotes the boundary of �(t), n is the outward-pointing unit vector normal to the boundary, T denotes a 
stress tensor whose form is to be specified by constitutive relations, and the last term on the right hand side (RHS) denotes 
the momentum transport due to the relative motion of the fluids with respect to the bulk motion. Since the control volume 
is arbitrary, by using the Reynolds transport theorem and the divergence theorem we can transform this equation into

∂

∂t
(ρu) + ∇ · (ρuu) + ∇ · (J̃u) = ∇ · T (68)

where we have also used the J̃ expression in (65). This equation can be further reduced to
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ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = ∇ · T (69)

where equation (65) has been used.
We assume that the stress tensor T is symmetric, and re-write it as

T = 1

3
(trT)I + S = −pI + S (70)

where I is the identity tensor, S is a trace-free symmetric tensor, and p = 1
3 trT will be referred to as the pressure. The 

momentum equation (69) is then transformed into

ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · S. (71)

The form for the stress tensor S will be specified by considering the second law of thermodynamics.

Constitutive relations and second law of thermodynamics We now consider how to specify the constitutive relations for the 
tensor S and the differential fluxes Ji (1 � i � N) based on the second law of thermodynamics.

In the spirit of the phase field approach we introduce a free energy density function W (�c, ∇�c), where �c = (c1, c2, . . . , cN), 
to account for the effect of the interfacial energy (surface tensions) among the N fluids. The total energy density function 
of the system is e(u, �c, ∇�c) = 1

2 ρ|u|2 + W (�c, ∇�c).
Consider an arbitrary control volume �(t) that moves with the bulk velocity u. For an isothermal system, the second 

law of thermodynamics is represented by the following inequality [26],

d

dt

∫
�(t)

e(u,�c,∇�c) � Pc (72)

where Pc denotes the total conventional power (i.e. excluding heat transfer) expended on �(t).
The conventional powers expended on �(t) consist of several components:

• Work due to the stress tensor, 
∫
∂�(t) n · T · u.

• Kinetic energy transport due to the relative motion of the fluids with respect to the bulk motion,

−
∫

∂�(t)

N∑
i=1

(n · Ji)
1

2
|u|2 = −

∫
∂�(t)

(n · J̃)
1

2
|u|2.

Note that −n · Ji is the mass of fluid i transported into �(t) due to the relative motion with respect to the bulk motion.
• Free energy transport due to the relative motion of the fluids with respect to the bulk motion,

−
N∑

i=1

∫
∂�(t)

(n · Ji)Ci

where Ci (1 � i � N) is the chemical potential of fluid i (free energy per unit mass).
• Work due to a surface microforce. Following [25], we assume the existence of a surface microforce ξ i (1 � i � N), whose 

power expended on the system is represented by (see [25])

N∑
i=1

∫
∂�(t)

n · ξ i

(
∂ci

∂t
+ u · ∇ci

)
.

By incorporating the above contributions, the inequality (72) becomes

d

dt

∫
�(t)

e(u,�c,∇�c) −
∫

∂�(t)

n · T · u+
∫

∂�(t)

(n · J̃)
1

2
|u|2

+
N∑

i=1

∫
∂�(t)

n · JiCi −
N∑

i=1

∫
∂�(t)

(n · ξ i)
Dci

Dt
� 0

(73)

where Dci
Dt = ∂ci

∂t + u · ∇ci denotes the material derivative. By invoking the Reynolds transport theorem and the divergence 
theorem, and noting that �(t) is arbitrary, we transform the above inequality into
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−Ds ≡ ∂e

∂t
+ ∇ · (eu) − ∇ · (T · u) + ∇ ·

(
J̃
1

2
|u|2

)
+

N∑
i=1

∇ · (JiCi) −
N∑

i=1

∇ ·
(

ξ i
Dci

Dt

)
� 0 (74)

In light of equations (62), (65) and (69), we can transform (74) into

−Ds = ∂W

∂t
+ u · ∇W − T : ∇u +

N∑
i=1

(∇ · Ji)Ci+
N∑

i=1

Ji · ∇Ci

−
N∑

i=1

(∇ · ξ i)
Dci

Dt
−

N∑
i=1

ξ i · ∇ Dci

Dt
� 0

(75)

where the symmetry assumption about T has been used.
In light of equation (66) and the relations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇ Dci

Dt
= D

Dt
(∇ci) + (∇u) · ∇ci

DW

Dt
=

N∑
i=1

∂W

∂ci

Dci

Dt
+

N∑
i=1

∂W

∂(∇ci)
· D

Dt
(∇ci)

we can transform equation (75) into

−Ds =
N∑

i=1

[
∂W

∂ci
− ρ̃iCi − ∇ · ξ i

]
Dci

Dt
+

N∑
i=1

[
∂W

∂(∇ci)
− ξ i

]
· D(∇ci)

Dt

− T : ∇u −
N∑

i=1

(∇ci ⊗ ξ i) : ∇u +
N∑

i=1

Ji · ∇Ci � 0

(76)

We will make the following choices based on the inequality (76),

ξ i = ∂W

∂(∇ci)
, 1 � i � N; (77a)

Ci = 1

ρ̃i

[
∂W

∂ci
− ∇ · ∂W

∂(∇ci)

]
, 1 � i � N. (77b)

Note that these are specific choices made in this work to guarantee the inequality (76). They are not the most general 
possible forms to satisfy (76). Discussion of general constitutive relations is beyond the scope of the current work.

Noting the choices (77a) and (77b) and the relation

(∇ci ⊗ ξ i) : ∇u = 1

2
(∇ci ⊗ ξ i + ξ i ⊗ ∇ci) : 1

2
D(u) + 1

2
(∇ci ⊗ ξ i − ξ i ⊗ ∇ci) : 1

2
(∇u − ∇uT ),

where D(u) = ∇u + ∇uT , we can transform (76) into

−Ds = −
[

S +
N∑

i=1

1

2

(
∇ci ⊗ ∂W

∂∇ci
+ ∂W

∂∇ci
⊗ ∇ci

)]
: 1

2
D(u)

−
N∑

i=1

1

2

(
∇ci ⊗ ∂W

∂∇ci
− ∂W

∂∇ci
⊗ ∇ci

)
: 1

2
(∇u − ∇uT ) +

N∑
i=1

Ji · ∇Ci

� 0

(78)

where we have used (70), (62), and the symmetry of S. Since 1
2 (∇u − ∇uT ) is independent of ci (1 � i � N) and W (�c, ∇�c), 

and can attain arbitrary values, we conclude that

N∑
i=1

∇ci ⊗ ∂W

∂(∇ci)
=

N∑
i=1

∂W

∂(∇ci)
⊗ ∇ci, (79)

which is a condition the free energy density function W (�c, ∇�c) must satisfy.
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The inequality (78) is then reduced to

−Ds = −
[

S +
N∑

i=1

∇ci ⊗ ∂W

∂(∇ci)

]
: 1

2
D(u) +

N∑
i=1

(
1

ρ̃i
Ji

)
· ∇(ρ̃iCi) � 0. (80)

To ensure the above inequality we assume the following constitutive relations

S +
N∑

i=1

∇ci ⊗ ∂W

∂(∇ci)
= μ(�c)D(u), (81a)

1

ρ̃i
Ji = −

N∑
j=1

mij(�c)∇(ρ̃ jC j) = −
N∑

j=1

mij(�c)∇
[

∂W

∂c j
− ∇ · ∂W

∂(∇c j)

]
1 � i � N, (81b)

where μ(�c) � 0 plays the role of dynamic viscosity, and the matrix formed by the coefficients mij(�c) (1 � i, j � N)

m = [
mij

]
N×N (82)

is referred to as the mobility matrix. m is required to be symmetric based on the Onsager’s reciprocal relation and to be 
positive semi-definite in order to ensure non-positivity of the second term in the inequality (80). To ensure the relation (63)
for arbitrary W (�c, ∇�c), we further require that

N∑
j=1

mij(�c) =
N∑

j=1

m ji(�c) = 0, 1 � i � N. (83)

In light of the condition (83), the constitutive relation (81b) can be re-written as

1

ρ̃i
Ji = −mii∇(ρ̃iCi) −

N∑
j=1
j �=i

mij∇(ρ̃ jC j) =
N∑

j=1
j �=i

mij∇(ρ̃iCi) −
N∑

j=1
j �=i

mij∇(ρ̃ jC j)

=
N∑

j=1
j �=i

mij
[∇(ρ̃iCi) − ∇(ρ̃ jC j)

] =
N∑

j=1

mij
[∇(ρ̃iCi) − ∇(ρ̃ jC j)

]
.

(84)

Consequently, the second term in the inequality (80) can be transformed into

N∑
i=1

1

ρ̃i
Ji · ∇(ρ̃iCi) =

N∑
i, j=1

mij
[∇(ρ̃iCi) − ∇(ρ̃ jC j)

] · ∇(ρ̃iCi)

=
N∑

i, j=1

1

2
mij

[∇(ρ̃iCi) − ∇(ρ̃ jC j)
] · [∇(ρ̃iCi) − ∇(ρ̃ jC j)

]

=
N∑

i, j=1
j �=i

1

2
mij

∣∣∇(ρ̃iCi) − ∇(ρ̃ jC j)
∣∣2 ,

where we have used the symmetry of mij . Therefore, a sufficient condition to ensure the non-positivity of above term, and 
the positive semi-definiteness of the mobility matrix m, is

mij(�c) � 0, 1 � i �= j � N. (85)

A thermodynamically consistent N-phase model Substituting the constitutive relations (81a) and (81b) into equations (71) and 
(66), we obtain the following N-phase formulation

ρ(�c)
(

∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · [μ(�c)D(u)

]−
N∑

i=1

∇ ·
[
∇ci ⊗ ∂W

∂(∇ci)

]
, (86a)

∇ · u = 0, (86b)
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∂ci

∂t
+ u · ∇ci =

N∑
j=1

∇ ·
[

mij(�c)∇
(

∂W

∂c j
− ∇ · ∂W

∂∇c j

)]
, 1 � i � N, (86c)

where W (�c, ∇�c) is the free energy density function whose form satisfies the condition (79), and the coefficients mij(�c)
(1 � i, j � N) form a symmetric positive semi-definite matrix and satisfy the condition (83). Note that only (N −1) equations 
among the N equations in (86c) are independent due to the conditions (59) and (83). The mixture density is given by, in 
light of (57) and (59),

ρ(�c) =
N∑

i=1

ρi(�c) =
N∑

i=1

ρ̃ici . (87)

J̃ is given by, in light of (65) and (81b),

J̃(�c,∇�c) = −
N∑

i, j=1

ρ̃imij(�c)∇
(

∂W

∂c j
− ∇ · ∂W

∂∇c j

)
. (88)

In the current work we assume that the mixture dynamic viscosity μ(�c) depends on �c in a way analogous to the mixture 
density ρ(�c),

μ(�c) =
N∑

i=1

μ̃ici, (89)

where μ̃i (1 � i � N) denote the constant dynamic viscosities of these N individual fluids. This model satisfies the mass 
conservation, momentum conservation, and the second law of thermodynamics, and it is also Galilean invariant. This is a 
thermodynamically consistent N-phase model.

Appendix B. Proof of properties about reduction-consistent functions

In this appendix we prove several properties of the reduction-consistent and reduction-compatible functions listed in 
Section 2.

(T7): If vij(�c) (1 � i, j � N) are a reduction-consistent set of functions, and wi(�c) (1 � i � N) are a reduction-compatible 
set of functions, then 

∑N
j=1 vij w j (1 � i � N) and 

∑N
i=1 vij wi (1 � j � N) form two reduction-consistent sets of functions.

Proof. Consider N � 2. Let zi = ∑N
j=1 vij w j (1 � i � N). Suppose fluid k (1 � k � N) is absent from the N-phase system. 

Then v(N)
i j satisfy the reduction relations in (9) and (10). w(N)

i satisfy the reduction relations

w(N)
i =

{
w(N−1)

i , 1 � i � k − 1,

w(N−1)
i−1 , k + 1 � i � N.

(90)

Consequently, we have

z(N)

k =
N∑

j=1

v(N)

kj w(N)
j = 0.

For 1 � i � k − 1,

z(N)
i =

N∑
j=1

v(N)
i j w(N)

j =
k−1∑
j=1

v(N)
i j w(N)

j +
N∑

j=k+1

v(N)
i j w(N)

j + v(N)

ik w(N)

k

=
k−1∑
j=1

v(N−1)
i j w(N−1)

j +
N∑

j=k+1

v(N−1)
i j−1 w(N−1)

j−1 =
k−1∑
j=1

v(N−1)
i j w(N−1)

j +
N−1∑
j=k

v(N−1)
i j w(N−1)

j

=
N−1∑
j=1

v(N−1)
i j w(N−1)

j = z(N−1)
i .

For k + 1 � i � N ,
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z(N)
i =

N∑
j=1

v(N)
i j w(N)

j =
k−1∑
j=1

v(N)
i j w(N)

j +
N∑

j=k+1

v(N)
i j w(N)

j + v(N)

ik w(N)

k

=
k−1∑
j=1

v(N−1)
i−1 j w(N−1)

j +
N∑

j=k+1

v(N−1)
i−1 j−1 w(N−1)

j−1 =
k−1∑
j=1

v(N−1)
i−1 j w(N−1)

j +
N−1∑
j=k

v(N−1)
i−1 j w(N−1)

j

=
N−1∑
j=1

v(N−1)
i−1 j w(N−1)

j = z(N−1)
i−1 .

We therefore conclude that zi = ∑N
j=1 vij w j (1 � i � N) forms a reduction consistent set of functions.

One can show that 
∑N

i=1 vij wi (1 � j � N) are a reduction-consistent set in a similar way.

(T8): If vij(�c) (1 � i, j � N) are a reduction-compatible set of functions, and wi(�c) (1 � i � N) are a reduction-consistent 
set of functions, then 

∑N
j=1 vij w j (1 � i � N) and 

∑N
i=1 vij wi (1 � j � N) form two reduction-compatible sets of functions.

Proof. Consider N � 2. Let zi = ∑N
j=1 vij w j (1 � i � N). Suppose fluid k (1 � k � N) is absent from the system. Then v(N)

i j

satisfy the reduction relations in (9) and w(N)
i satisfy the reduction relations

w(N)
i =

⎧⎨
⎩

w(N−1)
i , 1 � i � k − 1,

0, i = k

w(N−1)
i−1 , k + 1 � i � N.

(91)

Consequently, we have for 1 � i � k − 1,

z(N)
i =

N∑
j=1

v(N)
i j w(N)

j =
k−1∑
j=1

v(N)
i j w(N)

j +
N∑

j=k+1

v(N)
i j w(N)

j =
k−1∑
j=1

v(N−1)
i j w(N−1)

j +
N∑

j=k+1

v(N−1)
i j−1 w(N−1)

j−1

=
k−1∑
j=1

v(N−1)
i j w(N−1)

j +
N−1∑
j=k

v(N−1)
i j w(N−1)

j =
N−1∑
j=1

v(N−1)
i j w(N−1)

j

= z(N−1)
i .

For k + 1 � i � N ,

z(N)
i =

N∑
j=1

v(N)
i j w(N)

j =
k−1∑
j=1

v(N)
i j w(N)

j +
N∑

j=k+1

v(N)
i j w(N)

j =
k−1∑
j=1

v(N−1)
i−1 j w(N−1)

j +
N∑

j=k+1

v(N−1)
i−1 j−1 w(N−1)

j−1

=
k−1∑
j=1

v(N−1)
i−1 j w(N−1)

j +
N−1∑
j=k

v(N−1)
i−1 j w(N−1)

j =
N−1∑
j=1

v(N−1)
i−1 j w(N−1)

j

= z(N−1)
i−1 .

We therefore conclude that 
∑N

j=1 vij w j (1 � i � N) are a reduction-compatible set of variables. 
∑N

i=1 vij wi (1 � j � N) can 
be shown to be a reduction-compatible set in a similar way.

(T9): If vi(�c) (1 � i � N) are a reduction-consistent set of functions, then 
∑N

i=1 vi(�c) is a reduction-consistent function.

Proof. Consider N � 2. Let z(�c) = ∑N
i=1 vi(�c). Suppose fluid k (1 � k � N) is absent from the system. Then v(N)

i satisfies the 
reduction relations given by (7) and (8). Then

z(N)(�c(N)) =
N∑

i=1

v(N)
i =

k−1∑
i=1

v(N)
i +

N∑
i=k+1

v(N)
i =

k−1∑
i=1

v(N−1)
i +

N∑
i=k+1

v(N−1)
i−1

=
k−1∑
i=1

v(N−1)
i +

N−1∑
i=k

v(N−1)
i =

N−1∑
i=1

v(N−1)
i

= z(N−1)(�c(N−1)).

Therefore 
∑N

i=1 vi is a reduction-consistent function.
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(T10): If vij(�c) (1 � i, j � N) is a reduction-consistent set of functions, then 
∑N

j=1 vij(�c) (1 � i � N) and 
∑N

i=1 vij(�c) (1 �
j � N) are two reduction-consistent sets of functions, and 

∑N
i, j=1 vij(�c) is a reduction-consistent function.

Proof. Consider N � 2. Let zi(�c) = ∑N
j=1 vij(�c) (1 � i � N) and z(�c) = ∑N

i, j=1 vij(�c). Suppose fluid k (1 � k � N) is absent 
from the system. Then vij satisfy the reduction relations given by (9) and (10). We have

z(N)

k =
N∑

j=1

v(N)

kj = 0.

For 1 � i � k − 1,

z(N)
i =

N∑
j=1

v(N)
i j =

k−1∑
j=1

v(N)
i j +

N∑
j=k+1

v(N)
i j =

k−1∑
j=1

v(N−1)
i j +

N∑
j=k+1

v(N−1)
i j−1 =

k−1∑
j=1

v(N−1)
i j +

N−1∑
j=k

v(N−1)
i j

=
N−1∑
j=1

v(N−1)
i j = z(N−1)

i .

For k + 1 � i � N ,

z(N)
i =

N∑
j=1

v(N)
i j =

k−1∑
j=1

v(N)
i j +

N∑
j=k+1

v(N)
i j =

k−1∑
j=1

v(N−1)
i−1 j +

N∑
j=k+1

v(N−1)
i−1 j−1 =

k−1∑
j=1

v(N−1)
i−1 j +

N−1∑
j=k

v(N−1)
i−1 j

=
N−1∑
j=1

v(N−1)
i−1 j = z(N−1)

i−1 .

We conclude that 
∑N

j=1 vij (1 � i � N) is a reduction-consistent set of functions. One can show that 
∑N

i=1 vij (1 � j � N) is 
another reduction-consistent set of functions in a similar way.

Since zi(�c) (1 � i � N) form a reduction-consistent set of functions and z(�c) = ∑N
i=1 zi(�c), we conclude that 

∑N
i, j=1 vij is 

a reduction-consistent function in light of the property (T9).

(T11): If vij(�c) (1 � i, j � N) are a reduction-compatible set of functions and wi(�c) (1 � i � N) are a reduction-consistent 
set of functions, then 

∑N
i, j=1 vij wi w j is a reduction-consistent function.

Proof.
∑N

j=1 vij w j (1 � i � N) are a reduction-compatible set of functions according to property (T8). So wi
∑N

j=1 vij w j

(1 � i � N) form a reduction-consistent set of functions according to property (T4). We then conclude that 
∑N

i, j=1 vij wi w j
is a reduction-consistent function based on property (T9).

(T12): If vij(�c) (1 � i, j � N) are a reduction-consistent set of functions and wi(�c) (1 � i � N) are a reduction-compatible 
set of functions, then 

∑N
i, j=1 vij wi w j is a reduction-consistent function.

Proof.
∑N

j=1 vij w j (1 � i � N) are a reduction-consistent set of functions according to property (T7). So wi
∑N

j=1 vij w j

(1 � i � N) form a reduction-consistent set of functions according to property (T4). We then conclude that 
∑N

i, j=1 vij wi w j
is a reduction-consistent function based on property (T9).

Appendix C. Proof of Theorem 2.1

It suffices to show that the M(�c) defined in (13a) and N(�c) defined in (13b) are each a reduction-consistent function, 
and that the Fi(�c) (1 � i � N) defined in (13c) form a reduction-consistent set of functions.

Because N(�c) = ∇ · u is independent of �c, it is reduction-consistent based on the property (T14) of Section 2.1.
Let us consider the reduction consistency of Fi(�c). Because both ∂ci

∂t (1 � i � N) and u · ∇ci (1 � i � N) are reduction-

consistent sets of functions, it suffices to show that 
∑N

j=1 mij∇
(

∂W
∂c j

− ∇ · ∂W
∂∇c j

)
= ∑N

j=1 mij∇
(
H j − I j

)
for 1 � i � N are a 

reduction-consistent set of functions. That Gi(�c) (1 � i � N) are a reduction-compatible set of functions implies that Ii(�c)
(1 � i � N) are a reduction-compatible set according to property (T13). Because Hi and Ii are both reduction-compatible 
sets of functions, ∇(Hi − Ii) is a reduction-compatible set of functions according to properties (T3) and (T13) of Section 2.1. 
Since mij (1 � i, j � N) are a reduction-consistent set, 

∑N
j=1 mij∇

(
H j − I j

)
(1 � i � N) are then a reduction-consistent set 

of functions according to the property (T7). Therefore, all the three terms in (13c) are individually reduction-consistent sets 
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of functions. We can then conclude that Fi(�c) (1 � i � N) are a reduction-consistent set of functions based on the property 
(T2).

Consider next the reduction consistency of M(�c). Note that both ρ(�c) and μ(�c) are reduction-consistent functions ac-
cording to the property (T15), and that those terms independent of �c are reduction-consistent according to the property 
(T14). It suffices to show that the J̃ term given by (88) and the term 

∑N
i=1 ∇ci ⊗ ∂W

∂∇ci
= ∑N

i=1 ∇ci ⊗Gi are both reduction-

consistent functions. According to (88), J̃ = − 
∑N

i=1 ρ̃i

[∑N
j=1 mij∇

(
H j − I j

)]
. Since 

∑N
j=1 mij∇

(
H j − I j

)
(1 � i � N) are a 

reduction-consistent set of functions and ρ̃i (1 � i � N) are a reduction-compatible set of variables, we conclude based on 
the properties (T4) and (T9) that J̃ is a reduction-consistent function. Since ∇ci (1 � i � N) are a reduction-consistent set 
and Gi (1 � i � N) are a reduction-compatible set, ∇ci ⊗ Gi (1 � i � N) form a reduction-consistent set of functions based 
on property (T4). Therefore, 

∑N
i=1 ∇ci ⊗ Gi is a reduction-consistent function based on the property (T9). We can then 

conclude that M(�c) is a reduction-consistent function.

Appendix D. Proof of Theorem 2.2

Reduction consistency of mij(�c) We first show that the mij(�c) defined by (17) form a reduction-consistent set of functions. 
Consider an N-phase system (N � 2). Suppose that fluid k (1 � k � N) is absent from the system, i.e. the system is charac-
terized by (4), and the correspondence relations in (5) hold. Then we have the following relations

m̃(N)
i j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m̃(N−1)
i j , 1 � i � k − 1, 1 � j � k − 1,

m̃(N−1)
i j−1 , 1 � i � k − 1, k + 1 � j � N,

m̃(N−1)
i−1 j , k + 1 � i � N, 1 � j � k − 1,

m̃(N−1)
i−1 j−1, k + 1 � i � N, k + 1 � j � N,

f (c(N)
i ) =

⎧⎨
⎩

f (c(N−1)
i ), 1 � i � k − 1,

0, i = k

f (c(N−1)
i−1 ), k + 1 � i � N,

(92)

because of the properties of f (c) given in (14) and the fact that m̃i j form a reduction-compatible set.
Let us look into the reduction for mij(�c). We divide the problem into two cases: (i) i = k or j = k; (ii) i �= k and j �= k. 

Consider the first case: i = k or j = k. For i = k, if j �= k, then

m(N)

kj = −m̃(N)

kj f (c(N)

k ) f (c(N)
j ) = 0, 1 � j � N, j �= k.

For i = j = k,

m(N)

kk = −
N∑

j=1
j �=k

m(N)

kj = 0.

For j = k and i �= k,

m(N)

ik = −m̃(N)

ik f (c(N)
i ) f (c(N)

k ) = 0, 1 � i � N, i �= k.

Consider the second case: i �= k and j �= k. First consider the subcase j �= i. For 1 � i � k − 1 and 1 � j � k − 1 and j �= i,

m(N)
i j = −m̃(N)

i j f (c(N)
i ) f (c(N)

j ) = −m̃(N−1)
i j f (c(N−1)

i ) f (c(N−1)
j ) = m(N−1)

i j .

For 1 � i � k − 1 and k + 1 � j � N ,

m(N)
i j = −m̃(N)

i j f (c(N)
i ) f (c(N)

j ) = −m̃(N−1)
i j−1 f (c(N−1)

i ) f (c(N−1)
j−1 ) = m(N−1)

i j−1 .

For k + 1 � i � N and 1 � j � k − 1,

m(N)
i j = −m̃(N)

i j f (c(N)
i ) f (c(N)

j ) = −m̃(N−1)
i−1 j f (c(N−1)

i−1 ) f (c(N−1)
j ) = m(N−1)

i−1 j .

For k + 1 � i � N and k + 1 � j � N and j �= i,

m(N)
i j = −m̃(N)

i j f (c(N)
i ) f (c(N)

j ) = −m̃(N−1)
i−1 j−1 f (c(N−1)

i−1 ) f (c(N−1)
j−1 ) = m(N−1)

i−1 j−1.

Now we consider the subcase i = j �= k. For 1 � i � k − 1,

m(N)
ii = −

N∑
j=1
j �=i

m(N)
i j = −

k−1∑
j=1
j �=i

m(N)
i j − m(N)

ik −
N∑

j=k+1

m(N)
i j = −

k−1∑
j=1
j �=i

m(N−1)
i j −

N∑
j=k+1

m(N−1)
i j−1

= −
k−1∑
j=1

m(N−1)
i j −

N−1∑
j=k

m(N−1)
i j = −

N−1∑
j=1

m(N−1)
i j = m(N−1)

ii .
j �=i j �=i
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For k + 1 � i � N ,

m(N)
ii = −

N∑
j=1
j �=i

m(N)
i j = −

k−1∑
j=1

m(N)
i j − m(N)

ik −
N∑

j=k+1
j �=i

m(N)
i j = −

k−1∑
j=1

m(N−1)
i−1 j −

N∑
j=k+1

j �=i

m(N−1)
i−1 j−1

= −
k−1∑
j=1

m(N−1)
i−1 j −

N−1∑
j=k

j �=i−1

m(N−1)
i−1 j = −

N−1∑
j=1

j �=i−1

m(N−1)
i−1 j = m(N−1)

i−1i−1.

Combining the above, we have the following reduction relations

m(N)
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(N−1)
i j , 1 � i � k − 1, 1 � j � k − 1

m(N−1)
i j−1 , 1 � i � k − 1, k + 1 � j � N

m(N−1)
i−1 j , k + 1 � i � N, 1 � j � k − 1

m(N−1)
i−1 j−1, k + 1 � i � N, k + 1 � j � N

0, i = k, 1 � j � N

0, 1 � i � N, j = k.

(93)

Therefore, we conclude that mij(�c) (1 � i, j � N) defined by (17) are a reduction-consistent set of functions.

Reduction consistency of W (�c, ∇�c) We will show that the two terms in the free energy density function (18) are each a 
reduction-consistent function. Consequently, W (�c, ∇�c) given by (18) is a reduction-consistent function.

The first term 
∑N

i, j=1
λi j
2 ∇ci · ∇c j is reduction-consistent. Since σi j are a reduction-compatible set (property (T16)), λi j

(1 � i, j � N) given in (19) are a reduction-compatible set according to property (T3). Noting that ∇ci (1 � i � N) are 
a reduction-consistent set, we can conclude that 

∑N
i, j=1

λi j
2 ∇ci · ∇c j is a reduction-consistent function based on property 

(T11).
Let us now show that the second term H(�c) = β

∑N
i, j=1

σi j
2

[
g(ci) + g(c j) − g(ci + c j)

]
is reduction-consistent. Suppose 

fluid k (1 � k � N) is absent from the system, i.e. the system is characterized by (4) and the relations (5) hold. Then we 
have the relations

σ
(N)
i j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ
(N−1)
i j , 1 � i � k − 1, 1 � j � k − 1,

σ
(N−1)
i j−1 , 1 � i � k − 1, k + 1 � j � N,

σ
(N−1)
i−1 j , k + 1 � i � N, 1 � j � k − 1,

σ
(N−1)
i−1 j−1, k + 1 � i � N, k + 1 � j � N,

g(c(N)
i ) =

⎧⎨
⎩

g(c(N−1)
i ), 1 � i � k − 1,

0, i = k,

g(c(N−1)
i−1 ), k + 1 � i � N.

(94)

Then we have

1

β
H (N) =

N∑
i, j=1

σ
(N)
i j

2

[
g(c(N)

i ) + g(c(N)
j ) − g(c(N)

i + c(N)
j )

]
=

N∑
i, j=1
i, j �=k

σ
(N)
i j

2

[
g(c(N)

i ) + g(c(N)
j ) − g(c(N)

i + c(N)
j )

]

=
⎛
⎝ k−1∑

i, j=1

+
k−1∑
i=1

N∑
j=k+1

+
N∑

i=k+1

k−1∑
j=1

+
N∑

i, j=k+1

⎞
⎠ σ

(N)
i j

2

[
g(c(N)

i ) + g(c(N)
j ) − g(c(N)

i + c(N)
j )

]

=
k−1∑

i, j=1

σ
(N−1)
i j

2

[
g(c(N−1)

i ) + g(c(N−1)
j ) − g(c(N−1)

i + c(N−1)
j )

]

+
k−1∑
i=1

N∑
j=k+1

σ
(N−1)
i j−1

2

[
g(c(N−1)

i ) + g(c(N−1)
j−1 ) − g(c(N−1)

i + c(N−1)
j−1 )

]

+
N∑ k−1∑ σ

(N−1)
i−1 j

2

[
g(c(N−1)

i−1 ) + g(c(N−1)
j ) − g(c(N−1)

i−1 + c(N−1)
j )

]

i=k+1 j=1
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+
N∑

i, j=k+1

σ
(N−1)
i−1 j−1

2

[
g(c(N−1)

i−1 ) + g(c(N−1)
j−1 ) − g(c(N−1)

i−1 + c(N−1)
j−1 )

]

=
k−1∑

i, j=1

σ
(N−1)
i j

2

[
g(c(N−1)

i ) + g(c(N−1)
j ) − g(c(N−1)

i + c(N−1)
j )

]

+
k−1∑
i=1

N−1∑
j=k

σ
(N−1)
i j

2

[
g(c(N−1)

i ) + g(c(N−1)
j ) − g(c(N−1)

i + c(N−1)
j )

]

+
N−1∑
i=k

k−1∑
j=1

σ
(N−1)
i j

2

[
g(c(N−1)

i ) + g(c(N−1)
j ) − g(c(N−1)

i + c(N−1)
j )

]

+
N−1∑
i, j=k

σ
(N−1)
i j

2

[
g(c(N−1)

i ) + g(c(N−1)
j ) − g(c(N−1)

i + c(N−1)
j )

]

=
N−1∑
i, j=1

σ
(N−1)
i j

2

[
g(c(N−1)

i ) + g(c(N−1)
j ) − g(c(N−1)

i + c(N−1)
j )

]

= 1

β
H (N−1).

So we conclude that H(�c) is a reduction-consistent function.

Reduction compatibility of Hi(�c) and Gi(�c) With W (�c, ∇�c) given by (18),

Hi(�c) = ∂W

∂ci
= β

N∑
j=1

σi j
[

g′(ci) − g′(ci + c j)
]
, 1 � i � N; (95)

Gi(�c) = ∂W

∂∇ci
=

N∑
j=1

λi j∇c j, 1 � i � N, (96)

where g′(c) is the derivative of g(c) defined in (19).
Gi(�c) (1 � i � N) are evidently a reduction-compatible set of functions. This is because λi j (1 � i, j � N) are a reduction-

compatible set and ∇ci (1 � i � N) are a reduction-consistent set. Based on the property (T8) in Section 2, we conclude 
that Gi (1 � i � N) are a reduction-compatible set of functions.

We next show that Hi(�c) (1 � i � N) given by (95) are a reduction-compatible set of functions. Suppose fluid k (1 � k �
N) is absent from the system, i.e. the system is characterized by (4) and the reduction relations (5) hold. Then σi j satisfy 
the reduction relations given in (94), and g′(ci) (with g(c) defined in (19)) satisfies the following relations

g′(c(N)
i ) =

⎧⎨
⎩

g′(c(N−1)
i ), 1 � i � k − 1,

0, i = k,

g′(c(N−1)
i−1 ), k + 1 � i � N.

(97)

For 1 � i � k − 1,

1

β
H

(N)
i =

k−1∑
j=1

σ
(N)
i j

[
g′(c(N)

i ) − g′(c(N)
i + c(N)

j )
]
+

N∑
j=k+1

σ
(N)
i j

[
g′(c(N)

i ) − g′(c(N)
i + c(N)

j )
]

=
k−1∑
j=1

σ
(N−1)
i j

[
g′(c(N−1)

i ) − g′(c(N−1)
i + c(N−1)

j )
]

+
N∑

j=k+1

σ
(N−1)
i j−1

[
g′(c(N−1)

i ) − g′(c(N−1)
i + c(N−1)

j−1 )
]

=
k−1∑

σ
(N−1)
i j

[
g′(c(N−1)

i ) − g′(c(N−1)
i + c(N−1)

j )
]

j=1
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+
N−1∑
j=k

σ
(N−1)
i j

[
g′(c(N−1)

i ) − g′(c(N−1)
i + c(N−1)

j )
]

=
N−1∑
j=1

σ
(N−1)
i j

[
g′(c(N−1)

i ) − g′(c(N−1)
i + c(N−1)

j )
]

= 1

β
H

(N−1)
i .

For k + 1 � i � N ,

1

β
H

(N)
i =

k−1∑
j=1

σ
(N)
i j

[
g′(c(N)

i ) − g′(c(N)
i + c(N)

j )
]
+

N∑
j=k+1

σ
(N)
i j

[
g′(c(N)

i ) − g′(c(N)
i + c(N)

j )
]

=
k−1∑
j=1

σ
(N−1)
i−1 j

[
g′(c(N−1)

i−1 ) − g′(c(N−1)
i−1 + c(N−1)

j )
]

+
N∑

j=k+1

σ
(N−1)
i−1 j−1

[
g′(c(N−1)

i−1 ) − g′(c(N−1)
i−1 + c(N−1)

j−1 )
]

=
k−1∑
j=1

σ
(N−1)
i−1 j

[
g′(c(N−1)

i−1 ) − g′(c(N−1)
i−1 + c(N−1)

j )
]

+
N−1∑
j=k

σ
(N−1)
i−1 j

[
g′(c(N−1)

i−1 ) − g′(c(N−1)
i−1 + c(N−1)

j )
]

=
N−1∑
j=1

σ
(N−1)
i−1 j

[
g′(c(N−1)

i−1 ) − g′(c(N−1)
i−1 + c(N−1)

j )
]

= 1

β
H

(N−1)
i−1 .

Combining the above results, we conclude that Hi(�c) (1 � i � N) given by (95) form a reduction-compatible set of functions.

Appendix E. Algorithm for N-phase momentum equations

We summarize the algorithm developed in [17] for the N-phase momentum equations, which is employed in the current 
work. The algorithm is for the equations (26) and (1b), together with the boundary condition (23). It is assumed that the 
volume fractions cn+1

i (1 � i � N) and the auxiliary variables ψn+1
i (1 � i � N) have already been computed using the 

algorithm presented in Section 3. The goal here is to compute the velocity un+1 and the pressure Pn+1 with given un , Pn , 
cn+1

i and ψn+1
i .

The algorithm consists of two steps. The pressure and the velocity are computed successively in a de-coupled fashion in 
the first and the second steps, respectively.
For Pn+1:

γ0ũn+1 − û

�t
+ u∗,n+1 · ∇u∗,n+1 + 1

ρn+1 J̃n+1 · ∇u∗,n+1 + 1

ρ0
∇ Pn+1 =

(
1

ρ0
− 1

ρn+1

)
∇ P∗,n+1

− μn+1

ρn+1 ∇ × ∇ × u∗,n+1 + 1

ρn+1 ∇μn+1 · D(u∗,n+1)

− 1

ρn+1

N∑
i, j=1

λi j

(
ψn+1

j − αcn+1
j

)
∇cn+1

i + 1

ρn+1 fn+1,

(98a)

∇ · ũn+1 = 0, (98b)

n · ũn+1
∣∣
∂�

= n · wn+1. (98c)
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For un+1:
γ0un+1 − γ0ũn+1

�t
− ν0∇2un+1 = ν0∇ × ∇ × u∗,n+1, (99a)

un+1
∣∣
∂�

= wn+1. (99b)

In the above equations all the symbols follow the same notation as outlined in Section 3. u∗,n+1 and P∗,n+1 are defined 
by (32). û and γ0 are defined by (31). J̃n+1 is given by (see equation (22))

J̃n+1 = −
N∑

i, j=1

ρ̃imij(�cn+1)∇
[
−

N∑
k=1

λ jk(ψ
n+1
k − αcn+1

k ) +H j(�cn+1)

]
. (100)

Note that in both the above equation and in equation (98a) we have replaced ∇2cn+1
i by (ψn+1

i −αcn+1
i ) according to equa-

tions (38b) and (47). n is the outward-pointing unit vector normal to ∂�. ũn+1 is an auxiliary velocity that approximates 
un+1. ρn+1 and μn+1 are given by (87) and (89), and in case of large density ratios we follow [17] and further clamp the 
values of ρn+1 and μn+1 as follows (see [17] for details)

ρn+1 =
⎧⎨
⎩

ρn+1, if ρn+1 ∈ [ρ̃min, ρ̃max]
ρ̃max, if ρn+1 > ρ̃max

ρ̃min, if ρn+1 < ρ̃min,

μn+1 =
⎧⎨
⎩

μn+1, if μn+1 ∈ [μ̃min, μ̃max]
μ̃max, if μn+1 > μ̃max

μ̃min, if μn+1 < μ̃min,

(101)

where ρ̃max = max1�i�N {ρ̃i}, ρ̃min = min1�i�N {ρ̃i}, μ̃max = max1�i�N {μ̃i}, and μ̃min = min1�i�N {μ̃i}. The constant ρ0 is 
given by ρ0 = ρ̃min = min1�i�N {ρ̃i}. ν0 in (99a) is a chosen positive constant that is sufficiently large. We employ an ν0

value with the following property, ν0 � max
(

μ̃1
ρ̃1

,
μ̃2
ρ̃2

, · · · ,
μ̃N
ρ̃N

)
.

The above algorithm employs a velocity correction-type idea [20,19,16] to de-couple the computations for the pressure 
and the velocity. With this algorithm the linear algebraic systems resulting from the discretization involve only constant and 
time-independent coefficient matrices, like in two-phase flows [21,13,15].

It is straightforward to derive the weak forms for the pressure and the velocity for the implementation of the algorithm 
using C0 spectral elements; see [17] for details. We only provide the final weak forms here. Let q ∈ H1(�) denote the test 
function, and

Gn+1 = 1

ρn+1 fn+1 −
(

u∗,n+1 + 1

ρn+1 J̃n+1
)

· ∇u∗,n+1 + û

�t
+

(
1

ρ0
− 1

ρn+1

)
∇ P∗,n+1

+ 1

ρn+1 ∇μn+1 · D(u∗,n+1) − 1

ρn+1

N∑
i, j=1

λi j(ψ
n+1
j − αcn+1

j )∇cn+1
i + ∇

(
μn+1

ρn+1

)
× ω∗,n+1, (102)

where ω = ∇ × u is the vorticity. The weak form for the pressure Pn+1 is∫
�

∇ Pn+1 · ∇q = ρ0

∫
�

Gn+1 · ∇q − ρ0

∫
∂�

μn+1

ρn+1 n × ω∗,n+1 · ∇q − γ0ρ0

�t

∫
∂�

n · wn+1q, ∀q ∈ H1(�). (103)

Let H1
0(�) = {

v ∈ H1(�) : v|∂� = 0
}

, and ϕ ∈ H1
0(�) denote the test function. The weak form about the velocity un+1 is

∫
�

∇ϕ · ∇un+1 + γ0

ν0�t

∫
�

ϕun+1 = 1

ν0

∫
�

(
Gn+1 − 1

ρ0
∇ Pn+1

)
ϕ

− 1

ν0

∫
�

(
μn+1

ρn+1 − ν0

)
ω∗,n+1 × ∇ϕ, ∀ϕ ∈ H1

0(�). (104)

These weak forms, (103) and (104), can be discretized in space using C0 spectral elements in a straightforward fashion [17].
Solving the N-phase momentum equations (26) and (1b) amounts to the following two successive operations. First, solve 

equation (103) for pressure Pn+1. Then, solve equation (104), together with the Dirichlet condition (99b) on ∂�, for un+1.

Appendix F. External force/source terms in convergence tests

In this Appendix we provide the explicit expressions for the external body force and source terms in the equations (26), 
(27), (28a) and (28b) for the spatial/temporal convergence tests in Section 4.1. The notations here follow those of Section 4.1.
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Let N = 4 be fixed in this Appendix. Define constant α0 = 1
6 and the variables ϕi (1 � i � N) as follows

⎧⎪⎪⎨
⎪⎪⎩

ϕi = Ai cos(ai x) cos(bi y) sin(ωit), 1 � i � N − 1,

ϕN =
(

1

α0
− N

)
−

N−1∑
j=1

ϕ j .
(105)

Then the volume fractions in the analytic expression (48) can be written as

ci = α0(1 + ϕi), 1 � i � N. (106)

Compute auxiliary functions ∇ϕi and ∇2ϕi (1 � i � N) by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕi

∂x
= −ai Ai sin(ai x) cos(bi y) sin(ωit), 1 � i � N − 1,

∂ϕi

∂ y
= −bi Ai cos(aix) sin(bi y) sin(ωit), 1 � i � N − 1,

∂ϕN

∂x
=

N−1∑
j=1

a j A j sin(a jx) cos(b j y) sin(ω jt),

∂ϕN

∂ y
=

N−1∑
j=1

b j A j cos(a jx) sin(b j y) sin(ω jt),

∇2ϕi = −(a2
i + b2

i )ϕi = −(a2
i + b2

i )Ai cos(aix) cos(bi y) sin(ωit), 1 � i � N − 1,

∇2ϕN =
N−1∑
j=1

(a2
j + b2

j )ϕ j =
N−1∑
j=1

(a2
j + b2

j )A j cos(a jx) cos(b j y) sin(ω jt).

(107)

Compute the auxiliary functions ∇u by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
= aA0 cos(ax) cos(π y) sin(ω0t),

∂u

∂ y
= −π A0 sin(ax) sin(π y) sin(ω0t),

∂v

∂x
= A0a2

π
sin(ax) sin(π y) sin(ω0t),

∂v

∂ y
= −aA0 cos(ax) cos(π y) sin(ω0t).

(108)

Compute the derivatives of the function g(c) defined in (19) by

⎧⎪⎨
⎪⎩

g′(c) = 2c(1 − c)(1 − 2c),

g′′(c) = c[1 − 6c(1 − c)],
g′′′(c) = 12(2c − 1).

(109)

Note that with the parameter values given in Table 2, the volume fractions given by (106) satisfies ci ∈ [0, 1] (1 � i � N). 
Therefore in light of (17) and (15) we compute mij(�c) (1 � i, j � N) by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mij(�c) = −4m̃i jcic j, 1 � i �= j � N,

mii(�c) = 4ci

N∑
j=1
j �=i

m̃i jc j, 1 � i � N. (110)

We compute the derivatives of mij(�c) (1 � i, j � N) by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂mij

∂x
= −4α0m̃i j

(
c j

∂ϕi

∂x
+ ci

∂ϕ j

∂x

)
, 1 � i �= j � N,

∂mij

∂ y
= −4α0m̃i j

(
c j

∂ϕi

∂ y
+ ci

∂ϕ j

∂ y

)
, 1 � i �= j � N,

∂mii

∂x
= 4α0

N∑
j=1
j �=i

m̃i j

(
c j

∂ϕi

∂x
+ ci

∂ϕ j

∂x

)
, 1 � i � N,

∂mii

∂ y
= 4α0

N∑
j=1
j �=i

m̃i j

(
c j

∂ϕi

∂ y
+ ci

∂ϕ j

∂ y

)
, 1 � i � N,

(111)

where ∂ϕi
∂x and ∂ϕi

∂ y (1 � i � N) are given by (107).
Define a set of constants σi (1 � i � N) by

σi =
N∑

j=1

σi j, 1 � i � N (112)

where σi j are the pairwise surface tensions. Define another set of constants λ̄i j (1 � i � N , 1 � j � N − 1) by

λ̄i j = λi j − λiN , 1 � i � N, 1 � j � N − 1 (113)

where λi j (1 � i, j � N) are defined in (19). The outward-pointing unit vector n that is normal to the domain boundary is 
given by

n = (nx,ny) =

⎧⎪⎪⎨
⎪⎪⎩

(1,0), on boundary x = 2, y ∈ [−1,1]
(−1,0), on boundary x = 0, y ∈ [−1,1]
(0,1), on boundary y = 1, x ∈ [0,2]
(0,−1), on boundary y = −1, x ∈ [0,2].

(114)

With the variables and functions defined above, the external body force f = ( fx, f y) in equation (26) is given by

fx =
(
ρ̃N + α0

N−1∑
i=1

(ρ̃i − ρ̃N)(1 + ϕi)

)(
ω0 A0 sin(ax) cos(π y) cos(ω0t) + 1

2
aA2

0 sin(2ax) sin2(ω0t)

)

− α0

N∑
i, j=1

ρ̃imij(�c)
[

N−1∑
k=1

λ̄ jk(a
2
k + b2

k)

(
∂ϕk

∂x

∂u

∂x
+ ∂ϕk

∂ y

∂u

∂ y

)
+ βσ j g′′(c j)

(
∂ϕ j

∂x

∂u

∂x
+ ∂ϕ j

∂ y

∂u

∂ y

)

−β

N∑
k=1

σ jk g′′(c j + ck)

((
∂ϕ j

∂x
+ ∂ϕk

∂x

)
∂u

∂x
+

(
∂ϕ j

∂ y
+ ∂ϕk

∂ y

)
∂u

∂ y

)]

+ aA0 cos(ax) sin(π y) cos(ω0t)

+
(
μ̃N + α0

N−1∑
i=1

(μ̃i − μ̃N)(1 + ϕi)

)
(a2 + π2)A0 sin(ax) cos(π y) sin(ω0t)

− α0

N−1∑
i=1

(μ̃i − μ̃N)

[
2
∂ϕi

∂x

∂u

∂x
+ ∂ϕi

∂ y

(
∂u

∂ y
+ ∂v

∂x

)]
− α2

0

N∑
i=1

⎡
⎣N−1∑

j=1

λ̄i j(a
2
j + b2

j )ϕ j

⎤
⎦ ∂ϕi

∂x
,

(115a)

f y =
(
ρ̃N + α0

N−1∑
i=1

(ρ̃i − ρ̃N)(1 + ϕi)

)(
A2

0a2

2π
sin(2π y) sin2(ω0t) − A0aω0

π
cos(ax) sin(π y) cos(ω0t)

)

− α0

N∑
i, j=1

ρ̃imij(�c)
[

N−1∑
k=1

λ̄ jk(a
2
k + b2

k )

(
∂ϕk

∂x

∂v

∂x
+ ∂ϕk

∂ y

∂v

∂ y

)
+ βσ j g′′(c j)

(
∂ϕ j

∂x

∂v

∂x
+ ∂ϕ j

∂ y

∂v

∂ y

)

−β

N∑
σ jk g′′(c j + ck)

((
∂ϕ j

∂x
+ ∂ϕk

∂x

)
∂v

∂x
+

(
∂ϕ j

∂ y
+ ∂ϕk

∂ y

)
∂v

∂ y

)]
(115b)
k=1
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+ π A0 sin(ax) cos(π y) cos(ω0t)

−
(
μ̃N + α0

N−1∑
i=1

(μ̃i − μ̃N)(1 + ϕi)

)
(a2 + π2)

A0a

π
cos(ax) sin(π y) sin(ω0t)

− α0

N−1∑
i=1

(μ̃i − μ̃N)

[
∂ϕi

∂x

(
∂u

∂ y
+ ∂v

∂x

)
+ 2

∂ϕi

∂ y

∂v

∂ y

]
− α2

0

N∑
i=1

⎡
⎣N−1∑

j=1

λ̄i j(a
2
j + b2

j )ϕ j

⎤
⎦ ∂ϕi

∂ y
.

In these expressions ϕi (1 � i � N) are given by (105), and ∂ϕi
∂x and ∂ϕi

∂ y are given by (107), ∂u
∂x , ∂u

∂ y , ∂v
∂x and ∂v

∂ y are given by 
(108), and mij(�c) are given by (110).

In equation (27), the source term di (1 � i � N − 1) are given by

di =α0ωi Ai cos(ai x) cos(bi y) cos(ωit)

− [A0 sin(ax) cos(π y) sin(ω0t)] [ai Ai sin(ai x) cos(bi y) sin(ω0t)]

+
[

A0a

π
cos(ax) sin(π y) sin(ω0t)

]
[bi Ai cos(ai x) sin(bi y) sin(ωit)]

+
N∑

j=1

mij(�c)
[
α0

N−1∑
k=1

λ̄ jk(a
2
k + b2

k )2ϕk − α0βσ j

(
α0 g′′′(c j)

((
∂ϕi

∂x

)2

+
(

∂ϕi

∂ y

)2
)

+ g′′(c j)∇2ϕ j

)

+α0β

N∑
k=1

σ jk

(
α0 g′′′(c j + ck)

((
∂ϕ j

∂x
+ ∂ϕk

∂x

)2

+
(

∂ϕ j

∂ y
+ ∂ϕk

∂ y

)2
)

+g′′(c j + ck)(∇2ϕ j + ∇2ϕk)
)]

− α0

N∑
j=1

∂mij

∂x

[
N−1∑
k=1

λ̄ jk(a
2
k + b2

k )
∂ϕk

∂x
+ βσ j g′′(c j)

∂ϕ j

∂x
− β

N∑
k=1

σ jk g′′(c j + ck)

(
∂ϕ j

∂x
+ ∂ϕk

∂x

)]

− α0

N∑
j=1

∂mij

∂ y

[
N−1∑
k=1

λ̄ jk(a
2
k + b2

k )
∂ϕk

∂ y
+ βσ j g′′(c j)

∂ϕ j

∂ y
− β

N∑
k=1

σ jk g′′(c j + ck)

(
∂ϕ j

∂ y
+ ∂ϕk

∂ y

)]
.

(116)

In this expression ∂mij
∂x and ∂mij

∂ y are given by equation (111).
In the boundary condition (28b) the source term dbi (1 � i � N − 1) are given by

dbi = −α0 Ai
[
nxai sin(ai x) cos(bi y) + nybi cos(ai x) sin(bi y)

]
sin(ωit), 1 � i � N − 1 (117)

where nx and ny are given by (114).
In the boundary condition (28a) the source term dai (1 � i � N − 1) are given by

dai = α0

N∑
j=1

mij(�c)
[

N−1∑
k=1

λ̄ jk(a
2
k + b2

k)

(
nx

∂ϕk

∂x
+ ny

∂ϕk

∂ y

)
+ βσ j g′′(c j)

(
nx

∂ϕ j

∂x
+ ny

∂ϕ j

∂ y

)

−β

N∑
k=1

σ jk g′′(c j + ck)

(
nx

(
∂ϕ j

∂x
+ ∂ϕk

∂x

)
+ ny

(
∂ϕ j

∂ y
+ ∂ϕk

∂ y

))]
, 1 � i � N − 1.

(118)
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