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We consider the approximation of a class of dynamic partial differential equations (PDEs) of 
second order in time by the physics-informed neural network (PINN) approach, and provide an 
error analysis of PINN for the wave equation, the nonlinear Klein-Gordon equation and the linear 
elastodynamic equation. Our analyses show that, with feed-forward neural networks having two 
hidden layers and the tanh activation function, the PINN approximation errors for the solution 
field, its time derivative and its gradient field can be effectively bounded by the training loss and 
the number of training data points (quadrature points). Our analyses further suggest new forms for 
the training loss function, which contain certain residuals that are crucial to the error estimate 
but would be absent from the canonical PINN loss formulation. Adopting these new forms for 
the loss function leads to a variant PINN algorithm. We present ample numerical experiments 
with the new PINN algorithm for the wave equation, the Sine-Gordon equation and the linear 
elastodynamic equation, which show that the method can capture the solution well.

1. Introduction

Deep neural networks (DNN) have achieved a great success in a number of fields in science and engineering [36] such as natural 
language processing, robotics, computer vision, speech and image recognition, to name but a few. This has inspired a great deal 
of research efforts in the past few years to adapt such techniques to scientific computing. DNN-based techniques seem particularly 
promising for problems in higher dimensions, e.g. high-dimensional partial differential equation (PDE), since traditional numerical 
methods for high-dimensional problems can quickly become infeasible due to the exponential increase in the computational effort 
(so-called curse of dimensionality). Under these circumstances deep-learning algorithms can be helpful. In particular, the neural 
network-based approach for PDE problems provides implicit regularization and can alleviate and perhaps overcome the curse of high 
dimensions [3,4].

As deep neural networks are universal function approximators, it is natural to employ them as ansatz spaces for solutions of 
(ordinary or partial) differential equations. This paves the way for their use in physical modeling and scientific computing and 
gives rise to the field of scientific machine learning [32,52,46,22,37]. The physics-informed neural network (PINN) approach was 
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introduced in [46]. It has been successfully applied to a variety of forward and inverse PDE problems and has become one of the 
most commonly-used methods in scientific machine learning (see e.g. [46,25,10,31,58,30,6,53,18,16,7,55,24,34,20,21,57,19,45,51,

28,44], among others). The references [32,9] provide a comprehensive review of the literature on PINN and about the benefits and 
drawbacks of this approach.

The mathematical foundation for PINN aiming at the approximation of PDE solution is currently an active area of research. It is 
important to account for different components of the neural-network error: optimization error, approximation error, and estimation 
error [42,49]. Approximation error refers to the discrepancy between the exact functional map and the neural network mapping 
function on a given network architecture [8,23]. Estimation error arises when the network is trained on a finite data set to get a 
mapping on the target domain. The generalization error is the combination of approximation and estimation errors and defines the 
accuracy of the neural-network predicted solution trained on the given set of data.

Theoretical understanding of PINN has been advanced by a number of recent works. In [49] Shin et al. rigorously justify why 
PINN works and shows its consistency for linear elliptic and parabolic PDEs under certain assumptions. These results are extended in 
[50] to a general abstract framework for analyzing PINN for linear problems with the loss function formulated in terms of the strong 
or weak forms of the equations. In [40] Mishra and Molinaro provide an abstract framework on PINN for forward PDE problems, and 
estimate the generalization error by means of the training error and the number of training data points. This framework is extended 
in [39] to study several inverse PDE problems, including the Poisson, heat, wave and Stokes equations. Bai and Koley [2] investigate 
the PINN approximation of nonlinear dispersive PDEs such as the KdV-Kawahara, Camassa-Holm and Benjamin-Ono equations. In [5]

Biswa et al. provide explicit error estimates (in suitable norms) and stability analyses for the incompressible Navier–Stokes equations. 
Zerbinati [60] presents PINN as an under-determined point matching collocation method, reveals its connection with Galerkin Least 
Squares (GALS) method, and establishes an a priori error estimate for elliptic problems.

An important theoretical result on the approximation errors from the recent work [13] establishes that a feed-forward neural 
network 𝑢̂𝜃 with a tanh activation function and two hidden layers may approximate a function 𝑢 with a bound in a Sobolev space, ‖𝑢̂𝜃𝑁 − 𝑢‖𝑤𝑘,∞ ≤ 𝐶ln(𝑐𝑁)𝑘∕𝑁𝑠−𝑘. Here 𝑢 ∈𝑤𝑠,∞([0, 1]𝑑 ), 𝑑 is the dimension of the problem, 𝑁 is the number of training points, and 
𝑐, 𝐶 > 0 are explicitly known constants independent of 𝑁 . Based on this result, De Ryck et al. [12] have studied the PINN for the 
Navier–Stokes equations and shown that a small training error implies a small generalization error. In particular, Hu et al. [26]

provide the higher-order (spatial Sobolev norm) error estimates for the primitive equations, which improve the existing results 
in the PINN literature that only involve 𝐿2 errors. In [14] it has been shown that, with a sufficient number of randomly chosen 
training points, the total 𝐿2 error can be bounded by the generalization error for Kolmogorov-type PDEs, which in turn is bounded 
by the training error. It is proved that the size of the PINN and the number of training samples only increase polynomially with the 
problem dimension, thus enabling PINN to overcome the curse of dimensionality in this case. In [38] the authors investigate the 
high-dimensional radiative transfer equation and prove that the generalization error is bounded by the training error and the number 
of training points, where the upper bound depends on the dimension only through a logarithmic factor. Hence PINN does not suffer 
from the curse of dimensionality, provided that the training errors do not depend on the underlying dimension. Another interesting 
study on PINN and extended PINN (XPINN) is [27], in which the authors employ the generalized Barron space to define the function 
space of DNNs and have provided a prior and a posterior generalization bound on the PDE residual in terms of the complexity of the 
PDE solution and the posterior weight matrix norm in the neural network, respectively. Their analyses indicate that XPINN induces 
two opposing effects, with one tending to boost the network’s generalization ability and the other tending to cause the network to 
be less generalizable.

Although PINN has been widely used for approximating PDEs, theoretical investigations on its convergence and errors are still 
quite limited and are largely confined to elliptic and parabolic PDEs. There seems to be less (or little) theoretical analysis on the 
convergence of PINN for hyperbolic type PDEs. In this paper, we consider a class of dynamic PDEs of second order in time, which 
are hyperbolic in nature, and provide an analysis of the convergence and errors of the PINN algorithm applied to such problems. 
We have focused on the wave equation, the nonlinear Klein-Gordon equation and the linear elastodynamic equation in our analyses. 
Building upon the result of [13,12] on tanh neural networks with two hidden layers, we have shown that for these three kinds of 
PDEs:

• The PINN residuals can be made arbitrarily small with tanh neural networks having two hidden layers.

• The total error of the PINN approximation is bounded by the generalization error of PINN.

• The PINN approximation errors for the solution field, its time derivative and its gradient are bounded by the training error 
(training loss) and the number of quadrature points (training data points).

Furthermore, our theoretical analyses have suggested PINN training loss functions for these PDEs that are somewhat different in 
form than from the canonical PINN formulation. These lie in two aspects: (i) Our analyses require certain residual terms (such as the 
gradient of the initial condition, the time derivative of the boundary condition, or in the case of linear elastodynamic equation the 
strain and divergence of the initial condition) in the training loss, which would be absent from the canonical PINN formulation of 
the loss function. (ii) Our analyses may require, depending on the type of boundary conditions, the 𝐿2 norm for certain boundary 
residuals in the training loss, which is different from the commonly-used 𝐿2 norm squared in the canonical PINN formulation of the 
loss function.

These new forms for the training loss function suggested by the theoretical analyses lead to a variant PINN algorithm. We have 
implemented the PINN algorithm based on these new forms of the training loss function for the wave equation, the nonlinear Klein-
2

Gordon equation and the linear elastodynamic equation. Ample numerical experiments based on this algorithm have been presented. 
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The simulation results indicate that the method has captured the solution field reasonably well for these PDEs. The numerical results 
also to some extent corroborate the theoretical relation between the approximation error and the PINN training loss obtained from 
the error analysis.

It would be instructive to compare the current analyses with the recent work [27]. We note that the generalization bounds on the 
PDE residual proved in [27] apply to a general class of second-order linear PDEs (see Assumption 3.1 of [27]). In order to attain an 
𝐿2 error bound on the PINN solution, the following assumption (Assumption 3.2 of [27], page A3167) has been made on the PDE 
𝑢 = 𝑓 (with Dirichlet boundary condition) in [27],

𝐶1 ‖𝑢‖𝐿2(Ω) ⩽ ‖𝑢‖𝐿2(Ω) + ‖𝑢‖𝐿2(𝜕Ω) , (1)

where Ω is the domain (with boundary 𝜕Ω), 𝑢 is the PDE solution, 𝐶1 > 0 is a constant independent of 𝑢,  is the linear differential 
operator in the PDE, and 𝑓 denotes a prescribed function. By using this assumption and the generalization bounds on the PDE 
residual, an 𝐿2 approximation error on the PINN solution is given in [27] (Theorem 3.6 therein). We note that similar assumptions 
(with somewhat different forms) have appeared in several other previous works (see e.g. [40,39,50]), and for a few PDEs the proofs 
for a relation analogous to (1) are available. It is not clear whether the assumption (1) is generally applicable, especially to dynamic 
PDEs of second-order in time, which are the focus of the current work. At the early stage of this project, we have attempted to develop 
an 𝐿2 error estimate on the PINN solution using the original form (see Equation (2a) below) of the class of PDEs considered in this 
paper, which would presumably lead to a form analogous to (1), noting that  in (1) is the very differential operator appearing in 
the PDE. However, our attempt was not successful for certain PDEs of second-order in time. This unsuccessful attempt has led us to 
the reformulation of the original dynamic PDE of second-order in time into a system of two PDEs of first-order in time, as employed 
in all the current analyses. The 𝐿2 error bounds we have obtained for the PINN solution have a generally different form than (1), 
especially in two aspects. First, our error bound involves differential operators that are different from the one (or those) appearing 
in the original PDE. Second, our error bound typically involves the square root of certain boundary norms, as mentioned previously. 
It should be emphasized that the bounds on the PINN solution error in terms of the PDE residual error for the class of PDE problems 
in the current paper are proven, not assumed.

The rest of this paper is organized as follows. Section 2 is an overview of PINN. In Sections 3, 4 and 5, we present an error 
analysis of the PINN algorithm for approximating the wave equation, nonlinear Klein-Gordon equation, and the linear elastodynamic 
equation. Section 6 summarizes a set of numerical experiments with these three PDEs to supplement and support our theoretical 
analyses. Section 7 concludes the presentation with some closing remarks. Finally, Appendix A recalls some auxiliary results and 
provides the proofs of the theorems from Sections 4 and 5.

2. Physics informed neural networks (PINN) for approximating PDEs

2.1. Generic PDE of second order in time

Consider a compact domain 𝐷 ⊂ℝ𝑑 (𝑑 > 0 being an integer), and let  and  denote the differential and boundary operators. We 
consider the following general form of an initial boundary value problem with a generic PDE of second order in time. For any 𝒙∈𝐷, 
𝒚 ∈ 𝜕𝐷 and 𝑡 ∈ [0, 𝑇 ],

𝜕2𝑢

𝜕𝑡2
(𝒙, 𝑡) +[𝑢](𝒙, 𝑡) = 0, (2a)

𝑢(𝒚, 𝑡) = 𝑢𝑑 (𝒚, 𝑡), (2b)

𝑢(𝒙,0) = 𝑢𝑖𝑛(𝒙),
𝜕𝑢

𝜕𝑡
(𝒙,0) = 𝑣𝑖𝑛(𝒙). (2c)

Here, 𝑢(𝒙, 𝑡) is the unknown field solution, 𝑢𝑑 denotes the boundary data, and 𝑢𝑖𝑛 and 𝑣𝑖𝑛 are the initial distributions for 𝑢 and 𝜕𝑢
𝜕𝑡

. We 
assume that in  the highest derivative with respect to the time variable 𝑡, if any, is of first order.

2.2. Neural network representation of a function

Let 𝜎 ∶ℝ →ℝ denote an activation function that is at least twice continuously differentiable. For any 𝑛 ∈ℕ and 𝑧 ∈ℝ𝑛, we define 
𝜎(𝑧) ∶= (𝜎(𝑧1), ⋯ , 𝜎(𝑧𝑛)), where 𝑧𝑖 (1 ≤ 𝑖 ≤ 𝑛) are the components of 𝑧. We adopt the following formal definition for a feedforward 
neural network as given in [12].

Definition 2.1 ([12]). Let 𝑅 ∈ (0, ∞], 𝐿, 𝑊 ∈ℕ and 𝑙0, ⋯ , 𝑙𝐿 ∈ℕ. Let 𝜎 ∶ℝ →ℝ be a twice differentiable function and define

Θ=Θ𝐿,𝑊 ,𝑅 ∶=
⋃

𝐿′∈ℕ,𝐿′≤𝐿
⋃

𝑙0 ,⋯,𝑙𝐿∈{1,⋯,𝑊 }
⟍⟋𝐿′
𝑘=1([−𝑅,𝑅]

𝑙𝑘×𝑙𝑘−1 × [−𝑅,𝑅]𝑙𝑘 ). (3)

For 𝜃 ∈ Θ, we define 𝜃𝑘 ∶= (𝑊𝑘, 𝑏𝑘) and 𝜃
𝑘
∶ ℝ𝑙𝑘−1 → ℝ𝑙𝑘 by 𝑧 ↦ 𝑊𝑘𝑧 + 𝑏𝑘 for 1 ≤ 𝑘 ≤ 𝐿, and we define 𝑓𝜃

𝑘
∶ ℝ𝑙𝑘−1 → ℝ𝑙𝑘 by 

𝜃

{ 𝜃 (𝑧) 𝑘 =𝐿, 𝑙 𝑙 𝑙
3

𝑓
𝑘
= 𝐿

(𝜎◦𝜃
𝑘
)(𝑧) 1 ≤ 𝑘 < 𝐿. Denote 𝑢𝜃 ∶ℝ 0 →ℝ 𝐿 the function that satisfies for all 𝑧 ∈ℝ 0 that
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𝑢𝜃(𝑧) = (𝑓𝜃
𝐿
◦𝑓𝜃

𝐿−1◦⋯◦𝑓𝜃1 )(𝑧) 𝑧 ∈ℝ𝑙0 . (4)

We set 𝑧 = (𝒙, 𝑡) and 𝑙0 = 𝑑 + 1 for approximating the PDE problem (2).

𝑢𝜃 as defined above is the neural-network representation of a parameterized function associated with the parameter 𝜃. This neural 
network contains (𝐿 + 1) layers (𝐿 ≥ 2), with widths (𝑙0, 𝑙1, ⋯ , 𝑙𝐿) for each layer. The input layer has a width 𝑙0, and the output layer 
has a width 𝑙𝐿. The (𝐿 − 1) layers between the input/output layers are the hidden layers, with widths 𝑙𝑘 (1 ≤ 𝑘 ≤ 𝐿 − 1). 𝑊𝑘 and 𝑏𝑘
are the weight/bias coefficients corresponding to layer 𝑘 for 1 ≤ 𝑘 ≤ 𝐿. From layer to layer the network logic represents an affine 
transform, followed by a function composition with the activation function 𝜎. Note that no activation function is applied to the 
output layer. We refer to 𝑢𝜃 with 𝐿 = 2 (i.e. single hidden layer) as a shallow neural network, and 𝑢𝜃 with 𝐿 ≥ 3 (i.e. multiple hidden 
layers) as a deeper or deep neural network.

2.3. Physics informed neural network for initial/boundary value problem

Let Ω =𝐷 × [0, 𝑇 ] and Ω∗ = 𝜕𝐷 × [0, 𝑇 ] be the spatial-temporal domain. We approximate the solution 𝑢 to the problem (2) by a 
neural network 𝑢𝜃 ∶ Ω →ℝ𝑛. With PINN we consider the residual function of the initial/boundary value problem (2), defined for any 
sufficiently smooth function 𝑢 ∶ Ω →ℝ𝑛 as, for any 𝒙 ∈𝐷, 𝒚 ∈ 𝜕𝐷 and 𝑡 ∈ [0, 𝑇 ],

𝑖𝑛𝑡[𝑢](𝒙, 𝑡) =
𝜕2𝑢

𝜕𝑡2
(𝒙, 𝑡) +[𝑢](𝒙, 𝑡), 𝑠𝑏[𝑢](𝒚, 𝑡) =𝑢(𝒚, 𝑡) − 𝑢𝑑 (𝒚, 𝑡), (5a)

𝑡𝑏1[𝑢](𝒙,0) = 𝑢(𝒙,0) − 𝑢𝑖𝑛(𝒙), 𝑡𝑏2[𝑢](𝒙,0) =
𝜕𝑢

𝜕𝑡
(𝒙,0) − 𝑣𝑖𝑛(𝒙). (5b)

These residuals characterize how well a given function 𝑢 satisfies the initial/boundary value problem (2). If 𝑢 is the exact solution, 
𝑖𝑛𝑡[𝑢] =𝑠𝑏[𝑢] =𝑡𝑏1[𝑢] =𝑡𝑏2[𝑢] = 0.

To facilitate the subsequent analyses, we introduce an auxiliary function 𝑣 = 𝜕𝑢

𝜕𝑡
and rewrite 𝑡𝑏2 as

𝑡𝑏2[𝑣](𝒙,0) = 𝑣(𝒙,0) − 𝑣𝑖𝑛(𝒙). (6)

We reformulate (2a) into two equations, thus separating the interior residual into the following two components:

𝑖𝑛𝑡1[𝑢, 𝑣](𝒙, 𝑡) =
𝜕𝑢

𝜕𝑡
(𝒙, 𝑡) − 𝑣(𝒙, 𝑡), 𝑖𝑛𝑡2[𝑢, 𝑣](𝒙, 𝑡) =

𝜕𝑣

𝜕𝑡
(𝒙, 𝑡) +[𝑢](𝒙, 𝑡). (7)

With PINN, we seek a neural network (𝑢𝜃, 𝑣𝜃) to minimize the following quantity,

𝐺(𝜃)2 =∫
Ω

|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
𝐷

|𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙
+ ∫
𝐷

|𝑅𝑡𝑏2[𝑣𝜃](𝒙)|2 d𝒙+ ∫
Ω∗

|𝑅𝑠𝑏[𝑢𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡. (8)

The different terms of (8) may be rescaled by different weights (penalty coefficients). For simplicity, we set all these weights to one 
in the analysis. 𝐺 as defined above is often referred to as the generalization error. Because of the integrals involved therein, 𝐺 can 
be hard to minimize. In practice, one will approximate (8) by an appropriate numerical quadrature rule, as follows

𝑇 (𝜃,)2 = 𝑖𝑛𝑡1𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 +  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 + 𝑠𝑏

𝑇
(𝜃,𝑠𝑏)2, (9)

where

 𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2, (10a)

 𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2, (10b)

 𝑡𝑏2
𝑇

(𝜃,𝑡𝑏)2 =
𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏2[𝑣𝜃](𝒙𝑛𝑡𝑏)|2, 𝑠𝑏

𝑇
(𝜃,𝑠𝑏)2 =

𝑁𝑠𝑏∑
𝑛=1

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏[𝑢𝜃](𝒙𝑛𝑠𝑏, 𝑡𝑛𝑠𝑏)|2. (10c)

The quadrature points in the spatial-temporal domain and on the spatial and temporal boundaries, 𝑖𝑛𝑡 = {(𝒙𝑛
𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)}𝑁𝑖𝑛𝑡
𝑛=1 , 𝑠𝑏 =

{(𝒙𝑛
𝑠𝑏
, 𝑡𝑛
𝑠𝑏
)}𝑁𝑠𝑏
𝑛=1 and 𝑡𝑏 = {(𝒙𝑛

𝑡𝑏
, 𝑡𝑛
𝑡𝑏
= 0)}𝑁𝑡𝑏

𝑛=1, constitute the input data sets to the neural network. In the above equations 𝑇 (𝜃, )2 is 
referred to as the training error (or training loss), and 𝜔𝑛

⋆
are suitable quadrature weights for ⋆ = 𝑖𝑛𝑡, 𝑠𝑏 and 𝑡𝑏. Therefore, PINN 

attempts to minimize the training error 𝑇 (𝜃, )2 over the network parameters 𝜃, and upon convergence of optimization the trained 
𝑢𝜃 contains the approximation of the solution 𝑢 to the problem (2).

Remark 2.2. The generalization error (8) (with the corresponding training error (9)) is the standard (canonical) PINN form if one 
introduces 𝑣 = 𝜕𝑢

𝜕𝑡
and reformulates (2a) into two equations. We would like to emphasize that our analyses below suggest alternative 
4

forms for the generalization error, e.g.
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𝐺(𝜃)2 = ∫
Ω

|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡
+ ∫
𝐷

|𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|𝑅𝑡𝑏2[𝑣𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙

+
⎛⎜⎜⎜⎝ ∫Ω∗

|𝑅𝑠𝑏[𝑢𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1
2

,

(11)

which differs from (8) in the terms ∇𝑅𝑖𝑛𝑡1, ∇𝑅𝑡𝑏1 and the last term. The corresponding training error is,

𝑇 (𝜃,)2 = 𝑖𝑛𝑡1𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡3

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2

+  𝑡𝑏2
𝑇

(𝜃,𝑡𝑏)2 +  𝑡𝑏3
𝑇

(𝜃,𝑡𝑏)2 + 𝑠𝑏
𝑇
(𝜃,𝑠𝑏), (12)

where

 𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏3

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2. (13)

The error analyses also suggest additional terms in the generalization error for different equations.

2.4. Numerical quadrature rules

As discussed above, we need to approximate the integrals of functions. The analysis in the subsequent sections requires well-

known results on numerical quadrature rules as reviewed below.

Given Λ ⊂ ℝ𝑑 and a function 𝑓 ∈ 𝐿1(Λ), we would like to approximate ∫Λ 𝑓 (𝑧) d𝑧. A quadrature rule provides an approximation 
by ∫Λ 𝑓 (𝑧) d𝑧 ≈ 1

𝑀

∑𝑀

𝑛=1𝜔𝑛𝑓 (𝑧𝑛), where 𝑧𝑛 ∈ Λ (1 ≤ 𝑛 ≤𝑀) are the quadrature points and 𝜔𝑛 (1 ≤ 𝑛 ≤𝑀) denote the appropriate 
quadrature weights. The approximation accuracy is influenced by the type of quadrature rule, the number of quadrature points (𝑀), 
and the regularity of 𝑓 . For the mid-point rule, which is assumed in the current work, Λ is partitioned into 𝑀 ∼𝑁𝑑 cubes with an 
edge length 1

𝑁
and the approximation accuracy is given by|||||||∫Λ 𝑓 (𝑧) d𝑧−Λ

𝑀
[𝑓 ]

||||||| ≤ 𝐶𝑓𝑀
−2∕𝑑 , (14)

where Λ
𝑀
[𝑓 ] ∶= 1

𝑀

∑𝑀

𝑛=1𝜔𝑛𝑓 (𝑧𝑛), 𝐶𝑓 ≲ ‖𝑓‖𝐶2(Λ) (𝑎 ≲ 𝑏 denotes 𝑎 ≤ 𝐶𝑏) and {𝑧𝑛}𝑀𝑛=1 denote the midpoints of these cubes [11]. In this 
paper, we use 𝐶 to denote a universal constant, which may depend on 𝑘, 𝑑, 𝑇 , 𝑢 and 𝑣 but not on 𝑁 . And we use the subscript to 
emphasize its dependence when necessary, e.g. 𝐶𝑑 is a constant depending only on 𝑑.

We focus on PDE problems in relatively low dimensions (𝑑 ≤ 3) in this paper and employ the standard quadrature rules. We 
note that in higher dimensions the standard quadrature rules may not be favorable. In this case the random training points or 
low-discrepancy training points [41] may be preferred.

In subsequent sections we focus on three representative dynamic equations of second order in time (the wave equation, the 
nonlinear Klein-Gordon equation, and the linear elastodynamic equation), and provide the error estimate for approximating these 
equations by PINN. We note that these analyses suggest alternative forms for the training loss function that are somewhat different 
from the standard PINN forms [46]. The PINN numerical results based on the standard form for the loss function, and based on 
the alternative forms as suggested by the error estimate, will be provided after the presentation of the theoretical analysis. In what 
follows, for brevity we adopt the notation of Ξ = 𝜕

𝜕Ξ , ΞΥ = 𝜕2
𝜕Ξ𝜕Υ (Ξ, Υ ∈ {𝑡, 𝑥}), for any sufficiently smooth function  ∶ Ω →ℝ𝑛.

3. Physics informed neural networks for approximating the wave equation

3.1. Wave equation

Consider the wave equations on the torus 𝐷 = [0, 1)𝑑 ⊂ℝ𝑑 with periodic boundary conditions:

𝑢𝑡 − 𝑣 = 0, 𝑣𝑡 −Δ𝑢 = 𝑓, in 𝐷 × [0, 𝑇 ], (15a)

𝑢(𝒙,0) = 𝜓1(𝒙), 𝑣(𝒙,0) = 𝜓2(𝒙), in 𝐷, (15b)

𝑢(𝒙, 𝑡) = 𝑢(𝒙+ 1, 𝑡), ∇𝑢(𝒙, 𝑡) = ∇𝑢(𝒙+ 1, 𝑡), in 𝜕𝐷 × [0, 𝑇 ]. (15c)

The regularity results for linear evolution equations of the second order in time have been studied in [54]. When the self-adjoint 
operator  takes Δ, the linear evolution equations of second order in time from [54] become the classical wave equations, and then 
5

we can obtain the following regularity results.
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Lemma 3.1. Let 𝑟 ≥ 1, 𝜓1 ∈𝐻𝑟(𝐷), 𝜓2 ∈𝐻𝑟−1(𝐷) and 𝑓 ∈ 𝐿2([0, 𝑇 ]; 𝐻𝑟−1(𝐷)). Then there exists a unique solution 𝑢 to the classical wave 
equations such that 𝑢 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟(𝐷)) and 𝑢𝑡 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟−1(𝐷)).

Lemma 3.2. Let 𝑘 ∈ ℕ, 𝜓1 ∈𝐻𝑟(𝐷), 𝜓2 ∈𝐻𝑟−1(𝐷) and 𝑓 ∈ 𝐶𝑘−1([0, 𝑇 ]; 𝐻𝑟−𝑘(𝐷)) ∩𝐿2([0, 𝑇 ]; 𝐻𝑟−1(𝐷)) with 𝑟 > 𝑑

2 + 𝑘. Then there exists 
𝑇 > 0 and a classical solution 𝑢 to the wave equations such that 𝑢(𝒙, 0) = 𝜓1, 𝑢𝑡(𝒙, 0) = 𝜓2, 𝑢 ∈𝐻𝑘(𝐷 × [0, 𝑇 ]) and 𝑣 ∈𝐻𝑘−1(𝐷 × [0, 𝑇 ]).

Proof. By Lemma 3.1, there exists 𝑇 > 0 and the solution (𝑢, 𝑣) to the wave equations such that 𝑢(𝒙, 0) = 𝜓1, 𝑣(𝒙, 0) = 𝜓2, 𝑢 ∈
𝐶([0, 𝑇 ]; 𝐻𝑟(𝐷)) and 𝑣 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟−1(𝐷)). As 𝑟 > 𝑑

2 + 𝑘, 𝐻𝑟−𝑘(𝐷) is a Banach algebra.

For 𝑘 = 1, since 𝑢 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟(𝐷)), 𝑣 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟−1(𝐷)) and 𝑓 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟−1(𝐷)), we have 𝑢𝑡 = 𝑣 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟−1(𝐷)) and 
𝑣𝑡 =Δ𝑢 + 𝑓 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟−2(𝐷)). Then, it implies that 𝑢 ∈ 𝐶1([0, 𝑇 ]; 𝐻𝑟−1(𝐷)) and 𝑣 ∈ 𝐶1([0, 𝑇 ]; 𝐻𝑟−2(𝐷)).

For 𝑘 = 2, by 𝑓 ∈ 𝐶1([0, 𝑇 ]; 𝐻𝑟−2(𝐷)), we have 𝑢𝑡𝑡 = 𝑣𝑡 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟−2(𝐷)) and 𝑣𝑡𝑡 = Δ𝑢𝑡 + 𝑓𝑡 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑟−3(𝐷)). Then, it implies 
that 𝑢 ∈ 𝐶2([0, 𝑇 ]; 𝐻𝑟−2(𝐷)) and 𝑣 ∈ 𝐶2([0, 𝑇 ]; 𝐻𝑟−3(𝐷)).

Repeating the same argument, we have 𝑢 ∈ ∩𝑘
𝑙=0𝐶

𝑙([0, 𝑇 ]; 𝐻𝑟−𝑙(𝐷)) and 𝑣 ∈ ∩𝑘
𝑙=0𝐶

𝑙([0, 𝑇 ]; 𝐻𝑟−𝑙−1(𝐷)). For all 0 ≤ 𝑙 ≤ 𝑘, using 𝑙 + 𝑟 −
𝑙 ≥ 𝑘 with 𝑟 > 𝑑

2 + 𝑘, it holds 𝑢 ∈𝐻𝑘(𝐷 × [0, 𝑇 ]) and 𝑣 ∈𝐻𝑘−1(𝐷 × [0, 𝑇 ]). □

3.2. Physics informed neural networks

We would like to approximate the solutions to the problem (15) with PINN. We seek deep neural networks 𝑢𝜃 ∶ 𝐷 × [0, 𝑇 ] → ℝ
and 𝑣𝜃 ∶𝐷 × [0, 𝑇 ] →ℝ, parameterized by 𝜃 ∈Θ, that approximate the solution 𝑢 and 𝑣 of (15). Define residuals,

𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡) = 𝑢𝜃𝑡 − 𝑣𝜃, 𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡) = 𝑣𝜃𝑡 −Δ𝑢𝜃 − 𝑓, (16a)

𝑅𝑡𝑏1[𝑢𝜃](𝒙) = 𝑢𝜃(𝒙,0) −𝜓1(𝒙), 𝑅𝑡𝑏2[𝑣𝜃](𝒙) = 𝑣𝜃(𝒙,0) −𝜓2(𝒙), (16b)

𝑅𝑠𝑏1[𝑣𝜃](𝒙, 𝑡) = 𝑣𝜃(𝒙, 𝑡) − 𝑣𝜃(𝒙+ 1, 𝑡), 𝑅𝑠𝑏2[𝑢𝜃](𝒙, 𝑡) = ∇𝑢𝜃(𝒙, 𝑡) − ∇𝑢𝜃(𝒙+ 1, 𝑡). (16c)

Note that for the exact solution 𝑅𝑖𝑛𝑡1[𝑢, 𝑣] =𝑅𝑖𝑛𝑡2[𝑢, 𝑣] =𝑅𝑡𝑏1[𝑢] =𝑅𝑡𝑏2[𝑣] =𝑅𝑠𝑏1[𝑣] =𝑅𝑠𝑏2[𝑢] = 0. Let Ω =𝐷 × [0, 𝑇 ] and Ω∗ = 𝜕𝐷 × [0, 𝑇 ]
be the space-time domain. With PINN, we minimize the following generalization error,

𝐺(𝜃)2 = ∫
Ω

|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡
+ ∫
𝐷

|𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|𝑅𝑡𝑏2[𝑣𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙

+
⎛⎜⎜⎜⎝ ∫Ω∗

|𝑅𝑠𝑏1[𝑣𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1∕2

+
⎛⎜⎜⎜⎝ ∫Ω∗

|𝑅𝑠𝑏2[𝑢𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1∕2

. (17)

The form of different terms in this expression will become clearer below.

To complete the PINN formulation, we will choose the training set  ⊂𝐷 × [0, 𝑇 ] based on suitable quadrature points. We divide 
the full training set  = 𝑖𝑛𝑡 ∪ 𝑠𝑏 ∪ 𝑡𝑏 into the following three components:

• Interior training points 𝑖𝑛𝑡 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑖𝑛𝑡, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈𝐷 × (0, 𝑇 ).
• Spatial boundary training points 𝑠𝑏 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑠𝑏, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈ 𝜕𝐷 × (0, 𝑇 ).
• Temporal boundary training points 𝑡𝑏 = {𝒙𝑛} for 1 ≤ 𝑛 ≤𝑁𝑡𝑏 with each 𝒙𝑛 ∈𝐷.

We define the PINN training loss, 𝜃↦ 𝑇 (𝜃, )2, as follows,

𝑇 (𝜃,)2 = 𝑖𝑛𝑡1𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡3

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 +  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2

+  𝑡𝑏3
𝑇

(𝜃,𝑡𝑏)2 + 𝑠𝑏1
𝑇

(𝜃,𝑠𝑏) + 𝑠𝑏2
𝑇

(𝜃,𝑠𝑏), (18)

where

 𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2, (19a)

 𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃]](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏2[𝑣𝜃](𝒙𝑛𝑡𝑏)|2, (19b)

𝑖𝑛𝑡3 2
𝑁𝑖𝑛𝑡∑

𝑛 𝑛 𝑛 2 𝑡𝑏3 2
𝑁𝑡𝑏∑

𝑛 𝑛 2
6


𝑇

(𝜃,𝑖𝑛𝑡) =
𝑛=1

𝜔
𝑖𝑛𝑡
|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑖𝑛𝑡, 𝑡𝑖𝑛𝑡)| , 

𝑇
(𝜃,𝑡𝑏) =

𝑛=1
𝜔
𝑡𝑏
|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑡𝑏)| , (19c)



Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

𝑠𝑏1
𝑇

(𝜃,𝑠𝑏)2 =
𝑁𝑠𝑏∑
𝑛=1

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏1[𝑣𝜃](𝒙𝑛𝑠𝑏, 𝑡𝑛𝑠𝑏)|2, 𝑠𝑏2

𝑇
(𝜃,𝑠𝑏)2 =

𝑁𝑠𝑏∑
𝑛=1

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏2[𝑢𝜃](𝒙𝑛𝑠𝑏, 𝑡𝑛𝑠𝑏)|2. (19d)

Here the quadrature points in space-time constitute the data sets 𝑖𝑛𝑡 = {(𝒙𝑛
𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)}𝑁𝑖𝑛𝑡
𝑛=1 , 𝑡𝑏 = {𝒙𝑛

𝑡𝑏
)}𝑁𝑡𝑏
𝑛=1 and 𝑠𝑏 = {(𝒙𝑛

𝑠𝑏
, 𝑡𝑛
𝑠𝑏
)}𝑁𝑠𝑏
𝑛=1, and 𝜔𝑛

⋆

are suitable quadrature weights with ⋆ denoting 𝑖𝑛𝑡, 𝑡𝑏 or 𝑠𝑏.
Let 𝑢̂ = 𝑢𝜃 − 𝑢, 𝑣̂ = 𝑣𝜃 − 𝑣 denote the difference between the solution to the wave equations and the PINN approximation of the 

solution. We define the total error of the PINN approximation by

(𝜃)2 = ∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + |∇𝑢̂(𝒙, 𝑡)|2 + |𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡. (20)

3.3. Error analysis

In light of the wave equations (15) and the definitions for different residuals (16), we have

𝑅𝑖𝑛𝑡1 = 𝑢̂𝑡 − 𝑣̂, (21a)

𝑅𝑖𝑛𝑡2 = 𝑣̂𝑡 −Δ𝑢̂, (21b)

𝑅𝑡𝑏1 = 𝑢̂(𝒙,0), 𝑅𝑡𝑏2 = 𝑣̂(𝒙,0), 𝑅𝑠𝑏1 = 𝑣̂(𝒙, 𝑡) − 𝑣̂(𝒙+ 1, 𝑡), 𝑅𝑠𝑏2 = ∇𝑢̂(𝒙, 𝑡) − ∇𝑢̂(𝒙+ 1, 𝑡). (21c)

3.3.1. Bound on the residuals

Theorem 3.3. Let 𝑛 ≥ 2, 𝑑, 𝑟, 𝑘 ∈ ℕ with 𝑘 ≥ 3. Suppose that 𝜓1 ∈ 𝐻𝑟(𝐷), 𝜓2 ∈ 𝐻𝑟−1(𝐷) and 𝑓 ∈ 𝐶𝑘−1([0, 𝑇 ]; 𝐻𝑟−𝑘(𝐷)) ∩
𝐿2([0, 𝑇 ]; 𝐻𝑟−1(𝐷)) with 𝑟 > 𝑑

2 + 𝑘. For every integer 𝑁 > 5, there exist tanh neural networks 𝑢𝜃 and 𝑣𝜃 , each with two hidden layers, 
of widths at most 3⌈ 𝑘+𝑛−22 ⌉|𝑃𝑘−1,𝑑+2| + ⌈𝑁𝑇 ⌉ + 𝑑(𝑁 − 1) and 3⌈ 𝑑+𝑛+12 ⌉|𝑃𝑑+2,𝑑+2|⌈𝑁𝑇 ⌉𝑁𝑑 , such that

‖𝑅𝑖𝑛𝑡1‖𝐿2(Ω),‖𝑅𝑡𝑏1‖𝐿2(𝐷) ≲ ln𝑁𝑁−𝑘+1, (22a)

‖𝑅𝑖𝑛𝑡2‖𝐿2(Ω),‖∇𝑅𝑖𝑛𝑡1‖𝐿2(Ω),‖∇𝑅𝑡𝑏1‖𝐿2(𝐷),‖𝑅𝑠𝑏2‖𝐿2(𝜕𝐷×[0,𝑇 ]) ≲ ln2𝑁𝑁−𝑘+2, (22b)

‖𝑅𝑡𝑏2‖𝐿2(𝐷),‖𝑅𝑠𝑏1‖𝐿2(𝜕𝐷×[0,𝑇 ]) ≲ ln𝑁𝑁−𝑘+2. (22c)

Proof. Based on Lemma 3.2, it holds that 𝑢 ∈𝐻𝑘(Ω) and 𝑣 ∈𝐻𝑘−1(Ω). In light of Lemma A.3, there exist neural networks 𝑢𝜃 and 
𝑣𝜃 , with the same two hidden layers and widths 3⌈ 𝑘+𝑛−22 ⌉|𝑃𝑘−1,𝑑+2| + ⌈𝑁𝑇 ⌉ + 𝑑(𝑁 − 1) and 3⌈ 𝑑+𝑛+12 ⌉|𝑃𝑑+2,𝑑+2|⌈𝑁𝑇 ⌉𝑁𝑑 , such that for 
every 0 ≤ 𝑙 ≤ 2 and 0 ≤ 𝑠 ≤ 2,

‖𝑢𝜃 − 𝑢‖𝐻𝑙(Ω) ≤ 𝐶𝑙,𝑘,𝑑+1,𝑢𝜆𝑙,𝑢(𝑁)𝑁−𝑘+𝑙 , ‖𝑣𝜃 − 𝑣‖𝐻𝑠(Ω) ≤ 𝐶𝑠,𝑘−1,𝑑+1,𝑣𝜆𝑠,𝑣(𝑁)𝑁−𝑘+1+𝑠, (23)

where 𝜆𝑙,𝑢 = 2𝑙3𝑑+1(1 + 𝛿)ln𝑙
(
𝛽𝑙,𝛿,𝑑+1,𝑢𝑁

𝑑+𝑘+3), 𝛿 = 1
100 , 𝜆𝑠,𝑣 = 2𝑠3𝑑+1(1 + 𝛿)ln𝑠

(
𝛽𝑠,𝛿,𝑑+1,𝑣𝑁

𝑑+𝑘+2), and the definition for the other con-

stants can be found in Lemma A.3.

In light of Lemma A.1, we can bound the PINN residual terms,

‖𝑢̂𝑡‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻1(Ω), ‖𝑣̂𝑡‖𝐿2(Ω) ≤ ‖𝑣̂‖𝐻1(Ω),‖Δ𝑢̂‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻2(Ω), ‖∇𝑢̂𝑡‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻2(Ω), ‖∇𝑣̂‖𝐿2(Ω) ≤ ‖𝑣̂‖𝐻1(Ω),‖𝑢̂‖𝐿2(𝐷) ≤ ‖𝑢̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻1(Ω), ‖𝑣̂‖𝐿2(𝐷) ≤ ‖𝑣̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑣̂‖𝐻1(Ω),‖∇𝑢̂‖𝐿2(𝐷) ≤ ‖∇𝑢̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻2(Ω), ‖𝑣̂‖𝐿2(𝜕𝐷×[0,𝑇 ]) ≤ ‖𝑣̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑣̂‖𝐻1(Ω),‖∇𝑢̂‖𝐿2(𝜕𝐷×[0,𝑇 ]) ≤ ‖∇𝑢̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻2(Ω).

By combining these relations with (23), we can obtain

‖𝑅𝑖𝑛𝑡1‖𝐿2(Ω) = ‖𝑢̂𝑡 − 𝑣̂‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻1(Ω) + ‖𝑣̂‖𝐿2(Ω)

≤ 𝐶1,𝑘,𝑑+1,𝑢𝜆1,𝑢(𝑁)𝑁−𝑘+1 +𝐶0,𝑘−1,𝑑+1,𝑣𝜆0,𝑣(𝑁)𝑁−𝑘+1 ≲ ln𝑁𝑁−𝑘+1,

‖𝑅𝑖𝑛𝑡2‖𝐿2(Ω) = ‖𝑣̂𝑡 −Δ𝑢̂‖𝐿2(Ω) ≤ ‖𝑣̂‖𝐻1(Ω) + ‖𝑢̂‖𝐻2(Ω)

≤ 𝐶2,𝑘,𝑑+1,𝑢𝜆2,𝑢(𝑁)𝑁−𝑘+2 +𝐶1,𝑘−1,𝑑+1,𝑣𝜆1,𝑣(𝑁)𝑁−𝑘+2 ≲ ln2𝑁𝑁−𝑘+2,

‖∇𝑅𝑖𝑛𝑡1‖𝐿2(Ω) = ‖∇(𝑢̂𝑡 − 𝑣̂)‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻2(Ω) + ‖𝑣̂‖𝐻1(Ω)

≤ 𝐶2,𝑘,𝑑+1,𝑢𝜆2,𝑢(𝑁)𝑁−𝑘+2 +𝐶1,𝑘−1,𝑑+1,𝑣𝜆1,𝑣(𝑁)𝑁−𝑘+2 ≲ ln2𝑁𝑁−𝑘+2,
7

‖𝑅𝑡𝑏1‖𝐿2(𝐷) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻1(Ω) ≲ ln𝑁𝑁−𝑘+1,
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‖𝑅𝑡𝑏2‖𝐿2(𝐷),‖𝑅𝑠𝑏1‖𝐿2(𝜕𝐷×[0,𝑇 ]) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑣̂‖𝐻1(Ω) ≲ ln𝑁𝑁−𝑘+2,

‖∇𝑅𝑡𝑏1‖𝐿2(𝐷),‖𝑅𝑠𝑏2‖𝐿2(𝜕𝐷×[0,𝑇 ]) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻2(Ω) ≲ ln2𝑁𝑁−𝑘+2,

which completes the proof of Theorem 3.3. □

Theorem 3.3 implies that one can make the PINN residuals (16) arbitrarily small by choosing 𝑁 to be sufficiently large. It follows 
that the generalization error 𝐺(𝜃)2 in (17) can be made arbitrarily small.

3.3.2. Bounds on the total approximation error

We next show that the total error (𝜃)2 is also small when the generalization error 𝐺(𝜃)2 is small with the PINN approximation 
(𝑢𝜃, 𝑣𝜃). Then we prove that the total error (𝜃)2 can be arbitrarily small, provided that the training error 𝑇 (𝜃, )2 is sufficiently 
small and the sample set is sufficiently large.

Theorem 3.4. Let 𝑑 ∈ ℕ, 𝑢 ∈ 𝐶1(Ω) and 𝑣 ∈ 𝐶0(Ω) be the classical solution to the wave equations (15). Let 𝑢𝜃 and 𝑣𝜃 denote the PINN 
approximation with parameter 𝜃. Then the following relation holds,

(𝜃)2 = ∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + |∇𝑢̂(𝒙, 𝑡)|2 + |𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝐺𝑇 exp(2𝑇 ), (24)

where 𝐶𝐺 is given by (27) in the following proof.

Proof. Taking the 𝐿2 inner product of (21a) and (21b) with 𝑢̂ and 𝑣̂ over 𝐷, respectively, we have

𝑑

2𝑑𝑡 ∫
𝐷

|𝑢̂|2 d𝒙 = ∫
𝐷

𝑢̂𝑣̂d𝒙+ ∫
𝐷

𝑅𝑖𝑛𝑡1𝑢̂d𝒙 ≤ ∫
𝐷

|𝑢̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡1|2 d𝒙+ 1
2 ∫
𝐷

|𝑣̂|2 d𝒙, (25)

𝑑

2𝑑𝑡 ∫
𝐷

|𝑣̂|2 d𝒙 = −∫
𝐷

∇𝑢̂ ⋅∇𝑣̂d𝒙+ ∫
𝜕𝐷

𝑣̂∇𝑢̂ ⋅ 𝒏d𝑠(𝒙) + ∫
𝐷

𝑅𝑖𝑛𝑡2𝑣̂d𝒙

= − 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ ∫
𝐷

∇𝑢̂ ⋅∇𝑅𝑖𝑛𝑡1 d𝒙+ ∫
𝜕𝐷

𝑣̂∇𝑢̂ ⋅ 𝒏d𝑠(𝒙) + ∫
𝐷

𝑅𝑖𝑛𝑡2𝑣̂d𝒙

≤ − 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 1
2 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 1
2 ∫
𝐷

|∇𝑅𝑖𝑛𝑡1|2 d𝒙+𝐶𝜕𝐷1

⎛⎜⎜⎝ ∫𝜕𝐷 |𝑅𝑠𝑏1|2 d𝑠(𝒙)⎞⎟⎟⎠
1∕2

+𝐶𝜕𝐷2

⎛⎜⎜⎝ ∫𝜕𝐷 |𝑅𝑠𝑏2|2 d𝑠(𝒙)⎞⎟⎟⎠
1∕2

+ 1
2 ∫
𝐷

|𝑣̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡2|2 d𝒙. (26)

Here, we have used 𝑣̂ = 𝑢̂𝑡 −𝑅𝑖𝑛𝑡1, 𝐶𝜕𝐷1
= |𝜕𝐷| 12 (‖𝑢‖𝐶1(𝜕𝐷×[0,𝑇 ]) + ‖𝑢𝜃‖𝐶1(𝜕𝐷×[0,𝑇 ])) and 𝐶𝜕𝐷2

= |𝜕𝐷| 12 (‖𝑣‖𝐶(𝜕𝐷×[0,𝑇 ]) + ‖𝑣𝜃‖𝐶(𝜕𝐷×[0,𝑇 ])).
Adding (25) to (26), integrating it over [0, 𝜏] for any 𝜏 ≤ 𝑇 and applying the Cauchy–Schwarz inequality, we obtain

∫
𝐷

|𝑢̂(𝒙, 𝜏)|2 d𝒙+ ∫
𝐷

|∇𝑢̂(𝒙, 𝜏)|2 d𝒙+ ∫
𝐷

|𝑣̂(𝒙, 𝜏)|2 d𝒙
≤ ∫
𝐷

|𝑅𝑡𝑏1|2 d𝒙+ ∫
𝐷

|𝑅𝑡𝑏2|2 d𝒙+ ∫
𝐷

|∇𝑅𝑡𝑏1|2 d𝒙+ 2

𝜏

∫
0

∫
𝐷

(|𝑢̂|2 + |∇𝑢̂|2 + |𝑣̂|2) d𝒙d𝑡

+ ∫
Ω

(|𝑅𝑖𝑛𝑡1|2 + |𝑅𝑖𝑛𝑡2|2 + |∇𝑅𝑖𝑛𝑡1|2) d𝒙d𝑡+ 2𝐶𝜕𝐷1
|𝑇 |1∕2 ⎛⎜⎜⎝

𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏1|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1∕2

+ 2𝐶𝜕𝐷2
|𝑇 |1∕2 ⎛⎜⎜⎝

𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏2|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1∕2

.

We apply the integral form of the Grönwall inequality to the above inequality to get

∫
𝐷

(|𝑢̂(𝒙, 𝜏)|2 + |∇𝑢̂(𝒙, 𝜏)|2 + |𝑣̂(𝒙, 𝜏)|2) d𝒙 ≤ 𝐶𝐺 exp(2𝑇 ),
8

where
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𝐶𝐺 = ∫
𝐷

(|𝑅𝑡𝑏1|2 + |𝑅𝑡𝑏2|2 + |∇𝑅𝑡𝑏1|2) d𝒙+ ∫
Ω

(|𝑅𝑖𝑛𝑡1|2 + |𝑅𝑖𝑛𝑡2|2 + |∇𝑅𝑖𝑛𝑡1|2) d𝒙d𝑡
+ 2𝐶𝜕𝐷1

|𝑇 |1∕2 ⎛⎜⎜⎝
𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏1|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1∕2

+ 2𝐶𝜕𝐷2
|𝑇 |1∕2 ⎛⎜⎜⎝

𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏2|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1∕2

. (27)

Then, we integrate the above inequality over [0, 𝑇 ] to yield (24). □

Theorem 3.5. Let 𝑑 ∈ℕ and 𝑇 > 0. Let 𝑢 ∈ 𝐶4(Ω) and 𝑣 ∈ 𝐶3(Ω) be the classical solution of the wave equations (15), and let (𝑢𝜃, 𝑣𝜃) denote 
the PINN approximation with parameter 𝜃 ∈Θ. Then the total error satisfies

∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + |∇𝑢̂(𝒙, 𝑡)|2 + |𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝑇 𝑇 exp(2𝑇 )

=(𝑇 (𝜃,)2 +𝑀− 2
𝑑+1

𝑖𝑛𝑡
+𝑀

− 2
𝑑

𝑡𝑏
+𝑀

− 1
𝑑

𝑠𝑏
). (28)

The constant 𝐶𝑇 is defined by (30) below.

Proof. By combining Theorem 3.4 with the quadrature error formula (14), we have

∫
𝐷

|𝑅𝑡𝑏1|2 d𝒙 = ∫
𝐷

|𝑅𝑡𝑏1|2 d𝒙−𝐷
𝑀𝑡𝑏

(𝑅2
𝑡𝑏1) +𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏1) ≤ 𝐶(𝑅2
𝑡𝑏1)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏1),

∫
𝐷

|𝑅𝑡𝑏2|2 d𝒙 = ∫
𝐷

|𝑅𝑡𝑏2|2 d𝒙−𝐷
𝑀𝑡𝑏

(𝑅2
𝑡𝑏2) +𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏2) ≤ 𝐶(𝑅2
𝑡𝑏2)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏2),

∫
𝐷

|∇𝑅𝑡𝑏1|2 d𝒙 = ∫
𝐷

|∇𝑅𝑡𝑏1|2 d𝒙−𝐷
𝑀𝑡𝑏

(|∇𝑅𝑡𝑏1|2) +𝐷
𝑀𝑡𝑏

(|∇𝑅𝑡𝑏1|2) ≤ 𝐶(|∇𝑅𝑡𝑏1|2)𝑀− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|∇𝑅𝑡𝑏1|2),

∫
Ω

|𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡 = ∫
Ω

|𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡−Ω
𝑀𝑖𝑛𝑡

(𝑅2
𝑖𝑛𝑡1) +Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡1) ≤ 𝐶(𝑅2
𝑖𝑛𝑡1)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡1),

∫
Ω

|𝑅𝑖𝑛𝑡2|2 d𝒙d𝑡 = ∫
Ω

|𝑅𝑖𝑛𝑡2|2 d𝒙d𝑡−Ω
𝑀𝑖𝑛𝑡

(𝑅2
𝑖𝑛𝑡2) +Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡2) ≤ 𝐶(𝑅2
𝑖𝑛𝑡2)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡2),

∫
Ω

|∇𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡 = ∫
Ω

|∇𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡−Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2) +Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2)
≤ 𝐶(|∇𝑅𝑖𝑛𝑡1|2)𝑀− 2

𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2),
∫
Ω∗

|𝑅𝑠𝑏1|2 d𝑠(𝒙) d𝑡 = ∫
Ω∗

|𝑅𝑠𝑏1|2 d𝑠(𝒙) d𝑡−Ω∗
𝑀𝑠𝑏

(𝑅2
𝑠𝑏1) +Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏1) ≤ 𝐶(𝑅2
𝑠𝑏1)
𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏1),

∫
Ω∗

|𝑅𝑠𝑏2|2 d𝑠(𝒙) d𝑡 = ∫
Ω∗

|𝑅𝑠𝑏2|2 d𝑠(𝒙) d𝑡−Ω∗
𝑀𝑠𝑏

(𝑅2
𝑠𝑏2) +Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏2) ≤ 𝐶(𝑅2
𝑠𝑏2)
𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏2).

Combining the fact that 𝐶(𝑅2
𝑡𝑏1)

≲ ‖𝑅2
𝑡𝑏1‖𝐶𝑛 and ‖𝑅2

𝑡𝑏1‖𝐶𝑛 ≤ 2𝑛‖𝑅2
𝑡𝑏1‖2𝐶𝑛 with Lemma A.2, it holds

𝐶(𝑅2
𝑡𝑏1)

≲ ‖𝑢̂‖2
𝐶2 ≤ 2(‖𝑢‖2

𝐶2 + ‖𝑢𝜃‖2𝐶2 ) ≲ ‖𝑢‖2
𝐶2 + 162𝐿(𝑑 + 1)8(𝑒224𝑊 3𝑅2‖𝜎‖𝐶2 )4𝐿. (29)

In a similar way, we can estimate the terms ∫
𝐷
|𝑅𝑡𝑏2|2 d𝒙, ∫

𝐷
|∇𝑅𝑡𝑏1|2 d𝒙, ∫Ω |𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡, ∫Ω |𝑅𝑖𝑛𝑡2|2 d𝒙d𝑡 and ∫Ω |∇𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡.

By the above inequalities and (24), it holds that

∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + |∇𝑢̂(𝒙, 𝑡)|2 + |𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝑇 𝑇 exp(2𝑇 ),

where

𝐶𝑇 =𝐶(𝑅2
𝑡𝑏1)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏1) +𝐶(𝑅2
𝑡𝑏2)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏2) +𝐶(|∇𝑅𝑡𝑏1|2)𝑀− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|∇𝑅𝑡𝑏1|2)

+𝐶(𝑅2
𝑖𝑛𝑡1)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡1) +𝐶(𝑅2
𝑖𝑛𝑡2)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡2)

− 2
9

+𝐶(|∇𝑅𝑖𝑛𝑡1|2)𝑀 𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2)
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+ 2𝐶𝜕𝐷1
|𝑇 |1∕2(𝐶(𝑅2

𝑠𝑏1)
𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏

)1∕2
+ 2𝐶𝜕𝐷2

|𝑇 |1∕2(𝐶(𝑅2
𝑠𝑏2)
𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏

)1∕2
. □ (30)

4. Physics informed neural networks for approximating the nonlinear Klein-Gordon equation

4.1. Nonlinear Klein-Gordon equation

Let 𝐷 ⊂ℝ𝑑 be an open connected bounded set with a boundary 𝜕𝐷. We consider the following nonlinear Klein-Gordon equation:

𝑢𝑡 − 𝑣 = 0, 𝜀2𝑣𝑡 = 𝑎2Δ𝑢− 𝜀21𝑢− 𝑔(𝑢) + 𝑓, in 𝐷 × [0, 𝑇 ], (31a)

𝑢(𝒙,0) = 𝜓1(𝒙), 𝑣(𝒙,0) = 𝜓2(𝒙), in 𝐷, (31b)

𝑢(𝒙, 𝑡)|𝜕𝐷 = 𝑢𝑑 (𝑡) in 𝜕𝐷 × [0, 𝑇 ], (31c)

where 𝑢 and 𝑣 are the field functions to be solved for, 𝑓 is a source term, and 𝑢𝑑 , 𝜓1 and 𝜓2 denote the boundary/initial conditions. 
𝜀 > 0, 𝑎 > 0 and 𝜀1 ≥ 0 are constants. 𝑔(𝑢) is a nonlinear term. We assume that 𝑔 is globally Lipschitz, i.e. there exists a constant 𝐿
(independent of 𝑣 and 𝑤) such that

|𝑔(𝑣) − 𝑔(𝑤)| ≤𝐿|𝑣−𝑤|, ∀𝑣, 𝑤 ∈ℝ. (32)

Notice that the problem (31) is nonlinear because of the nonlinear term 𝑔(𝑢). With the nonlinear term given by 𝑔(𝑢) = sin(𝑢), equa-

tion (31a) becomes the well-known Sine-Gordon equation [15].

Remark 4.1. The existence and regularity of the solution to the nonlinear Klein-Gordon equation with different nonlinear terms have 
been the subject of several studies in the literature; see [56,35,47,48,54].

The book [54] provides the existence and regularity result of the following Klein-Gordon equation, 𝑢𝑡𝑡 + 𝛼𝑢𝑡 − Δ𝑢 + 𝑔(𝑢) = 𝑓 . Let 
𝛼 ∈ ℝ, 𝑔(𝑢) be a 𝐶2 function from ℝ to ℝ and satisfy certain assumptions. If 𝑓 ∈ 𝐶([0, 𝑇 ]; 𝐿2(𝐷)), 𝜓1 ∈𝐻1(𝐷) and 𝜓2 ∈ 𝐿2(𝐷), then 
there exists a unique solution 𝑢 to this Klein-Gordon equation such that 𝑢 ∈ 𝐶([0, 𝑇 ]; 𝐻1(𝐷)) and 𝑢𝑡 ∈ 𝐶([0, 𝑇 ]; 𝐿2(𝐷)). Furthermore, 
𝑓 ′ ∈ 𝐶([0, 𝑇 ]; 𝐿2(𝐷)), 𝜓1 ∈𝐻2(𝐷) and 𝜓2 ∈𝐻1(𝐷), it holds 𝑢 ∈ 𝐶([0, 𝑇 ]; 𝐻2(𝐷)) and 𝑢𝑡 ∈ 𝐶([0, 𝑇 ]; 𝐻1(𝐷)).

Let 𝑔 be a smooth function of degree 2. The following equation is studied in [48], 𝑢𝑡𝑡 − Δ𝑢 + 𝑢 + 𝑔(𝑢, 𝑢𝑡, 𝑢𝑡𝑡) = 0, where it is 

reformulated as 𝒖𝑡 = 𝐴𝒖 + 𝐺(𝒖), in which 𝒖 =
(
𝑢

𝑢𝑡

)
, 𝐴 =

(
0 1

Δ − 1 0

)
and 𝐺 =

(
0,

−𝑔(𝑢, 𝑢𝑡, 𝑢𝑡𝑡)

)
. Set 𝑋 = 𝐻𝑘(ℝ𝑛) ⨁𝐻𝑘−1(ℝ𝑛), 𝑘 >

𝑛 + 2 + 2𝑎 with 𝑎 > 1. Given 𝒖0 =
(
𝜓1
𝜓2

)
∈𝑋 and ‖𝒖0‖𝑋 = 𝜎, there exists a 𝑇0 = 𝑇0(𝜎) depending on the size of the initial data 𝜎 and a 

unique solution 𝒖 ∈ 𝐶([0, 𝑇0], 𝑋).
The reference [56] provides the following result. Under certain conditions for the nonlinear term 𝑔(𝑢), with 𝑓 = 0, 𝑑 ≤ 5, 𝑘 ≥ 𝑑

2 +1, 
𝜓1 ∈𝐻𝑘(𝐷) and 𝜓2 ∈𝐻𝑘−1(𝐷), there exists a unique solution 𝑢 ∈ 𝐶((0, ∞); 𝐻𝑘(𝐷)) of nonlinear Klein–Gordon equation.

The following result is due to [35]. Under certain conditions for the nonlinear term 𝑔(𝑢), with 𝑓 = 0, 𝜓1 ∈𝐻𝑘(𝐷) and 𝜓2 ∈𝐻𝑘−1(𝐷)
with a positive constant 𝑘 ≥ 4, there exists a positive constant 𝑇𝑘 and a unique solution 𝑢 ∈ 𝐶([0, 𝑇𝑘]; 𝐻𝑘(𝐷)) ∩ 𝐶1([0, 𝑇𝑘]; 𝐻𝑘−1(𝐷)) ∩
𝐶2([0, 𝑇𝑘]; 𝐻𝑘−2(𝐷)) to the nonlinear wave equations with different speeds of propagation.

A survey of literature indicates that, while several works have touched on the regularity of the solution to the nonlinear Klein-

Gordon equations, none of them is comprehensive. To facilitate the subsequent analyses, we make the following assumption in light 
of Remark 4.1. Let 𝑘 ≥ 1, 𝑔(𝑢) and 𝑓 be sufficiently smooth and bounded. Given 𝜓1 ∈𝐻𝑟(𝐷) and 𝜓2 ∈𝐻𝑟−1(𝐷) with 𝑟 ≥ 𝑑

2 + 𝑘, we 
assume that there exists 𝑇 > 0 and a classical solution (𝑢, 𝑣) to the nonlinear Klein-Gordon equations (31) such that 𝑢 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑘(𝐷))
and 𝑣 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑘−1(𝐷)). Therefore, 𝑢 ∈𝐻𝑘(𝐷 × [0, 𝑇 ]) and 𝑣 ∈𝐻𝑘−1(𝐷 × [0, 𝑇 ]).

4.2. Physics informed neural networks

Let Ω =𝐷 × [0, 𝑇 ] and Ω∗ = 𝜕𝐷 × [0, 𝑇 ] be the space-time domain. We define the following residuals for the PINN approximation, 
𝑢𝜃 ∶ Ω →ℝ and 𝑣𝜃 ∶ Ω →ℝ, for the nonlinear Klein-Gordon equations (31):

𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡) = 𝑢𝜃𝑡 − 𝑣𝜃, 𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡) = 𝜀2𝑣𝜃𝑡 − 𝑎2Δ𝑢𝜃 + 𝜀21𝑢𝜃 + 𝑔(𝑢𝜃) − 𝑓, (33a)

𝑅𝑡𝑏1[𝑢𝜃](𝒙) = 𝑢𝜃(𝒙,0) −𝜓1(𝒙), 𝑅𝑡𝑏2[𝑣𝜃](𝒙) = 𝑣𝜃(𝒙,0) −𝜓2(𝒙), (33b)

𝑅𝑠𝑏[𝑣𝜃](𝒙, 𝑡) = 𝑣𝜃(𝒙, 𝑡)|𝜕𝐷 − 𝑢𝑑𝑡(𝑡), (33c)

where 𝑢𝑑𝑡 =
𝜕𝑢𝑑

𝜕𝑡
. Note that for the exact solution (𝑢, 𝑣), 𝑅𝑖𝑛𝑡1[𝑢, 𝑣] =𝑅𝑖𝑛𝑡2[𝑢, 𝑣] =𝑅𝑡𝑏1[𝑢] =𝑅𝑡𝑏2[𝑣] =𝑅𝑠𝑏[𝑣] = 0. With PINN we minimize 

the following generalization error,

𝐺(𝜃)2 = |𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ |𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ |∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡

10

∫
Ω

∫
Ω

∫
Ω
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+ ∫
𝐷

|𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|𝑅𝑡𝑏2[𝑣𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙

+
⎛⎜⎜⎜⎝ ∫Ω∗

|𝑅𝑠𝑏[𝑣𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1
2

. (34)

Let 𝑢̂ = 𝑢𝜃 − 𝑢, 𝑣̂ = 𝑣𝜃 − 𝑣, where (𝑢, 𝑣) denotes the exact solution. We define the total error of the PINN approximation of the 
equations (31) as,

(𝜃)2 = ∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + 𝑎2|∇𝑢̂(𝒙, 𝑡)|2 + 𝜀2|𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡. (35)

Then we choose the training set  ⊂𝐷 × [0, 𝑇 ] with  = 𝑖𝑛𝑡 ∪ 𝑠𝑏 ∪ 𝑡𝑏, based on suitable quadrature points:

• Interior training points 𝑖𝑛𝑡 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑖𝑛𝑡, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈𝐷 × (0, 𝑇 ).
• Spatial boundary training points 𝑠𝑏 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑠𝑏, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈ 𝜕𝐷 × (0, 𝑇 ).
• Temporal boundary training points 𝑡𝑏 = {𝒙𝑛} for 1 ≤ 𝑛 ≤𝑁𝑡𝑏 with each 𝒙𝑛 ∈𝐷.

The integrals in (34) are approximated by a numerical quadrature rule, resulting in the training loss,

𝑇 (𝜃,)2 =  𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1
𝑇

(𝜃,𝑡𝑏)2 +  𝑡𝑏2
𝑇

(𝜃,𝑡𝑏)2
+  𝑡𝑏3

𝑇
(𝜃,𝑡𝑏)2 + 𝑠𝑏

𝑇
(𝜃,𝑠𝑏), (36)

where

 𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2, (37a)

 𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏2[𝑣𝜃](𝒙𝑛𝑡𝑏)|2, (37b)

 𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏3

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2, (37c)

𝑠𝑏
𝑇
(𝜃,𝑠𝑏)2 =

𝑁𝑠𝑏∑
𝑛=1

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏[𝑣𝜃](𝒙𝑛𝑠𝑏, 𝑡𝑛𝑠𝑏)|2. (37d)

Here the quadrature points in space-time constitute the data sets 𝑖𝑛𝑡 = {(𝒙𝑛
𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)}𝑁𝑖𝑛𝑡
𝑛=1 , 𝑡𝑏 = {𝒙𝑛

𝑡𝑏
)}𝑁𝑡𝑏
𝑛=1 and 𝑠𝑏 = {(𝒙𝑛

𝑠𝑏
, 𝑡𝑛
𝑠𝑏
)}𝑁𝑠𝑏
𝑛=1, and 𝜔𝑛

⋆

are the quadrature weights with ⋆ being 𝑖𝑛𝑡, 𝑡𝑏 or 𝑠𝑏.

4.3. Error analysis

By subtracting the equations (31) from the residual equations (33), we get

𝑅𝑖𝑛𝑡1 = 𝑢̂𝑡 − 𝑣̂, (38a)

𝑅𝑖𝑛𝑡2 = 𝜀2𝑣̂𝑡 − 𝑎2Δ𝑢̂+ 𝜀21𝑢̂+ 𝑔(𝑢𝜃) − 𝑔(𝑢), (38b)

𝑅𝑡𝑏1 = 𝑢̂(𝒙,0), 𝑅𝑡𝑏2 = 𝑣̂(𝒙,0), 𝑅𝑠𝑏 = 𝑣̂(𝒙, 𝑡)|𝜕𝐷. (38c)

The results on the PINN approximations to the nonlinear Klein-Gordon equations are summarized in the following theorems.

Theorem 4.2. Let 𝑛 ≥ 2, 𝑑, 𝑟, 𝑘 ∈ℕ with 𝑘 ≥ 3. Assume that 𝑔(𝑢) is Lipschitz continuous, 𝑢 ∈𝐻𝑘(𝐷× [0, 𝑇 ]) and 𝑣 ∈𝐻𝑘−1(𝐷× [0, 𝑇 ]). Then 
for every integer 𝑁 > 5, there exist tanh neural networks 𝑢𝜃 and 𝑣𝜃 , each with two hidden layers, of widths at most 3⌈ 𝑘+𝑛−22 ⌉|𝑃𝑘−1,𝑑+2| +⌈𝑁𝑇 ⌉ + 𝑑(𝑁 − 1) and 3⌈ 𝑑+𝑛+12 ⌉|𝑃𝑑+2,𝑑+2|⌈𝑁𝑇 ⌉𝑁𝑑 , such that

‖𝑅𝑖𝑛𝑡1‖𝐿2(Ω),‖𝑅𝑡𝑏1‖𝐿2(𝐷) ≲ ln𝑁𝑁−𝑘+1, (39a)

‖𝑅𝑖𝑛𝑡2‖𝐿2(Ω),‖∇𝑅𝑖𝑛𝑡1‖𝐿2(Ω),‖∇𝑅𝑡𝑏1‖𝐿2(𝐷) ≲ ln2𝑁𝑁−𝑘+2, (39b)

‖𝑅𝑡𝑏2‖𝐿2(𝐷),‖𝑅𝑠𝑏‖𝐿2(𝜕𝐷×[0,𝑇 ]) ≲ ln𝑁𝑁−𝑘+2. (39c)

Proof. Being similar to the proof of Theorem 3.3, we can end the proof by noting 𝑢 ∈ 𝐻𝑘(𝐷 × [0, 𝑇 ]), 𝑣 ∈ 𝐻𝑘−1(𝐷 × [0, 𝑇 ]) and 
11

Lemma A.3. □
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Theorem 4.2 implies that the PINN residuals in (33) can be made arbitrarily small by choosing a sufficiently large 𝑁 . Therefore, 
the generalization error 𝐺(𝜃)2 can be made arbitrarily small.

We next show that the PINN total approximation error (𝜃)2 can be controlled by the generalization error 𝐺(𝜃)2 (Theorem 4.3

below), and by the training error 𝑇 (𝜃, )2 (Theorem 4.4 below).

Theorem 4.3. Let 𝑑 ∈ℕ, 𝑢 ∈ 𝐶1(Ω) and 𝑣 ∈ 𝐶0(Ω) be the classical solution of the nonlinear Klein-Gordon equation (31). Let (𝑢𝜃, 𝑣𝜃) denote 
the PINN approximation with parameter 𝜃. Then the following relation holds,

(𝜃)2 = ∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + 𝑎2|∇𝑢̂(𝒙, 𝑡)|2 + 𝜀2|𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝐺𝑇 exp
(
(2 + 𝜀21 +𝐿+ 𝑎2)𝑇

)
, (40)

where 𝐶𝐺 is defined by (74) in Appendix A.2.

The proof for Theorem 4.3 is provided in the Appendix A.2.

Theorem 4.4. Let 𝑑 ∈ℕ and 𝑇 > 0, and let 𝑢 ∈ 𝐶4(Ω) and 𝑣 ∈ 𝐶3(Ω) be the classical solution to the nonlinear Klein-Gordon equation (31). 
Let (𝑢𝜃, 𝑣𝜃) denote the PINN approximation with parameter 𝜃 ∈Θ. Then the following relation holds,

∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + 𝑎2|∇𝑢̂(𝒙, 𝑡)|2 + 𝜀2|𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝑇 𝑇 exp
(
(2 + 𝜀21 +𝐿+ 𝑎2)𝑇

)
=(𝑇 (𝜃,)2 +𝑀− 2

𝑑+1
𝑖𝑛𝑡

+𝑀
− 2
𝑑

𝑡𝑏
+𝑀

− 1
𝑑

𝑠𝑏
), (41)

where the constant 𝐶𝑇 is defined by

𝐶𝑇 =𝐶(𝑅2
𝑡𝑏1)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏1) + 𝜀
2
(
𝐶(𝑅2

𝑡𝑏2)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏2)
)

+ 𝑎2
(
𝐶(|∇𝑅𝑡𝑏1|2)𝑀− 2

𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|∇𝑅𝑡𝑏1|2))+𝐶(𝑅2

𝑖𝑛𝑡1)
𝑀

− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡1)

+𝐶(𝑅2
𝑖𝑛𝑡2)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡2) + 𝑎
2
(
𝐶(|∇𝑅𝑖𝑛𝑡1|2)𝑀− 2

𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2)) ,
+ 2𝐶𝜕𝐷|𝑇 | 12 (

𝐶(𝑅2
𝑠𝑏
)𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏
)
) 1

2
.

Proof. Using Lemma A.2, Theorem 4.3 and the quadrature error formula (14) leads to this result. □

It follows from Theorem 4.4 that the PINN approximation error (𝜃)2 can be arbitrarily small, provided that the training error 
𝑇 (𝜃, )2 is sufficiently small and the sample set is sufficiently large.

5. Physics informed neural networks for approximating linear elastodynamic equation

5.1. Linear elastodynamic equation

Consider an elastic body occupying an open, bounded convex polyhedral domain 𝐷 ⊂ℝ𝑑 . The boundary 𝜕𝐷 = Γ𝐷 ∪ Γ𝑁 , with the 
outward unit normal vector 𝒏, is assumed to be composed of two disjoint portions Γ𝐷 ≠ ∅ and Γ𝑁 , with Γ𝐷 ∩Γ𝑁 = ∅. Given a suitable 

external load 𝒇 ∈ 𝐿2((0, 𝑇 ]; 𝑳2(𝐷)), and suitable initial/boundary data 𝒈 ∈ 𝐶1((0, 𝑇 ]; 𝑯
1
2 (Γ𝑁 )), 𝝍1 ∈𝑯

1
2
0,Γ𝐷

(𝐷) and 𝝍2 ∈ 𝑳2(𝐷), we 
consider the linear elastodynamic equations,

𝒖𝑡 − 𝒗 = 0, 𝜌𝒗𝑡 − 2𝜇∇ ⋅ (𝜺(𝒖)) − 𝜆∇(∇ ⋅ 𝒖) = 𝒇 , in 𝐷 × [0, 𝑇 ], (42a)

𝒖 = 𝒖𝑑 in Γ𝐷 × [0, 𝑇 ], (42b)

2𝜇𝜺(𝒖)𝒏+ 𝜆(∇ ⋅ 𝒖)𝒏 = 𝒈 in Γ𝑁 × [0, 𝑇 ], (42c)

𝒖(𝒙,0) =𝝍1(𝒙), 𝒗(𝒙,0) =𝝍2(𝒙), in 𝐷. (42d)

In the above system, 𝒖 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑑 ) and 𝒗 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑑 ) denote the displacement and the velocity, respectively, and [0, 𝑇 ] (with 
𝑇 > 0) denotes the time domain. 𝜺(𝒖) is the strain tensor, 𝜺(𝒖) = 1

2 (∇𝒖+∇𝒖𝑇 ). The constants 𝜆 and 𝜇 are the first and the second Lamé 
parameters, respectively.

Combining the two equations in (42a), we can recover the classical linear elastodynamics equation:

𝜌𝒖𝑡𝑡 − 2𝜇∇ ⋅ (𝜺(𝒖)) − 𝜆∇(∇ ⋅ 𝒖) = 𝒇 in 𝐷 × [0, 𝑇 ]. (43)
12

The well-posedness of this equation is established in [29].
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Lemma 5.1 ([29,59]). Let 𝝍1 ∈𝐻𝑟(𝐷), 𝝍2 ∈𝐻𝑟−1(𝐷) and 𝒇 ∈𝐻𝑟−1(𝐷 × [0, 𝑇 ]) with 𝑟 ≥ 1. Then there exists a unique solution 𝒖 to the 
classical linear elastodynamic equation (43) such that 𝒖(𝒙, 0) =𝝍1(𝒙), 𝒖𝑡(𝒙, 0) =𝝍2(𝒙) and 𝒖 ∈ 𝐶𝑙([0, 𝑇 ]; 𝐻𝑟−𝑙(𝐷)) with 0 ≤ 𝑙 ≤ 𝑟.

Lemma 5.2. Let 𝑘 ∈ ℕ, 𝝍1 ∈𝐻𝑟(𝐷), 𝝍2 ∈𝐻𝑟−1(𝐷) and 𝒇 ∈𝐻𝑟−1(𝐷×[0, 𝑇 ]) with 𝑟 > 𝑑

2 +𝑘, then there exists 𝑇 > 0 and a classical solution 
(𝒖, 𝒗) to the elastodynamic equations (42) such that 𝒖(𝒙, 0) =𝝍1(𝒙), 𝒖𝑡(𝒙, 0) =𝝍2(𝒙), 𝒖 ∈𝐻𝑘(𝐷 × [0, 𝑇 ]) and 𝒗 ∈𝐻𝑘−1(𝐷 × [0, 𝑇 ]).

Proof. As 𝑟 > 𝑑

2 +𝑘, 𝐻𝑟−𝑘(𝐷) is a Banach algebra. By Lemma 5.1, there exists 𝑇 > 0 and the solution (𝒖, 𝒗) to the linear elastodynamics 
equations such that 𝒖(𝒙, 0) =𝝍1(𝒙), 𝒗(𝒙, 0) =𝝍2(𝒙), 𝒖 ∈ 𝐶𝑙([0, 𝑇 ]; 𝐻𝑟−𝑙(𝐷)) with 0 ≤ 𝑙 ≤ 𝑟 and 𝒗 ∈ 𝐶𝑙([0, 𝑇 ]; 𝐻𝑟−1−𝑙(𝐷)) with 0 ≤ 𝑙 ≤ 𝑟 −1.

Since 𝒖 ∈ ∩𝑘
𝑙=0𝐶

𝑙([0, 𝑇 ]; 𝐻𝑟−𝑙(𝐷)) and 𝑟 − 𝑙+ 𝑙 ≥ 𝑘 with 𝑟 > 𝑑

2 +𝑘, it holds that 𝒖 ∈𝐻𝑘(𝐷× [0, 𝑇 ]). Similarly, we obtain 𝒗 ∈𝐻𝑘−1(𝐷×
[0, 𝑇 ]). □

5.2. Physics informed neural networks

We now consider the PINN approximation of the linear elastodynamic equations (42). Let Ω = 𝐷 × [0, 𝑇 ], Ω𝐷 = Γ𝐷 × [0, 𝑇 ] and 
Ω𝑁 = Γ𝑁 ×[0, 𝑇 ] denote the space-time domain. Define the following residuals for the PINN approximation 𝒖𝜃 ∶ Ω →ℝ and 𝒗𝜃 ∶ Ω →ℝ
for the elastodynamic equations (42):

𝑹𝑖𝑛𝑡1[𝒖𝜃,𝒗𝜃](𝒙, 𝑡) = 𝒖𝜃𝑡 − 𝒗𝜃, 𝑹𝑖𝑛𝑡2[𝒖𝜃 ,𝒗𝜃](𝒙, 𝑡) = 𝜌𝒗𝜃𝑡 − 2𝜇∇ ⋅ (𝜺(𝒖𝜃)) − 𝜆∇(∇ ⋅ 𝒖𝜃) − 𝒇 , (44a)

𝑹𝑡𝑏1[𝒖𝜃](𝒙) = 𝒖𝜃(𝒙,0) −𝝍1(𝒙), 𝑹𝑡𝑏2[𝒗𝜃](𝒙) = 𝒗𝜃(𝒙,0) −𝝍2(𝒙), (44b)

𝑹𝑠𝑏1[𝒗𝜃](𝒙, 𝑡) = 𝒗𝜃|Γ𝐷 − 𝒖𝑑𝑡, 𝑹𝑠𝑏2[𝒖𝜃](𝒙, 𝑡) = (2𝜇𝜺(𝒖𝜃)𝒏+ 𝜆(∇ ⋅ 𝒖𝜃)𝒏)|Γ𝑁 − 𝒈. (44c)

Note that for the exact solution (𝒖, 𝒗), we have 𝑹𝑖𝑛𝑡1[𝒖, 𝒗] = 𝑹𝑖𝑛𝑡2[𝒖, 𝒗] = 𝑹𝑡𝑏1[𝒖] = 𝑹𝑡𝑏2[𝒗] = 𝑹𝑠𝑏1[𝒗] = 𝑹𝑠𝑏2[𝒖] = 0. With PINN we 
minimize the following generalization error,

𝐺(𝜃)2 = ∫
Ω

|𝑹𝑖𝑛𝑡1[𝒖𝜃,𝒗𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝑹𝑖𝑛𝑡2[𝒖𝜃,𝒗𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝜺(𝑹𝑖𝑛𝑡1[𝒖𝜃 ,𝒗𝜃](𝒙, 𝑡))|2 d𝒙d𝑡
+ ∫

Ω

|∇ ⋅ (𝑹𝑖𝑛𝑡1[𝒖𝜃 ,𝒗𝜃](𝒙, 𝑡))|2 d𝒙d𝑡+ ∫
𝐷

|𝑹𝑡𝑏1[𝒖𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|𝑹𝑡𝑏2[𝒗𝜃](𝒙)|2 d𝒙
+ ∫
𝐷

|𝜺(𝑹𝑡𝑏1[𝒖𝜃](𝒙))|2 d𝒙+ ∫
𝐷

|∇ ⋅𝑹𝑡𝑏1[𝒖𝜃](𝒙)|2 d𝒙

+
⎛⎜⎜⎜⎝ ∫Ω𝐷 |𝑹𝑠𝑏1[𝒗𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠

1
2

+
⎛⎜⎜⎜⎝ ∫
Ω𝑁

|𝑹𝑠𝑏2[𝒖𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1
2

. (45)

Let 𝒖̂ = 𝒖𝜃 − 𝒖, 𝒗̂ = 𝒗𝜃 − 𝒗 denote the difference between the solution to the elastodynamic equations (42) and the PINN approxi-

mation with parameter 𝜃. We define the total error of the PINN approximation as,

(𝜃)2 = ∫
Ω

(|𝒖̂(𝒙, 𝑡)|2 + 2𝜇|𝜺(𝒖̂(𝒙, 𝑡))|2 + 𝜆|∇ ⋅ 𝒖̂(𝒙, 𝑡)|2 + 𝜌|𝒗̂(𝒙, 𝑡)|2) d𝒙d𝑡. (46)

We choose the training set  ⊂𝐷×[0, 𝑇 ] based on suitable quadrature points. The full training set is defined by  = 𝑖𝑛𝑡 ∪𝑠𝑏 ∪𝑡𝑏, 
and 𝑠𝑏 = 𝑠𝑏1 ∪ 𝑠𝑏2:

• Interior training points 𝑖𝑛𝑡 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑖𝑛𝑡, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈𝐷 × (0, 𝑇 ).
• Spatial boundary training points 𝑠𝑏1 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑠𝑏1, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈ Γ𝐷 × (0, 𝑇 ), and 𝑠𝑏2 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑠𝑏2, 

with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈ Γ𝑁 × (0, 𝑇 ).
• Temporal boundary training points 𝑡𝑏 = {𝒙𝑛} for 1 ≤ 𝑛 ≤𝑁𝑡𝑏 with each 𝒙𝑛 ∈𝐷.

Then, the integrals in (45) can be approximated by a suitable numerical quadrature, resulting in the following training loss,

𝑇 (𝜃,)2 =  𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡4
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1
𝑇

(𝜃,𝑡𝑏)2
+  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 +  𝑡𝑏3

𝑇
(𝜃,𝑡𝑏)2 +  𝑡𝑏4

𝑇
(𝜃,𝑡𝑏)2 + 𝑠𝑏1

𝑇
(𝜃,𝑠𝑏1) + 𝑠𝑏2

𝑇
(𝜃,𝑠𝑏2), (47)

where,

𝑖𝑛𝑡1 2
𝑁𝑖𝑛𝑡∑

𝑛 𝑛 𝑛 2 𝑡𝑏1 2
𝑁𝑡𝑏∑

𝑛 𝑛 2
13


𝑇

(𝜃,𝑖𝑛𝑡) =
𝑛=1

𝜔
𝑖𝑛𝑡
|𝑹𝑖𝑛𝑡1[𝒖𝜃 ,𝒗𝜃](𝒙𝑖𝑛𝑡, 𝑡𝑖𝑛𝑡)| , 

𝑇
(𝜃,𝑡𝑏) =

𝑛=1
𝜔
𝑡𝑏
|𝑹𝑡𝑏1[𝒖𝜃](𝒙𝑡𝑏)| , (48a)
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 𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑹𝑖𝑛𝑡2[𝒖𝜃 ,𝒗𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)|2,  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑹𝑡𝑏2[𝒗𝜃](𝒙𝑛𝑡𝑏)|2, (48b)

 𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝜺(𝑹𝑖𝑛𝑡1[𝒖𝜃,𝒗𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
))|2, (48c)

 𝑖𝑛𝑡4
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|∇ ⋅𝑹𝑖𝑛𝑡1[𝒖𝜃,𝒗𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)|2, (48d)

 𝑡𝑏3
𝑇

(𝜃,𝑡𝑏)2 =
𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝜺(𝑹𝑡𝑏1[𝒖𝜃](𝒙𝑛𝑡𝑏))|2,  𝑡𝑏4

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|∇ ⋅𝑹𝑡𝑏1[𝒖𝜃](𝒙𝑛𝑡𝑏)|2, (48e)

𝑠𝑏1
𝑇

(𝜃,𝑠𝑏1)2 =
𝑁𝑠𝑏1∑
𝑛=1

𝜔𝑛
𝑠𝑏1|𝑹𝑠𝑏1[𝒗𝜃](𝒙𝑛𝑠𝑏, 𝑡

𝑛
𝑠𝑏
)|2, 𝑠𝑏2

𝑇
(𝜃,𝑠𝑏2)2 =

𝑁𝑠𝑏2∑
𝑛=1

𝜔𝑛
𝑠𝑏2|𝑹𝑠𝑏2[𝒖𝜃](𝒙𝑛𝑠𝑏, 𝑡

𝑛
𝑠𝑏
)|2. (48f)

Here the quadrature points in space-time constitute the data sets 𝑖𝑛𝑡 = {(𝒙𝑛
𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)}𝑁𝑖𝑛𝑡
𝑛=1 , 𝑡𝑏 = {𝒙𝑛

𝑡𝑏
)}𝑁𝑡𝑏
𝑛=1, 𝑠𝑏1 = {(𝒙𝑛

𝑠𝑏1, 𝑡
𝑛
𝑠𝑏1)}

𝑁𝑠𝑏1
𝑛=1 and 

𝑠𝑏2 = {(𝒙𝑛
𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2)}

𝑁𝑠𝑏2
𝑛=1 . 𝜔𝑛

⋆
denote the suitable quadrature weights with ⋆ being 𝑖𝑛𝑡, 𝑡𝑏, 𝑠𝑏1 and 𝑠𝑏2.

5.3. Error analysis

Subtracting the elastodynamic equations (42) from the residual equations (44), we obtain

𝑹𝑖𝑛𝑡1 = 𝒖̂𝑡 − 𝒗̂, (49a)

𝑹𝑖𝑛𝑡2 = 𝜌𝒗̂𝑡 − 2𝜇∇ ⋅ (𝜺(𝒖̂)) − 𝜆∇(∇ ⋅ 𝒖̂), (49b)

𝑹𝑡𝑏1 = 𝒖̂|𝑡=0, 𝑹𝑡𝑏2 = 𝒗̂|𝑡=0, 𝑹𝑠𝑏1 = 𝒗̂|Γ𝐷 , 𝑹𝑠𝑏2 = (2𝜇𝜺(𝒖̂)𝒏+ 𝜆(∇ ⋅ 𝒖̂)𝒏)|Γ𝑁 . (49c)

The PINN approximation results are summarized in the following three theorems.

Theorem 5.3. Let 𝑛 ≥ 2, 𝑑, 𝑟, 𝑘 ∈ ℕ with 𝑘 ≥ 3. Let 𝝍1 ∈ 𝐻𝑟(𝐷), 𝝍2 ∈ 𝐻𝑟−1(𝐷) and 𝒇 ∈ 𝐻𝑟−1(𝐷 × [0, 𝑇 ]) with 𝑟 > 𝑑

2 + 𝑘. For ev-

ery integer 𝑁 > 5, there exist tanh neural networks (𝒖𝑗 )𝜃 and (𝒗𝑗 )𝜃 , with 𝑗 = 1, 2, ⋯ , 𝑑, each with two hidden layers, of widths at most 
3⌈ 𝑘+𝑛−22 ⌉|𝑃𝑘−1,𝑑+2| + ⌈𝑁𝑇 ⌉ + 𝑑(𝑁 − 1) and 3⌈ 𝑑+𝑛+12 ⌉|𝑃𝑑+2,𝑑+2|⌈𝑁𝑇 ⌉𝑁𝑑 , such that

‖𝑹𝑖𝑛𝑡1‖𝐿2(Ω),‖𝑹𝑡𝑏1‖𝐿2(Ω) ≲ ln𝑁𝑁−𝑘+1, (50a)

‖𝑹𝑖𝑛𝑡2‖𝐿2(Ω),‖𝜺(𝑹𝑖𝑛𝑡1)‖𝐿2(Ω),‖∇ ⋅𝑹𝑖𝑛𝑡1‖𝐿2(Ω) ≲ ln2𝑁𝑁−𝑘+2, (50b)

‖𝜺(𝑹𝑡𝑏1)‖𝐿2(𝐷),‖∇ ⋅𝑹𝑡𝑏1‖𝐿2(𝐷),‖𝑹𝑠𝑏2‖𝐿2(Γ𝑁×[0,𝑇 ]) ≲ ln2𝑁𝑁−𝑘+2, (50c)

‖𝑹𝑡𝑏2‖𝐿2(𝐷),‖𝑹𝑠𝑏1‖𝐿2(Γ𝐷×[0,𝑇 ]) ≲ ln𝑁𝑁−𝑘+2. (50d)

Proof. Similar to the Theorem 3.3, we can complete the proof by applying Lemma 5.2 and Lemma A.3. □

It follows from Theorem 5.3 that, by choosing a sufficiently large 𝑁 , one can make the PINN residuals in (44), and thus the 
generalization error 𝐺(𝜃)2 in (45), arbitrarily small.

Theorem 5.4. Let 𝑑 ∈ℕ, 𝒖 ∈ 𝐶1(Ω) and 𝒗 ∈ 𝐶(Ω) be the classical solution to the linear elastodynamic equation (42). Let (𝒖𝜃, 𝒗𝜃) denote the 
PINN approximation with the parameter 𝜃. Then the following relation holds,

∫
Ω

(|𝒖̂(𝒙, 𝑡)|2 + 2𝜇|𝜺(𝒖̂(𝒙, 𝑡))|2 + 𝜆|∇ ⋅ 𝒖̂(𝒙, 𝑡)|2 + 𝜌|𝒗̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝐺𝑇 exp ((2 + 2𝜇 + 𝜆)𝑇 ) ,

where 𝐶𝐺 is given by (79) in Appendix A.2.

The proof of this theorem is provided in the Appendix A.2. Theorem 5.4 shows that the total error of the PINN approximation 
(𝜃)2 can be controlled by the generalization error 𝐺(𝜃)2.
Theorem 5.5. Let 𝑑 ∈ ℕ, 𝒖 ∈ 𝐶4(Ω) and 𝒗 ∈ 𝐶3(Ω) be the classical solution to the linear elastodynamic equation (42). Let (𝒖𝜃 , 𝒗𝜃) denote 
the PINN approximation with the parameter 𝜃. Then the following relation holds,

∫
Ω

(|𝒖̂(𝒙, 𝑡)|2 + 2𝜇|𝜺(𝒖̂(𝒙, 𝑡))|2 + 𝜆|∇ ⋅ 𝒖̂(𝒙, 𝑡)|2 + 𝜌|𝒗̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝑇 𝑇 exp ((2 + 2𝜇 + 𝜆)𝑇 )

2 − 2
𝑑+1 − 2

𝑑
− 1
𝑑

14

=(𝑇 (𝜃) +𝑀
𝑖𝑛𝑡

+𝑀
𝑡𝑏

+𝑀
𝑠𝑏

), (51)



Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

where

𝐶𝑇 =𝐶(𝑹2
𝑡𝑏1)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑹2

𝑡𝑏1) + 𝜌
(
𝐶(𝑹2

𝑡𝑏2)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑹2

𝑡𝑏2)
)
+ 2𝜇

(
𝐶(|𝜺(𝑹𝑡𝑏1)|2)𝑀− 2

𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|𝜺(𝑹𝑡𝑏1)|2))

+ 𝜆
(
𝐶(|∇⋅𝑹𝑡𝑏1|2)𝑀− 2

𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|∇ ⋅𝑹𝑡𝑏1|2))+𝐶(𝑹2

𝑖𝑛𝑡1)
𝑀

− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑹2

𝑖𝑛𝑡1)

+𝐶(𝑹2
𝑖𝑛𝑡2)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑹2

𝑖𝑛𝑡2) + 2𝜇
(
𝐶(|𝜺(𝑹𝑖𝑛𝑡1)|2)𝑀− 2

𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|𝜺(𝑹𝑖𝑛𝑡1)|2))

+ 𝜆
(
𝐶(|∇⋅𝑹𝑖𝑛𝑡1|2)𝑀− 2

𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|∇ ⋅𝑹𝑖𝑛𝑡1|2))+ 2|𝑇 | 12 𝐶Γ𝐷

(
𝐶(𝑹2

𝑠𝑏1)
𝑀

− 2
𝑑

𝑠𝑏1 +Ω𝐷
𝑀𝑠𝑏1

(𝑹2
𝑠𝑏1)

) 1
2

+ 2|𝑇 | 12 𝐶Γ𝑁

(
𝐶(𝑹2

𝑠𝑏2)
𝑀

− 2
𝑑

𝑠𝑏2 +Ω𝑁
𝑀𝑠𝑏2

(𝑹2
𝑠𝑏2)

) 1
2
.

Proof. Similar to Theorem 3.5, we finish the proof by using Theorem 5.4 and the quadrature error formula (14). The boundedness 
of the constants 𝐶(𝑹2

𝑞
) can be obtained from Lemma A.2, 𝒖 ∈ 𝐶4(Ω) and 𝒗 ∈ 𝐶3(Ω), where 𝑹𝑞 =𝑹𝑡𝑏1, 𝑹𝑡𝑏2, 𝜺(𝑹𝑡𝑏1), ∇ ⋅𝑹𝑡𝑏1, 𝑹𝑖𝑛𝑡1, 

𝑹𝑖𝑛𝑡2, 𝜺(𝑹𝑖𝑛𝑡1), ∇ ⋅𝑹𝑖𝑛𝑡1, 𝑹𝑠𝑏1 and 𝑹𝑠𝑏2. □

Theorem 5.5 shows that the PINN approximation error (𝜃)2 can be controlled by the training error 𝑇 (𝜃, )2 with a large enough 
sample set  .

6. Numerical examples

The analyses from Sections 3 to 5 suggest several forms for the PINN loss function with the wave, the nonlinear Klein-Gordon, 
and the linear elastodynamic equations. These forms contain certain non-standard terms, which would be absent from the canonical 
PINN formulation of the loss function (see Remark 2.2). The presence of such terms is crucial to bounding the PINN approximation 
errors, as shown in the previous sections.

These non-standard forms of the loss function lead to a variant PINN algorithm. In this section we illustrate the performance of 
the variant PINN algorithm suggested by the theoretical analysis and the more standard PINN algorithm using numerical examples in 
one spatial dimension (1D) plus time for the wave equation and the Sine-Gordon equation (i.e. by using 𝑔(𝑢) = sin(𝑢) in the nonlinear 
Klein-Gordon equation), and in two spatial dimensions (2D) plus time for the linear elastodynamic equation.

Here are some common settings to the numerical simulations in this section. Let (𝒙, 𝑡) ∈𝐷× [0, 𝑇 ] denote the spatial and temporal 
coordinates in the spatial-temporal domain, where 𝒙 = 𝑥 and 𝒙 = (𝑥, 𝑦) for 1D and 2D, respectively. For the wave equation and the 
Sine-Gordon equation, the neural networks contain two input nodes (representing 𝑥 and 𝑡), two hidden layers (number of nodes to 
be specified below), and two output nodes (representing the solution 𝑢 and its time derivative 𝑣 = 𝜕𝑢

𝜕𝑡
). For the linear elastodynamic 

equation, three input nodes and four output nodes are employed in the neural network, as will be explained in more detail later. We 
employ the tanh (hyperbolic tangent) activation function for all the hidden nodes, and no activation function is applied to the output 
nodes (i.e. linear). For training the neural networks, we employ 𝑁 collocation points within the spatial-temporal domain drawn from 
a uniform random distribution, and also 𝑁 uniform random points on each spatial boundary and on the initial boundary. In the 
simulations 𝑁 is varied systematically between 1000 and 3000. After the neural networks are trained, for the wave and Sine-Gordon 
equations, we compare the PINN solution and the exact solution on a set of 𝑁𝑒𝑣 = 3000 ×3000 uniform grid points (evaluation points) 
(𝑥, 𝑡)𝑛 ∈𝐷 × [0, 𝑇 ] (𝑛 = 1, ⋯ , 𝑁𝑒𝑣) that covers the problem domain and the boundaries. For the elastodynamic equation, we compare 
the PINN solution and the exact solution at different time instants, and at each time instant the corresponding solutions are evaluated 
at a uniform set of 𝑁𝑒𝑣 = 1500 × 1500 grid points in the spatial domain, 𝒙𝑛 = (𝑥, 𝑦)𝑛 ∈𝐷 (𝑛 = 1, ⋯ , 𝑁𝑒𝑣).

The PINN errors reported below are computed as follows. Let 𝑧𝑛 = (𝒙, 𝑡)𝑛 ((𝒙, 𝑡)𝑛 ∈𝐷×[0, 𝑇 ], 𝑛 = 1, ⋯ , 𝑁𝑒𝑣) denote the set of uniform 
grid points, where 𝑁𝑒𝑣 denote the number of evaluation points. The errors of PINN are defined by,

𝑙2-error =

√∑𝑁𝑒𝑣
𝑛=1 |𝑢(𝑧𝑛) − 𝑢𝜃(𝑧𝑛)|2√∑𝑁𝑒𝑣

𝑛=1 𝑢(𝑧𝑛)
2

, 𝑙∞-error =
max{|𝑢(𝑧𝑛) − 𝑢𝜃(𝑧𝑛)|}𝑁𝑒𝑣𝑛=1√(∑𝑁𝑒𝑣

𝑛=1 𝑢(𝑧𝑛)
2
)
∕𝑁𝑒𝑣

, (52a)

where 𝑢𝜃 denotes the PINN solution and 𝑢 denotes the exact solution.

Our implementation of the PINN algorithm is based on the PyTorch library (pytorch.org). We combine the Adam [33] and 
the L-BFGS [43] optimizers (in batch mode) to train the neural networks. We first employ Adam to train the network for 100 
epochs/iterations, and then employ L-BFGS to continue the network training for another 30000 iterations. We employ the default 
parameter values in Adam, with the learning rate 0.001, 𝛽1 = 0.9 and 𝛽2 = 0.99. The initial learning rate 1.0 is adopted in the L-BFGS 
15

optimizer.

https://pytorch.org/
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6.1. Wave equation

We next test the PINN algorithm for solving the wave equation (15) in one spatial dimension (plus time), under a configuration 
in accordance with that of [17]. Consider the spatial-temporal domain, (𝑥, 𝑡) ∈𝐷×[0, 𝑇 ] = [0, 5] ×[0, 2], and the initial-boundary value 
problem with the wave equation on this domain,

𝜕2𝑢

𝜕𝑡2
− 𝑐2 𝜕

2𝑢

𝜕𝑥2
= 0, (53a)

𝑢(0, 𝑡) = 𝑢(5, 𝑡), 𝜕𝑢

𝜕𝑥
(0, 𝑡) = 𝜕𝑢

𝜕𝑥
(5, 𝑡), 𝑢(𝑥,0) = 2sech3

(
3
𝛿0

(𝑥− 𝑥0)
)
,

𝜕𝑢

𝜕𝑡
(𝑥,0) = 0, (53b)

where 𝑢(𝑥, 𝑡) is the wave field to be solved for, 𝑐 is the wave speed, 𝑥0 is the initial peak location of the wave, 𝛿0 is a constant that 
controls the width of the wave profile, and the periodic boundary conditions are imposed on 𝑥 = 0 and 5. In the simulations, we 
employ 𝑐 = 2, 𝛿0 = 2, and 𝑥0 = 3. Then the above problem has the solution,

⎧⎪⎨⎪⎩
𝑢(𝑥, 𝑡) = sech3

(
3
𝛿0

(−2.5 + 𝜉)
)
+ sech3

(
3
𝛿0

(−2.5 + 𝜂)
)
,

𝜉 =mod
(
𝑥− 𝑥0 + 𝑐𝑡+ 2.5,5

)
, 𝜂 =mod

(
𝑥− 𝑥0 − 𝑐𝑡+ 2.5,5

)
,

where mod refers to the modulo operation. We reformulate the problem (53) into the following system,

𝑢𝑡 − 𝑣 = 0, 𝑣𝑡 − 𝑐2𝑢𝑥𝑥 = 0, (54a)

𝑢(0, 𝑡) = 𝑢(5, 𝑡), 𝑢𝑥(0, 𝑡) = 𝑢𝑥(5, 𝑡), 𝑢(𝑥,0) = 2sech3
(

3
𝛿0

(𝑥− 𝑥0)
)
, 𝑣(𝑥,0) = 0, (54b)

where 𝑣(𝑥, 𝑡) is an auxiliary field given by the first equation in (54a).

To solve the system (54) with PINN, we employ 90 and 60 neurons in the first and the second hidden layers of neural networks, 
respectively. We consider the following loss function in PINN,

Loss =
𝑊1
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑡(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑣𝜃(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2 + 𝑊2

𝑁

𝑁∑
𝑛=1

[
𝑣𝜃𝑡(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑢𝜃𝑥𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2

+
𝑊3
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑡𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑣𝜃𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2 + 𝑊4

𝑁

𝑁∑
𝑛=1

[
𝑢𝜃(𝑥𝑛𝑡𝑏,0) − 2sech3

( 3
𝛿 0

(𝑥𝑛
𝑡𝑏
− 𝑥0)

)]2
+
𝑊5
𝑁

𝑁∑
𝑛=1

[
𝑣𝜃(𝑥𝑛𝑡𝑏,0)

]2 + 𝑊6
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑥(𝑥𝑛𝑡𝑏,0) +

18 sinh((3𝑥𝑛
𝑡𝑏
− 3𝑥0)∕𝛿0)

𝛿0 cosh4((3𝑥𝑛𝑡𝑏 − 3𝑥0)∕𝛿0)

]2

+
𝑊7
𝑁

𝑁∑
𝑛=1

[
𝑣𝜃(0, 𝑡𝑛𝑠𝑏) − 𝑣𝜃(5, 𝑡

𝑛
𝑠𝑏
)
]2 + 𝑊8

𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑥(0, 𝑡𝑛𝑠𝑏) − 𝑢𝜃𝑥(5, 𝑡

𝑛
𝑠𝑏
)
]2

=∶
8∑
𝑖=1

𝔚𝑖, (55)

where 𝔚𝑖 (1 ≤ 𝑖 ≤ 8) denote the different terms in the loss expression. Note that in the simulations we have employed the same 
number of collocation points (𝑁) within the domain and on each of the domain boundaries. The formulation of the loss function 
here differs from what is used in the error analysis in several aspects. First, we have added a set of penalty coefficients 𝑊𝑛 > 0
(1 ≤ 𝑛 ≤ 8) for different loss terms in numerical simulations. Second, the collocation points used in simulations (e.g. 𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡

, 𝑥𝑛
𝑠𝑏

, 𝑡𝑛
𝑠𝑏

, 
𝑥𝑛
𝑡𝑏

) are generated randomly within the domain or on the domain boundaries from a uniform distribution. In addition, the averaging 
used here do not exactly correspond to the numerical quadrature rule (mid-point rule) used in the theoretical analysis.

We also consider the following form for the loss function, as given in (18),

Loss =
6∑
𝑖=1

𝔚𝑖 +𝑊7

(
1
𝑁

𝑁∑
𝑛=1

[𝑣𝜃(0, 𝑡𝑛𝑠𝑏) − 𝑣𝜃(5, 𝑡
𝑛
𝑠𝑏
)]2

)1∕2

+𝑊8

(
1
𝑁

𝑁∑
𝑛=1

[𝑢𝜃𝑥(0, 𝑡𝑛𝑠𝑏) − 𝑢𝜃𝑥(5, 𝑡
𝑛
𝑠𝑏
)]2

)1∕2

. (56)

The difference between this form and the form (55) lies in the last two terms, with the terms here containing a square root.

It should be noted that the loss function defined by (56) is in accordance with our theoretical analysis, while the one in (55) is 
akin to the more standard PINN formulation. The loss function (55) will be referred to as the loss form #1 in subsequent discussions, 
and (56) will be referred to as the loss form #2. The PINN schemes that employ these two different loss forms will be referred to as 
PINN-F1 and PINN-F2, respectively.

Fig. 1 shows distributions of the exact solutions, the PINN solutions, and the PINN point-wise absolute errors for 𝑢 and 𝑣 = 𝜕𝑢

𝜕𝑡

in the spatial-temporal domain. Here the PINN solution is computed by PINN-F1, in which penalty coefficients are given by 𝑾 =
(𝑊1, … , 𝑊8) = (0.8, 0.8, 0.8, 0.5, 0.5, 0.5, 0.9, 0.9). One can observe that the method has captured the wave fields for 𝑢 and 𝑣 reasonably 
16

well, with the error for 𝑢 notably smaller than that of 𝑣.
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Fig. 1. Wave equation: Distributions of the True solutions, the PINN solutions and the PINN point-wise absolute errors for 𝑢 and 𝑣 in the spatial-temporal domain. 
𝑁 = 2000 training points within the domain and on each of the domain boundaries.

Figs. 2 and 3 provide a comparison of the solutions obtained using the two forms of loss functions. Fig. 2 compares profiles of 
the PINN-F1 and PINN-F2 solutions, and the exact solution, for 𝑢 (top row) at three time instants (𝑡 = 0.5, 1.0, and 1.5), as well as 
the error profiles (bottom row). Fig. 3 shows the corresponding results for the field variable 𝑣. These results are obtained by using 
𝑁 = 2000 training data points in the domain and on each of the domain boundaries. It is observed that both PINN schemes, with the 
loss functions given by (55) and (56) respectively, have captured the solution reasonably well. We further observe that the PINN-F2 
scheme (with the loss form (56)) produces somewhat less accurate results than the PINN-F1 (with loss form (55)), especially for the 
field 𝑣.

We have varied the number of training data points 𝑁 systematically and studied its effect on the PINN results. Fig. 4 shows the 
loss histories of PINN-F1 and PINN-F2 corresponding to different number of training data points (𝑁) in the simulations, with a total 
of 30,000 training iterations. We can make two observations. First, the history curves with the loss function form #1 seem smoother, 
while fluctuations in the loss history can be observed with the form #2. Second, the eventual loss values produced by the loss form 
#1 are smaller than those produced by the loss form #2.

Table 1 is another comparison between PINN-F1 and PINN-F2. Here the 𝑙2 and 𝑙∞ errors of 𝑢 and 𝑣 computed by PINN-F1 and 
PINN-F2 corresponding to different training data points (𝑁) have been listed. There appears to be a general trend that the errors 
tend to decrease with increasing number of training points, but the decrease is not monotonic. It can be observed that the 𝑢 errors 
are notably smaller than those for 𝑣, as signified earlier in e.g. Fig. 1. One again observes that PINN-F1 results appear more accurate 
than those of PINN-F2 for the wave equation.

Theorem 3.5 suggests the solution errors for 𝑢, 𝑣, and ∇𝑢 approximately scale as the square root of the training loss function. 
Fig. 5 provides some numerical evidence for this point. Here we plot the 𝑙2 errors for 𝑢, 𝜕𝑢

𝜕𝑡
and 𝜕𝑢

𝜕𝑥
from our simulations as a function 

of the training loss value for PINN-F1 and PINN-F2 in logarithmic scales. It is evident that for PINN-F1 the scaling essentially follows 
the square root relation. For PINN-F2 the relation between the error and the training loss appears to scale with a power somewhat 
17

larger than 12 .
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Fig. 2. Wave equation: Comparison of profiles of 𝑢 (top row) and its absolute error (bottom row) between the PINN solutions (loss forms #1 and #2) and the exact 
solution at time instants (a) 𝑡 = 0.5, (b) 𝑡 = 1.0, and (c) 𝑡 = 1.5. 𝑁 = 2000 training data points within the domain and on each of the domain boundaries (𝑥 = 0 and 5, 
and 𝑡 = 0).

Fig. 3. Wave equation: Comparison of the profiles of 𝑣 = 𝜕𝑢

𝜕𝑡
(top row) and its absolute error (bottom row) between the PINN solutions (loss forms #1 and #2) and 

the exact solution at time instants (a) 𝑡 = 0.5, (b) 𝑡 = 1.0, and (c) 𝑡 = 1.5. 𝑁 = 2000 training data points within the domain and on each of the domain boundaries (𝑥 = 0
18

and 5, and 𝑡 = 0).
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Fig. 4. Wave equation: Histories of the loss function versus the training iteration with PINN-F1 and PINN-F2, corresponding to different number of training data 
points (𝑁).

Fig. 5. Wave equation: The 𝑙2 errors of 𝑢, 𝜕𝑢

𝜕𝑡
, and 𝜕𝑢

𝜕𝑥
as a function of the training loss value. 𝑁 = 2000 training data points.

Table 1

Wave equation: The 𝑢 and 𝑣 errors versus the number of training data points 𝑁 .

𝑁
𝑙2-error 𝑙∞-error

PINN-F1 PINN-F2 PINN-F1 PINN-F2

𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃

1000 5.7013e-03 1.3531e-02 4.7281e-02 9.2431e-02 1.8821e-02 4.6631e-02 1.4367e-01 3.2764e-01

1500 2.1689e-03 4.1035e-03 4.9087e-02 1.2438e-01 6.7631e-03 1.5109e-02 2.1525e-01 5.0601e-01

2000 4.6896e-03 9.6417e-03 1.8554e-02 4.9224e-02 1.3828e-02 3.3063e-02 6.0780e-02 1.6358e-01

2500 3.7879e-03 9.8574e-03 2.3526e-02 5.4266e-02 1.2868e-02 3.3622e-02 9.8690e-02 1.9467e-01

3000 2.6588e-03 6.0746e-03 1.4164e-02 3.7796e-02 8.1457e-03 1.9860e-02 5.3045e-02 1.4179e-01

6.2. Sine-Gordon equation

We test the PINN algorithm suggested by the theoretical analysis for the Sine-Gordon equation (i.e. by setting 𝑔(𝑢) = sin(𝑢) in (31)) 
in this subsection. Consider the spatial-temporal domain (𝑥, 𝑡) ∈Ω =𝐷×[0, 𝑇 ] = [0, 1] ×[0, 2], and the following initial/boundary value 
problem on this domain,

𝜕2𝑢

𝜕𝑡2
− 𝜕2𝑢

𝜕𝑥2
+ 𝑢+ sin(𝑢) = 𝑓 (𝑥, 𝑡), (57a)

𝑢(0, 𝑡) = 𝜙1(𝑡), 𝑢(1, 𝑡) = 𝜙2(𝑡), 𝑢(𝑥,0) = 𝜓1(𝑥),
𝜕𝑢

𝜕𝑡
(𝑥,0) = 𝜓2(𝑥). (57b)

In these equations, 𝑢(𝑥, 𝑡) is the field function to be solved for, 𝑓 (𝑥, 𝑡) is a source term, 𝜓1 and 𝜓2 are the initial conditions, and 𝜙1 and 
𝜙2 are the boundary conditions. The source term, initial and boundary conditions appropriately are chosen by the following exact 
solution, [ (

𝜋
) 9 ( 7𝜋 )][ (

𝜋
) 9 ( 7𝜋 )]

19

𝑢(𝑥, 𝑡) = 2cos 𝜋𝑥+
5

+
5
cos 2𝜋𝑥+

20
2cos 𝜋𝑡+

5
+

5
cos 2𝜋𝑡+

20
. (58)
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Fig. 6. Sine-Gordon equation: Distributions of the exact solution, the PINN solution and the PINN absolute error for 𝑢 (left three columns) and for 𝑣 = 𝜕𝑢

𝜕𝑡
(right three 

columns). 𝑁 = 2000 collocation points within the domain and on the domain boundaries.

To simulate this problem with PINN, we reformulate the problem as follows,

𝑢𝑡 − 𝑣 = 0, 𝑣𝑡 − 𝑢𝑥𝑥 + 𝑢+ sin(𝑢) = 𝑓 (𝑥, 𝑡), (59a)

𝑢(0, 𝑡) = 𝜙1(𝑡), 𝑢(1, 𝑡) = 𝜙2(𝑡), 𝑢(𝑥,0) = 𝜓1(𝑥), 𝑣(𝑥,0) = 𝜓2(𝑥), (59b)

where 𝑣 is defined by equation (59a). In light of (36), we employ the following loss function in PINN,

Loss =
𝑊1
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑡(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑣𝜃(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2

+
𝑊2
𝑁

𝑁∑
𝑛=1

[
𝑣𝜃𝑡(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑢𝜃𝑥𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) + 𝑢𝜃(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) + sin(𝑢𝜃(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)) − 𝑓 (𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)
]2

+
𝑊3
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑡𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑣𝜃𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2 + 𝑊4

𝑁

𝑁∑
𝑛=1

[
𝑢𝜃(𝑥𝑛𝑡𝑏,0) −𝜓1(𝑥𝑛𝑡𝑏)

]2
+
𝑊5
𝑁

𝑁∑
𝑛=1

[
𝑣𝜃(𝑥𝑛𝑡𝑏,0) −𝜓2(𝑥𝑛𝑡𝑏)

]2 + 𝑊6
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑥(𝑥𝑛𝑡𝑏,0) −𝜓1𝑥(𝑥𝑛𝑡𝑏)

]2
+𝑊7

(
1
𝑁

𝑁∑
𝑛=1

[
(𝑣𝜃(0, 𝑡𝑛𝑠𝑏) − 𝜙1𝑡(𝑡𝑛𝑠𝑏))

2 + (𝑣𝜃(1, 𝑡𝑛𝑠𝑏) −𝜙2𝑡(𝑡𝑛𝑠𝑏))
2])1∕2

=∶
7∑
𝑖=1

𝔖𝑖, (60)

where 𝔖𝑖 (1 ≤ 𝑖 ≤ 7) represent different terms in the loss expression, and 𝑊𝑛 > 0 (1 ≤ 𝑛 ≤ 7) are the penalty coefficients for different 
loss terms added in the PINN implementation. It should be noted that the loss terms 𝔖3 and 𝔖6 will be absent from the conventional 
PINN formulation (see [46]). These terms in the training loss are necessary based on the error analysis in Section 4. It should also be 
noted that the terms in 𝔖7 contain a square root, as dictated by the theoretical analysis of Section 4.

We have also implemented a PINN scheme with a variant form for the loss function,

Loss =
6∑
𝑖=1

𝔖𝑖 +
𝑊7
𝑁

𝑁∑
𝑛=1

[
(𝑣𝜃(0, 𝑡𝑛𝑠𝑏) −𝜙1𝑡(𝑡𝑛𝑠𝑏))

2 + (𝑣𝜃(1, 𝑡𝑛𝑠𝑏) −𝜙2𝑡(𝑡𝑛𝑠𝑏))
2] . (61)

The difference between (61) and (60) lies in the 𝔖7 terms. These 𝔖7 terms in (61) are squared, and they are not in (60). We refer to 
the PINN scheme employing the loss function (60) as PINN-G1 and the scheme employing the loss function (61) as PINN-G2.

In the simulations we employ a feed-forward neural network with two input nodes (representing 𝑥 and 𝑡), two output nodes 
(representing 𝑢 and 𝑣), and two hidden layers, each having a width of 80 nodes. The tanh activation function has been used for all 
the hidden nodes. We employ 𝑁 collocation points generated from a uniform random distribution within the domain, on each of the 
domain boundary, and also on the initial boundary, where 𝑁 is varied systematically in the simulations. The penalty coefficients in 
the loss functions are taken to be 𝑾 = (𝑊1, … , 𝑊7) = (0.5, 0.4, 0.5, 0.6, 0.6, 0.6, 0.8).

Fig. 6 shows distributions of 𝑢(𝑥, 𝑡) and 𝑣 = 𝜕𝑢

𝜕𝑡
from the exact solution (left column) and the PINN solution (middle column), as 

well as the point-wise absolute errors of the PINN solution for these fields (right column). These results are obtained by PINN-G2 
with 𝑁 = 2000 random collocation points within the domain and on each of the domain boundaries. The PINN solution is in good 
20

agreement with the true solution.
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Fig. 7. Sine-Gordon equation: Top row, comparison of profiles between the exact solution and PINN-G1/PINN-G2 solutions for 𝑢 at several time instants. Bottom row, 
profiles of the absolute error of the PINN-G1 and PINN-G2 solutions for 𝑢. 𝑁 = 2000 training collocation points.

Fig. 8. Sine-Gordon equation: Top row, comparison of profiles between the exact solution and PINN-G1/PINN-G2 solutions for 𝑣 = 𝜕𝑢

𝜕𝑡
at several time instants. Bottom 

row, profiles of the absolute error of the PINN-G1 and PINN-G2 solutions for 𝑣. 𝑁 = 2000 training collocation points.

Figs. 7 and 8 compare the profiles of 𝑢 and 𝑣 between the exact solution, and the solutions obtained by PINN-G1 and PINN-G2, 
at several time instants (𝑡 = 0.5, 1 and 1.5). Profiles of the absolute errors of the PINN-G1/PINN-G2 solutions are also shown in these 
figures. We observe that both PINN-G1 and PINN-G2 have captured the solution for 𝑢 quite accurately, and to a lesser extent, also 
for 𝑣. Comparison of the error profiles between PINN-G1 and PINN-G2 suggests that the PINN-G2 error in general appears to be 
21

somewhat smaller than that of PINN-G1. But this seems not to be true consistently in the entire domain.
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Fig. 9. Sine-Gordon equation: Loss histories of (a) PINN-G1 and (b) PINN-G2 corresponding to various numbers of training collocation points.

Fig. 10. Sine-Gordon equation: The 𝑙2 errors of 𝑢, 𝜕𝑢

𝜕𝑡
, and 𝜕𝑢

𝜕𝑥
as a function of the training loss value.

Table 2

Sine-Gordon equation: The 𝑙2 and 𝑙∞ errors for 𝑢 and 𝑣 versus the number of training collocation points 𝑁 corresponding to PINN-G1 and 
PINN-G2.

𝑁
𝑙2-error 𝑙∞-error

PINN-G1 PINN-G2 PINN-G1 PINN-G2

𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃

1000 3.0818e-03 4.3500e-03 3.0674e-03 2.0581e-03 9.6044e-03 1.8894e-02 7.3413e-03 1.1323e-02

1500 3.4335e-03 4.8035e-03 1.0605e-03 1.4729e-03 1.0566e-02 1.7050e-02 2.2914e-03 6.2831e-03

2000 2.1914e-03 3.0055e-03 2.2469e-03 1.6072e-03 7.5882e-03 1.1099e-02 4.8842e-03 8.8320e-03

2500 3.0172e-03 3.5698e-03 6.6072e-04 6.0509e-04 9.2515e-03 1.4645e-02 1.4099e-03 4.3423e-03

3000 2.5281e-03 4.4858e-03 6.6214e-04 1.0830e-03 7.2785e-03 1.6213e-02 1.9697e-03 7.8866e-03

The effect of the collocation points on the PINN results has been studied by varying the number of training collocation points 
systematically between 𝑁 = 1000 and 𝑁 = 3000 within the domain and on each of the domain boundaries. The results are provided 
in Fig. 9 and Table 2. Fig. 9 shows histories of the loss function corresponding to different number of collocation points for PINN-G1 
and PINN-G2. Table 2 provides the 𝑙2 and 𝑙∞ errors of 𝑢 and 𝑣 versus the number of collocation points computed by PINN-G1 and 
PINN-G2. The PINN errors in general tend to decrease with increasing number of collocation points, but this trend is not monotonic. 
It can be observed that both PINN-G1 and PINN-G2 have captured the solutions quite accurately, with those errors from PINN-G2 in 
general slightly better.

Fig. 10 provides some numerical evidence for the relation between the total error and the training loss as suggested by Theo-

rem 4.4. Here we plot the 𝑙2 errors for 𝑢, 𝜕𝑢
𝜕𝑡

and 𝜕𝑢
𝜕𝑥

as a function of the training loss value obtained by PINN-G1 and PINN-G2. The 
results indicate that the total error scales approximately as the square root of the training loss, which in some sense corroborates the 
error-loss relation as expressed in Theorem 4.4.

6.3. Linear elastodynamic equation

In this subsection we look into the linear elastodynamic equation (in two spatial dimensions plus time) and test the PINN 
algorithm as suggested by the theoretical analysis in Section 5 using this equation. Consider the spatial-temporal domain (𝑥, 𝑦, 𝑡) ∈
22

Ω =𝐷 × [0, 𝑇 ] = [0, 1] × [0, 1] × [0, 2], and the following initial/boundary value problem with the linear elastodynamics equation on Ω:
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𝜌
𝜕2𝒖

𝜕𝑡2
− 2𝜇∇ ⋅ (𝜺(𝒖)) − 𝜆∇(∇ ⋅ 𝒖) = 𝒇 (𝒙, 𝑡), (62a)

𝒖|Γ𝑑 = 𝝓𝑑 , (
2𝜇𝜺(𝒖) + 𝜆(∇ ⋅ 𝒖)

)|Γ𝑛𝒏 = 𝝓𝑛, 𝒖(𝒙,0) =𝝍1,
𝜕𝒖

𝜕𝑡
(𝒙,0) =𝝍2, (62b)

where 𝒖 = (𝑢1(𝒙, 𝑡), 𝑢2(𝒙, 𝑡))𝑇 (𝒙 = (𝑥, 𝑦) ∈𝐷, 𝑡 ∈ [0, 𝑇 ]) is the displacement field to be solved for, 𝒇 (𝒙, 𝑡) is a source term, and 𝜌, 𝜇 and 
𝜆 are material constants. Γ𝑑 is the Dirichlet boundary and Γ𝑛 is the Neumann boundary, with 𝜕𝐷 = Γ𝑑 ∪ Γ𝑛 and Γ𝑑 ∩ Γ𝑛 = ∅, where 
𝒏 is the outward-pointing unit normal vector. In our simulations we choose the left boundary (𝑥 = 0) as the Dirichlet boundary, 
and the rest are Neumann boundaries. 𝝓𝑑 and 𝝓𝑛 are Dirichlet and Neumann boundary conditions, respectively. 𝝍1 and 𝝍2 are the 
initial conditions for the displacement and the velocity. We employ the material parameter values 𝜇 = 𝜆 = 𝜌 = 1, and the following 
manufactured solution ([1]) to this problem,

𝒖(𝒙, 𝑡) = sin(
√
2𝜋𝑡)

[
−sin(𝜋𝑥)2 sin(2𝜋𝑦)
sin(2𝜋𝑥) sin(𝜋𝑦)2

]
. (63)

The source term 𝒇 (𝒙, 𝑡), the boundary/initial distributions 𝝓𝑑 , 𝝓𝑛, 𝝍1 and 𝝍2 are chosen by the expression (63).

To simulate this problem using the PINN algorithm suggested by the theoretical analysis from Section 5, we reformulate (62) into 
the following system

𝒖𝑡 − 𝒗 = 𝟎, 𝒗𝑡 − 2∇ ⋅ (𝜺(𝒖)) − ∇(∇ ⋅ 𝒖) = 𝒇 (𝒙, 𝑡), (64a)

𝒖|Γ𝑑 = 𝝓𝑑 , (
2𝜺(𝒖) + (∇ ⋅ 𝒖)

)|Γ𝑛𝒏 = 𝝓𝑛, 𝒖(𝒙,0) =𝝍1, 𝒗(𝒙,0) =𝝍2, (64b)

where 𝒗(𝒙, 𝑡) is an intermediate variable (representing the velocity) as given by (64a).

In light of (47), we employ the following loss function for PINN,

Loss =
𝑊1
𝑁

𝑁∑
𝑛=1

[
𝒖𝜃𝑡(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝒗𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2

+
𝑊2
𝑁

𝑁∑
𝑛=1

[
𝒗𝜃𝑡(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 2∇ ⋅ (𝜺(𝒖𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
))) − ∇(∇ ⋅ 𝒖𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)) − 𝒇 (𝒙𝑛

𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
))
]2

+
𝑊3
𝑁

𝑁∑
𝑛=1

[
𝜺(𝒖𝜃𝑡(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝒗𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
))
]2 + 𝑊4

𝑁

𝑁∑
𝑛=1

[
∇ ⋅ (𝒖𝜃𝑡(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝒗𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
))
]2

+
𝑊5
𝑁

𝑁∑
𝑛=1

[
𝒖𝜃(𝒙𝑛𝑡𝑏,0) −𝝍1(𝒙𝑛𝑡𝑏)

]2 + 𝑊6
𝑁

𝑁∑
𝑛=1

[
𝒗𝜃(𝒙𝑛𝑡𝑏,0) −𝝍2(𝒙𝑛𝑡𝑏)

]2
+
𝑊7
𝑁

𝑁∑
𝑛=1

[
𝜺(𝒖𝜃(𝒙𝑛𝑡𝑏,0) −𝝍1(𝒙𝑛𝑡𝑏))

]2 + 𝑊8
𝑁

𝑁∑
𝑛=1

[
∇ ⋅ (𝒖𝜃(𝒙𝑛𝑡𝑏,0) −𝝍1(𝒙𝑛𝑡𝑏))

]2
+𝑊9

(
1
𝑁

𝑁∑
𝑛=1

[
𝒗𝜃(𝒙𝑛𝑠𝑏1, 𝑡

𝑛
𝑠𝑏1) −𝝓𝑑𝑡(𝒙

𝑛
𝑠𝑏1, 𝑡

𝑛
𝑠𝑏1)

]2)1∕2

+𝑊10

(
1
𝑁

𝑁∑
𝑛=1

[
2𝜺(𝒖𝜃(𝒙𝑛𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2))𝒏+ (∇ ⋅ 𝒖𝜃(𝒙𝑛𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2))𝒏−𝝓𝑛(𝒙

𝑛
𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2)

]2)1∕2

=∶
10∑
𝑖=1

𝔈𝑖, (65)

where we have added the penalty coefficients, 𝑊𝑛 > 0 (1 ≤ 𝑛 ≤ 10), for different loss terms in the implementation, and 𝑁 denotes the 
number of collocation points within the domain and on the domain boundaries. In the numerical tests we have also implemented 
another form for the loss function as follows,

Loss =
8∑
𝑖=1

𝔈𝑖 +
𝑊9
𝑁

𝑁∑
𝑛=1

[
𝒗𝜃(𝒙𝑛𝑠𝑏1, 𝑡

𝑛
𝑠𝑏1) −𝝓𝑑𝑡(𝒙

𝑛
𝑠𝑏1, 𝑡

𝑛
𝑠𝑏1)

]2
+
𝑊10
𝑁

𝑁∑
𝑛=1

[
2𝜺(𝒖𝜃(𝒙𝑛𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2))𝒏+ (∇ ⋅ 𝒖𝜃(𝒙𝑛𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2))𝒏−𝝓𝑛(𝒙

𝑛
𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2)

]2
. (66)

The difference between these two forms for the loss function lies in the 𝔈9 and 𝔈10 terms. It should be noted that the 𝔈9 and 𝔈10
terms in (65) contain a square root, in light of the error terms (48a)–(48f) from the theoretical analysis. In contrast, these terms have 
no square root in (66). The PINN scheme utilizing the loss function (65) is henceforth referred to as PINN-H1, and the scheme that 
employs the loss function (66) shall be referred to as PINN-H2.

In the simulations, we employ a feed-forward neural network with three input nodes, which represent 𝒙 = (𝑥, 𝑦) and the time 
23

variable 𝑡, and four output nodes, which represent 𝒖 = (𝑢1, 𝑢2) and 𝒗 = (𝑣1, 𝑣2). The neural network has two hidden layers, with 
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Fig. 11. Linear elastodynamic equation: Visualization of the deformed configuration at time instants (a) 𝑡 = 0.5, (b) 𝑡 = 1.0, and (c) 𝑡 = 1.5 from the exact solution 
(top row), the PINN-H1 solution (middle row) and the PINN-H2 solution (bottom row). Plotted here are the deformed field, 𝒙 + 𝒖(𝒙, 𝑡), for a set of grid points 
𝒙 ∈𝐷 = [0, 1] × [0, 1]. 𝑁 = 2000 training collocation points within domain and on the domain boundaries.

widths of 90 and 60 nodes, respectively, and the tanh activation function for all the hidden nodes. For the network training, 𝑁
collocation points are generated from a uniform random distribution within the domain, on each of the domain boundary, as well 
as on the initial boundary. 𝑁 is systematically varied in the simulations. We employ the penalty coefficients 𝑾 = (𝑊1, ..., 𝑊10) =
(0.9, 0.9, 0.9, 0.9, 0.5, 0.5, 0.5, 0.5, 0.9, 0.9) in the simulations.

In Figs. 11 and 12 we compare the PINN-H1/PINN-H2 solutions with the exact solution and provide an overview of their errors. 
Fig. 11 is a visualization of the deformed configuration of the domain. Here we have plotted the deformed field, 𝒙+𝒖(𝒙, 𝑡), for a set of 
grid points 𝒙 ∈𝐷 at three time instants from the exact solution, the PINN-H1 and PINN-H2 solutions. Fig. 12 shows distributions of 
the point-wise absolute error of the PINN-H1/PINN-H2 solutions, ‖𝒖𝜃 − 𝒖‖ =√

(𝑢𝜃1(𝒙, 𝑡) − 𝑢1(𝒙, 𝑡))2 + (𝑢𝜃2(𝒙, 𝑡) − 𝑢2(𝒙, 𝑡))2, at the same 
three time instants. Here 𝒖𝜃 = (𝑢𝜃1, 𝑢𝜃2) denotes the PINN solution. While both PINN schemes capture the solution fairly well at 𝑡 = 0.5
and 1, at 𝑡 = 1.5 both schemes show larger deviations from the true solution. In general, the PINN-H1 scheme appears to produce a 
better approximation to the solution than PINN-H2.

The effect of the number of collocation points (𝑁) on the PINN results has been studied in Fig. 13 and Table 3, where 𝑁 is 
systematically varied in the range 𝑁 = 1000 to 𝑁 = 3000. Fig. 13 shows the histories of the loss function for training PINN-H1 and 
PINN-H2 under different collocation points. Table 3 lists the corresponding 𝑙2 and 𝑙∞ errors of 𝒖 and 𝒗 obtained from PINN-H1 and 
PINN-H2. One can observe that the PINN errors in general tend to improve with increasing number of collocation points. It can also 
be observed that the PINN-H1 errors in general appear better than those of PINN-H2 for this problem.

Fig. 14 shows the errors of 𝒖, 𝒖𝑡, 𝜺(𝒖) and ∇ ⋅ 𝒖 as a function of the loss function value in the network training of PINN-H1 and 
PINN-H2. The data indicates that these errors approximately scale as the square root of the training loss, which is consistent with the 
relation as given by Theorem 5.5. This in a sense provides numerical evidence for the theoretical analysis in Section 5.

7. Concluding remarks

In the present paper we have considered the approximation of a class of dynamic PDEs of second order in time by physics-
24

informed neural networks (PINN). We provide an analysis of the convergence and the error of PINN for approximating the wave 
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Fig. 12. Linear elastodynamic equation: Distributions of the point-wise absolute error, ‖𝒖𝜃 − 𝒖‖, of the PINN-H1 solution (top row) and the PINN-H2 solution (bottom 
row) at three time instants (a) 𝑡 = 0.5, (b) 𝑡 = 1.0, and (c) 𝑡 = 1.5. 𝑁 = 2000 training collocation points within domain and on the domain boundaries.

Fig. 13. Linear elastodynamic equation: Training loss histories of PINN-H1 and PINN-H2 corresponding to different numbers of collocation points (𝑁) in the 
simulation.

Table 3

Linear elastodynamic equation: The 𝑙2 and 𝑙∞ errors for 𝒖 = (𝑢1 , 𝑢2) and 𝒗 = (𝑣1 , 𝑣2) versus the number of training data points 𝑁 from the 
PINN-H1 and PINN-H2 solutions.

𝑁
𝑙2-error 𝑙∞-error

𝑢𝜃1 𝑢𝜃2 𝑣𝜃1 𝑣𝜃2 𝑢𝜃1 𝑢𝜃2 𝑣𝜃1 𝑣𝜃2

PINN-H1

1000 4.8837e-02 6.0673e-02 4.7460e-02 5.1640e-02 1.7189e-01 2.1201e-01 6.9024e-01 6.1540e-01

1500 2.8131e-02 3.1485e-02 4.1104e-02 4.1613e-02 1.9848e-01 2.4670e-01 3.4716e-01 4.0582e-01

2000 2.7796e-02 4.0410e-02 3.5891e-02 4.6334e-02 1.4704e-01 1.7687e-01 4.0678e-01 5.0022e-01

2500 3.0909e-02 4.0215e-02 3.3966e-02 4.4024e-02 1.7589e-01 2.4211e-01 4.1403e-01 3.9570e-01

3000 2.6411e-02 3.5600e-02 4.3209e-02 5.2802e-02 1.4289e-01 1.3625e-01 5.1167e-01 5.3298e-01

PINN-H2

1000 4.9869e-02 1.3451e-01 5.6327e-02 5.4796e-02 3.2314e-01 3.4978e-01 6.7624e-01 5.7277e-01

1500 5.4708e-02 1.3987e-01 4.5871e-02 5.1622e-02 2.8609e-01 5.2598e-01 4.9343e-01 2.3518e-01

2000 6.2114e-02 1.0190e-01 6.4477e-02 5.0011e-02 2.5745e-01 3.1642e-01 5.9057e-01 5.8411e-01

2500 3.7887e-02 6.0630e-02 5.4363e-02 5.0659e-02 2.2212e-01 2.4774e-01 5.3681e-01 3.5427e-01

3000 5.4862e-02 6.3407e-02 5.5208e-02 6.0082e-02 3.4102e-01 2.1308e-01 5.1894e-01 4.4995e-01
25
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Fig. 14. Linear elastodynamic equation: The errors for 𝒖, 𝒖𝑡 , 𝜺(𝒖) and ∇ ⋅ 𝒖 versus the training loss value obtained by PINN-H1 and PINN-H2.

equation, the nonlinear Klein-Gordon equation, and the linear elastodynamic equation. Our analyses show that, with feed-forward 
neural networks having two hidden layers and the tanh activation function for all the hidden nodes, the PINN approximation errors 
for the solution field, its time derivative and its gradient can be bounded by the PINN training loss and the number of training data 
points (quadrature points).

Our theoretical analyses further suggest new forms for the PINN training loss function, which contain certain residuals that are 
crucial to the error estimate but would be absent from the canonical PINN formulation of the loss function. These typically include 
the gradient of the equation residual, the gradient of the initial-condition residual, and the time derivative of the boundary-condition 
residual. In addition, depending on the type of boundary conditions involved in the problem, our analyses suggest that a norm other 
than the commonly-used 𝐿2 norm may be more appropriate for the boundary residuals in the loss function. Adopting these new forms 
of the loss function suggested by the theoretical analyses leads to a variant PINN algorithm. We have implemented the new algorithm 
and presented a number of numerical experiments on the wave equation, the Sine-Gordon equation and the linear elastodynamic 
equation. The simulation results demonstrate that the method can capture the solution field well for these PDEs. The numerical data 
corroborate the theoretical analyses.
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Appendix A. Auxiliary results and proofs of theorems from Sections 4 and 5

A.1. Some auxiliary results

Let a 𝑑-tuple of non-negative integers 𝛼 ∈ ℕ𝑑0 be multi-index with 𝑑 ∈ℕ. For given two multi-indices 𝛼, 𝛽 ∈ ℕ𝑑0 , we say that 𝛼 ≤ 𝛽, 

if and only if, 𝛼𝑖 ≤ 𝛽𝑖 for all 𝑖 = 1, ⋯ , 𝑑. Denote |𝛼| =∑𝑑

𝑖=1 𝛼𝑖, 𝛼! =
∏𝑑

𝑖=1 𝛼𝑖!, 
(
𝛽

𝛼

)
= 𝛽!

𝛼!(𝛽−𝛼)! . Let 𝑃𝑚,𝑛 = {𝛼 ∈ ℕ𝑛0, |𝛼| = 𝑚}, for which it (
𝑚+ 𝑛− 1

)

26

holds |𝑃𝑚,𝑛| = 𝑚
.
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Lemma A.1 (Multiplicative trace inequality, e.g. [12]). Let 𝑑 ≥ 2, Ω ⊂ℝ𝑑 be a Lipschitz domain and let 𝛾0 ∶𝐻1(Ω) →𝐿2(𝜕Ω) ∶ 𝑢 ↦ 𝑢|𝜕Ω be 
the trace operator. Denote by ℎΩ the diameter of Ω and by 𝜌Ω the radius of the largest 𝑑-dimensional ball that can be inscribed into Ω. Then 
it holds that

‖𝛾0𝑢‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑,𝜌Ω‖𝑢‖𝐻1(Ω), where 𝐶ℎΩ ,𝑑,𝜌Ω =
√
2max{2ℎΩ, 𝑑}∕𝜌Ω. (67)

Lemma A.2 ([12]). Let 𝑑, 𝑛, 𝐿, 𝑊 ∈ ℕ and let 𝑢𝜃 ∶ ℝ𝑑+1 → ℝ𝑑+1 be a neural network with 𝜃 ∈ Θ for 𝐿 ≥ 2, 𝑅, 𝑊 ≥ 1, cf. Definition 2.1. 
Assume that ‖𝜎‖𝐶𝑛 ≥ 1. Then it holds for 1 ≤ 𝑗 ≤ 𝑑 + 1 that

‖(𝑢𝜃)𝑗‖𝐶𝑛 ≤ 16𝐿(𝑑 + 1)2𝑛(𝑒2𝑛4𝑊 3𝑅𝑛‖𝜎‖𝐶𝑛 )𝑛𝐿. (68)

Lemma A.3 ([12]). Let 𝑑 ≥ 2, 𝑛 ≥ 2, 𝑚 ≥ 3, 𝜎 > 0, 𝑎𝑖, 𝑏𝑖 ∈ℤ with 𝑎𝑖 < 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑑, Ω =∏𝑑

𝑖=1[𝑎𝑖, 𝑏𝑖] and 𝑓 ∈𝐻𝑚(Ω). Then for every 𝑁 ∈ℕ
with 𝑁 > 5 there exists a tanh neural network 𝑓𝑁 with two hidden layers, one of width at most 3⌈𝑚+𝑛−22 ⌉|𝑃𝑚−1,𝑑+1| +∑𝑑

𝑖=1(𝑏𝑖 − 𝑎𝑖)(𝑁 − 1)
and another of width at most 3⌈ 𝑑+𝑛2 ⌉|𝑃𝑑+1,𝑑+1|𝑁𝑑

∏𝑑

𝑖=1(𝑏𝑖 − 𝑎𝑖), such that for 𝑘 = 0, 1, 2 it holds that

‖𝑓 − 𝑓𝑁‖𝐻𝑘(Ω) ≤ 2𝑘3𝑑𝐶𝑘,𝑚,𝑑,𝑓 (1 + 𝛿)ln𝑘
(
𝛽𝑘,𝛿,𝑑,𝑓𝑁

𝑑+𝑚+2)𝑁−𝑚+𝑘, (69)

and where

𝐶𝑘,𝑚,𝑑,𝑓 = max
0≤𝑙≤𝑘

(
𝑑 + 𝑙 − 1

𝑙

)1∕2 ((𝑚− 𝑙)!)1∕2

(⌈𝑚−𝑙
𝑑

⌉!)𝑑∕2
(
3
√
𝑑

𝜋

)𝑚−𝑙 |𝑓 |𝐻𝑚(Ω),

𝛽𝑘,𝛿,𝑑,𝑓 =
5 ⋅ 2𝑘𝑑 max{

∏𝑑

𝑖=1(𝑏𝑖 − 𝑎𝑖), 𝑑}max{‖𝑓‖𝑊 𝑘,∞(Ω),1}
3𝑑𝛿min{1, 𝐶𝑘,𝑚,𝑑,𝑓 }

.

Moreover, the weights of 𝑓𝑁 scale as 𝑂(𝑁𝛾 +𝑁 ln𝑁) with 𝛾 =max{𝑚2∕𝑛, 𝑑(2 +𝑚 + 𝑑)∕𝑛}.

A.2. Proof of Theorem 4.3 and Theorem 5.4

Proof of Theorem 4.3. By taking the inner product of (38a) and (38b) with 𝑢̂ and 𝑣̂ over 𝐷, respectively, we have

𝑑

2𝑑𝑡 ∫
𝐷

|𝑢̂|2 d𝒙 = ∫
𝐷

𝑢̂𝑣̂d𝒙+ ∫
𝐷

𝑅𝑖𝑛𝑡1𝑢̂d𝒙 ≤ ∫
𝐷

|𝑢̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡1|2 d𝒙+ 1
2 ∫
𝐷

|𝑣̂|2 d𝒙, (70)

𝜀2
𝑑

2𝑑𝑡 ∫
𝐷

|𝑣̂|2 d𝒙
= −𝑎2 ∫

𝐷

∇𝑢̂ ⋅∇𝑣̂d𝒙+ 𝑎2 ∫
𝜕𝐷

𝑣̂∇𝑢̂ ⋅ 𝒏d𝑠(𝒙) − 𝜀21 ∫
𝐷

𝑢̂𝑣̂d𝒙− ∫
𝐷

(𝑔(𝑢𝜃) − 𝑔(𝑢))𝑣̂d𝒙+ ∫
𝐷

𝑅𝑖𝑛𝑡2𝑣̂d𝒙

= −𝑎2 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 𝑎2 ∫
𝐷

∇𝑢̂ ⋅∇𝑅𝑖𝑛𝑡1 d𝒙+ 𝑎2 ∫
𝜕𝐷

𝑅𝑠𝑏∇𝑢̂ ⋅ 𝒏d𝑠(𝒙) − 𝜀21 ∫
𝐷

𝑢̂𝑣̂d𝒙

− ∫
𝐷

(𝑔(𝑢𝜃) − 𝑔(𝑢))𝑣̂d𝒙+ ∫
𝐷

𝑅𝑖𝑛𝑡2𝑣̂d𝒙

≤ −𝑎2 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 𝑎2

2 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 𝑎2

2 ∫
𝐷

|∇𝑅𝑖𝑛𝑡1|2 d𝒙+𝐶𝜕𝐷 ⎛⎜⎜⎝ ∫𝜕𝐷 |𝑅𝑠𝑏|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

+ 1
2
(𝜀21 +𝐿)∫

𝐷

|𝑢̂|2 d𝒙+ 1
2
(𝜀21 +𝐿+ 1)∫

𝐷

|𝑣̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡2|2 d𝒙, (71)

where 𝐶𝜕𝐷 = 𝑎2|𝜕𝐷| 12 (‖𝑢‖𝐶1(𝜕𝐷×[0,𝑇 ]) + ||𝑢𝜃||𝐶1(𝜕𝐷×[0,𝑇 ])) and 𝑣̂ = 𝑢̂𝑡 −𝑅𝑖𝑛𝑡1 have been used.

Add (70) to (71), and we get

𝑑

2𝑑𝑡 ∫
𝐷

|𝑢̂|2 d𝒙+ 𝑎2 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 𝜀2 𝑑

2𝑑𝑡 ∫
𝐷

|𝑣̂|2 d𝒙
≤ 1

2
(𝜀21 +𝐿+ 2)∫

𝐷

|𝑢̂|2 d𝒙+ 𝑎2

2 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 1
2
(𝜀21 +𝐿+ 2)∫

𝐷

|𝑣̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡1|2 d𝒙
+ 1 |𝑅 |2 d𝒙+ 𝑎2 |∇𝑅 |2 d𝒙+𝐶 ⎛⎜ |𝑅 |2 d𝑠(𝒙)⎞⎟

1
2

. (72)
27

2 ∫
𝐷

𝑖𝑛𝑡2 2 ∫
𝐷

𝑖𝑛𝑡1 𝜕𝐷 ⎜⎝ ∫𝜕𝐷 𝑠𝑏 ⎟⎠



Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Integrating (72) over [0, 𝜏] for any 𝜏 ≤ 𝑇 and applying the Cauchy–Schwarz inequality, we obtain

∫
𝐷

|𝑢̂(𝒙, 𝜏)|2 d𝒙+ 𝑎2 ∫
𝐷

|∇𝑢̂(𝒙, 𝜏)|2 d𝒙+ 𝜀2 ∫
𝐷

|𝑣̂(𝒙, 𝜏)|2 d𝒙
≤ ∫
𝐷

|𝑅𝑡𝑏1|2 d𝒙+ 𝑎2 ∫
𝐷

|∇𝑅𝑡𝑏1|2 d𝒙+ 𝜀2 ∫
𝐷

|𝑅𝑡𝑏2|2 d𝒙+ (2 + 𝜀21 +𝐿+ 𝑎2)

𝜏

∫
0

∫
𝐷

(|𝑢̂|2 + |∇𝑢̂|2 + |𝑣̂|2) d𝒙d𝑡

+

𝑇

∫
0

∫
𝐷

(|𝑅𝑖𝑛𝑡1|2 + 𝑎2|∇𝑅𝑖𝑛𝑡1|2 + |𝑅𝑖𝑛𝑡2|2) d𝒙d𝑡+ 2𝐶𝜕𝐷|𝑇 | 12 ⎛⎜⎜⎝
𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

.

Applying the integral form of the Grönwall inequality to the above inequality leads to,

∫
𝐷

|𝑢̂(𝒙, 𝜏)|2 d𝒙+ 𝑎2 ∫
𝐷

|∇𝑢̂(𝒙, 𝜏)|2 d𝒙+ 𝜀2 ∫
𝐷

|𝑣̂(𝒙, 𝜏)|2 d𝒙 ≤ 𝐶𝐺 exp
(
(2 + 𝜀21 +𝐿+ 𝑎2)𝑇

)
, (73)

where

𝐶𝐺 = ∫
𝐷

(|𝑅𝑡𝑏1|2 + 𝑎2|∇𝑅𝑡𝑏1|2 + 𝜀2|𝑅𝑡𝑏2|2) d𝒙+ 𝑇

∫
0

∫
𝐷

(|𝑅𝑖𝑛𝑡1|2 + |𝑅𝑖𝑛𝑡2|2 + 𝑎2|∇𝑅𝑖𝑛𝑡1|2) d𝒙d𝑡

+ 2𝐶𝜕𝐷|𝑇 | 12 ⎛⎜⎜⎝
𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

. (74)

Then, we integrate (73) over [0, 𝑇 ] to end the proof. □

Proof of Theorem 5.4. Taking the 𝐿2 inner product of (49a) and (49b) with 𝒖̂ and 𝒗̂ over 𝐷, respectively, we have

𝑑

2𝑑𝑡 ∫
𝐷

|𝒖̂|2 d𝒙 = ∫
𝐷

𝒖̂𝒗̂d𝒙+ ∫
𝐷

𝑹𝑖𝑛𝑡1𝒖̂d𝒙 ≤ ∫
𝐷

|𝒖̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑹𝑖𝑛𝑡1|2 d𝒙+ 1
2 ∫
𝐷

|𝒗̂|2 d𝒙, (75)

𝜌
𝑑

2𝑑𝑡 ∫
𝐷

|𝒗̂|2 d𝒙 = −2𝜇∫
𝐷

𝜺(𝒖̂) ∶ ∇𝒗̂d𝒙− 𝜆∫
𝐷

(∇ ⋅ 𝒖̂)(∇ ⋅ 𝒗̂) d𝒙+ ∫
𝜕𝐷

(2𝜇𝜺(𝒖̂)𝒏+ 𝜆(∇ ⋅ 𝒖̂)𝒏) ⋅ 𝒗̂d𝑠(𝒙)

+ ∫
𝐷

𝑹𝑖𝑛𝑡2𝒗̂d𝒙

= − 𝑑

𝑑𝑡 ∫
𝐷

𝜇|𝜺(𝒖̂)|2 d𝒙− 𝑑

𝑑𝑡 ∫
𝐷

𝜆

2
|∇ ⋅ 𝒖̂|2 d𝒙+ 2𝜇∫

𝐷

𝜺(𝒖̂) ∶ ∇𝑹𝑖𝑛𝑡1 d𝒙+ 𝜆∫
𝐷

(∇ ⋅ 𝒖̂)(∇ ⋅𝑹𝑖𝑛𝑡1) d𝒙

+ ∫
Γ𝐷

(2𝜇𝜺(𝒖̂)𝒏+ 𝜆(∇ ⋅ 𝒖̂)𝒏) ⋅𝑹𝑠𝑏1 d𝑠(𝒙) + ∫
Γ𝑁

𝑹𝑠𝑏2 ⋅ 𝒗̂d𝑠(𝒙) + ∫
𝐷

𝑹𝑖𝑛𝑡2𝒗̂d𝒙

≤ − 𝑑

𝑑𝑡 ∫
𝐷

𝜇|𝜺(𝒖̂)|2 d𝒙− 𝑑

𝑑𝑡 ∫
𝐷

𝜆

2
|∇ ⋅ 𝒖̂|2 d𝒙+ 𝜇∫

𝐷

|𝜺(𝒖̂)|2 d𝒙+ 𝜇∫
𝐷

|𝜺(𝑹𝑖𝑛𝑡1)|2 d𝒙
+ 𝜆

2 ∫
𝐷

|∇ ⋅𝑹𝑖𝑛𝑡1|d𝒙+ 𝜆

2 ∫
𝐷

|∇ ⋅ 𝒖̂|d𝒙+ 1
2 ∫
𝐷

|𝒗̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑹𝑖𝑛𝑡2|2 d𝒙
+𝐶Γ𝐷

⎛⎜⎜⎝ ∫Γ𝐷 |𝑹𝑠𝑏1|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

+𝐶Γ𝑁

⎛⎜⎜⎝ ∫Γ𝑁 |𝑹𝑠𝑏2|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

. (76)

Here we have used 𝒗̂ = 𝒖̂𝑡 −𝑹𝑖𝑛𝑡1, and the constants are given by 𝐶Γ𝐷 = (2𝜇 + 𝜆)|Γ𝐷| 12 ‖𝒖‖𝐶1(Γ𝐷×[0,𝑇 ]) + (2𝜇 + 𝜆)|Γ𝐷| 12 ||𝒖𝜃||𝐶1(Γ𝐷×[0,𝑇 ])

and 𝐶Γ𝑁 = |Γ𝑁 | 12 (‖𝒗‖𝐶(Γ𝑁×[0,𝑇 ]) + ||𝒗𝜃||𝐶(Γ𝑁×[0,𝑇 ])).
Add (75) to (76), and we get,

𝑑

2𝑑𝑡 ∫
𝐷

|𝒖̂|2 d𝒙+ 𝑑

𝑑𝑡 ∫
𝐷

𝜇|𝜺(𝒖̂)|2 d𝒙+ 𝑑

2𝑑𝑡 ∫
𝐷

𝜆|∇ ⋅ 𝒖̂|2 d𝒙+ 𝜌 𝑑

2𝑑𝑡 ∫
𝐷

|𝒗̂|2 d𝒙
≤ (|𝒖̂|2 + 𝜇|𝜺(𝒖̂)|2 + 𝜆 |∇ ⋅ 𝒖̂|+ |𝒗̂|2) d𝒙+ 1 (|𝑹 |2 + |𝑹 |2 + 2𝜇|𝜺(𝑹 )|2) d𝒙
28

∫
𝐷

2 2 ∫
𝐷

𝑖𝑛𝑡1 𝑖𝑛𝑡2 𝑖𝑛𝑡1
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+ 𝜆

2 ∫
𝐷

|∇ ⋅𝑹𝑖𝑛𝑡1|d𝒙+𝐶Γ𝐷

⎛⎜⎜⎝ ∫Γ𝐷 |𝑹𝑠𝑏1|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

+𝐶Γ𝑁

⎛⎜⎜⎝ ∫Γ𝑁 |𝑹𝑠𝑏2|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

. (77)

Integrating (77) over [0, 𝜏] for any 𝜏 ≤ 𝑇 and applying Cauchy–Schwarz inequality, we obtain,

∫
𝐷

|𝒖̂(𝒙, 𝜏)|2 d𝒙+ ∫
𝐷

2𝜇|𝜺(𝒖̂(𝒙, 𝜏))|2 d𝒙+ ∫
𝐷

𝜆|∇ ⋅ 𝒖̂(𝒙, 𝜏)|2 d𝒙+ 𝜌∫
𝐷

|𝒗̂(𝒙, 𝜏)|2 d𝒙
≤ ∫
𝐷

|𝑹𝑡𝑏1|2 d𝒙+ ∫
𝐷

2𝜇|𝜺(𝑹𝑡𝑏1)|2 d𝒙+ ∫
𝐷

𝜆|∇ ⋅𝑹𝑡𝑏1|2 d𝒙+ 𝜌∫
𝐷

|𝑹𝑡𝑏2|2 d𝒙
+ (2 + 2𝜇 + 𝜆)

𝜏

∫
0

∫
𝐷

(|𝒖̂|2 + |𝜺(𝒖̂)|2 + |∇ ⋅ 𝒖̂|2 + |𝒗̂|2) d𝒙d𝑡

+

𝑇

∫
0

∫
𝐷

(|𝑹𝑖𝑛𝑡1|2 + 2𝜇|𝜺(𝑹𝑖𝑛𝑡1)|2 + 𝜆|∇ ⋅𝑹𝑖𝑛𝑡1|2 + |𝑹𝑖𝑛𝑡2|2) d𝒙d𝑡

+ 2|𝑇 | 12 𝐶Γ𝐷

⎛⎜⎜⎝
𝑇

∫
0

∫
Γ𝐷

|𝑹𝑠𝑏1|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

+ 2|𝑇 | 12 𝐶Γ𝑁

⎛⎜⎜⎝
𝑇

∫
0

∫
Γ𝑁

|𝑹𝑠𝑏2|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

.

By applying the integral form of the Grönwall inequality to the above inequality, we have

∫
𝐷

(|𝒖̂(𝒙, 𝜏)|2 + 2𝜇|𝜺(𝒖̂(𝒙, 𝜏))|2 + 𝜆|∇ ⋅ 𝒖̂(𝒙, 𝜏)|2 + 𝜌∫
𝐷

|𝒗̂(𝒙, 𝜏)|2) d𝒙 ≤ 𝐶𝐺 exp ((2 + 2𝜇 + 𝜆)𝑇 ) , (78)

where

𝐶𝐺 = ∫
𝐷

|𝑹𝑡𝑏1|2 d𝒙+ ∫
𝐷

2𝜇|𝜺(𝑹𝑡𝑏1)|2 d𝒙+ ∫
𝐷

𝜆|∇ ⋅𝑹𝑡𝑏1|2 d𝒙+ 𝜌∫
𝐷

|𝑹𝑡𝑏2|2 d𝒙
+

𝑇

∫
0

∫
𝐷

(|𝑹𝑖𝑛𝑡1|2 + 2𝜇|𝜺(𝑹𝑖𝑛𝑡1)|2 + 𝜆|∇ ⋅𝑹𝑖𝑛𝑡1|2 + |𝑹𝑖𝑛𝑡2|2) d𝒙d𝑡

+ 2|𝑇 | 12 𝐶Γ𝐷

⎛⎜⎜⎝
𝑇

∫
0

∫
Γ𝐷

|𝑹𝑠𝑏1|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

+ 2|𝑇 | 12 𝐶Γ𝑁

⎛⎜⎜⎝
𝑇

∫
0

∫
Γ𝑁

|𝑹𝑠𝑏2|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

. (79)

Then, we finish the proof by integrating (78) over [0, 𝑇 ]. □
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