
J. Comput. Phys. 495 (2023) 112527

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Physics-informed neural networks for approximating dynamic

(hyperbolic) PDEs of second order in time: Error analysis and

algorithms

Yanxia Qian a, Yongchao Zhang b, Yunqing Huang a,∗, Suchuan Dong c,∗

a School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, PR China
b School of Mathematics, Northwest University, Xi’an, Shaanxi 710069, PR China
c Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

PINN

Neural network

Error estimate

PDE

Scientific machine learning

We consider the approximation of a class of dynamic partial differential equations (PDEs) of
second order in time by the physics-informed neural network (PINN) approach, and provide an
error analysis of PINN for the wave equation, the nonlinear Klein-Gordon equation and the linear
elastodynamic equation. Our analyses show that, with feed-forward neural networks having two
hidden layers and the tanh activation function, the PINN approximation errors for the solution
field, its time derivative and its gradient field can be effectively bounded by the training loss and
the number of training data points (quadrature points). Our analyses further suggest new forms for
the training loss function, which contain certain residuals that are crucial to the error estimate
but would be absent from the canonical PINN loss formulation. Adopting these new forms for
the loss function leads to a variant PINN algorithm. We present ample numerical experiments
with the new PINN algorithm for the wave equation, the Sine-Gordon equation and the linear
elastodynamic equation, which show that the method can capture the solution well.

1. Introduction

Deep neural networks (DNN) have achieved a great success in a number of fields in science and engineering [36] such as natural
language processing, robotics, computer vision, speech and image recognition, to name but a few. This has inspired a great deal
of research efforts in the past few years to adapt such techniques to scientific computing. DNN-based techniques seem particularly
promising for problems in higher dimensions, e.g. high-dimensional partial differential equation (PDE), since traditional numerical
methods for high-dimensional problems can quickly become infeasible due to the exponential increase in the computational effort
(so-called curse of dimensionality). Under these circumstances deep-learning algorithms can be helpful. In particular, the neural
network-based approach for PDE problems provides implicit regularization and can alleviate and perhaps overcome the curse of high
dimensions [3,4].

As deep neural networks are universal function approximators, it is natural to employ them as ansatz spaces for solutions of
(ordinary or partial) differential equations. This paves the way for their use in physical modeling and scientific computing and
gives rise to the field of scientific machine learning [32,52,46,22,37]. The physics-informed neural network (PINN) approach was

* Corresponding author.
Available online 4 October 2023
0021-9991/© 2023 Elsevier Inc. All rights reserved.

E-mail addresses: yxqian0520@xtu.edu.cn (Y. Qian), yoczhang@nwu.edu.cn (Y. Zhang), huangyq@xtu.edu.cn (Y. Huang), sdong@purdue.edu (S. Dong).

https://doi.org/10.1016/j.jcp.2023.112527

Received 4 April 2023; Received in revised form 24 September 2023; Accepted 25 September 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:yxqian0520@xtu.edu.cn
mailto:yoczhang@nwu.edu.cn
mailto:huangyq@xtu.edu.cn
mailto:sdong@purdue.edu
https://doi.org/10.1016/j.jcp.2023.112527
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.112527&domain=pdf
https://doi.org/10.1016/j.jcp.2023.112527

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

introduced in [46]. It has been successfully applied to a variety of forward and inverse PDE problems and has become one of the
most commonly-used methods in scientific machine learning (see e.g. [46,25,10,31,58,30,6,53,18,16,7,55,24,34,20,21,57,19,45,51,

28,44], among others). The references [32,9] provide a comprehensive review of the literature on PINN and about the benefits and
drawbacks of this approach.

The mathematical foundation for PINN aiming at the approximation of PDE solution is currently an active area of research. It is
important to account for different components of the neural-network error: optimization error, approximation error, and estimation
error [42,49]. Approximation error refers to the discrepancy between the exact functional map and the neural network mapping
function on a given network architecture [8,23]. Estimation error arises when the network is trained on a finite data set to get a
mapping on the target domain. The generalization error is the combination of approximation and estimation errors and defines the
accuracy of the neural-network predicted solution trained on the given set of data.

Theoretical understanding of PINN has been advanced by a number of recent works. In [49] Shin et al. rigorously justify why
PINN works and shows its consistency for linear elliptic and parabolic PDEs under certain assumptions. These results are extended in
[50] to a general abstract framework for analyzing PINN for linear problems with the loss function formulated in terms of the strong
or weak forms of the equations. In [40] Mishra and Molinaro provide an abstract framework on PINN for forward PDE problems, and
estimate the generalization error by means of the training error and the number of training data points. This framework is extended
in [39] to study several inverse PDE problems, including the Poisson, heat, wave and Stokes equations. Bai and Koley [2] investigate
the PINN approximation of nonlinear dispersive PDEs such as the KdV-Kawahara, Camassa-Holm and Benjamin-Ono equations. In [5]

Biswa et al. provide explicit error estimates (in suitable norms) and stability analyses for the incompressible Navier–Stokes equations.
Zerbinati [60] presents PINN as an under-determined point matching collocation method, reveals its connection with Galerkin Least
Squares (GALS) method, and establishes an a priori error estimate for elliptic problems.

An important theoretical result on the approximation errors from the recent work [13] establishes that a feed-forward neural
network 𝑢̂𝜃 with a tanh activation function and two hidden layers may approximate a function 𝑢 with a bound in a Sobolev space, ‖𝑢̂𝜃𝑁 − 𝑢‖𝑤𝑘,∞ ≤ 𝐶ln(𝑐𝑁)𝑘∕𝑁𝑠−𝑘. Here 𝑢 ∈𝑤𝑠,∞([0, 1]𝑑), 𝑑 is the dimension of the problem, 𝑁 is the number of training points, and
𝑐, 𝐶 > 0 are explicitly known constants independent of 𝑁 . Based on this result, De Ryck et al. [12] have studied the PINN for the
Navier–Stokes equations and shown that a small training error implies a small generalization error. In particular, Hu et al. [26]

provide the higher-order (spatial Sobolev norm) error estimates for the primitive equations, which improve the existing results
in the PINN literature that only involve 𝐿2 errors. In [14] it has been shown that, with a sufficient number of randomly chosen
training points, the total 𝐿2 error can be bounded by the generalization error for Kolmogorov-type PDEs, which in turn is bounded
by the training error. It is proved that the size of the PINN and the number of training samples only increase polynomially with the
problem dimension, thus enabling PINN to overcome the curse of dimensionality in this case. In [38] the authors investigate the
high-dimensional radiative transfer equation and prove that the generalization error is bounded by the training error and the number
of training points, where the upper bound depends on the dimension only through a logarithmic factor. Hence PINN does not suffer
from the curse of dimensionality, provided that the training errors do not depend on the underlying dimension. Another interesting
study on PINN and extended PINN (XPINN) is [27], in which the authors employ the generalized Barron space to define the function
space of DNNs and have provided a prior and a posterior generalization bound on the PDE residual in terms of the complexity of the
PDE solution and the posterior weight matrix norm in the neural network, respectively. Their analyses indicate that XPINN induces
two opposing effects, with one tending to boost the network’s generalization ability and the other tending to cause the network to
be less generalizable.

Although PINN has been widely used for approximating PDEs, theoretical investigations on its convergence and errors are still
quite limited and are largely confined to elliptic and parabolic PDEs. There seems to be less (or little) theoretical analysis on the
convergence of PINN for hyperbolic type PDEs. In this paper, we consider a class of dynamic PDEs of second order in time, which
are hyperbolic in nature, and provide an analysis of the convergence and errors of the PINN algorithm applied to such problems.
We have focused on the wave equation, the nonlinear Klein-Gordon equation and the linear elastodynamic equation in our analyses.
Building upon the result of [13,12] on tanh neural networks with two hidden layers, we have shown that for these three kinds of
PDEs:

• The PINN residuals can be made arbitrarily small with tanh neural networks having two hidden layers.

• The total error of the PINN approximation is bounded by the generalization error of PINN.

• The PINN approximation errors for the solution field, its time derivative and its gradient are bounded by the training error
(training loss) and the number of quadrature points (training data points).

Furthermore, our theoretical analyses have suggested PINN training loss functions for these PDEs that are somewhat different in
form than from the canonical PINN formulation. These lie in two aspects: (i) Our analyses require certain residual terms (such as the
gradient of the initial condition, the time derivative of the boundary condition, or in the case of linear elastodynamic equation the
strain and divergence of the initial condition) in the training loss, which would be absent from the canonical PINN formulation of
the loss function. (ii) Our analyses may require, depending on the type of boundary conditions, the 𝐿2 norm for certain boundary
residuals in the training loss, which is different from the commonly-used 𝐿2 norm squared in the canonical PINN formulation of the
loss function.

These new forms for the training loss function suggested by the theoretical analyses lead to a variant PINN algorithm. We have
implemented the PINN algorithm based on these new forms of the training loss function for the wave equation, the nonlinear Klein-
2

Gordon equation and the linear elastodynamic equation. Ample numerical experiments based on this algorithm have been presented.

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

The simulation results indicate that the method has captured the solution field reasonably well for these PDEs. The numerical results
also to some extent corroborate the theoretical relation between the approximation error and the PINN training loss obtained from
the error analysis.

It would be instructive to compare the current analyses with the recent work [27]. We note that the generalization bounds on the
PDE residual proved in [27] apply to a general class of second-order linear PDEs (see Assumption 3.1 of [27]). In order to attain an
𝐿2 error bound on the PINN solution, the following assumption (Assumption 3.2 of [27], page A3167) has been made on the PDE
𝑢 = 𝑓 (with Dirichlet boundary condition) in [27],

𝐶1 ‖𝑢‖𝐿2(Ω) ⩽ ‖𝑢‖𝐿2(Ω) + ‖𝑢‖𝐿2(𝜕Ω) , (1)

where Ω is the domain (with boundary 𝜕Ω), 𝑢 is the PDE solution, 𝐶1 > 0 is a constant independent of 𝑢,  is the linear differential
operator in the PDE, and 𝑓 denotes a prescribed function. By using this assumption and the generalization bounds on the PDE
residual, an 𝐿2 approximation error on the PINN solution is given in [27] (Theorem 3.6 therein). We note that similar assumptions
(with somewhat different forms) have appeared in several other previous works (see e.g. [40,39,50]), and for a few PDEs the proofs
for a relation analogous to (1) are available. It is not clear whether the assumption (1) is generally applicable, especially to dynamic
PDEs of second-order in time, which are the focus of the current work. At the early stage of this project, we have attempted to develop
an 𝐿2 error estimate on the PINN solution using the original form (see Equation (2a) below) of the class of PDEs considered in this
paper, which would presumably lead to a form analogous to (1), noting that  in (1) is the very differential operator appearing in
the PDE. However, our attempt was not successful for certain PDEs of second-order in time. This unsuccessful attempt has led us to
the reformulation of the original dynamic PDE of second-order in time into a system of two PDEs of first-order in time, as employed
in all the current analyses. The 𝐿2 error bounds we have obtained for the PINN solution have a generally different form than (1),
especially in two aspects. First, our error bound involves differential operators that are different from the one (or those) appearing
in the original PDE. Second, our error bound typically involves the square root of certain boundary norms, as mentioned previously.
It should be emphasized that the bounds on the PINN solution error in terms of the PDE residual error for the class of PDE problems
in the current paper are proven, not assumed.

The rest of this paper is organized as follows. Section 2 is an overview of PINN. In Sections 3, 4 and 5, we present an error
analysis of the PINN algorithm for approximating the wave equation, nonlinear Klein-Gordon equation, and the linear elastodynamic
equation. Section 6 summarizes a set of numerical experiments with these three PDEs to supplement and support our theoretical
analyses. Section 7 concludes the presentation with some closing remarks. Finally, Appendix A recalls some auxiliary results and
provides the proofs of the theorems from Sections 4 and 5.

2. Physics informed neural networks (PINN) for approximating PDEs

2.1. Generic PDE of second order in time

Consider a compact domain 𝐷 ⊂ℝ𝑑 (𝑑 > 0 being an integer), and let  and  denote the differential and boundary operators. We
consider the following general form of an initial boundary value problem with a generic PDE of second order in time. For any 𝒙∈𝐷,
𝒚 ∈ 𝜕𝐷 and 𝑡 ∈ [0, 𝑇],

𝜕2𝑢

𝜕𝑡2
(𝒙, 𝑡) +[𝑢](𝒙, 𝑡) = 0, (2a)

𝑢(𝒚, 𝑡) = 𝑢𝑑 (𝒚, 𝑡), (2b)

𝑢(𝒙,0) = 𝑢𝑖𝑛(𝒙),
𝜕𝑢

𝜕𝑡
(𝒙,0) = 𝑣𝑖𝑛(𝒙). (2c)

Here, 𝑢(𝒙, 𝑡) is the unknown field solution, 𝑢𝑑 denotes the boundary data, and 𝑢𝑖𝑛 and 𝑣𝑖𝑛 are the initial distributions for 𝑢 and 𝜕𝑢
𝜕𝑡

. We
assume that in  the highest derivative with respect to the time variable 𝑡, if any, is of first order.

2.2. Neural network representation of a function

Let 𝜎 ∶ℝ →ℝ denote an activation function that is at least twice continuously differentiable. For any 𝑛 ∈ℕ and 𝑧 ∈ℝ𝑛, we define
𝜎(𝑧) ∶= (𝜎(𝑧1), ⋯ , 𝜎(𝑧𝑛)), where 𝑧𝑖 (1 ≤ 𝑖 ≤ 𝑛) are the components of 𝑧. We adopt the following formal definition for a feedforward
neural network as given in [12].

Definition 2.1 ([12]). Let 𝑅 ∈ (0, ∞], 𝐿, 𝑊 ∈ℕ and 𝑙0, ⋯ , 𝑙𝐿 ∈ℕ. Let 𝜎 ∶ℝ →ℝ be a twice differentiable function and define

Θ=Θ𝐿,𝑊 ,𝑅 ∶=
⋃

𝐿′∈ℕ,𝐿′≤𝐿
⋃

𝑙0 ,⋯,𝑙𝐿∈{1,⋯,𝑊 }
⟍⟋𝐿′
𝑘=1([−𝑅,𝑅]

𝑙𝑘×𝑙𝑘−1 × [−𝑅,𝑅]𝑙𝑘). (3)

For 𝜃 ∈ Θ, we define 𝜃𝑘 ∶= (𝑊𝑘, 𝑏𝑘) and 𝜃
𝑘
∶ ℝ𝑙𝑘−1 → ℝ𝑙𝑘 by 𝑧 ↦ 𝑊𝑘𝑧 + 𝑏𝑘 for 1 ≤ 𝑘 ≤ 𝐿, and we define 𝑓𝜃

𝑘
∶ ℝ𝑙𝑘−1 → ℝ𝑙𝑘 by

𝜃

{ 𝜃 (𝑧) 𝑘 =𝐿, 𝑙 𝑙 𝑙
3

𝑓
𝑘
= 𝐿

(𝜎◦𝜃
𝑘
)(𝑧) 1 ≤ 𝑘 < 𝐿. Denote 𝑢𝜃 ∶ℝ 0 →ℝ 𝐿 the function that satisfies for all 𝑧 ∈ℝ 0 that

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

𝑢𝜃(𝑧) = (𝑓𝜃
𝐿
◦𝑓𝜃

𝐿−1◦⋯◦𝑓𝜃1)(𝑧) 𝑧 ∈ℝ𝑙0 . (4)

We set 𝑧 = (𝒙, 𝑡) and 𝑙0 = 𝑑 + 1 for approximating the PDE problem (2).

𝑢𝜃 as defined above is the neural-network representation of a parameterized function associated with the parameter 𝜃. This neural
network contains (𝐿 + 1) layers (𝐿 ≥ 2), with widths (𝑙0, 𝑙1, ⋯ , 𝑙𝐿) for each layer. The input layer has a width 𝑙0, and the output layer
has a width 𝑙𝐿. The (𝐿 − 1) layers between the input/output layers are the hidden layers, with widths 𝑙𝑘 (1 ≤ 𝑘 ≤ 𝐿 − 1). 𝑊𝑘 and 𝑏𝑘
are the weight/bias coefficients corresponding to layer 𝑘 for 1 ≤ 𝑘 ≤ 𝐿. From layer to layer the network logic represents an affine
transform, followed by a function composition with the activation function 𝜎. Note that no activation function is applied to the
output layer. We refer to 𝑢𝜃 with 𝐿 = 2 (i.e. single hidden layer) as a shallow neural network, and 𝑢𝜃 with 𝐿 ≥ 3 (i.e. multiple hidden
layers) as a deeper or deep neural network.

2.3. Physics informed neural network for initial/boundary value problem

Let Ω =𝐷 × [0, 𝑇] and Ω∗ = 𝜕𝐷 × [0, 𝑇] be the spatial-temporal domain. We approximate the solution 𝑢 to the problem (2) by a
neural network 𝑢𝜃 ∶ Ω →ℝ𝑛. With PINN we consider the residual function of the initial/boundary value problem (2), defined for any
sufficiently smooth function 𝑢 ∶ Ω →ℝ𝑛 as, for any 𝒙 ∈𝐷, 𝒚 ∈ 𝜕𝐷 and 𝑡 ∈ [0, 𝑇],

𝑖𝑛𝑡[𝑢](𝒙, 𝑡) =
𝜕2𝑢

𝜕𝑡2
(𝒙, 𝑡) +[𝑢](𝒙, 𝑡), 𝑠𝑏[𝑢](𝒚, 𝑡) =𝑢(𝒚, 𝑡) − 𝑢𝑑 (𝒚, 𝑡), (5a)

𝑡𝑏1[𝑢](𝒙,0) = 𝑢(𝒙,0) − 𝑢𝑖𝑛(𝒙), 𝑡𝑏2[𝑢](𝒙,0) =
𝜕𝑢

𝜕𝑡
(𝒙,0) − 𝑣𝑖𝑛(𝒙). (5b)

These residuals characterize how well a given function 𝑢 satisfies the initial/boundary value problem (2). If 𝑢 is the exact solution,
𝑖𝑛𝑡[𝑢] =𝑠𝑏[𝑢] =𝑡𝑏1[𝑢] =𝑡𝑏2[𝑢] = 0.

To facilitate the subsequent analyses, we introduce an auxiliary function 𝑣 = 𝜕𝑢

𝜕𝑡
and rewrite 𝑡𝑏2 as

𝑡𝑏2[𝑣](𝒙,0) = 𝑣(𝒙,0) − 𝑣𝑖𝑛(𝒙). (6)

We reformulate (2a) into two equations, thus separating the interior residual into the following two components:

𝑖𝑛𝑡1[𝑢, 𝑣](𝒙, 𝑡) =
𝜕𝑢

𝜕𝑡
(𝒙, 𝑡) − 𝑣(𝒙, 𝑡), 𝑖𝑛𝑡2[𝑢, 𝑣](𝒙, 𝑡) =

𝜕𝑣

𝜕𝑡
(𝒙, 𝑡) +[𝑢](𝒙, 𝑡). (7)

With PINN, we seek a neural network (𝑢𝜃, 𝑣𝜃) to minimize the following quantity,

𝐺(𝜃)2 =∫
Ω

|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
𝐷

|𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙
+ ∫
𝐷

|𝑅𝑡𝑏2[𝑣𝜃](𝒙)|2 d𝒙+ ∫
Ω∗

|𝑅𝑠𝑏[𝑢𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡. (8)

The different terms of (8) may be rescaled by different weights (penalty coefficients). For simplicity, we set all these weights to one
in the analysis. 𝐺 as defined above is often referred to as the generalization error. Because of the integrals involved therein, 𝐺 can
be hard to minimize. In practice, one will approximate (8) by an appropriate numerical quadrature rule, as follows

𝑇 (𝜃,)2 = 𝑖𝑛𝑡1𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 +  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 + 𝑠𝑏

𝑇
(𝜃,𝑠𝑏)2, (9)

where

 𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2, (10a)

 𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2, (10b)

 𝑡𝑏2
𝑇

(𝜃,𝑡𝑏)2 =
𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏2[𝑣𝜃](𝒙𝑛𝑡𝑏)|2, 𝑠𝑏

𝑇
(𝜃,𝑠𝑏)2 =

𝑁𝑠𝑏∑
𝑛=1

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏[𝑢𝜃](𝒙𝑛𝑠𝑏, 𝑡𝑛𝑠𝑏)|2. (10c)

The quadrature points in the spatial-temporal domain and on the spatial and temporal boundaries, 𝑖𝑛𝑡 = {(𝒙𝑛
𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)}𝑁𝑖𝑛𝑡
𝑛=1 , 𝑠𝑏 =

{(𝒙𝑛
𝑠𝑏
, 𝑡𝑛
𝑠𝑏
)}𝑁𝑠𝑏
𝑛=1 and 𝑡𝑏 = {(𝒙𝑛

𝑡𝑏
, 𝑡𝑛
𝑡𝑏
= 0)}𝑁𝑡𝑏

𝑛=1, constitute the input data sets to the neural network. In the above equations 𝑇 (𝜃, )2 is
referred to as the training error (or training loss), and 𝜔𝑛

⋆
are suitable quadrature weights for ⋆ = 𝑖𝑛𝑡, 𝑠𝑏 and 𝑡𝑏. Therefore, PINN

attempts to minimize the training error 𝑇 (𝜃, )2 over the network parameters 𝜃, and upon convergence of optimization the trained
𝑢𝜃 contains the approximation of the solution 𝑢 to the problem (2).

Remark 2.2. The generalization error (8) (with the corresponding training error (9)) is the standard (canonical) PINN form if one
introduces 𝑣 = 𝜕𝑢

𝜕𝑡
and reformulates (2a) into two equations. We would like to emphasize that our analyses below suggest alternative
4

forms for the generalization error, e.g.

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

𝐺(𝜃)2 = ∫
Ω

|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡
+ ∫
𝐷

|𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|𝑅𝑡𝑏2[𝑣𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙

+
⎛⎜⎜⎜⎝ ∫Ω∗

|𝑅𝑠𝑏[𝑢𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1
2

,

(11)

which differs from (8) in the terms ∇𝑅𝑖𝑛𝑡1, ∇𝑅𝑡𝑏1 and the last term. The corresponding training error is,

𝑇 (𝜃,)2 = 𝑖𝑛𝑡1𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡3

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2

+  𝑡𝑏2
𝑇

(𝜃,𝑡𝑏)2 +  𝑡𝑏3
𝑇

(𝜃,𝑡𝑏)2 + 𝑠𝑏
𝑇
(𝜃,𝑠𝑏), (12)

where

 𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏3

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2. (13)

The error analyses also suggest additional terms in the generalization error for different equations.

2.4. Numerical quadrature rules

As discussed above, we need to approximate the integrals of functions. The analysis in the subsequent sections requires well-

known results on numerical quadrature rules as reviewed below.

Given Λ ⊂ ℝ𝑑 and a function 𝑓 ∈ 𝐿1(Λ), we would like to approximate ∫Λ 𝑓 (𝑧) d𝑧. A quadrature rule provides an approximation
by ∫Λ 𝑓 (𝑧) d𝑧 ≈ 1

𝑀

∑𝑀

𝑛=1𝜔𝑛𝑓 (𝑧𝑛), where 𝑧𝑛 ∈ Λ (1 ≤ 𝑛 ≤𝑀) are the quadrature points and 𝜔𝑛 (1 ≤ 𝑛 ≤𝑀) denote the appropriate
quadrature weights. The approximation accuracy is influenced by the type of quadrature rule, the number of quadrature points (𝑀),
and the regularity of 𝑓 . For the mid-point rule, which is assumed in the current work, Λ is partitioned into 𝑀 ∼𝑁𝑑 cubes with an
edge length 1

𝑁
and the approximation accuracy is given by|||||||∫Λ 𝑓 (𝑧) d𝑧−Λ

𝑀
[𝑓]

||||||| ≤ 𝐶𝑓𝑀
−2∕𝑑 , (14)

where Λ
𝑀
[𝑓] ∶= 1

𝑀

∑𝑀

𝑛=1𝜔𝑛𝑓 (𝑧𝑛), 𝐶𝑓 ≲ ‖𝑓‖𝐶2(Λ) (𝑎 ≲ 𝑏 denotes 𝑎 ≤ 𝐶𝑏) and {𝑧𝑛}𝑀𝑛=1 denote the midpoints of these cubes [11]. In this
paper, we use 𝐶 to denote a universal constant, which may depend on 𝑘, 𝑑, 𝑇 , 𝑢 and 𝑣 but not on 𝑁 . And we use the subscript to
emphasize its dependence when necessary, e.g. 𝐶𝑑 is a constant depending only on 𝑑.

We focus on PDE problems in relatively low dimensions (𝑑 ≤ 3) in this paper and employ the standard quadrature rules. We
note that in higher dimensions the standard quadrature rules may not be favorable. In this case the random training points or
low-discrepancy training points [41] may be preferred.

In subsequent sections we focus on three representative dynamic equations of second order in time (the wave equation, the
nonlinear Klein-Gordon equation, and the linear elastodynamic equation), and provide the error estimate for approximating these
equations by PINN. We note that these analyses suggest alternative forms for the training loss function that are somewhat different
from the standard PINN forms [46]. The PINN numerical results based on the standard form for the loss function, and based on
the alternative forms as suggested by the error estimate, will be provided after the presentation of the theoretical analysis. In what
follows, for brevity we adopt the notation of Ξ = 𝜕

𝜕Ξ , ΞΥ = 𝜕2
𝜕Ξ𝜕Υ (Ξ, Υ ∈ {𝑡, 𝑥}), for any sufficiently smooth function  ∶ Ω →ℝ𝑛.

3. Physics informed neural networks for approximating the wave equation

3.1. Wave equation

Consider the wave equations on the torus 𝐷 = [0, 1)𝑑 ⊂ℝ𝑑 with periodic boundary conditions:

𝑢𝑡 − 𝑣 = 0, 𝑣𝑡 −Δ𝑢 = 𝑓, in 𝐷 × [0, 𝑇], (15a)

𝑢(𝒙,0) = 𝜓1(𝒙), 𝑣(𝒙,0) = 𝜓2(𝒙), in 𝐷, (15b)

𝑢(𝒙, 𝑡) = 𝑢(𝒙+ 1, 𝑡), ∇𝑢(𝒙, 𝑡) = ∇𝑢(𝒙+ 1, 𝑡), in 𝜕𝐷 × [0, 𝑇]. (15c)

The regularity results for linear evolution equations of the second order in time have been studied in [54]. When the self-adjoint
operator  takes Δ, the linear evolution equations of second order in time from [54] become the classical wave equations, and then
5

we can obtain the following regularity results.

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Lemma 3.1. Let 𝑟 ≥ 1, 𝜓1 ∈𝐻𝑟(𝐷), 𝜓2 ∈𝐻𝑟−1(𝐷) and 𝑓 ∈ 𝐿2([0, 𝑇]; 𝐻𝑟−1(𝐷)). Then there exists a unique solution 𝑢 to the classical wave
equations such that 𝑢 ∈ 𝐶([0, 𝑇]; 𝐻𝑟(𝐷)) and 𝑢𝑡 ∈ 𝐶([0, 𝑇]; 𝐻𝑟−1(𝐷)).

Lemma 3.2. Let 𝑘 ∈ ℕ, 𝜓1 ∈𝐻𝑟(𝐷), 𝜓2 ∈𝐻𝑟−1(𝐷) and 𝑓 ∈ 𝐶𝑘−1([0, 𝑇]; 𝐻𝑟−𝑘(𝐷)) ∩𝐿2([0, 𝑇]; 𝐻𝑟−1(𝐷)) with 𝑟 > 𝑑

2 + 𝑘. Then there exists
𝑇 > 0 and a classical solution 𝑢 to the wave equations such that 𝑢(𝒙, 0) = 𝜓1, 𝑢𝑡(𝒙, 0) = 𝜓2, 𝑢 ∈𝐻𝑘(𝐷 × [0, 𝑇]) and 𝑣 ∈𝐻𝑘−1(𝐷 × [0, 𝑇]).

Proof. By Lemma 3.1, there exists 𝑇 > 0 and the solution (𝑢, 𝑣) to the wave equations such that 𝑢(𝒙, 0) = 𝜓1, 𝑣(𝒙, 0) = 𝜓2, 𝑢 ∈
𝐶([0, 𝑇]; 𝐻𝑟(𝐷)) and 𝑣 ∈ 𝐶([0, 𝑇]; 𝐻𝑟−1(𝐷)). As 𝑟 > 𝑑

2 + 𝑘, 𝐻𝑟−𝑘(𝐷) is a Banach algebra.

For 𝑘 = 1, since 𝑢 ∈ 𝐶([0, 𝑇]; 𝐻𝑟(𝐷)), 𝑣 ∈ 𝐶([0, 𝑇]; 𝐻𝑟−1(𝐷)) and 𝑓 ∈ 𝐶([0, 𝑇]; 𝐻𝑟−1(𝐷)), we have 𝑢𝑡 = 𝑣 ∈ 𝐶([0, 𝑇]; 𝐻𝑟−1(𝐷)) and
𝑣𝑡 =Δ𝑢 + 𝑓 ∈ 𝐶([0, 𝑇]; 𝐻𝑟−2(𝐷)). Then, it implies that 𝑢 ∈ 𝐶1([0, 𝑇]; 𝐻𝑟−1(𝐷)) and 𝑣 ∈ 𝐶1([0, 𝑇]; 𝐻𝑟−2(𝐷)).

For 𝑘 = 2, by 𝑓 ∈ 𝐶1([0, 𝑇]; 𝐻𝑟−2(𝐷)), we have 𝑢𝑡𝑡 = 𝑣𝑡 ∈ 𝐶([0, 𝑇]; 𝐻𝑟−2(𝐷)) and 𝑣𝑡𝑡 = Δ𝑢𝑡 + 𝑓𝑡 ∈ 𝐶([0, 𝑇]; 𝐻𝑟−3(𝐷)). Then, it implies
that 𝑢 ∈ 𝐶2([0, 𝑇]; 𝐻𝑟−2(𝐷)) and 𝑣 ∈ 𝐶2([0, 𝑇]; 𝐻𝑟−3(𝐷)).

Repeating the same argument, we have 𝑢 ∈ ∩𝑘
𝑙=0𝐶

𝑙([0, 𝑇]; 𝐻𝑟−𝑙(𝐷)) and 𝑣 ∈ ∩𝑘
𝑙=0𝐶

𝑙([0, 𝑇]; 𝐻𝑟−𝑙−1(𝐷)). For all 0 ≤ 𝑙 ≤ 𝑘, using 𝑙 + 𝑟 −
𝑙 ≥ 𝑘 with 𝑟 > 𝑑

2 + 𝑘, it holds 𝑢 ∈𝐻𝑘(𝐷 × [0, 𝑇]) and 𝑣 ∈𝐻𝑘−1(𝐷 × [0, 𝑇]). □

3.2. Physics informed neural networks

We would like to approximate the solutions to the problem (15) with PINN. We seek deep neural networks 𝑢𝜃 ∶ 𝐷 × [0, 𝑇] → ℝ
and 𝑣𝜃 ∶𝐷 × [0, 𝑇] →ℝ, parameterized by 𝜃 ∈Θ, that approximate the solution 𝑢 and 𝑣 of (15). Define residuals,

𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡) = 𝑢𝜃𝑡 − 𝑣𝜃, 𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡) = 𝑣𝜃𝑡 −Δ𝑢𝜃 − 𝑓, (16a)

𝑅𝑡𝑏1[𝑢𝜃](𝒙) = 𝑢𝜃(𝒙,0) −𝜓1(𝒙), 𝑅𝑡𝑏2[𝑣𝜃](𝒙) = 𝑣𝜃(𝒙,0) −𝜓2(𝒙), (16b)

𝑅𝑠𝑏1[𝑣𝜃](𝒙, 𝑡) = 𝑣𝜃(𝒙, 𝑡) − 𝑣𝜃(𝒙+ 1, 𝑡), 𝑅𝑠𝑏2[𝑢𝜃](𝒙, 𝑡) = ∇𝑢𝜃(𝒙, 𝑡) − ∇𝑢𝜃(𝒙+ 1, 𝑡). (16c)

Note that for the exact solution 𝑅𝑖𝑛𝑡1[𝑢, 𝑣] =𝑅𝑖𝑛𝑡2[𝑢, 𝑣] =𝑅𝑡𝑏1[𝑢] =𝑅𝑡𝑏2[𝑣] =𝑅𝑠𝑏1[𝑣] =𝑅𝑠𝑏2[𝑢] = 0. Let Ω =𝐷 × [0, 𝑇] and Ω∗ = 𝜕𝐷 × [0, 𝑇]
be the space-time domain. With PINN, we minimize the following generalization error,

𝐺(𝜃)2 = ∫
Ω

|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡
+ ∫
𝐷

|𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|𝑅𝑡𝑏2[𝑣𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙

+
⎛⎜⎜⎜⎝ ∫Ω∗

|𝑅𝑠𝑏1[𝑣𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1∕2

+
⎛⎜⎜⎜⎝ ∫Ω∗

|𝑅𝑠𝑏2[𝑢𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1∕2

. (17)

The form of different terms in this expression will become clearer below.

To complete the PINN formulation, we will choose the training set  ⊂𝐷 × [0, 𝑇] based on suitable quadrature points. We divide
the full training set  = 𝑖𝑛𝑡 ∪ 𝑠𝑏 ∪ 𝑡𝑏 into the following three components:

• Interior training points 𝑖𝑛𝑡 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑖𝑛𝑡, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈𝐷 × (0, 𝑇).
• Spatial boundary training points 𝑠𝑏 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑠𝑏, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈ 𝜕𝐷 × (0, 𝑇).
• Temporal boundary training points 𝑡𝑏 = {𝒙𝑛} for 1 ≤ 𝑛 ≤𝑁𝑡𝑏 with each 𝒙𝑛 ∈𝐷.

We define the PINN training loss, 𝜃↦ 𝑇 (𝜃, )2, as follows,

𝑇 (𝜃,)2 = 𝑖𝑛𝑡1𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡3

𝑇
(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 +  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2

+  𝑡𝑏3
𝑇

(𝜃,𝑡𝑏)2 + 𝑠𝑏1
𝑇

(𝜃,𝑠𝑏) + 𝑠𝑏2
𝑇

(𝜃,𝑠𝑏), (18)

where

 𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2, (19a)

 𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃]](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏2[𝑣𝜃](𝒙𝑛𝑡𝑏)|2, (19b)

𝑖𝑛𝑡3 2
𝑁𝑖𝑛𝑡∑

𝑛 𝑛 𝑛 2 𝑡𝑏3 2
𝑁𝑡𝑏∑

𝑛 𝑛 2
6


𝑇

(𝜃,𝑖𝑛𝑡) =
𝑛=1

𝜔
𝑖𝑛𝑡
|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑖𝑛𝑡, 𝑡𝑖𝑛𝑡)| , 

𝑇
(𝜃,𝑡𝑏) =

𝑛=1
𝜔
𝑡𝑏
|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑡𝑏)| , (19c)

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

𝑠𝑏1
𝑇

(𝜃,𝑠𝑏)2 =
𝑁𝑠𝑏∑
𝑛=1

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏1[𝑣𝜃](𝒙𝑛𝑠𝑏, 𝑡𝑛𝑠𝑏)|2, 𝑠𝑏2

𝑇
(𝜃,𝑠𝑏)2 =

𝑁𝑠𝑏∑
𝑛=1

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏2[𝑢𝜃](𝒙𝑛𝑠𝑏, 𝑡𝑛𝑠𝑏)|2. (19d)

Here the quadrature points in space-time constitute the data sets 𝑖𝑛𝑡 = {(𝒙𝑛
𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)}𝑁𝑖𝑛𝑡
𝑛=1 , 𝑡𝑏 = {𝒙𝑛

𝑡𝑏
)}𝑁𝑡𝑏
𝑛=1 and 𝑠𝑏 = {(𝒙𝑛

𝑠𝑏
, 𝑡𝑛
𝑠𝑏
)}𝑁𝑠𝑏
𝑛=1, and 𝜔𝑛

⋆

are suitable quadrature weights with ⋆ denoting 𝑖𝑛𝑡, 𝑡𝑏 or 𝑠𝑏.
Let 𝑢̂ = 𝑢𝜃 − 𝑢, 𝑣̂ = 𝑣𝜃 − 𝑣 denote the difference between the solution to the wave equations and the PINN approximation of the

solution. We define the total error of the PINN approximation by

(𝜃)2 = ∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + |∇𝑢̂(𝒙, 𝑡)|2 + |𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡. (20)

3.3. Error analysis

In light of the wave equations (15) and the definitions for different residuals (16), we have

𝑅𝑖𝑛𝑡1 = 𝑢̂𝑡 − 𝑣̂, (21a)

𝑅𝑖𝑛𝑡2 = 𝑣̂𝑡 −Δ𝑢̂, (21b)

𝑅𝑡𝑏1 = 𝑢̂(𝒙,0), 𝑅𝑡𝑏2 = 𝑣̂(𝒙,0), 𝑅𝑠𝑏1 = 𝑣̂(𝒙, 𝑡) − 𝑣̂(𝒙+ 1, 𝑡), 𝑅𝑠𝑏2 = ∇𝑢̂(𝒙, 𝑡) − ∇𝑢̂(𝒙+ 1, 𝑡). (21c)

3.3.1. Bound on the residuals

Theorem 3.3. Let 𝑛 ≥ 2, 𝑑, 𝑟, 𝑘 ∈ ℕ with 𝑘 ≥ 3. Suppose that 𝜓1 ∈ 𝐻𝑟(𝐷), 𝜓2 ∈ 𝐻𝑟−1(𝐷) and 𝑓 ∈ 𝐶𝑘−1([0, 𝑇]; 𝐻𝑟−𝑘(𝐷)) ∩
𝐿2([0, 𝑇]; 𝐻𝑟−1(𝐷)) with 𝑟 > 𝑑

2 + 𝑘. For every integer 𝑁 > 5, there exist tanh neural networks 𝑢𝜃 and 𝑣𝜃 , each with two hidden layers,
of widths at most 3⌈ 𝑘+𝑛−22 ⌉|𝑃𝑘−1,𝑑+2| + ⌈𝑁𝑇 ⌉ + 𝑑(𝑁 − 1) and 3⌈ 𝑑+𝑛+12 ⌉|𝑃𝑑+2,𝑑+2|⌈𝑁𝑇 ⌉𝑁𝑑 , such that

‖𝑅𝑖𝑛𝑡1‖𝐿2(Ω),‖𝑅𝑡𝑏1‖𝐿2(𝐷) ≲ ln𝑁𝑁−𝑘+1, (22a)

‖𝑅𝑖𝑛𝑡2‖𝐿2(Ω),‖∇𝑅𝑖𝑛𝑡1‖𝐿2(Ω),‖∇𝑅𝑡𝑏1‖𝐿2(𝐷),‖𝑅𝑠𝑏2‖𝐿2(𝜕𝐷×[0,𝑇]) ≲ ln2𝑁𝑁−𝑘+2, (22b)

‖𝑅𝑡𝑏2‖𝐿2(𝐷),‖𝑅𝑠𝑏1‖𝐿2(𝜕𝐷×[0,𝑇]) ≲ ln𝑁𝑁−𝑘+2. (22c)

Proof. Based on Lemma 3.2, it holds that 𝑢 ∈𝐻𝑘(Ω) and 𝑣 ∈𝐻𝑘−1(Ω). In light of Lemma A.3, there exist neural networks 𝑢𝜃 and
𝑣𝜃 , with the same two hidden layers and widths 3⌈ 𝑘+𝑛−22 ⌉|𝑃𝑘−1,𝑑+2| + ⌈𝑁𝑇 ⌉ + 𝑑(𝑁 − 1) and 3⌈ 𝑑+𝑛+12 ⌉|𝑃𝑑+2,𝑑+2|⌈𝑁𝑇 ⌉𝑁𝑑 , such that for
every 0 ≤ 𝑙 ≤ 2 and 0 ≤ 𝑠 ≤ 2,

‖𝑢𝜃 − 𝑢‖𝐻𝑙(Ω) ≤ 𝐶𝑙,𝑘,𝑑+1,𝑢𝜆𝑙,𝑢(𝑁)𝑁−𝑘+𝑙 , ‖𝑣𝜃 − 𝑣‖𝐻𝑠(Ω) ≤ 𝐶𝑠,𝑘−1,𝑑+1,𝑣𝜆𝑠,𝑣(𝑁)𝑁−𝑘+1+𝑠, (23)

where 𝜆𝑙,𝑢 = 2𝑙3𝑑+1(1 + 𝛿)ln𝑙
(
𝛽𝑙,𝛿,𝑑+1,𝑢𝑁

𝑑+𝑘+3), 𝛿 = 1
100 , 𝜆𝑠,𝑣 = 2𝑠3𝑑+1(1 + 𝛿)ln𝑠

(
𝛽𝑠,𝛿,𝑑+1,𝑣𝑁

𝑑+𝑘+2), and the definition for the other con-

stants can be found in Lemma A.3.

In light of Lemma A.1, we can bound the PINN residual terms,

‖𝑢̂𝑡‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻1(Ω), ‖𝑣̂𝑡‖𝐿2(Ω) ≤ ‖𝑣̂‖𝐻1(Ω),‖Δ𝑢̂‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻2(Ω), ‖∇𝑢̂𝑡‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻2(Ω), ‖∇𝑣̂‖𝐿2(Ω) ≤ ‖𝑣̂‖𝐻1(Ω),‖𝑢̂‖𝐿2(𝐷) ≤ ‖𝑢̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻1(Ω), ‖𝑣̂‖𝐿2(𝐷) ≤ ‖𝑣̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑣̂‖𝐻1(Ω),‖∇𝑢̂‖𝐿2(𝐷) ≤ ‖∇𝑢̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻2(Ω), ‖𝑣̂‖𝐿2(𝜕𝐷×[0,𝑇]) ≤ ‖𝑣̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑣̂‖𝐻1(Ω),‖∇𝑢̂‖𝐿2(𝜕𝐷×[0,𝑇]) ≤ ‖∇𝑢̂‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻2(Ω).

By combining these relations with (23), we can obtain

‖𝑅𝑖𝑛𝑡1‖𝐿2(Ω) = ‖𝑢̂𝑡 − 𝑣̂‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻1(Ω) + ‖𝑣̂‖𝐿2(Ω)

≤ 𝐶1,𝑘,𝑑+1,𝑢𝜆1,𝑢(𝑁)𝑁−𝑘+1 +𝐶0,𝑘−1,𝑑+1,𝑣𝜆0,𝑣(𝑁)𝑁−𝑘+1 ≲ ln𝑁𝑁−𝑘+1,

‖𝑅𝑖𝑛𝑡2‖𝐿2(Ω) = ‖𝑣̂𝑡 −Δ𝑢̂‖𝐿2(Ω) ≤ ‖𝑣̂‖𝐻1(Ω) + ‖𝑢̂‖𝐻2(Ω)

≤ 𝐶2,𝑘,𝑑+1,𝑢𝜆2,𝑢(𝑁)𝑁−𝑘+2 +𝐶1,𝑘−1,𝑑+1,𝑣𝜆1,𝑣(𝑁)𝑁−𝑘+2 ≲ ln2𝑁𝑁−𝑘+2,

‖∇𝑅𝑖𝑛𝑡1‖𝐿2(Ω) = ‖∇(𝑢̂𝑡 − 𝑣̂)‖𝐿2(Ω) ≤ ‖𝑢̂‖𝐻2(Ω) + ‖𝑣̂‖𝐻1(Ω)

≤ 𝐶2,𝑘,𝑑+1,𝑢𝜆2,𝑢(𝑁)𝑁−𝑘+2 +𝐶1,𝑘−1,𝑑+1,𝑣𝜆1,𝑣(𝑁)𝑁−𝑘+2 ≲ ln2𝑁𝑁−𝑘+2,
7

‖𝑅𝑡𝑏1‖𝐿2(𝐷) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻1(Ω) ≲ ln𝑁𝑁−𝑘+1,

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

‖𝑅𝑡𝑏2‖𝐿2(𝐷),‖𝑅𝑠𝑏1‖𝐿2(𝜕𝐷×[0,𝑇]) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑣̂‖𝐻1(Ω) ≲ ln𝑁𝑁−𝑘+2,

‖∇𝑅𝑡𝑏1‖𝐿2(𝐷),‖𝑅𝑠𝑏2‖𝐿2(𝜕𝐷×[0,𝑇]) ≤ 𝐶ℎΩ ,𝑑+1,𝜌Ω‖𝑢̂‖𝐻2(Ω) ≲ ln2𝑁𝑁−𝑘+2,

which completes the proof of Theorem 3.3. □

Theorem 3.3 implies that one can make the PINN residuals (16) arbitrarily small by choosing 𝑁 to be sufficiently large. It follows
that the generalization error 𝐺(𝜃)2 in (17) can be made arbitrarily small.

3.3.2. Bounds on the total approximation error

We next show that the total error (𝜃)2 is also small when the generalization error 𝐺(𝜃)2 is small with the PINN approximation
(𝑢𝜃, 𝑣𝜃). Then we prove that the total error (𝜃)2 can be arbitrarily small, provided that the training error 𝑇 (𝜃, )2 is sufficiently
small and the sample set is sufficiently large.

Theorem 3.4. Let 𝑑 ∈ ℕ, 𝑢 ∈ 𝐶1(Ω) and 𝑣 ∈ 𝐶0(Ω) be the classical solution to the wave equations (15). Let 𝑢𝜃 and 𝑣𝜃 denote the PINN
approximation with parameter 𝜃. Then the following relation holds,

(𝜃)2 = ∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + |∇𝑢̂(𝒙, 𝑡)|2 + |𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝐺𝑇 exp(2𝑇), (24)

where 𝐶𝐺 is given by (27) in the following proof.

Proof. Taking the 𝐿2 inner product of (21a) and (21b) with 𝑢̂ and 𝑣̂ over 𝐷, respectively, we have

𝑑

2𝑑𝑡 ∫
𝐷

|𝑢̂|2 d𝒙 = ∫
𝐷

𝑢̂𝑣̂d𝒙+ ∫
𝐷

𝑅𝑖𝑛𝑡1𝑢̂d𝒙 ≤ ∫
𝐷

|𝑢̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡1|2 d𝒙+ 1
2 ∫
𝐷

|𝑣̂|2 d𝒙, (25)

𝑑

2𝑑𝑡 ∫
𝐷

|𝑣̂|2 d𝒙 = −∫
𝐷

∇𝑢̂ ⋅∇𝑣̂d𝒙+ ∫
𝜕𝐷

𝑣̂∇𝑢̂ ⋅ 𝒏d𝑠(𝒙) + ∫
𝐷

𝑅𝑖𝑛𝑡2𝑣̂d𝒙

= − 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ ∫
𝐷

∇𝑢̂ ⋅∇𝑅𝑖𝑛𝑡1 d𝒙+ ∫
𝜕𝐷

𝑣̂∇𝑢̂ ⋅ 𝒏d𝑠(𝒙) + ∫
𝐷

𝑅𝑖𝑛𝑡2𝑣̂d𝒙

≤ − 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 1
2 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 1
2 ∫
𝐷

|∇𝑅𝑖𝑛𝑡1|2 d𝒙+𝐶𝜕𝐷1

⎛⎜⎜⎝ ∫𝜕𝐷 |𝑅𝑠𝑏1|2 d𝑠(𝒙)⎞⎟⎟⎠
1∕2

+𝐶𝜕𝐷2

⎛⎜⎜⎝ ∫𝜕𝐷 |𝑅𝑠𝑏2|2 d𝑠(𝒙)⎞⎟⎟⎠
1∕2

+ 1
2 ∫
𝐷

|𝑣̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡2|2 d𝒙. (26)

Here, we have used 𝑣̂ = 𝑢̂𝑡 −𝑅𝑖𝑛𝑡1, 𝐶𝜕𝐷1
= |𝜕𝐷| 12 (‖𝑢‖𝐶1(𝜕𝐷×[0,𝑇]) + ‖𝑢𝜃‖𝐶1(𝜕𝐷×[0,𝑇])) and 𝐶𝜕𝐷2

= |𝜕𝐷| 12 (‖𝑣‖𝐶(𝜕𝐷×[0,𝑇]) + ‖𝑣𝜃‖𝐶(𝜕𝐷×[0,𝑇])).
Adding (25) to (26), integrating it over [0, 𝜏] for any 𝜏 ≤ 𝑇 and applying the Cauchy–Schwarz inequality, we obtain

∫
𝐷

|𝑢̂(𝒙, 𝜏)|2 d𝒙+ ∫
𝐷

|∇𝑢̂(𝒙, 𝜏)|2 d𝒙+ ∫
𝐷

|𝑣̂(𝒙, 𝜏)|2 d𝒙
≤ ∫
𝐷

|𝑅𝑡𝑏1|2 d𝒙+ ∫
𝐷

|𝑅𝑡𝑏2|2 d𝒙+ ∫
𝐷

|∇𝑅𝑡𝑏1|2 d𝒙+ 2

𝜏

∫
0

∫
𝐷

(|𝑢̂|2 + |∇𝑢̂|2 + |𝑣̂|2) d𝒙d𝑡

+ ∫
Ω

(|𝑅𝑖𝑛𝑡1|2 + |𝑅𝑖𝑛𝑡2|2 + |∇𝑅𝑖𝑛𝑡1|2) d𝒙d𝑡+ 2𝐶𝜕𝐷1
|𝑇 |1∕2 ⎛⎜⎜⎝

𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏1|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1∕2

+ 2𝐶𝜕𝐷2
|𝑇 |1∕2 ⎛⎜⎜⎝

𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏2|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1∕2

.

We apply the integral form of the Grönwall inequality to the above inequality to get

∫
𝐷

(|𝑢̂(𝒙, 𝜏)|2 + |∇𝑢̂(𝒙, 𝜏)|2 + |𝑣̂(𝒙, 𝜏)|2) d𝒙 ≤ 𝐶𝐺 exp(2𝑇),
8

where

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

𝐶𝐺 = ∫
𝐷

(|𝑅𝑡𝑏1|2 + |𝑅𝑡𝑏2|2 + |∇𝑅𝑡𝑏1|2) d𝒙+ ∫
Ω

(|𝑅𝑖𝑛𝑡1|2 + |𝑅𝑖𝑛𝑡2|2 + |∇𝑅𝑖𝑛𝑡1|2) d𝒙d𝑡
+ 2𝐶𝜕𝐷1

|𝑇 |1∕2 ⎛⎜⎜⎝
𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏1|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1∕2

+ 2𝐶𝜕𝐷2
|𝑇 |1∕2 ⎛⎜⎜⎝

𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏2|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1∕2

. (27)

Then, we integrate the above inequality over [0, 𝑇] to yield (24). □

Theorem 3.5. Let 𝑑 ∈ℕ and 𝑇 > 0. Let 𝑢 ∈ 𝐶4(Ω) and 𝑣 ∈ 𝐶3(Ω) be the classical solution of the wave equations (15), and let (𝑢𝜃, 𝑣𝜃) denote
the PINN approximation with parameter 𝜃 ∈Θ. Then the total error satisfies

∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + |∇𝑢̂(𝒙, 𝑡)|2 + |𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝑇 𝑇 exp(2𝑇)

=(𝑇 (𝜃,)2 +𝑀− 2
𝑑+1

𝑖𝑛𝑡
+𝑀

− 2
𝑑

𝑡𝑏
+𝑀

− 1
𝑑

𝑠𝑏
). (28)

The constant 𝐶𝑇 is defined by (30) below.

Proof. By combining Theorem 3.4 with the quadrature error formula (14), we have

∫
𝐷

|𝑅𝑡𝑏1|2 d𝒙 = ∫
𝐷

|𝑅𝑡𝑏1|2 d𝒙−𝐷
𝑀𝑡𝑏

(𝑅2
𝑡𝑏1) +𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏1) ≤ 𝐶(𝑅2
𝑡𝑏1)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏1),

∫
𝐷

|𝑅𝑡𝑏2|2 d𝒙 = ∫
𝐷

|𝑅𝑡𝑏2|2 d𝒙−𝐷
𝑀𝑡𝑏

(𝑅2
𝑡𝑏2) +𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏2) ≤ 𝐶(𝑅2
𝑡𝑏2)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏2),

∫
𝐷

|∇𝑅𝑡𝑏1|2 d𝒙 = ∫
𝐷

|∇𝑅𝑡𝑏1|2 d𝒙−𝐷
𝑀𝑡𝑏

(|∇𝑅𝑡𝑏1|2) +𝐷
𝑀𝑡𝑏

(|∇𝑅𝑡𝑏1|2) ≤ 𝐶(|∇𝑅𝑡𝑏1|2)𝑀− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|∇𝑅𝑡𝑏1|2),

∫
Ω

|𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡 = ∫
Ω

|𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡−Ω
𝑀𝑖𝑛𝑡

(𝑅2
𝑖𝑛𝑡1) +Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡1) ≤ 𝐶(𝑅2
𝑖𝑛𝑡1)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡1),

∫
Ω

|𝑅𝑖𝑛𝑡2|2 d𝒙d𝑡 = ∫
Ω

|𝑅𝑖𝑛𝑡2|2 d𝒙d𝑡−Ω
𝑀𝑖𝑛𝑡

(𝑅2
𝑖𝑛𝑡2) +Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡2) ≤ 𝐶(𝑅2
𝑖𝑛𝑡2)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡2),

∫
Ω

|∇𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡 = ∫
Ω

|∇𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡−Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2) +Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2)
≤ 𝐶(|∇𝑅𝑖𝑛𝑡1|2)𝑀− 2

𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2),
∫
Ω∗

|𝑅𝑠𝑏1|2 d𝑠(𝒙) d𝑡 = ∫
Ω∗

|𝑅𝑠𝑏1|2 d𝑠(𝒙) d𝑡−Ω∗
𝑀𝑠𝑏

(𝑅2
𝑠𝑏1) +Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏1) ≤ 𝐶(𝑅2
𝑠𝑏1)
𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏1),

∫
Ω∗

|𝑅𝑠𝑏2|2 d𝑠(𝒙) d𝑡 = ∫
Ω∗

|𝑅𝑠𝑏2|2 d𝑠(𝒙) d𝑡−Ω∗
𝑀𝑠𝑏

(𝑅2
𝑠𝑏2) +Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏2) ≤ 𝐶(𝑅2
𝑠𝑏2)
𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏2).

Combining the fact that 𝐶(𝑅2
𝑡𝑏1)

≲ ‖𝑅2
𝑡𝑏1‖𝐶𝑛 and ‖𝑅2

𝑡𝑏1‖𝐶𝑛 ≤ 2𝑛‖𝑅2
𝑡𝑏1‖2𝐶𝑛 with Lemma A.2, it holds

𝐶(𝑅2
𝑡𝑏1)

≲ ‖𝑢̂‖2
𝐶2 ≤ 2(‖𝑢‖2

𝐶2 + ‖𝑢𝜃‖2𝐶2) ≲ ‖𝑢‖2
𝐶2 + 162𝐿(𝑑 + 1)8(𝑒224𝑊 3𝑅2‖𝜎‖𝐶2)4𝐿. (29)

In a similar way, we can estimate the terms ∫
𝐷
|𝑅𝑡𝑏2|2 d𝒙, ∫

𝐷
|∇𝑅𝑡𝑏1|2 d𝒙, ∫Ω |𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡, ∫Ω |𝑅𝑖𝑛𝑡2|2 d𝒙d𝑡 and ∫Ω |∇𝑅𝑖𝑛𝑡1|2 d𝒙d𝑡.

By the above inequalities and (24), it holds that

∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + |∇𝑢̂(𝒙, 𝑡)|2 + |𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝑇 𝑇 exp(2𝑇),

where

𝐶𝑇 =𝐶(𝑅2
𝑡𝑏1)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏1) +𝐶(𝑅2
𝑡𝑏2)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏2) +𝐶(|∇𝑅𝑡𝑏1|2)𝑀− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|∇𝑅𝑡𝑏1|2)

+𝐶(𝑅2
𝑖𝑛𝑡1)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡1) +𝐶(𝑅2
𝑖𝑛𝑡2)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡2)

− 2
9

+𝐶(|∇𝑅𝑖𝑛𝑡1|2)𝑀 𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2)

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

+ 2𝐶𝜕𝐷1
|𝑇 |1∕2(𝐶(𝑅2

𝑠𝑏1)
𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏

)1∕2
+ 2𝐶𝜕𝐷2

|𝑇 |1∕2(𝐶(𝑅2
𝑠𝑏2)
𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏

)1∕2
. □ (30)

4. Physics informed neural networks for approximating the nonlinear Klein-Gordon equation

4.1. Nonlinear Klein-Gordon equation

Let 𝐷 ⊂ℝ𝑑 be an open connected bounded set with a boundary 𝜕𝐷. We consider the following nonlinear Klein-Gordon equation:

𝑢𝑡 − 𝑣 = 0, 𝜀2𝑣𝑡 = 𝑎2Δ𝑢− 𝜀21𝑢− 𝑔(𝑢) + 𝑓, in 𝐷 × [0, 𝑇], (31a)

𝑢(𝒙,0) = 𝜓1(𝒙), 𝑣(𝒙,0) = 𝜓2(𝒙), in 𝐷, (31b)

𝑢(𝒙, 𝑡)|𝜕𝐷 = 𝑢𝑑 (𝑡) in 𝜕𝐷 × [0, 𝑇], (31c)

where 𝑢 and 𝑣 are the field functions to be solved for, 𝑓 is a source term, and 𝑢𝑑 , 𝜓1 and 𝜓2 denote the boundary/initial conditions.
𝜀 > 0, 𝑎 > 0 and 𝜀1 ≥ 0 are constants. 𝑔(𝑢) is a nonlinear term. We assume that 𝑔 is globally Lipschitz, i.e. there exists a constant 𝐿
(independent of 𝑣 and 𝑤) such that

|𝑔(𝑣) − 𝑔(𝑤)| ≤𝐿|𝑣−𝑤|, ∀𝑣, 𝑤 ∈ℝ. (32)

Notice that the problem (31) is nonlinear because of the nonlinear term 𝑔(𝑢). With the nonlinear term given by 𝑔(𝑢) = sin(𝑢), equa-

tion (31a) becomes the well-known Sine-Gordon equation [15].

Remark 4.1. The existence and regularity of the solution to the nonlinear Klein-Gordon equation with different nonlinear terms have
been the subject of several studies in the literature; see [56,35,47,48,54].

The book [54] provides the existence and regularity result of the following Klein-Gordon equation, 𝑢𝑡𝑡 + 𝛼𝑢𝑡 − Δ𝑢 + 𝑔(𝑢) = 𝑓 . Let
𝛼 ∈ ℝ, 𝑔(𝑢) be a 𝐶2 function from ℝ to ℝ and satisfy certain assumptions. If 𝑓 ∈ 𝐶([0, 𝑇]; 𝐿2(𝐷)), 𝜓1 ∈𝐻1(𝐷) and 𝜓2 ∈ 𝐿2(𝐷), then
there exists a unique solution 𝑢 to this Klein-Gordon equation such that 𝑢 ∈ 𝐶([0, 𝑇]; 𝐻1(𝐷)) and 𝑢𝑡 ∈ 𝐶([0, 𝑇]; 𝐿2(𝐷)). Furthermore,
𝑓 ′ ∈ 𝐶([0, 𝑇]; 𝐿2(𝐷)), 𝜓1 ∈𝐻2(𝐷) and 𝜓2 ∈𝐻1(𝐷), it holds 𝑢 ∈ 𝐶([0, 𝑇]; 𝐻2(𝐷)) and 𝑢𝑡 ∈ 𝐶([0, 𝑇]; 𝐻1(𝐷)).

Let 𝑔 be a smooth function of degree 2. The following equation is studied in [48], 𝑢𝑡𝑡 − Δ𝑢 + 𝑢 + 𝑔(𝑢, 𝑢𝑡, 𝑢𝑡𝑡) = 0, where it is

reformulated as 𝒖𝑡 = 𝐴𝒖 + 𝐺(𝒖), in which 𝒖 =
(
𝑢

𝑢𝑡

)
, 𝐴 =

(
0 1

Δ − 1 0

)
and 𝐺 =

(
0,

−𝑔(𝑢, 𝑢𝑡, 𝑢𝑡𝑡)

)
. Set 𝑋 = 𝐻𝑘(ℝ𝑛) ⨁𝐻𝑘−1(ℝ𝑛), 𝑘 >

𝑛 + 2 + 2𝑎 with 𝑎 > 1. Given 𝒖0 =
(
𝜓1
𝜓2

)
∈𝑋 and ‖𝒖0‖𝑋 = 𝜎, there exists a 𝑇0 = 𝑇0(𝜎) depending on the size of the initial data 𝜎 and a

unique solution 𝒖 ∈ 𝐶([0, 𝑇0], 𝑋).
The reference [56] provides the following result. Under certain conditions for the nonlinear term 𝑔(𝑢), with 𝑓 = 0, 𝑑 ≤ 5, 𝑘 ≥ 𝑑

2 +1,
𝜓1 ∈𝐻𝑘(𝐷) and 𝜓2 ∈𝐻𝑘−1(𝐷), there exists a unique solution 𝑢 ∈ 𝐶((0, ∞); 𝐻𝑘(𝐷)) of nonlinear Klein–Gordon equation.

The following result is due to [35]. Under certain conditions for the nonlinear term 𝑔(𝑢), with 𝑓 = 0, 𝜓1 ∈𝐻𝑘(𝐷) and 𝜓2 ∈𝐻𝑘−1(𝐷)
with a positive constant 𝑘 ≥ 4, there exists a positive constant 𝑇𝑘 and a unique solution 𝑢 ∈ 𝐶([0, 𝑇𝑘]; 𝐻𝑘(𝐷)) ∩ 𝐶1([0, 𝑇𝑘]; 𝐻𝑘−1(𝐷)) ∩
𝐶2([0, 𝑇𝑘]; 𝐻𝑘−2(𝐷)) to the nonlinear wave equations with different speeds of propagation.

A survey of literature indicates that, while several works have touched on the regularity of the solution to the nonlinear Klein-

Gordon equations, none of them is comprehensive. To facilitate the subsequent analyses, we make the following assumption in light
of Remark 4.1. Let 𝑘 ≥ 1, 𝑔(𝑢) and 𝑓 be sufficiently smooth and bounded. Given 𝜓1 ∈𝐻𝑟(𝐷) and 𝜓2 ∈𝐻𝑟−1(𝐷) with 𝑟 ≥ 𝑑

2 + 𝑘, we
assume that there exists 𝑇 > 0 and a classical solution (𝑢, 𝑣) to the nonlinear Klein-Gordon equations (31) such that 𝑢 ∈ 𝐶([0, 𝑇]; 𝐻𝑘(𝐷))
and 𝑣 ∈ 𝐶([0, 𝑇]; 𝐻𝑘−1(𝐷)). Therefore, 𝑢 ∈𝐻𝑘(𝐷 × [0, 𝑇]) and 𝑣 ∈𝐻𝑘−1(𝐷 × [0, 𝑇]).

4.2. Physics informed neural networks

Let Ω =𝐷 × [0, 𝑇] and Ω∗ = 𝜕𝐷 × [0, 𝑇] be the space-time domain. We define the following residuals for the PINN approximation,
𝑢𝜃 ∶ Ω →ℝ and 𝑣𝜃 ∶ Ω →ℝ, for the nonlinear Klein-Gordon equations (31):

𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡) = 𝑢𝜃𝑡 − 𝑣𝜃, 𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡) = 𝜀2𝑣𝜃𝑡 − 𝑎2Δ𝑢𝜃 + 𝜀21𝑢𝜃 + 𝑔(𝑢𝜃) − 𝑓, (33a)

𝑅𝑡𝑏1[𝑢𝜃](𝒙) = 𝑢𝜃(𝒙,0) −𝜓1(𝒙), 𝑅𝑡𝑏2[𝑣𝜃](𝒙) = 𝑣𝜃(𝒙,0) −𝜓2(𝒙), (33b)

𝑅𝑠𝑏[𝑣𝜃](𝒙, 𝑡) = 𝑣𝜃(𝒙, 𝑡)|𝜕𝐷 − 𝑢𝑑𝑡(𝑡), (33c)

where 𝑢𝑑𝑡 =
𝜕𝑢𝑑

𝜕𝑡
. Note that for the exact solution (𝑢, 𝑣), 𝑅𝑖𝑛𝑡1[𝑢, 𝑣] =𝑅𝑖𝑛𝑡2[𝑢, 𝑣] =𝑅𝑡𝑏1[𝑢] =𝑅𝑡𝑏2[𝑣] =𝑅𝑠𝑏[𝑣] = 0. With PINN we minimize

the following generalization error,

𝐺(𝜃)2 = |𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ |𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ |∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙, 𝑡)|2 d𝒙d𝑡

10

∫
Ω

∫
Ω

∫
Ω

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

+ ∫
𝐷

|𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|𝑅𝑡𝑏2[𝑣𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙)|2 d𝒙

+
⎛⎜⎜⎜⎝ ∫Ω∗

|𝑅𝑠𝑏[𝑣𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1
2

. (34)

Let 𝑢̂ = 𝑢𝜃 − 𝑢, 𝑣̂ = 𝑣𝜃 − 𝑣, where (𝑢, 𝑣) denotes the exact solution. We define the total error of the PINN approximation of the
equations (31) as,

(𝜃)2 = ∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + 𝑎2|∇𝑢̂(𝒙, 𝑡)|2 + 𝜀2|𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡. (35)

Then we choose the training set  ⊂𝐷 × [0, 𝑇] with  = 𝑖𝑛𝑡 ∪ 𝑠𝑏 ∪ 𝑡𝑏, based on suitable quadrature points:

• Interior training points 𝑖𝑛𝑡 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑖𝑛𝑡, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈𝐷 × (0, 𝑇).
• Spatial boundary training points 𝑠𝑏 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑠𝑏, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈ 𝜕𝐷 × (0, 𝑇).
• Temporal boundary training points 𝑡𝑏 = {𝒙𝑛} for 1 ≤ 𝑛 ≤𝑁𝑡𝑏 with each 𝒙𝑛 ∈𝐷.

The integrals in (34) are approximated by a numerical quadrature rule, resulting in the training loss,

𝑇 (𝜃,)2 =  𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1
𝑇

(𝜃,𝑡𝑏)2 +  𝑡𝑏2
𝑇

(𝜃,𝑡𝑏)2
+  𝑡𝑏3

𝑇
(𝜃,𝑡𝑏)2 + 𝑠𝑏

𝑇
(𝜃,𝑠𝑏), (36)

where

 𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏1

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2, (37a)

 𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑅𝑖𝑛𝑡2[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑅𝑡𝑏2[𝑣𝜃](𝒙𝑛𝑡𝑏)|2, (37b)

 𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|∇𝑅𝑖𝑛𝑡1[𝑢𝜃, 𝑣𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡𝑛𝑖𝑛𝑡)|2,  𝑡𝑏3

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|∇𝑅𝑡𝑏1[𝑢𝜃](𝒙𝑛𝑡𝑏)|2, (37c)

𝑠𝑏
𝑇
(𝜃,𝑠𝑏)2 =

𝑁𝑠𝑏∑
𝑛=1

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏[𝑣𝜃](𝒙𝑛𝑠𝑏, 𝑡𝑛𝑠𝑏)|2. (37d)

Here the quadrature points in space-time constitute the data sets 𝑖𝑛𝑡 = {(𝒙𝑛
𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)}𝑁𝑖𝑛𝑡
𝑛=1 , 𝑡𝑏 = {𝒙𝑛

𝑡𝑏
)}𝑁𝑡𝑏
𝑛=1 and 𝑠𝑏 = {(𝒙𝑛

𝑠𝑏
, 𝑡𝑛
𝑠𝑏
)}𝑁𝑠𝑏
𝑛=1, and 𝜔𝑛

⋆

are the quadrature weights with ⋆ being 𝑖𝑛𝑡, 𝑡𝑏 or 𝑠𝑏.

4.3. Error analysis

By subtracting the equations (31) from the residual equations (33), we get

𝑅𝑖𝑛𝑡1 = 𝑢̂𝑡 − 𝑣̂, (38a)

𝑅𝑖𝑛𝑡2 = 𝜀2𝑣̂𝑡 − 𝑎2Δ𝑢̂+ 𝜀21𝑢̂+ 𝑔(𝑢𝜃) − 𝑔(𝑢), (38b)

𝑅𝑡𝑏1 = 𝑢̂(𝒙,0), 𝑅𝑡𝑏2 = 𝑣̂(𝒙,0), 𝑅𝑠𝑏 = 𝑣̂(𝒙, 𝑡)|𝜕𝐷. (38c)

The results on the PINN approximations to the nonlinear Klein-Gordon equations are summarized in the following theorems.

Theorem 4.2. Let 𝑛 ≥ 2, 𝑑, 𝑟, 𝑘 ∈ℕ with 𝑘 ≥ 3. Assume that 𝑔(𝑢) is Lipschitz continuous, 𝑢 ∈𝐻𝑘(𝐷× [0, 𝑇]) and 𝑣 ∈𝐻𝑘−1(𝐷× [0, 𝑇]). Then
for every integer 𝑁 > 5, there exist tanh neural networks 𝑢𝜃 and 𝑣𝜃 , each with two hidden layers, of widths at most 3⌈ 𝑘+𝑛−22 ⌉|𝑃𝑘−1,𝑑+2| +⌈𝑁𝑇 ⌉ + 𝑑(𝑁 − 1) and 3⌈ 𝑑+𝑛+12 ⌉|𝑃𝑑+2,𝑑+2|⌈𝑁𝑇 ⌉𝑁𝑑 , such that

‖𝑅𝑖𝑛𝑡1‖𝐿2(Ω),‖𝑅𝑡𝑏1‖𝐿2(𝐷) ≲ ln𝑁𝑁−𝑘+1, (39a)

‖𝑅𝑖𝑛𝑡2‖𝐿2(Ω),‖∇𝑅𝑖𝑛𝑡1‖𝐿2(Ω),‖∇𝑅𝑡𝑏1‖𝐿2(𝐷) ≲ ln2𝑁𝑁−𝑘+2, (39b)

‖𝑅𝑡𝑏2‖𝐿2(𝐷),‖𝑅𝑠𝑏‖𝐿2(𝜕𝐷×[0,𝑇]) ≲ ln𝑁𝑁−𝑘+2. (39c)

Proof. Being similar to the proof of Theorem 3.3, we can end the proof by noting 𝑢 ∈ 𝐻𝑘(𝐷 × [0, 𝑇]), 𝑣 ∈ 𝐻𝑘−1(𝐷 × [0, 𝑇]) and
11

Lemma A.3. □

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Theorem 4.2 implies that the PINN residuals in (33) can be made arbitrarily small by choosing a sufficiently large 𝑁 . Therefore,
the generalization error 𝐺(𝜃)2 can be made arbitrarily small.

We next show that the PINN total approximation error (𝜃)2 can be controlled by the generalization error 𝐺(𝜃)2 (Theorem 4.3

below), and by the training error 𝑇 (𝜃, )2 (Theorem 4.4 below).

Theorem 4.3. Let 𝑑 ∈ℕ, 𝑢 ∈ 𝐶1(Ω) and 𝑣 ∈ 𝐶0(Ω) be the classical solution of the nonlinear Klein-Gordon equation (31). Let (𝑢𝜃, 𝑣𝜃) denote
the PINN approximation with parameter 𝜃. Then the following relation holds,

(𝜃)2 = ∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + 𝑎2|∇𝑢̂(𝒙, 𝑡)|2 + 𝜀2|𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝐺𝑇 exp
(
(2 + 𝜀21 +𝐿+ 𝑎2)𝑇

)
, (40)

where 𝐶𝐺 is defined by (74) in Appendix A.2.

The proof for Theorem 4.3 is provided in the Appendix A.2.

Theorem 4.4. Let 𝑑 ∈ℕ and 𝑇 > 0, and let 𝑢 ∈ 𝐶4(Ω) and 𝑣 ∈ 𝐶3(Ω) be the classical solution to the nonlinear Klein-Gordon equation (31).
Let (𝑢𝜃, 𝑣𝜃) denote the PINN approximation with parameter 𝜃 ∈Θ. Then the following relation holds,

∫
Ω

(|𝑢̂(𝒙, 𝑡)|2 + 𝑎2|∇𝑢̂(𝒙, 𝑡)|2 + 𝜀2|𝑣̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝑇 𝑇 exp
(
(2 + 𝜀21 +𝐿+ 𝑎2)𝑇

)
=(𝑇 (𝜃,)2 +𝑀− 2

𝑑+1
𝑖𝑛𝑡

+𝑀
− 2
𝑑

𝑡𝑏
+𝑀

− 1
𝑑

𝑠𝑏
), (41)

where the constant 𝐶𝑇 is defined by

𝐶𝑇 =𝐶(𝑅2
𝑡𝑏1)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏1) + 𝜀
2
(
𝐶(𝑅2

𝑡𝑏2)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑅2

𝑡𝑏2)
)

+ 𝑎2
(
𝐶(|∇𝑅𝑡𝑏1|2)𝑀− 2

𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|∇𝑅𝑡𝑏1|2))+𝐶(𝑅2

𝑖𝑛𝑡1)
𝑀

− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡1)

+𝐶(𝑅2
𝑖𝑛𝑡2)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑅2

𝑖𝑛𝑡2) + 𝑎
2
(
𝐶(|∇𝑅𝑖𝑛𝑡1|2)𝑀− 2

𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|∇𝑅𝑖𝑛𝑡1|2)) ,
+ 2𝐶𝜕𝐷|𝑇 | 12 (

𝐶(𝑅2
𝑠𝑏
)𝑀

− 2
𝑑

𝑠𝑏
+Ω∗

𝑀𝑠𝑏
(𝑅2

𝑠𝑏
)
) 1

2
.

Proof. Using Lemma A.2, Theorem 4.3 and the quadrature error formula (14) leads to this result. □

It follows from Theorem 4.4 that the PINN approximation error (𝜃)2 can be arbitrarily small, provided that the training error
𝑇 (𝜃, )2 is sufficiently small and the sample set is sufficiently large.

5. Physics informed neural networks for approximating linear elastodynamic equation

5.1. Linear elastodynamic equation

Consider an elastic body occupying an open, bounded convex polyhedral domain 𝐷 ⊂ℝ𝑑 . The boundary 𝜕𝐷 = Γ𝐷 ∪ Γ𝑁 , with the
outward unit normal vector 𝒏, is assumed to be composed of two disjoint portions Γ𝐷 ≠ ∅ and Γ𝑁 , with Γ𝐷 ∩Γ𝑁 = ∅. Given a suitable

external load 𝒇 ∈ 𝐿2((0, 𝑇]; 𝑳2(𝐷)), and suitable initial/boundary data 𝒈 ∈ 𝐶1((0, 𝑇]; 𝑯
1
2 (Γ𝑁)), 𝝍1 ∈𝑯

1
2
0,Γ𝐷

(𝐷) and 𝝍2 ∈ 𝑳2(𝐷), we
consider the linear elastodynamic equations,

𝒖𝑡 − 𝒗 = 0, 𝜌𝒗𝑡 − 2𝜇∇ ⋅ (𝜺(𝒖)) − 𝜆∇(∇ ⋅ 𝒖) = 𝒇 , in 𝐷 × [0, 𝑇], (42a)

𝒖 = 𝒖𝑑 in Γ𝐷 × [0, 𝑇], (42b)

2𝜇𝜺(𝒖)𝒏+ 𝜆(∇ ⋅ 𝒖)𝒏 = 𝒈 in Γ𝑁 × [0, 𝑇], (42c)

𝒖(𝒙,0) =𝝍1(𝒙), 𝒗(𝒙,0) =𝝍2(𝒙), in 𝐷. (42d)

In the above system, 𝒖 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑑) and 𝒗 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑑) denote the displacement and the velocity, respectively, and [0, 𝑇] (with
𝑇 > 0) denotes the time domain. 𝜺(𝒖) is the strain tensor, 𝜺(𝒖) = 1

2 (∇𝒖+∇𝒖𝑇). The constants 𝜆 and 𝜇 are the first and the second Lamé
parameters, respectively.

Combining the two equations in (42a), we can recover the classical linear elastodynamics equation:

𝜌𝒖𝑡𝑡 − 2𝜇∇ ⋅ (𝜺(𝒖)) − 𝜆∇(∇ ⋅ 𝒖) = 𝒇 in 𝐷 × [0, 𝑇]. (43)
12

The well-posedness of this equation is established in [29].

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Lemma 5.1 ([29,59]). Let 𝝍1 ∈𝐻𝑟(𝐷), 𝝍2 ∈𝐻𝑟−1(𝐷) and 𝒇 ∈𝐻𝑟−1(𝐷 × [0, 𝑇]) with 𝑟 ≥ 1. Then there exists a unique solution 𝒖 to the
classical linear elastodynamic equation (43) such that 𝒖(𝒙, 0) =𝝍1(𝒙), 𝒖𝑡(𝒙, 0) =𝝍2(𝒙) and 𝒖 ∈ 𝐶𝑙([0, 𝑇]; 𝐻𝑟−𝑙(𝐷)) with 0 ≤ 𝑙 ≤ 𝑟.

Lemma 5.2. Let 𝑘 ∈ ℕ, 𝝍1 ∈𝐻𝑟(𝐷), 𝝍2 ∈𝐻𝑟−1(𝐷) and 𝒇 ∈𝐻𝑟−1(𝐷×[0, 𝑇]) with 𝑟 > 𝑑

2 +𝑘, then there exists 𝑇 > 0 and a classical solution
(𝒖, 𝒗) to the elastodynamic equations (42) such that 𝒖(𝒙, 0) =𝝍1(𝒙), 𝒖𝑡(𝒙, 0) =𝝍2(𝒙), 𝒖 ∈𝐻𝑘(𝐷 × [0, 𝑇]) and 𝒗 ∈𝐻𝑘−1(𝐷 × [0, 𝑇]).

Proof. As 𝑟 > 𝑑

2 +𝑘, 𝐻𝑟−𝑘(𝐷) is a Banach algebra. By Lemma 5.1, there exists 𝑇 > 0 and the solution (𝒖, 𝒗) to the linear elastodynamics
equations such that 𝒖(𝒙, 0) =𝝍1(𝒙), 𝒗(𝒙, 0) =𝝍2(𝒙), 𝒖 ∈ 𝐶𝑙([0, 𝑇]; 𝐻𝑟−𝑙(𝐷)) with 0 ≤ 𝑙 ≤ 𝑟 and 𝒗 ∈ 𝐶𝑙([0, 𝑇]; 𝐻𝑟−1−𝑙(𝐷)) with 0 ≤ 𝑙 ≤ 𝑟 −1.

Since 𝒖 ∈ ∩𝑘
𝑙=0𝐶

𝑙([0, 𝑇]; 𝐻𝑟−𝑙(𝐷)) and 𝑟 − 𝑙+ 𝑙 ≥ 𝑘 with 𝑟 > 𝑑

2 +𝑘, it holds that 𝒖 ∈𝐻𝑘(𝐷× [0, 𝑇]). Similarly, we obtain 𝒗 ∈𝐻𝑘−1(𝐷×
[0, 𝑇]). □

5.2. Physics informed neural networks

We now consider the PINN approximation of the linear elastodynamic equations (42). Let Ω = 𝐷 × [0, 𝑇], Ω𝐷 = Γ𝐷 × [0, 𝑇] and
Ω𝑁 = Γ𝑁 ×[0, 𝑇] denote the space-time domain. Define the following residuals for the PINN approximation 𝒖𝜃 ∶ Ω →ℝ and 𝒗𝜃 ∶ Ω →ℝ
for the elastodynamic equations (42):

𝑹𝑖𝑛𝑡1[𝒖𝜃,𝒗𝜃](𝒙, 𝑡) = 𝒖𝜃𝑡 − 𝒗𝜃, 𝑹𝑖𝑛𝑡2[𝒖𝜃 ,𝒗𝜃](𝒙, 𝑡) = 𝜌𝒗𝜃𝑡 − 2𝜇∇ ⋅ (𝜺(𝒖𝜃)) − 𝜆∇(∇ ⋅ 𝒖𝜃) − 𝒇 , (44a)

𝑹𝑡𝑏1[𝒖𝜃](𝒙) = 𝒖𝜃(𝒙,0) −𝝍1(𝒙), 𝑹𝑡𝑏2[𝒗𝜃](𝒙) = 𝒗𝜃(𝒙,0) −𝝍2(𝒙), (44b)

𝑹𝑠𝑏1[𝒗𝜃](𝒙, 𝑡) = 𝒗𝜃|Γ𝐷 − 𝒖𝑑𝑡, 𝑹𝑠𝑏2[𝒖𝜃](𝒙, 𝑡) = (2𝜇𝜺(𝒖𝜃)𝒏+ 𝜆(∇ ⋅ 𝒖𝜃)𝒏)|Γ𝑁 − 𝒈. (44c)

Note that for the exact solution (𝒖, 𝒗), we have 𝑹𝑖𝑛𝑡1[𝒖, 𝒗] = 𝑹𝑖𝑛𝑡2[𝒖, 𝒗] = 𝑹𝑡𝑏1[𝒖] = 𝑹𝑡𝑏2[𝒗] = 𝑹𝑠𝑏1[𝒗] = 𝑹𝑠𝑏2[𝒖] = 0. With PINN we
minimize the following generalization error,

𝐺(𝜃)2 = ∫
Ω

|𝑹𝑖𝑛𝑡1[𝒖𝜃,𝒗𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝑹𝑖𝑛𝑡2[𝒖𝜃,𝒗𝜃](𝒙, 𝑡)|2 d𝒙d𝑡+ ∫
Ω

|𝜺(𝑹𝑖𝑛𝑡1[𝒖𝜃 ,𝒗𝜃](𝒙, 𝑡))|2 d𝒙d𝑡
+ ∫

Ω

|∇ ⋅ (𝑹𝑖𝑛𝑡1[𝒖𝜃 ,𝒗𝜃](𝒙, 𝑡))|2 d𝒙d𝑡+ ∫
𝐷

|𝑹𝑡𝑏1[𝒖𝜃](𝒙)|2 d𝒙+ ∫
𝐷

|𝑹𝑡𝑏2[𝒗𝜃](𝒙)|2 d𝒙
+ ∫
𝐷

|𝜺(𝑹𝑡𝑏1[𝒖𝜃](𝒙))|2 d𝒙+ ∫
𝐷

|∇ ⋅𝑹𝑡𝑏1[𝒖𝜃](𝒙)|2 d𝒙

+
⎛⎜⎜⎜⎝ ∫Ω𝐷 |𝑹𝑠𝑏1[𝒗𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠

1
2

+
⎛⎜⎜⎜⎝ ∫
Ω𝑁

|𝑹𝑠𝑏2[𝒖𝜃](𝒙, 𝑡)|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎟⎠
1
2

. (45)

Let 𝒖̂ = 𝒖𝜃 − 𝒖, 𝒗̂ = 𝒗𝜃 − 𝒗 denote the difference between the solution to the elastodynamic equations (42) and the PINN approxi-

mation with parameter 𝜃. We define the total error of the PINN approximation as,

(𝜃)2 = ∫
Ω

(|𝒖̂(𝒙, 𝑡)|2 + 2𝜇|𝜺(𝒖̂(𝒙, 𝑡))|2 + 𝜆|∇ ⋅ 𝒖̂(𝒙, 𝑡)|2 + 𝜌|𝒗̂(𝒙, 𝑡)|2) d𝒙d𝑡. (46)

We choose the training set  ⊂𝐷×[0, 𝑇] based on suitable quadrature points. The full training set is defined by  = 𝑖𝑛𝑡 ∪𝑠𝑏 ∪𝑡𝑏,
and 𝑠𝑏 = 𝑠𝑏1 ∪ 𝑠𝑏2:

• Interior training points 𝑖𝑛𝑡 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑖𝑛𝑡, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈𝐷 × (0, 𝑇).
• Spatial boundary training points 𝑠𝑏1 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑠𝑏1, with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈ Γ𝐷 × (0, 𝑇), and 𝑠𝑏2 = {𝑧𝑛} for 1 ≤ 𝑛 ≤𝑁𝑠𝑏2,

with each 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈ Γ𝑁 × (0, 𝑇).
• Temporal boundary training points 𝑡𝑏 = {𝒙𝑛} for 1 ≤ 𝑛 ≤𝑁𝑡𝑏 with each 𝒙𝑛 ∈𝐷.

Then, the integrals in (45) can be approximated by a suitable numerical quadrature, resulting in the following training loss,

𝑇 (𝜃,)2 =  𝑖𝑛𝑡1
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑖𝑛𝑡4
𝑇

(𝜃,𝑖𝑛𝑡)2 +  𝑡𝑏1
𝑇

(𝜃,𝑡𝑏)2
+  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 +  𝑡𝑏3

𝑇
(𝜃,𝑡𝑏)2 +  𝑡𝑏4

𝑇
(𝜃,𝑡𝑏)2 + 𝑠𝑏1

𝑇
(𝜃,𝑠𝑏1) + 𝑠𝑏2

𝑇
(𝜃,𝑠𝑏2), (47)

where,

𝑖𝑛𝑡1 2
𝑁𝑖𝑛𝑡∑

𝑛 𝑛 𝑛 2 𝑡𝑏1 2
𝑁𝑡𝑏∑

𝑛 𝑛 2
13


𝑇

(𝜃,𝑖𝑛𝑡) =
𝑛=1

𝜔
𝑖𝑛𝑡
|𝑹𝑖𝑛𝑡1[𝒖𝜃 ,𝒗𝜃](𝒙𝑖𝑛𝑡, 𝑡𝑖𝑛𝑡)| , 

𝑇
(𝜃,𝑡𝑏) =

𝑛=1
𝜔
𝑡𝑏
|𝑹𝑡𝑏1[𝒖𝜃](𝒙𝑡𝑏)| , (48a)

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

 𝑖𝑛𝑡2
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝑹𝑖𝑛𝑡2[𝒖𝜃 ,𝒗𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)|2,  𝑡𝑏2

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝑹𝑡𝑏2[𝒗𝜃](𝒙𝑛𝑡𝑏)|2, (48b)

 𝑖𝑛𝑡3
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|𝜺(𝑹𝑖𝑛𝑡1[𝒖𝜃,𝒗𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
))|2, (48c)

 𝑖𝑛𝑡4
𝑇

(𝜃,𝑖𝑛𝑡)2 =
𝑁𝑖𝑛𝑡∑
𝑛=1

𝜔𝑛
𝑖𝑛𝑡
|∇ ⋅𝑹𝑖𝑛𝑡1[𝒖𝜃,𝒗𝜃](𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)|2, (48d)

 𝑡𝑏3
𝑇

(𝜃,𝑡𝑏)2 =
𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|𝜺(𝑹𝑡𝑏1[𝒖𝜃](𝒙𝑛𝑡𝑏))|2,  𝑡𝑏4

𝑇
(𝜃,𝑡𝑏)2 =

𝑁𝑡𝑏∑
𝑛=1

𝜔𝑛
𝑡𝑏
|∇ ⋅𝑹𝑡𝑏1[𝒖𝜃](𝒙𝑛𝑡𝑏)|2, (48e)

𝑠𝑏1
𝑇

(𝜃,𝑠𝑏1)2 =
𝑁𝑠𝑏1∑
𝑛=1

𝜔𝑛
𝑠𝑏1|𝑹𝑠𝑏1[𝒗𝜃](𝒙𝑛𝑠𝑏, 𝑡

𝑛
𝑠𝑏
)|2, 𝑠𝑏2

𝑇
(𝜃,𝑠𝑏2)2 =

𝑁𝑠𝑏2∑
𝑛=1

𝜔𝑛
𝑠𝑏2|𝑹𝑠𝑏2[𝒖𝜃](𝒙𝑛𝑠𝑏, 𝑡

𝑛
𝑠𝑏
)|2. (48f)

Here the quadrature points in space-time constitute the data sets 𝑖𝑛𝑡 = {(𝒙𝑛
𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)}𝑁𝑖𝑛𝑡
𝑛=1 , 𝑡𝑏 = {𝒙𝑛

𝑡𝑏
)}𝑁𝑡𝑏
𝑛=1, 𝑠𝑏1 = {(𝒙𝑛

𝑠𝑏1, 𝑡
𝑛
𝑠𝑏1)}

𝑁𝑠𝑏1
𝑛=1 and

𝑠𝑏2 = {(𝒙𝑛
𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2)}

𝑁𝑠𝑏2
𝑛=1 . 𝜔𝑛

⋆
denote the suitable quadrature weights with ⋆ being 𝑖𝑛𝑡, 𝑡𝑏, 𝑠𝑏1 and 𝑠𝑏2.

5.3. Error analysis

Subtracting the elastodynamic equations (42) from the residual equations (44), we obtain

𝑹𝑖𝑛𝑡1 = 𝒖̂𝑡 − 𝒗̂, (49a)

𝑹𝑖𝑛𝑡2 = 𝜌𝒗̂𝑡 − 2𝜇∇ ⋅ (𝜺(𝒖̂)) − 𝜆∇(∇ ⋅ 𝒖̂), (49b)

𝑹𝑡𝑏1 = 𝒖̂|𝑡=0, 𝑹𝑡𝑏2 = 𝒗̂|𝑡=0, 𝑹𝑠𝑏1 = 𝒗̂|Γ𝐷 , 𝑹𝑠𝑏2 = (2𝜇𝜺(𝒖̂)𝒏+ 𝜆(∇ ⋅ 𝒖̂)𝒏)|Γ𝑁 . (49c)

The PINN approximation results are summarized in the following three theorems.

Theorem 5.3. Let 𝑛 ≥ 2, 𝑑, 𝑟, 𝑘 ∈ ℕ with 𝑘 ≥ 3. Let 𝝍1 ∈ 𝐻𝑟(𝐷), 𝝍2 ∈ 𝐻𝑟−1(𝐷) and 𝒇 ∈ 𝐻𝑟−1(𝐷 × [0, 𝑇]) with 𝑟 > 𝑑

2 + 𝑘. For ev-

ery integer 𝑁 > 5, there exist tanh neural networks (𝒖𝑗)𝜃 and (𝒗𝑗)𝜃 , with 𝑗 = 1, 2, ⋯ , 𝑑, each with two hidden layers, of widths at most
3⌈ 𝑘+𝑛−22 ⌉|𝑃𝑘−1,𝑑+2| + ⌈𝑁𝑇 ⌉ + 𝑑(𝑁 − 1) and 3⌈ 𝑑+𝑛+12 ⌉|𝑃𝑑+2,𝑑+2|⌈𝑁𝑇 ⌉𝑁𝑑 , such that

‖𝑹𝑖𝑛𝑡1‖𝐿2(Ω),‖𝑹𝑡𝑏1‖𝐿2(Ω) ≲ ln𝑁𝑁−𝑘+1, (50a)

‖𝑹𝑖𝑛𝑡2‖𝐿2(Ω),‖𝜺(𝑹𝑖𝑛𝑡1)‖𝐿2(Ω),‖∇ ⋅𝑹𝑖𝑛𝑡1‖𝐿2(Ω) ≲ ln2𝑁𝑁−𝑘+2, (50b)

‖𝜺(𝑹𝑡𝑏1)‖𝐿2(𝐷),‖∇ ⋅𝑹𝑡𝑏1‖𝐿2(𝐷),‖𝑹𝑠𝑏2‖𝐿2(Γ𝑁×[0,𝑇]) ≲ ln2𝑁𝑁−𝑘+2, (50c)

‖𝑹𝑡𝑏2‖𝐿2(𝐷),‖𝑹𝑠𝑏1‖𝐿2(Γ𝐷×[0,𝑇]) ≲ ln𝑁𝑁−𝑘+2. (50d)

Proof. Similar to the Theorem 3.3, we can complete the proof by applying Lemma 5.2 and Lemma A.3. □

It follows from Theorem 5.3 that, by choosing a sufficiently large 𝑁 , one can make the PINN residuals in (44), and thus the
generalization error 𝐺(𝜃)2 in (45), arbitrarily small.

Theorem 5.4. Let 𝑑 ∈ℕ, 𝒖 ∈ 𝐶1(Ω) and 𝒗 ∈ 𝐶(Ω) be the classical solution to the linear elastodynamic equation (42). Let (𝒖𝜃, 𝒗𝜃) denote the
PINN approximation with the parameter 𝜃. Then the following relation holds,

∫
Ω

(|𝒖̂(𝒙, 𝑡)|2 + 2𝜇|𝜺(𝒖̂(𝒙, 𝑡))|2 + 𝜆|∇ ⋅ 𝒖̂(𝒙, 𝑡)|2 + 𝜌|𝒗̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝐺𝑇 exp ((2 + 2𝜇 + 𝜆)𝑇) ,

where 𝐶𝐺 is given by (79) in Appendix A.2.

The proof of this theorem is provided in the Appendix A.2. Theorem 5.4 shows that the total error of the PINN approximation
(𝜃)2 can be controlled by the generalization error 𝐺(𝜃)2.
Theorem 5.5. Let 𝑑 ∈ ℕ, 𝒖 ∈ 𝐶4(Ω) and 𝒗 ∈ 𝐶3(Ω) be the classical solution to the linear elastodynamic equation (42). Let (𝒖𝜃 , 𝒗𝜃) denote
the PINN approximation with the parameter 𝜃. Then the following relation holds,

∫
Ω

(|𝒖̂(𝒙, 𝑡)|2 + 2𝜇|𝜺(𝒖̂(𝒙, 𝑡))|2 + 𝜆|∇ ⋅ 𝒖̂(𝒙, 𝑡)|2 + 𝜌|𝒗̂(𝒙, 𝑡)|2) d𝒙d𝑡 ≤ 𝐶𝑇 𝑇 exp ((2 + 2𝜇 + 𝜆)𝑇)

2 − 2
𝑑+1 − 2

𝑑
− 1
𝑑

14

=(𝑇 (𝜃) +𝑀
𝑖𝑛𝑡

+𝑀
𝑡𝑏

+𝑀
𝑠𝑏

), (51)

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

where

𝐶𝑇 =𝐶(𝑹2
𝑡𝑏1)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑹2

𝑡𝑏1) + 𝜌
(
𝐶(𝑹2

𝑡𝑏2)
𝑀

− 2
𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(𝑹2

𝑡𝑏2)
)
+ 2𝜇

(
𝐶(|𝜺(𝑹𝑡𝑏1)|2)𝑀− 2

𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|𝜺(𝑹𝑡𝑏1)|2))

+ 𝜆
(
𝐶(|∇⋅𝑹𝑡𝑏1|2)𝑀− 2

𝑑

𝑡𝑏
+𝐷

𝑀𝑡𝑏
(|∇ ⋅𝑹𝑡𝑏1|2))+𝐶(𝑹2

𝑖𝑛𝑡1)
𝑀

− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑹2

𝑖𝑛𝑡1)

+𝐶(𝑹2
𝑖𝑛𝑡2)

𝑀
− 2
𝑑+1

𝑖𝑛𝑡
+Ω

𝑀𝑖𝑛𝑡
(𝑹2

𝑖𝑛𝑡2) + 2𝜇
(
𝐶(|𝜺(𝑹𝑖𝑛𝑡1)|2)𝑀− 2

𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|𝜺(𝑹𝑖𝑛𝑡1)|2))

+ 𝜆
(
𝐶(|∇⋅𝑹𝑖𝑛𝑡1|2)𝑀− 2

𝑑+1
𝑖𝑛𝑡

+Ω
𝑀𝑖𝑛𝑡

(|∇ ⋅𝑹𝑖𝑛𝑡1|2))+ 2|𝑇 | 12 𝐶Γ𝐷

(
𝐶(𝑹2

𝑠𝑏1)
𝑀

− 2
𝑑

𝑠𝑏1 +Ω𝐷
𝑀𝑠𝑏1

(𝑹2
𝑠𝑏1)

) 1
2

+ 2|𝑇 | 12 𝐶Γ𝑁

(
𝐶(𝑹2

𝑠𝑏2)
𝑀

− 2
𝑑

𝑠𝑏2 +Ω𝑁
𝑀𝑠𝑏2

(𝑹2
𝑠𝑏2)

) 1
2
.

Proof. Similar to Theorem 3.5, we finish the proof by using Theorem 5.4 and the quadrature error formula (14). The boundedness
of the constants 𝐶(𝑹2

𝑞
) can be obtained from Lemma A.2, 𝒖 ∈ 𝐶4(Ω) and 𝒗 ∈ 𝐶3(Ω), where 𝑹𝑞 =𝑹𝑡𝑏1, 𝑹𝑡𝑏2, 𝜺(𝑹𝑡𝑏1), ∇ ⋅𝑹𝑡𝑏1, 𝑹𝑖𝑛𝑡1,

𝑹𝑖𝑛𝑡2, 𝜺(𝑹𝑖𝑛𝑡1), ∇ ⋅𝑹𝑖𝑛𝑡1, 𝑹𝑠𝑏1 and 𝑹𝑠𝑏2. □

Theorem 5.5 shows that the PINN approximation error (𝜃)2 can be controlled by the training error 𝑇 (𝜃, )2 with a large enough
sample set  .

6. Numerical examples

The analyses from Sections 3 to 5 suggest several forms for the PINN loss function with the wave, the nonlinear Klein-Gordon,
and the linear elastodynamic equations. These forms contain certain non-standard terms, which would be absent from the canonical
PINN formulation of the loss function (see Remark 2.2). The presence of such terms is crucial to bounding the PINN approximation
errors, as shown in the previous sections.

These non-standard forms of the loss function lead to a variant PINN algorithm. In this section we illustrate the performance of
the variant PINN algorithm suggested by the theoretical analysis and the more standard PINN algorithm using numerical examples in
one spatial dimension (1D) plus time for the wave equation and the Sine-Gordon equation (i.e. by using 𝑔(𝑢) = sin(𝑢) in the nonlinear
Klein-Gordon equation), and in two spatial dimensions (2D) plus time for the linear elastodynamic equation.

Here are some common settings to the numerical simulations in this section. Let (𝒙, 𝑡) ∈𝐷× [0, 𝑇] denote the spatial and temporal
coordinates in the spatial-temporal domain, where 𝒙 = 𝑥 and 𝒙 = (𝑥, 𝑦) for 1D and 2D, respectively. For the wave equation and the
Sine-Gordon equation, the neural networks contain two input nodes (representing 𝑥 and 𝑡), two hidden layers (number of nodes to
be specified below), and two output nodes (representing the solution 𝑢 and its time derivative 𝑣 = 𝜕𝑢

𝜕𝑡
). For the linear elastodynamic

equation, three input nodes and four output nodes are employed in the neural network, as will be explained in more detail later. We
employ the tanh (hyperbolic tangent) activation function for all the hidden nodes, and no activation function is applied to the output
nodes (i.e. linear). For training the neural networks, we employ 𝑁 collocation points within the spatial-temporal domain drawn from
a uniform random distribution, and also 𝑁 uniform random points on each spatial boundary and on the initial boundary. In the
simulations 𝑁 is varied systematically between 1000 and 3000. After the neural networks are trained, for the wave and Sine-Gordon
equations, we compare the PINN solution and the exact solution on a set of 𝑁𝑒𝑣 = 3000 ×3000 uniform grid points (evaluation points)
(𝑥, 𝑡)𝑛 ∈𝐷 × [0, 𝑇] (𝑛 = 1, ⋯ , 𝑁𝑒𝑣) that covers the problem domain and the boundaries. For the elastodynamic equation, we compare
the PINN solution and the exact solution at different time instants, and at each time instant the corresponding solutions are evaluated
at a uniform set of 𝑁𝑒𝑣 = 1500 × 1500 grid points in the spatial domain, 𝒙𝑛 = (𝑥, 𝑦)𝑛 ∈𝐷 (𝑛 = 1, ⋯ , 𝑁𝑒𝑣).

The PINN errors reported below are computed as follows. Let 𝑧𝑛 = (𝒙, 𝑡)𝑛 ((𝒙, 𝑡)𝑛 ∈𝐷×[0, 𝑇], 𝑛 = 1, ⋯ , 𝑁𝑒𝑣) denote the set of uniform
grid points, where 𝑁𝑒𝑣 denote the number of evaluation points. The errors of PINN are defined by,

𝑙2-error =

√∑𝑁𝑒𝑣
𝑛=1 |𝑢(𝑧𝑛) − 𝑢𝜃(𝑧𝑛)|2√∑𝑁𝑒𝑣

𝑛=1 𝑢(𝑧𝑛)
2

, 𝑙∞-error =
max{|𝑢(𝑧𝑛) − 𝑢𝜃(𝑧𝑛)|}𝑁𝑒𝑣𝑛=1√(∑𝑁𝑒𝑣

𝑛=1 𝑢(𝑧𝑛)
2
)
∕𝑁𝑒𝑣

, (52a)

where 𝑢𝜃 denotes the PINN solution and 𝑢 denotes the exact solution.

Our implementation of the PINN algorithm is based on the PyTorch library (pytorch.org). We combine the Adam [33] and
the L-BFGS [43] optimizers (in batch mode) to train the neural networks. We first employ Adam to train the network for 100
epochs/iterations, and then employ L-BFGS to continue the network training for another 30000 iterations. We employ the default
parameter values in Adam, with the learning rate 0.001, 𝛽1 = 0.9 and 𝛽2 = 0.99. The initial learning rate 1.0 is adopted in the L-BFGS
15

optimizer.

https://pytorch.org/

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

6.1. Wave equation

We next test the PINN algorithm for solving the wave equation (15) in one spatial dimension (plus time), under a configuration
in accordance with that of [17]. Consider the spatial-temporal domain, (𝑥, 𝑡) ∈𝐷×[0, 𝑇] = [0, 5] ×[0, 2], and the initial-boundary value
problem with the wave equation on this domain,

𝜕2𝑢

𝜕𝑡2
− 𝑐2 𝜕

2𝑢

𝜕𝑥2
= 0, (53a)

𝑢(0, 𝑡) = 𝑢(5, 𝑡), 𝜕𝑢

𝜕𝑥
(0, 𝑡) = 𝜕𝑢

𝜕𝑥
(5, 𝑡), 𝑢(𝑥,0) = 2sech3

(
3
𝛿0

(𝑥− 𝑥0)
)
,

𝜕𝑢

𝜕𝑡
(𝑥,0) = 0, (53b)

where 𝑢(𝑥, 𝑡) is the wave field to be solved for, 𝑐 is the wave speed, 𝑥0 is the initial peak location of the wave, 𝛿0 is a constant that
controls the width of the wave profile, and the periodic boundary conditions are imposed on 𝑥 = 0 and 5. In the simulations, we
employ 𝑐 = 2, 𝛿0 = 2, and 𝑥0 = 3. Then the above problem has the solution,

⎧⎪⎨⎪⎩
𝑢(𝑥, 𝑡) = sech3

(
3
𝛿0

(−2.5 + 𝜉)
)
+ sech3

(
3
𝛿0

(−2.5 + 𝜂)
)
,

𝜉 =mod
(
𝑥− 𝑥0 + 𝑐𝑡+ 2.5,5

)
, 𝜂 =mod

(
𝑥− 𝑥0 − 𝑐𝑡+ 2.5,5

)
,

where mod refers to the modulo operation. We reformulate the problem (53) into the following system,

𝑢𝑡 − 𝑣 = 0, 𝑣𝑡 − 𝑐2𝑢𝑥𝑥 = 0, (54a)

𝑢(0, 𝑡) = 𝑢(5, 𝑡), 𝑢𝑥(0, 𝑡) = 𝑢𝑥(5, 𝑡), 𝑢(𝑥,0) = 2sech3
(

3
𝛿0

(𝑥− 𝑥0)
)
, 𝑣(𝑥,0) = 0, (54b)

where 𝑣(𝑥, 𝑡) is an auxiliary field given by the first equation in (54a).

To solve the system (54) with PINN, we employ 90 and 60 neurons in the first and the second hidden layers of neural networks,
respectively. We consider the following loss function in PINN,

Loss =
𝑊1
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑡(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑣𝜃(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2 + 𝑊2

𝑁

𝑁∑
𝑛=1

[
𝑣𝜃𝑡(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑢𝜃𝑥𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2

+
𝑊3
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑡𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑣𝜃𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2 + 𝑊4

𝑁

𝑁∑
𝑛=1

[
𝑢𝜃(𝑥𝑛𝑡𝑏,0) − 2sech3

(3
𝛿 0

(𝑥𝑛
𝑡𝑏
− 𝑥0)

)]2
+
𝑊5
𝑁

𝑁∑
𝑛=1

[
𝑣𝜃(𝑥𝑛𝑡𝑏,0)

]2 + 𝑊6
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑥(𝑥𝑛𝑡𝑏,0) +

18 sinh((3𝑥𝑛
𝑡𝑏
− 3𝑥0)∕𝛿0)

𝛿0 cosh4((3𝑥𝑛𝑡𝑏 − 3𝑥0)∕𝛿0)

]2

+
𝑊7
𝑁

𝑁∑
𝑛=1

[
𝑣𝜃(0, 𝑡𝑛𝑠𝑏) − 𝑣𝜃(5, 𝑡

𝑛
𝑠𝑏
)
]2 + 𝑊8

𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑥(0, 𝑡𝑛𝑠𝑏) − 𝑢𝜃𝑥(5, 𝑡

𝑛
𝑠𝑏
)
]2

=∶
8∑
𝑖=1

𝔚𝑖, (55)

where 𝔚𝑖 (1 ≤ 𝑖 ≤ 8) denote the different terms in the loss expression. Note that in the simulations we have employed the same
number of collocation points (𝑁) within the domain and on each of the domain boundaries. The formulation of the loss function
here differs from what is used in the error analysis in several aspects. First, we have added a set of penalty coefficients 𝑊𝑛 > 0
(1 ≤ 𝑛 ≤ 8) for different loss terms in numerical simulations. Second, the collocation points used in simulations (e.g. 𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡

, 𝑥𝑛
𝑠𝑏

, 𝑡𝑛
𝑠𝑏

,
𝑥𝑛
𝑡𝑏

) are generated randomly within the domain or on the domain boundaries from a uniform distribution. In addition, the averaging
used here do not exactly correspond to the numerical quadrature rule (mid-point rule) used in the theoretical analysis.

We also consider the following form for the loss function, as given in (18),

Loss =
6∑
𝑖=1

𝔚𝑖 +𝑊7

(
1
𝑁

𝑁∑
𝑛=1

[𝑣𝜃(0, 𝑡𝑛𝑠𝑏) − 𝑣𝜃(5, 𝑡
𝑛
𝑠𝑏
)]2

)1∕2

+𝑊8

(
1
𝑁

𝑁∑
𝑛=1

[𝑢𝜃𝑥(0, 𝑡𝑛𝑠𝑏) − 𝑢𝜃𝑥(5, 𝑡
𝑛
𝑠𝑏
)]2

)1∕2

. (56)

The difference between this form and the form (55) lies in the last two terms, with the terms here containing a square root.

It should be noted that the loss function defined by (56) is in accordance with our theoretical analysis, while the one in (55) is
akin to the more standard PINN formulation. The loss function (55) will be referred to as the loss form #1 in subsequent discussions,
and (56) will be referred to as the loss form #2. The PINN schemes that employ these two different loss forms will be referred to as
PINN-F1 and PINN-F2, respectively.

Fig. 1 shows distributions of the exact solutions, the PINN solutions, and the PINN point-wise absolute errors for 𝑢 and 𝑣 = 𝜕𝑢

𝜕𝑡

in the spatial-temporal domain. Here the PINN solution is computed by PINN-F1, in which penalty coefficients are given by 𝑾 =
(𝑊1, … , 𝑊8) = (0.8, 0.8, 0.8, 0.5, 0.5, 0.5, 0.9, 0.9). One can observe that the method has captured the wave fields for 𝑢 and 𝑣 reasonably
16

well, with the error for 𝑢 notably smaller than that of 𝑣.

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 1. Wave equation: Distributions of the True solutions, the PINN solutions and the PINN point-wise absolute errors for 𝑢 and 𝑣 in the spatial-temporal domain.
𝑁 = 2000 training points within the domain and on each of the domain boundaries.

Figs. 2 and 3 provide a comparison of the solutions obtained using the two forms of loss functions. Fig. 2 compares profiles of
the PINN-F1 and PINN-F2 solutions, and the exact solution, for 𝑢 (top row) at three time instants (𝑡 = 0.5, 1.0, and 1.5), as well as
the error profiles (bottom row). Fig. 3 shows the corresponding results for the field variable 𝑣. These results are obtained by using
𝑁 = 2000 training data points in the domain and on each of the domain boundaries. It is observed that both PINN schemes, with the
loss functions given by (55) and (56) respectively, have captured the solution reasonably well. We further observe that the PINN-F2
scheme (with the loss form (56)) produces somewhat less accurate results than the PINN-F1 (with loss form (55)), especially for the
field 𝑣.

We have varied the number of training data points 𝑁 systematically and studied its effect on the PINN results. Fig. 4 shows the
loss histories of PINN-F1 and PINN-F2 corresponding to different number of training data points (𝑁) in the simulations, with a total
of 30,000 training iterations. We can make two observations. First, the history curves with the loss function form #1 seem smoother,
while fluctuations in the loss history can be observed with the form #2. Second, the eventual loss values produced by the loss form
#1 are smaller than those produced by the loss form #2.

Table 1 is another comparison between PINN-F1 and PINN-F2. Here the 𝑙2 and 𝑙∞ errors of 𝑢 and 𝑣 computed by PINN-F1 and
PINN-F2 corresponding to different training data points (𝑁) have been listed. There appears to be a general trend that the errors
tend to decrease with increasing number of training points, but the decrease is not monotonic. It can be observed that the 𝑢 errors
are notably smaller than those for 𝑣, as signified earlier in e.g. Fig. 1. One again observes that PINN-F1 results appear more accurate
than those of PINN-F2 for the wave equation.

Theorem 3.5 suggests the solution errors for 𝑢, 𝑣, and ∇𝑢 approximately scale as the square root of the training loss function.
Fig. 5 provides some numerical evidence for this point. Here we plot the 𝑙2 errors for 𝑢, 𝜕𝑢

𝜕𝑡
and 𝜕𝑢

𝜕𝑥
from our simulations as a function

of the training loss value for PINN-F1 and PINN-F2 in logarithmic scales. It is evident that for PINN-F1 the scaling essentially follows
the square root relation. For PINN-F2 the relation between the error and the training loss appears to scale with a power somewhat
17

larger than 12 .

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 2. Wave equation: Comparison of profiles of 𝑢 (top row) and its absolute error (bottom row) between the PINN solutions (loss forms #1 and #2) and the exact
solution at time instants (a) 𝑡 = 0.5, (b) 𝑡 = 1.0, and (c) 𝑡 = 1.5. 𝑁 = 2000 training data points within the domain and on each of the domain boundaries (𝑥 = 0 and 5,
and 𝑡 = 0).

Fig. 3. Wave equation: Comparison of the profiles of 𝑣 = 𝜕𝑢

𝜕𝑡
(top row) and its absolute error (bottom row) between the PINN solutions (loss forms #1 and #2) and

the exact solution at time instants (a) 𝑡 = 0.5, (b) 𝑡 = 1.0, and (c) 𝑡 = 1.5. 𝑁 = 2000 training data points within the domain and on each of the domain boundaries (𝑥 = 0
18

and 5, and 𝑡 = 0).

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 4. Wave equation: Histories of the loss function versus the training iteration with PINN-F1 and PINN-F2, corresponding to different number of training data
points (𝑁).

Fig. 5. Wave equation: The 𝑙2 errors of 𝑢, 𝜕𝑢

𝜕𝑡
, and 𝜕𝑢

𝜕𝑥
as a function of the training loss value. 𝑁 = 2000 training data points.

Table 1

Wave equation: The 𝑢 and 𝑣 errors versus the number of training data points 𝑁 .

𝑁
𝑙2-error 𝑙∞-error

PINN-F1 PINN-F2 PINN-F1 PINN-F2

𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃

1000 5.7013e-03 1.3531e-02 4.7281e-02 9.2431e-02 1.8821e-02 4.6631e-02 1.4367e-01 3.2764e-01

1500 2.1689e-03 4.1035e-03 4.9087e-02 1.2438e-01 6.7631e-03 1.5109e-02 2.1525e-01 5.0601e-01

2000 4.6896e-03 9.6417e-03 1.8554e-02 4.9224e-02 1.3828e-02 3.3063e-02 6.0780e-02 1.6358e-01

2500 3.7879e-03 9.8574e-03 2.3526e-02 5.4266e-02 1.2868e-02 3.3622e-02 9.8690e-02 1.9467e-01

3000 2.6588e-03 6.0746e-03 1.4164e-02 3.7796e-02 8.1457e-03 1.9860e-02 5.3045e-02 1.4179e-01

6.2. Sine-Gordon equation

We test the PINN algorithm suggested by the theoretical analysis for the Sine-Gordon equation (i.e. by setting 𝑔(𝑢) = sin(𝑢) in (31))
in this subsection. Consider the spatial-temporal domain (𝑥, 𝑡) ∈Ω =𝐷×[0, 𝑇] = [0, 1] ×[0, 2], and the following initial/boundary value
problem on this domain,

𝜕2𝑢

𝜕𝑡2
− 𝜕2𝑢

𝜕𝑥2
+ 𝑢+ sin(𝑢) = 𝑓 (𝑥, 𝑡), (57a)

𝑢(0, 𝑡) = 𝜙1(𝑡), 𝑢(1, 𝑡) = 𝜙2(𝑡), 𝑢(𝑥,0) = 𝜓1(𝑥),
𝜕𝑢

𝜕𝑡
(𝑥,0) = 𝜓2(𝑥). (57b)

In these equations, 𝑢(𝑥, 𝑡) is the field function to be solved for, 𝑓 (𝑥, 𝑡) is a source term, 𝜓1 and 𝜓2 are the initial conditions, and 𝜙1 and
𝜙2 are the boundary conditions. The source term, initial and boundary conditions appropriately are chosen by the following exact
solution, [(

𝜋
) 9 (7𝜋)][(

𝜋
) 9 (7𝜋)]

19

𝑢(𝑥, 𝑡) = 2cos 𝜋𝑥+
5

+
5
cos 2𝜋𝑥+

20
2cos 𝜋𝑡+

5
+

5
cos 2𝜋𝑡+

20
. (58)

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 6. Sine-Gordon equation: Distributions of the exact solution, the PINN solution and the PINN absolute error for 𝑢 (left three columns) and for 𝑣 = 𝜕𝑢

𝜕𝑡
(right three

columns). 𝑁 = 2000 collocation points within the domain and on the domain boundaries.

To simulate this problem with PINN, we reformulate the problem as follows,

𝑢𝑡 − 𝑣 = 0, 𝑣𝑡 − 𝑢𝑥𝑥 + 𝑢+ sin(𝑢) = 𝑓 (𝑥, 𝑡), (59a)

𝑢(0, 𝑡) = 𝜙1(𝑡), 𝑢(1, 𝑡) = 𝜙2(𝑡), 𝑢(𝑥,0) = 𝜓1(𝑥), 𝑣(𝑥,0) = 𝜓2(𝑥), (59b)

where 𝑣 is defined by equation (59a). In light of (36), we employ the following loss function in PINN,

Loss =
𝑊1
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑡(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑣𝜃(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2

+
𝑊2
𝑁

𝑁∑
𝑛=1

[
𝑣𝜃𝑡(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑢𝜃𝑥𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) + 𝑢𝜃(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) + sin(𝑢𝜃(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)) − 𝑓 (𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
)
]2

+
𝑊3
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑡𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝑣𝜃𝑥(𝑥𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2 + 𝑊4

𝑁

𝑁∑
𝑛=1

[
𝑢𝜃(𝑥𝑛𝑡𝑏,0) −𝜓1(𝑥𝑛𝑡𝑏)

]2
+
𝑊5
𝑁

𝑁∑
𝑛=1

[
𝑣𝜃(𝑥𝑛𝑡𝑏,0) −𝜓2(𝑥𝑛𝑡𝑏)

]2 + 𝑊6
𝑁

𝑁∑
𝑛=1

[
𝑢𝜃𝑥(𝑥𝑛𝑡𝑏,0) −𝜓1𝑥(𝑥𝑛𝑡𝑏)

]2
+𝑊7

(
1
𝑁

𝑁∑
𝑛=1

[
(𝑣𝜃(0, 𝑡𝑛𝑠𝑏) − 𝜙1𝑡(𝑡𝑛𝑠𝑏))

2 + (𝑣𝜃(1, 𝑡𝑛𝑠𝑏) −𝜙2𝑡(𝑡𝑛𝑠𝑏))
2])1∕2

=∶
7∑
𝑖=1

𝔖𝑖, (60)

where 𝔖𝑖 (1 ≤ 𝑖 ≤ 7) represent different terms in the loss expression, and 𝑊𝑛 > 0 (1 ≤ 𝑛 ≤ 7) are the penalty coefficients for different
loss terms added in the PINN implementation. It should be noted that the loss terms 𝔖3 and 𝔖6 will be absent from the conventional
PINN formulation (see [46]). These terms in the training loss are necessary based on the error analysis in Section 4. It should also be
noted that the terms in 𝔖7 contain a square root, as dictated by the theoretical analysis of Section 4.

We have also implemented a PINN scheme with a variant form for the loss function,

Loss =
6∑
𝑖=1

𝔖𝑖 +
𝑊7
𝑁

𝑁∑
𝑛=1

[
(𝑣𝜃(0, 𝑡𝑛𝑠𝑏) −𝜙1𝑡(𝑡𝑛𝑠𝑏))

2 + (𝑣𝜃(1, 𝑡𝑛𝑠𝑏) −𝜙2𝑡(𝑡𝑛𝑠𝑏))
2] . (61)

The difference between (61) and (60) lies in the 𝔖7 terms. These 𝔖7 terms in (61) are squared, and they are not in (60). We refer to
the PINN scheme employing the loss function (60) as PINN-G1 and the scheme employing the loss function (61) as PINN-G2.

In the simulations we employ a feed-forward neural network with two input nodes (representing 𝑥 and 𝑡), two output nodes
(representing 𝑢 and 𝑣), and two hidden layers, each having a width of 80 nodes. The tanh activation function has been used for all
the hidden nodes. We employ 𝑁 collocation points generated from a uniform random distribution within the domain, on each of the
domain boundary, and also on the initial boundary, where 𝑁 is varied systematically in the simulations. The penalty coefficients in
the loss functions are taken to be 𝑾 = (𝑊1, … , 𝑊7) = (0.5, 0.4, 0.5, 0.6, 0.6, 0.6, 0.8).

Fig. 6 shows distributions of 𝑢(𝑥, 𝑡) and 𝑣 = 𝜕𝑢

𝜕𝑡
from the exact solution (left column) and the PINN solution (middle column), as

well as the point-wise absolute errors of the PINN solution for these fields (right column). These results are obtained by PINN-G2
with 𝑁 = 2000 random collocation points within the domain and on each of the domain boundaries. The PINN solution is in good
20

agreement with the true solution.

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 7. Sine-Gordon equation: Top row, comparison of profiles between the exact solution and PINN-G1/PINN-G2 solutions for 𝑢 at several time instants. Bottom row,
profiles of the absolute error of the PINN-G1 and PINN-G2 solutions for 𝑢. 𝑁 = 2000 training collocation points.

Fig. 8. Sine-Gordon equation: Top row, comparison of profiles between the exact solution and PINN-G1/PINN-G2 solutions for 𝑣 = 𝜕𝑢

𝜕𝑡
at several time instants. Bottom

row, profiles of the absolute error of the PINN-G1 and PINN-G2 solutions for 𝑣. 𝑁 = 2000 training collocation points.

Figs. 7 and 8 compare the profiles of 𝑢 and 𝑣 between the exact solution, and the solutions obtained by PINN-G1 and PINN-G2,
at several time instants (𝑡 = 0.5, 1 and 1.5). Profiles of the absolute errors of the PINN-G1/PINN-G2 solutions are also shown in these
figures. We observe that both PINN-G1 and PINN-G2 have captured the solution for 𝑢 quite accurately, and to a lesser extent, also
for 𝑣. Comparison of the error profiles between PINN-G1 and PINN-G2 suggests that the PINN-G2 error in general appears to be
21

somewhat smaller than that of PINN-G1. But this seems not to be true consistently in the entire domain.

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 9. Sine-Gordon equation: Loss histories of (a) PINN-G1 and (b) PINN-G2 corresponding to various numbers of training collocation points.

Fig. 10. Sine-Gordon equation: The 𝑙2 errors of 𝑢, 𝜕𝑢

𝜕𝑡
, and 𝜕𝑢

𝜕𝑥
as a function of the training loss value.

Table 2

Sine-Gordon equation: The 𝑙2 and 𝑙∞ errors for 𝑢 and 𝑣 versus the number of training collocation points 𝑁 corresponding to PINN-G1 and
PINN-G2.

𝑁
𝑙2-error 𝑙∞-error

PINN-G1 PINN-G2 PINN-G1 PINN-G2

𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃 𝑢𝜃 𝑣𝜃

1000 3.0818e-03 4.3500e-03 3.0674e-03 2.0581e-03 9.6044e-03 1.8894e-02 7.3413e-03 1.1323e-02

1500 3.4335e-03 4.8035e-03 1.0605e-03 1.4729e-03 1.0566e-02 1.7050e-02 2.2914e-03 6.2831e-03

2000 2.1914e-03 3.0055e-03 2.2469e-03 1.6072e-03 7.5882e-03 1.1099e-02 4.8842e-03 8.8320e-03

2500 3.0172e-03 3.5698e-03 6.6072e-04 6.0509e-04 9.2515e-03 1.4645e-02 1.4099e-03 4.3423e-03

3000 2.5281e-03 4.4858e-03 6.6214e-04 1.0830e-03 7.2785e-03 1.6213e-02 1.9697e-03 7.8866e-03

The effect of the collocation points on the PINN results has been studied by varying the number of training collocation points
systematically between 𝑁 = 1000 and 𝑁 = 3000 within the domain and on each of the domain boundaries. The results are provided
in Fig. 9 and Table 2. Fig. 9 shows histories of the loss function corresponding to different number of collocation points for PINN-G1
and PINN-G2. Table 2 provides the 𝑙2 and 𝑙∞ errors of 𝑢 and 𝑣 versus the number of collocation points computed by PINN-G1 and
PINN-G2. The PINN errors in general tend to decrease with increasing number of collocation points, but this trend is not monotonic.
It can be observed that both PINN-G1 and PINN-G2 have captured the solutions quite accurately, with those errors from PINN-G2 in
general slightly better.

Fig. 10 provides some numerical evidence for the relation between the total error and the training loss as suggested by Theo-

rem 4.4. Here we plot the 𝑙2 errors for 𝑢, 𝜕𝑢
𝜕𝑡

and 𝜕𝑢
𝜕𝑥

as a function of the training loss value obtained by PINN-G1 and PINN-G2. The
results indicate that the total error scales approximately as the square root of the training loss, which in some sense corroborates the
error-loss relation as expressed in Theorem 4.4.

6.3. Linear elastodynamic equation

In this subsection we look into the linear elastodynamic equation (in two spatial dimensions plus time) and test the PINN
algorithm as suggested by the theoretical analysis in Section 5 using this equation. Consider the spatial-temporal domain (𝑥, 𝑦, 𝑡) ∈
22

Ω =𝐷 × [0, 𝑇] = [0, 1] × [0, 1] × [0, 2], and the following initial/boundary value problem with the linear elastodynamics equation on Ω:

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

𝜌
𝜕2𝒖

𝜕𝑡2
− 2𝜇∇ ⋅ (𝜺(𝒖)) − 𝜆∇(∇ ⋅ 𝒖) = 𝒇 (𝒙, 𝑡), (62a)

𝒖|Γ𝑑 = 𝝓𝑑 , (
2𝜇𝜺(𝒖) + 𝜆(∇ ⋅ 𝒖)

)|Γ𝑛𝒏 = 𝝓𝑛, 𝒖(𝒙,0) =𝝍1,
𝜕𝒖

𝜕𝑡
(𝒙,0) =𝝍2, (62b)

where 𝒖 = (𝑢1(𝒙, 𝑡), 𝑢2(𝒙, 𝑡))𝑇 (𝒙 = (𝑥, 𝑦) ∈𝐷, 𝑡 ∈ [0, 𝑇]) is the displacement field to be solved for, 𝒇 (𝒙, 𝑡) is a source term, and 𝜌, 𝜇 and
𝜆 are material constants. Γ𝑑 is the Dirichlet boundary and Γ𝑛 is the Neumann boundary, with 𝜕𝐷 = Γ𝑑 ∪ Γ𝑛 and Γ𝑑 ∩ Γ𝑛 = ∅, where
𝒏 is the outward-pointing unit normal vector. In our simulations we choose the left boundary (𝑥 = 0) as the Dirichlet boundary,
and the rest are Neumann boundaries. 𝝓𝑑 and 𝝓𝑛 are Dirichlet and Neumann boundary conditions, respectively. 𝝍1 and 𝝍2 are the
initial conditions for the displacement and the velocity. We employ the material parameter values 𝜇 = 𝜆 = 𝜌 = 1, and the following
manufactured solution ([1]) to this problem,

𝒖(𝒙, 𝑡) = sin(
√
2𝜋𝑡)

[
−sin(𝜋𝑥)2 sin(2𝜋𝑦)
sin(2𝜋𝑥) sin(𝜋𝑦)2

]
. (63)

The source term 𝒇 (𝒙, 𝑡), the boundary/initial distributions 𝝓𝑑 , 𝝓𝑛, 𝝍1 and 𝝍2 are chosen by the expression (63).

To simulate this problem using the PINN algorithm suggested by the theoretical analysis from Section 5, we reformulate (62) into
the following system

𝒖𝑡 − 𝒗 = 𝟎, 𝒗𝑡 − 2∇ ⋅ (𝜺(𝒖)) − ∇(∇ ⋅ 𝒖) = 𝒇 (𝒙, 𝑡), (64a)

𝒖|Γ𝑑 = 𝝓𝑑 , (
2𝜺(𝒖) + (∇ ⋅ 𝒖)

)|Γ𝑛𝒏 = 𝝓𝑛, 𝒖(𝒙,0) =𝝍1, 𝒗(𝒙,0) =𝝍2, (64b)

where 𝒗(𝒙, 𝑡) is an intermediate variable (representing the velocity) as given by (64a).

In light of (47), we employ the following loss function for PINN,

Loss =
𝑊1
𝑁

𝑁∑
𝑛=1

[
𝒖𝜃𝑡(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝒗𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)
]2

+
𝑊2
𝑁

𝑁∑
𝑛=1

[
𝒗𝜃𝑡(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 2∇ ⋅ (𝜺(𝒖𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
))) − ∇(∇ ⋅ 𝒖𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
)) − 𝒇 (𝒙𝑛

𝑖𝑛𝑡
, 𝑡𝑛
𝑖𝑛𝑡
))
]2

+
𝑊3
𝑁

𝑁∑
𝑛=1

[
𝜺(𝒖𝜃𝑡(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝒗𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
))
]2 + 𝑊4

𝑁

𝑁∑
𝑛=1

[
∇ ⋅ (𝒖𝜃𝑡(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
) − 𝒗𝜃(𝒙𝑛𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡
))
]2

+
𝑊5
𝑁

𝑁∑
𝑛=1

[
𝒖𝜃(𝒙𝑛𝑡𝑏,0) −𝝍1(𝒙𝑛𝑡𝑏)

]2 + 𝑊6
𝑁

𝑁∑
𝑛=1

[
𝒗𝜃(𝒙𝑛𝑡𝑏,0) −𝝍2(𝒙𝑛𝑡𝑏)

]2
+
𝑊7
𝑁

𝑁∑
𝑛=1

[
𝜺(𝒖𝜃(𝒙𝑛𝑡𝑏,0) −𝝍1(𝒙𝑛𝑡𝑏))

]2 + 𝑊8
𝑁

𝑁∑
𝑛=1

[
∇ ⋅ (𝒖𝜃(𝒙𝑛𝑡𝑏,0) −𝝍1(𝒙𝑛𝑡𝑏))

]2
+𝑊9

(
1
𝑁

𝑁∑
𝑛=1

[
𝒗𝜃(𝒙𝑛𝑠𝑏1, 𝑡

𝑛
𝑠𝑏1) −𝝓𝑑𝑡(𝒙

𝑛
𝑠𝑏1, 𝑡

𝑛
𝑠𝑏1)

]2)1∕2

+𝑊10

(
1
𝑁

𝑁∑
𝑛=1

[
2𝜺(𝒖𝜃(𝒙𝑛𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2))𝒏+ (∇ ⋅ 𝒖𝜃(𝒙𝑛𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2))𝒏−𝝓𝑛(𝒙

𝑛
𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2)

]2)1∕2

=∶
10∑
𝑖=1

𝔈𝑖, (65)

where we have added the penalty coefficients, 𝑊𝑛 > 0 (1 ≤ 𝑛 ≤ 10), for different loss terms in the implementation, and 𝑁 denotes the
number of collocation points within the domain and on the domain boundaries. In the numerical tests we have also implemented
another form for the loss function as follows,

Loss =
8∑
𝑖=1

𝔈𝑖 +
𝑊9
𝑁

𝑁∑
𝑛=1

[
𝒗𝜃(𝒙𝑛𝑠𝑏1, 𝑡

𝑛
𝑠𝑏1) −𝝓𝑑𝑡(𝒙

𝑛
𝑠𝑏1, 𝑡

𝑛
𝑠𝑏1)

]2
+
𝑊10
𝑁

𝑁∑
𝑛=1

[
2𝜺(𝒖𝜃(𝒙𝑛𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2))𝒏+ (∇ ⋅ 𝒖𝜃(𝒙𝑛𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2))𝒏−𝝓𝑛(𝒙

𝑛
𝑠𝑏2, 𝑡

𝑛
𝑠𝑏2)

]2
. (66)

The difference between these two forms for the loss function lies in the 𝔈9 and 𝔈10 terms. It should be noted that the 𝔈9 and 𝔈10
terms in (65) contain a square root, in light of the error terms (48a)–(48f) from the theoretical analysis. In contrast, these terms have
no square root in (66). The PINN scheme utilizing the loss function (65) is henceforth referred to as PINN-H1, and the scheme that
employs the loss function (66) shall be referred to as PINN-H2.

In the simulations, we employ a feed-forward neural network with three input nodes, which represent 𝒙 = (𝑥, 𝑦) and the time
23

variable 𝑡, and four output nodes, which represent 𝒖 = (𝑢1, 𝑢2) and 𝒗 = (𝑣1, 𝑣2). The neural network has two hidden layers, with

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 11. Linear elastodynamic equation: Visualization of the deformed configuration at time instants (a) 𝑡 = 0.5, (b) 𝑡 = 1.0, and (c) 𝑡 = 1.5 from the exact solution
(top row), the PINN-H1 solution (middle row) and the PINN-H2 solution (bottom row). Plotted here are the deformed field, 𝒙 + 𝒖(𝒙, 𝑡), for a set of grid points
𝒙 ∈𝐷 = [0, 1] × [0, 1]. 𝑁 = 2000 training collocation points within domain and on the domain boundaries.

widths of 90 and 60 nodes, respectively, and the tanh activation function for all the hidden nodes. For the network training, 𝑁
collocation points are generated from a uniform random distribution within the domain, on each of the domain boundary, as well
as on the initial boundary. 𝑁 is systematically varied in the simulations. We employ the penalty coefficients 𝑾 = (𝑊1, ..., 𝑊10) =
(0.9, 0.9, 0.9, 0.9, 0.5, 0.5, 0.5, 0.5, 0.9, 0.9) in the simulations.

In Figs. 11 and 12 we compare the PINN-H1/PINN-H2 solutions with the exact solution and provide an overview of their errors.
Fig. 11 is a visualization of the deformed configuration of the domain. Here we have plotted the deformed field, 𝒙+𝒖(𝒙, 𝑡), for a set of
grid points 𝒙 ∈𝐷 at three time instants from the exact solution, the PINN-H1 and PINN-H2 solutions. Fig. 12 shows distributions of
the point-wise absolute error of the PINN-H1/PINN-H2 solutions, ‖𝒖𝜃 − 𝒖‖ =√

(𝑢𝜃1(𝒙, 𝑡) − 𝑢1(𝒙, 𝑡))2 + (𝑢𝜃2(𝒙, 𝑡) − 𝑢2(𝒙, 𝑡))2, at the same
three time instants. Here 𝒖𝜃 = (𝑢𝜃1, 𝑢𝜃2) denotes the PINN solution. While both PINN schemes capture the solution fairly well at 𝑡 = 0.5
and 1, at 𝑡 = 1.5 both schemes show larger deviations from the true solution. In general, the PINN-H1 scheme appears to produce a
better approximation to the solution than PINN-H2.

The effect of the number of collocation points (𝑁) on the PINN results has been studied in Fig. 13 and Table 3, where 𝑁 is
systematically varied in the range 𝑁 = 1000 to 𝑁 = 3000. Fig. 13 shows the histories of the loss function for training PINN-H1 and
PINN-H2 under different collocation points. Table 3 lists the corresponding 𝑙2 and 𝑙∞ errors of 𝒖 and 𝒗 obtained from PINN-H1 and
PINN-H2. One can observe that the PINN errors in general tend to improve with increasing number of collocation points. It can also
be observed that the PINN-H1 errors in general appear better than those of PINN-H2 for this problem.

Fig. 14 shows the errors of 𝒖, 𝒖𝑡, 𝜺(𝒖) and ∇ ⋅ 𝒖 as a function of the loss function value in the network training of PINN-H1 and
PINN-H2. The data indicates that these errors approximately scale as the square root of the training loss, which is consistent with the
relation as given by Theorem 5.5. This in a sense provides numerical evidence for the theoretical analysis in Section 5.

7. Concluding remarks

In the present paper we have considered the approximation of a class of dynamic PDEs of second order in time by physics-
24

informed neural networks (PINN). We provide an analysis of the convergence and the error of PINN for approximating the wave

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 12. Linear elastodynamic equation: Distributions of the point-wise absolute error, ‖𝒖𝜃 − 𝒖‖, of the PINN-H1 solution (top row) and the PINN-H2 solution (bottom
row) at three time instants (a) 𝑡 = 0.5, (b) 𝑡 = 1.0, and (c) 𝑡 = 1.5. 𝑁 = 2000 training collocation points within domain and on the domain boundaries.

Fig. 13. Linear elastodynamic equation: Training loss histories of PINN-H1 and PINN-H2 corresponding to different numbers of collocation points (𝑁) in the
simulation.

Table 3

Linear elastodynamic equation: The 𝑙2 and 𝑙∞ errors for 𝒖 = (𝑢1 , 𝑢2) and 𝒗 = (𝑣1 , 𝑣2) versus the number of training data points 𝑁 from the
PINN-H1 and PINN-H2 solutions.

𝑁
𝑙2-error 𝑙∞-error

𝑢𝜃1 𝑢𝜃2 𝑣𝜃1 𝑣𝜃2 𝑢𝜃1 𝑢𝜃2 𝑣𝜃1 𝑣𝜃2

PINN-H1

1000 4.8837e-02 6.0673e-02 4.7460e-02 5.1640e-02 1.7189e-01 2.1201e-01 6.9024e-01 6.1540e-01

1500 2.8131e-02 3.1485e-02 4.1104e-02 4.1613e-02 1.9848e-01 2.4670e-01 3.4716e-01 4.0582e-01

2000 2.7796e-02 4.0410e-02 3.5891e-02 4.6334e-02 1.4704e-01 1.7687e-01 4.0678e-01 5.0022e-01

2500 3.0909e-02 4.0215e-02 3.3966e-02 4.4024e-02 1.7589e-01 2.4211e-01 4.1403e-01 3.9570e-01

3000 2.6411e-02 3.5600e-02 4.3209e-02 5.2802e-02 1.4289e-01 1.3625e-01 5.1167e-01 5.3298e-01

PINN-H2

1000 4.9869e-02 1.3451e-01 5.6327e-02 5.4796e-02 3.2314e-01 3.4978e-01 6.7624e-01 5.7277e-01

1500 5.4708e-02 1.3987e-01 4.5871e-02 5.1622e-02 2.8609e-01 5.2598e-01 4.9343e-01 2.3518e-01

2000 6.2114e-02 1.0190e-01 6.4477e-02 5.0011e-02 2.5745e-01 3.1642e-01 5.9057e-01 5.8411e-01

2500 3.7887e-02 6.0630e-02 5.4363e-02 5.0659e-02 2.2212e-01 2.4774e-01 5.3681e-01 3.5427e-01

3000 5.4862e-02 6.3407e-02 5.5208e-02 6.0082e-02 3.4102e-01 2.1308e-01 5.1894e-01 4.4995e-01
25

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Fig. 14. Linear elastodynamic equation: The errors for 𝒖, 𝒖𝑡 , 𝜺(𝒖) and ∇ ⋅ 𝒖 versus the training loss value obtained by PINN-H1 and PINN-H2.

equation, the nonlinear Klein-Gordon equation, and the linear elastodynamic equation. Our analyses show that, with feed-forward
neural networks having two hidden layers and the tanh activation function for all the hidden nodes, the PINN approximation errors
for the solution field, its time derivative and its gradient can be bounded by the PINN training loss and the number of training data
points (quadrature points).

Our theoretical analyses further suggest new forms for the PINN training loss function, which contain certain residuals that are
crucial to the error estimate but would be absent from the canonical PINN formulation of the loss function. These typically include
the gradient of the equation residual, the gradient of the initial-condition residual, and the time derivative of the boundary-condition
residual. In addition, depending on the type of boundary conditions involved in the problem, our analyses suggest that a norm other
than the commonly-used 𝐿2 norm may be more appropriate for the boundary residuals in the loss function. Adopting these new forms
of the loss function suggested by the theoretical analyses leads to a variant PINN algorithm. We have implemented the new algorithm
and presented a number of numerical experiments on the wave equation, the Sine-Gordon equation and the linear elastodynamic
equation. The simulation results demonstrate that the method can capture the solution field well for these PDEs. The numerical data
corroborate the theoretical analyses.

CRediT authorship contribution statement

Yanxia Qian: Theoretical Analyses, Data analyses, Writing of paper, Paper revision. Yongchao Zhang: Software, Data acquisition
and Visualization, Writing of paper, Paper revision. Yunqing Huang: Data analyses. Suchuan Dong: Conceptualization, Methodol-

ogy, Writing of paper, Paper revision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The work was partially supported by the China Postdoctoral Science Foundation (No. 2021M702747), Natural Science Foundation
of Hunan Province (No. 2022JJ40422), NSF of China (No. 11971410 and No. 12101495), General Special Project of Education
Department of Shaanxi Provincial Government (No. 21JK0943), and the US National Science Foundation (DMS-2012415).

Appendix A. Auxiliary results and proofs of theorems from Sections 4 and 5

A.1. Some auxiliary results

Let a 𝑑-tuple of non-negative integers 𝛼 ∈ ℕ𝑑0 be multi-index with 𝑑 ∈ℕ. For given two multi-indices 𝛼, 𝛽 ∈ ℕ𝑑0 , we say that 𝛼 ≤ 𝛽,

if and only if, 𝛼𝑖 ≤ 𝛽𝑖 for all 𝑖 = 1, ⋯ , 𝑑. Denote |𝛼| =∑𝑑

𝑖=1 𝛼𝑖, 𝛼! =
∏𝑑

𝑖=1 𝛼𝑖!,
(
𝛽

𝛼

)
= 𝛽!

𝛼!(𝛽−𝛼)! . Let 𝑃𝑚,𝑛 = {𝛼 ∈ ℕ𝑛0, |𝛼| = 𝑚}, for which it (
𝑚+ 𝑛− 1

)

26

holds |𝑃𝑚,𝑛| = 𝑚
.

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Lemma A.1 (Multiplicative trace inequality, e.g. [12]). Let 𝑑 ≥ 2, Ω ⊂ℝ𝑑 be a Lipschitz domain and let 𝛾0 ∶𝐻1(Ω) →𝐿2(𝜕Ω) ∶ 𝑢 ↦ 𝑢|𝜕Ω be
the trace operator. Denote by ℎΩ the diameter of Ω and by 𝜌Ω the radius of the largest 𝑑-dimensional ball that can be inscribed into Ω. Then
it holds that

‖𝛾0𝑢‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑,𝜌Ω‖𝑢‖𝐻1(Ω), where 𝐶ℎΩ ,𝑑,𝜌Ω =
√
2max{2ℎΩ, 𝑑}∕𝜌Ω. (67)

Lemma A.2 ([12]). Let 𝑑, 𝑛, 𝐿, 𝑊 ∈ ℕ and let 𝑢𝜃 ∶ ℝ𝑑+1 → ℝ𝑑+1 be a neural network with 𝜃 ∈ Θ for 𝐿 ≥ 2, 𝑅, 𝑊 ≥ 1, cf. Definition 2.1.
Assume that ‖𝜎‖𝐶𝑛 ≥ 1. Then it holds for 1 ≤ 𝑗 ≤ 𝑑 + 1 that

‖(𝑢𝜃)𝑗‖𝐶𝑛 ≤ 16𝐿(𝑑 + 1)2𝑛(𝑒2𝑛4𝑊 3𝑅𝑛‖𝜎‖𝐶𝑛)𝑛𝐿. (68)

Lemma A.3 ([12]). Let 𝑑 ≥ 2, 𝑛 ≥ 2, 𝑚 ≥ 3, 𝜎 > 0, 𝑎𝑖, 𝑏𝑖 ∈ℤ with 𝑎𝑖 < 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑑, Ω =∏𝑑

𝑖=1[𝑎𝑖, 𝑏𝑖] and 𝑓 ∈𝐻𝑚(Ω). Then for every 𝑁 ∈ℕ
with 𝑁 > 5 there exists a tanh neural network 𝑓𝑁 with two hidden layers, one of width at most 3⌈𝑚+𝑛−22 ⌉|𝑃𝑚−1,𝑑+1| +∑𝑑

𝑖=1(𝑏𝑖 − 𝑎𝑖)(𝑁 − 1)
and another of width at most 3⌈ 𝑑+𝑛2 ⌉|𝑃𝑑+1,𝑑+1|𝑁𝑑

∏𝑑

𝑖=1(𝑏𝑖 − 𝑎𝑖), such that for 𝑘 = 0, 1, 2 it holds that

‖𝑓 − 𝑓𝑁‖𝐻𝑘(Ω) ≤ 2𝑘3𝑑𝐶𝑘,𝑚,𝑑,𝑓 (1 + 𝛿)ln𝑘
(
𝛽𝑘,𝛿,𝑑,𝑓𝑁

𝑑+𝑚+2)𝑁−𝑚+𝑘, (69)

and where

𝐶𝑘,𝑚,𝑑,𝑓 = max
0≤𝑙≤𝑘

(
𝑑 + 𝑙 − 1

𝑙

)1∕2 ((𝑚− 𝑙)!)1∕2

(⌈𝑚−𝑙
𝑑

⌉!)𝑑∕2
(
3
√
𝑑

𝜋

)𝑚−𝑙 |𝑓 |𝐻𝑚(Ω),

𝛽𝑘,𝛿,𝑑,𝑓 =
5 ⋅ 2𝑘𝑑 max{

∏𝑑

𝑖=1(𝑏𝑖 − 𝑎𝑖), 𝑑}max{‖𝑓‖𝑊 𝑘,∞(Ω),1}
3𝑑𝛿min{1, 𝐶𝑘,𝑚,𝑑,𝑓 }

.

Moreover, the weights of 𝑓𝑁 scale as 𝑂(𝑁𝛾 +𝑁 ln𝑁) with 𝛾 =max{𝑚2∕𝑛, 𝑑(2 +𝑚 + 𝑑)∕𝑛}.

A.2. Proof of Theorem 4.3 and Theorem 5.4

Proof of Theorem 4.3. By taking the inner product of (38a) and (38b) with 𝑢̂ and 𝑣̂ over 𝐷, respectively, we have

𝑑

2𝑑𝑡 ∫
𝐷

|𝑢̂|2 d𝒙 = ∫
𝐷

𝑢̂𝑣̂d𝒙+ ∫
𝐷

𝑅𝑖𝑛𝑡1𝑢̂d𝒙 ≤ ∫
𝐷

|𝑢̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡1|2 d𝒙+ 1
2 ∫
𝐷

|𝑣̂|2 d𝒙, (70)

𝜀2
𝑑

2𝑑𝑡 ∫
𝐷

|𝑣̂|2 d𝒙
= −𝑎2 ∫

𝐷

∇𝑢̂ ⋅∇𝑣̂d𝒙+ 𝑎2 ∫
𝜕𝐷

𝑣̂∇𝑢̂ ⋅ 𝒏d𝑠(𝒙) − 𝜀21 ∫
𝐷

𝑢̂𝑣̂d𝒙− ∫
𝐷

(𝑔(𝑢𝜃) − 𝑔(𝑢))𝑣̂d𝒙+ ∫
𝐷

𝑅𝑖𝑛𝑡2𝑣̂d𝒙

= −𝑎2 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 𝑎2 ∫
𝐷

∇𝑢̂ ⋅∇𝑅𝑖𝑛𝑡1 d𝒙+ 𝑎2 ∫
𝜕𝐷

𝑅𝑠𝑏∇𝑢̂ ⋅ 𝒏d𝑠(𝒙) − 𝜀21 ∫
𝐷

𝑢̂𝑣̂d𝒙

− ∫
𝐷

(𝑔(𝑢𝜃) − 𝑔(𝑢))𝑣̂d𝒙+ ∫
𝐷

𝑅𝑖𝑛𝑡2𝑣̂d𝒙

≤ −𝑎2 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 𝑎2

2 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 𝑎2

2 ∫
𝐷

|∇𝑅𝑖𝑛𝑡1|2 d𝒙+𝐶𝜕𝐷 ⎛⎜⎜⎝ ∫𝜕𝐷 |𝑅𝑠𝑏|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

+ 1
2
(𝜀21 +𝐿)∫

𝐷

|𝑢̂|2 d𝒙+ 1
2
(𝜀21 +𝐿+ 1)∫

𝐷

|𝑣̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡2|2 d𝒙, (71)

where 𝐶𝜕𝐷 = 𝑎2|𝜕𝐷| 12 (‖𝑢‖𝐶1(𝜕𝐷×[0,𝑇]) + ||𝑢𝜃||𝐶1(𝜕𝐷×[0,𝑇])) and 𝑣̂ = 𝑢̂𝑡 −𝑅𝑖𝑛𝑡1 have been used.

Add (70) to (71), and we get

𝑑

2𝑑𝑡 ∫
𝐷

|𝑢̂|2 d𝒙+ 𝑎2 𝑑

2𝑑𝑡 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 𝜀2 𝑑

2𝑑𝑡 ∫
𝐷

|𝑣̂|2 d𝒙
≤ 1

2
(𝜀21 +𝐿+ 2)∫

𝐷

|𝑢̂|2 d𝒙+ 𝑎2

2 ∫
𝐷

|∇𝑢̂|2 d𝒙+ 1
2
(𝜀21 +𝐿+ 2)∫

𝐷

|𝑣̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑅𝑖𝑛𝑡1|2 d𝒙
+ 1 |𝑅 |2 d𝒙+ 𝑎2 |∇𝑅 |2 d𝒙+𝐶 ⎛⎜ |𝑅 |2 d𝑠(𝒙)⎞⎟

1
2

. (72)
27

2 ∫
𝐷

𝑖𝑛𝑡2 2 ∫
𝐷

𝑖𝑛𝑡1 𝜕𝐷 ⎜⎝ ∫𝜕𝐷 𝑠𝑏 ⎟⎠

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

Integrating (72) over [0, 𝜏] for any 𝜏 ≤ 𝑇 and applying the Cauchy–Schwarz inequality, we obtain

∫
𝐷

|𝑢̂(𝒙, 𝜏)|2 d𝒙+ 𝑎2 ∫
𝐷

|∇𝑢̂(𝒙, 𝜏)|2 d𝒙+ 𝜀2 ∫
𝐷

|𝑣̂(𝒙, 𝜏)|2 d𝒙
≤ ∫
𝐷

|𝑅𝑡𝑏1|2 d𝒙+ 𝑎2 ∫
𝐷

|∇𝑅𝑡𝑏1|2 d𝒙+ 𝜀2 ∫
𝐷

|𝑅𝑡𝑏2|2 d𝒙+ (2 + 𝜀21 +𝐿+ 𝑎2)

𝜏

∫
0

∫
𝐷

(|𝑢̂|2 + |∇𝑢̂|2 + |𝑣̂|2) d𝒙d𝑡

+

𝑇

∫
0

∫
𝐷

(|𝑅𝑖𝑛𝑡1|2 + 𝑎2|∇𝑅𝑖𝑛𝑡1|2 + |𝑅𝑖𝑛𝑡2|2) d𝒙d𝑡+ 2𝐶𝜕𝐷|𝑇 | 12 ⎛⎜⎜⎝
𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

.

Applying the integral form of the Grönwall inequality to the above inequality leads to,

∫
𝐷

|𝑢̂(𝒙, 𝜏)|2 d𝒙+ 𝑎2 ∫
𝐷

|∇𝑢̂(𝒙, 𝜏)|2 d𝒙+ 𝜀2 ∫
𝐷

|𝑣̂(𝒙, 𝜏)|2 d𝒙 ≤ 𝐶𝐺 exp
(
(2 + 𝜀21 +𝐿+ 𝑎2)𝑇

)
, (73)

where

𝐶𝐺 = ∫
𝐷

(|𝑅𝑡𝑏1|2 + 𝑎2|∇𝑅𝑡𝑏1|2 + 𝜀2|𝑅𝑡𝑏2|2) d𝒙+ 𝑇

∫
0

∫
𝐷

(|𝑅𝑖𝑛𝑡1|2 + |𝑅𝑖𝑛𝑡2|2 + 𝑎2|∇𝑅𝑖𝑛𝑡1|2) d𝒙d𝑡

+ 2𝐶𝜕𝐷|𝑇 | 12 ⎛⎜⎜⎝
𝑇

∫
0

∫
𝜕𝐷

|𝑅𝑠𝑏|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

. (74)

Then, we integrate (73) over [0, 𝑇] to end the proof. □

Proof of Theorem 5.4. Taking the 𝐿2 inner product of (49a) and (49b) with 𝒖̂ and 𝒗̂ over 𝐷, respectively, we have

𝑑

2𝑑𝑡 ∫
𝐷

|𝒖̂|2 d𝒙 = ∫
𝐷

𝒖̂𝒗̂d𝒙+ ∫
𝐷

𝑹𝑖𝑛𝑡1𝒖̂d𝒙 ≤ ∫
𝐷

|𝒖̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑹𝑖𝑛𝑡1|2 d𝒙+ 1
2 ∫
𝐷

|𝒗̂|2 d𝒙, (75)

𝜌
𝑑

2𝑑𝑡 ∫
𝐷

|𝒗̂|2 d𝒙 = −2𝜇∫
𝐷

𝜺(𝒖̂) ∶ ∇𝒗̂d𝒙− 𝜆∫
𝐷

(∇ ⋅ 𝒖̂)(∇ ⋅ 𝒗̂) d𝒙+ ∫
𝜕𝐷

(2𝜇𝜺(𝒖̂)𝒏+ 𝜆(∇ ⋅ 𝒖̂)𝒏) ⋅ 𝒗̂d𝑠(𝒙)

+ ∫
𝐷

𝑹𝑖𝑛𝑡2𝒗̂d𝒙

= − 𝑑

𝑑𝑡 ∫
𝐷

𝜇|𝜺(𝒖̂)|2 d𝒙− 𝑑

𝑑𝑡 ∫
𝐷

𝜆

2
|∇ ⋅ 𝒖̂|2 d𝒙+ 2𝜇∫

𝐷

𝜺(𝒖̂) ∶ ∇𝑹𝑖𝑛𝑡1 d𝒙+ 𝜆∫
𝐷

(∇ ⋅ 𝒖̂)(∇ ⋅𝑹𝑖𝑛𝑡1) d𝒙

+ ∫
Γ𝐷

(2𝜇𝜺(𝒖̂)𝒏+ 𝜆(∇ ⋅ 𝒖̂)𝒏) ⋅𝑹𝑠𝑏1 d𝑠(𝒙) + ∫
Γ𝑁

𝑹𝑠𝑏2 ⋅ 𝒗̂d𝑠(𝒙) + ∫
𝐷

𝑹𝑖𝑛𝑡2𝒗̂d𝒙

≤ − 𝑑

𝑑𝑡 ∫
𝐷

𝜇|𝜺(𝒖̂)|2 d𝒙− 𝑑

𝑑𝑡 ∫
𝐷

𝜆

2
|∇ ⋅ 𝒖̂|2 d𝒙+ 𝜇∫

𝐷

|𝜺(𝒖̂)|2 d𝒙+ 𝜇∫
𝐷

|𝜺(𝑹𝑖𝑛𝑡1)|2 d𝒙
+ 𝜆

2 ∫
𝐷

|∇ ⋅𝑹𝑖𝑛𝑡1|d𝒙+ 𝜆

2 ∫
𝐷

|∇ ⋅ 𝒖̂|d𝒙+ 1
2 ∫
𝐷

|𝒗̂|2 d𝒙+ 1
2 ∫
𝐷

|𝑹𝑖𝑛𝑡2|2 d𝒙
+𝐶Γ𝐷

⎛⎜⎜⎝ ∫Γ𝐷 |𝑹𝑠𝑏1|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

+𝐶Γ𝑁

⎛⎜⎜⎝ ∫Γ𝑁 |𝑹𝑠𝑏2|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

. (76)

Here we have used 𝒗̂ = 𝒖̂𝑡 −𝑹𝑖𝑛𝑡1, and the constants are given by 𝐶Γ𝐷 = (2𝜇 + 𝜆)|Γ𝐷| 12 ‖𝒖‖𝐶1(Γ𝐷×[0,𝑇]) + (2𝜇 + 𝜆)|Γ𝐷| 12 ||𝒖𝜃||𝐶1(Γ𝐷×[0,𝑇])

and 𝐶Γ𝑁 = |Γ𝑁 | 12 (‖𝒗‖𝐶(Γ𝑁×[0,𝑇]) + ||𝒗𝜃||𝐶(Γ𝑁×[0,𝑇])).
Add (75) to (76), and we get,

𝑑

2𝑑𝑡 ∫
𝐷

|𝒖̂|2 d𝒙+ 𝑑

𝑑𝑡 ∫
𝐷

𝜇|𝜺(𝒖̂)|2 d𝒙+ 𝑑

2𝑑𝑡 ∫
𝐷

𝜆|∇ ⋅ 𝒖̂|2 d𝒙+ 𝜌 𝑑

2𝑑𝑡 ∫
𝐷

|𝒗̂|2 d𝒙
≤ (|𝒖̂|2 + 𝜇|𝜺(𝒖̂)|2 + 𝜆 |∇ ⋅ 𝒖̂|+ |𝒗̂|2) d𝒙+ 1 (|𝑹 |2 + |𝑹 |2 + 2𝜇|𝜺(𝑹)|2) d𝒙
28

∫
𝐷

2 2 ∫
𝐷

𝑖𝑛𝑡1 𝑖𝑛𝑡2 𝑖𝑛𝑡1

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

+ 𝜆

2 ∫
𝐷

|∇ ⋅𝑹𝑖𝑛𝑡1|d𝒙+𝐶Γ𝐷

⎛⎜⎜⎝ ∫Γ𝐷 |𝑹𝑠𝑏1|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

+𝐶Γ𝑁

⎛⎜⎜⎝ ∫Γ𝑁 |𝑹𝑠𝑏2|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

. (77)

Integrating (77) over [0, 𝜏] for any 𝜏 ≤ 𝑇 and applying Cauchy–Schwarz inequality, we obtain,

∫
𝐷

|𝒖̂(𝒙, 𝜏)|2 d𝒙+ ∫
𝐷

2𝜇|𝜺(𝒖̂(𝒙, 𝜏))|2 d𝒙+ ∫
𝐷

𝜆|∇ ⋅ 𝒖̂(𝒙, 𝜏)|2 d𝒙+ 𝜌∫
𝐷

|𝒗̂(𝒙, 𝜏)|2 d𝒙
≤ ∫
𝐷

|𝑹𝑡𝑏1|2 d𝒙+ ∫
𝐷

2𝜇|𝜺(𝑹𝑡𝑏1)|2 d𝒙+ ∫
𝐷

𝜆|∇ ⋅𝑹𝑡𝑏1|2 d𝒙+ 𝜌∫
𝐷

|𝑹𝑡𝑏2|2 d𝒙
+ (2 + 2𝜇 + 𝜆)

𝜏

∫
0

∫
𝐷

(|𝒖̂|2 + |𝜺(𝒖̂)|2 + |∇ ⋅ 𝒖̂|2 + |𝒗̂|2) d𝒙d𝑡

+

𝑇

∫
0

∫
𝐷

(|𝑹𝑖𝑛𝑡1|2 + 2𝜇|𝜺(𝑹𝑖𝑛𝑡1)|2 + 𝜆|∇ ⋅𝑹𝑖𝑛𝑡1|2 + |𝑹𝑖𝑛𝑡2|2) d𝒙d𝑡

+ 2|𝑇 | 12 𝐶Γ𝐷

⎛⎜⎜⎝
𝑇

∫
0

∫
Γ𝐷

|𝑹𝑠𝑏1|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

+ 2|𝑇 | 12 𝐶Γ𝑁

⎛⎜⎜⎝
𝑇

∫
0

∫
Γ𝑁

|𝑹𝑠𝑏2|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

.

By applying the integral form of the Grönwall inequality to the above inequality, we have

∫
𝐷

(|𝒖̂(𝒙, 𝜏)|2 + 2𝜇|𝜺(𝒖̂(𝒙, 𝜏))|2 + 𝜆|∇ ⋅ 𝒖̂(𝒙, 𝜏)|2 + 𝜌∫
𝐷

|𝒗̂(𝒙, 𝜏)|2) d𝒙 ≤ 𝐶𝐺 exp ((2 + 2𝜇 + 𝜆)𝑇) , (78)

where

𝐶𝐺 = ∫
𝐷

|𝑹𝑡𝑏1|2 d𝒙+ ∫
𝐷

2𝜇|𝜺(𝑹𝑡𝑏1)|2 d𝒙+ ∫
𝐷

𝜆|∇ ⋅𝑹𝑡𝑏1|2 d𝒙+ 𝜌∫
𝐷

|𝑹𝑡𝑏2|2 d𝒙
+

𝑇

∫
0

∫
𝐷

(|𝑹𝑖𝑛𝑡1|2 + 2𝜇|𝜺(𝑹𝑖𝑛𝑡1)|2 + 𝜆|∇ ⋅𝑹𝑖𝑛𝑡1|2 + |𝑹𝑖𝑛𝑡2|2) d𝒙d𝑡

+ 2|𝑇 | 12 𝐶Γ𝐷

⎛⎜⎜⎝
𝑇

∫
0

∫
Γ𝐷

|𝑹𝑠𝑏1|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

+ 2|𝑇 | 12 𝐶Γ𝑁

⎛⎜⎜⎝
𝑇

∫
0

∫
Γ𝑁

|𝑹𝑠𝑏2|2 d𝑠(𝒙) d𝑡⎞⎟⎟⎠
1
2

. (79)

Then, we finish the proof by integrating (78) over [0, 𝑇]. □

References

[1] P.F. Antonietti, I. Mazzieri, High-order discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes, Comput. Methods
Appl. Mech. Eng. 342 (2018) 414–437.

[2] G. Bai, U. Koley, S. Mishra, R. Molinaro, Physics informed neural networks (PINNs) for approximating nonlinear dispersive PDEs, J. Comput. Math. 39 (6) (2021)
816–847.

[3] C. Beck, W. E, A. Jentzen, Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order
backward stochastic differential equations, J. Nonlinear Sci. 29 (4) (2019) 1563–1619.

[4] J. Berner, P. Grohs, A. Jentzen, Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the curse of
dimensionality in the numerical approximation of Black-Scholes partial differential equations, SIAM J. Math. Data Sci. 2 (3) (2020) 631–657.

[5] A. Biswas, J. Tian, S. Ulusoy, Error estimates for deep learning methods in fluid dynamics, Numer. Math. 151 (3) (2022) 753–777.

[6] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys. 420
(2020) 109707.

[7] F. Calabro, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients, Comput. Methods Appl.
Mech. Eng. 387 (2021) 114188.

[8] O. Calin, Deep Learning Architectures – A Mathematical Approach, Springer Series in the Data Sciences, Springer, Cham, 2020.

[9] S. Cuomo, V. Schiano Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine learning through physics-informed neural networks: where we
are and what’s next, J. Sci. Comput. 92 (3) (2022) 88.

[10] E. Cyr, M. Gulian, R. Patel, M. Perego, N. Trask, Robust training and initialization of deep neural networks: an adaptive basis viewpoint, Proc. Mach. Learn. Res.
107 (2020) 512–536.

[11] P. Davis, P. Rabinowitz, Methods of Numerical Integration, Dover Publications, Inc., 2007.

[12] T. De Ryck, A.D. Jagtap, S. Mishra, Error estimates for physics-informed neural networks approximating the Navier–Stokes equations, IMA J. Numer. Anal.
(2023) drac085, https://doi .org /10 .1093 /imanum /drac085.

[13] T. De Ryck, S. Lanthaler, S. Mishra, On the approximation of functions by tanh neural networks, Neural Netw. 143 (2021) 732–750.

[14] T. De Ryck, S. Mishra, Error analysis for physics-informed neural networks (PINNs) approximating Kolmogorov PDEs, Adv. Comput. Math. 48 (6) (2022) 79.
29

[15] M. Dehghan, A. Shokri, Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math. 230 (2009) 400–410.

http://refhub.elsevier.com/S0021-9991(23)00622-8/bib3875E9F4B14CBAF43ED6045624EEE954s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib3875E9F4B14CBAF43ED6045624EEE954s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib2D89E76E02D8ED92575D6C1C75189757s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib2D89E76E02D8ED92575D6C1C75189757s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibD98D91CACD9DA3EFA0DF1E0F0619C91Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibD98D91CACD9DA3EFA0DF1E0F0619C91Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibC354FC723FFD008035FEA30B62ACAAEEs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibC354FC723FFD008035FEA30B62ACAAEEs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib68CAC9913E82B71213A1A7D12BA34A4Ds1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib60D679388F58522DBCB2A6E5806A9BDFs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib60D679388F58522DBCB2A6E5806A9BDFs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibC3D1DAD507FCA92D7AB23BD2288EFB9Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibC3D1DAD507FCA92D7AB23BD2288EFB9Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibF5B1971D5634E21F718539F914A5C18Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibAA753FCABBAC3943AFF44FEAB391F7B8s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibAA753FCABBAC3943AFF44FEAB391F7B8s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibEB3F7445777BB24220BEC3E58CF70176s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibEB3F7445777BB24220BEC3E58CF70176s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib3AEE17D39C6CBC32BE6D1D39EAF6E1F4s1
https://doi.org/10.1093/imanum/drac085
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibE7BCD4261731A57C47CD4CBF58CA85BEs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibDF55551E096857EC89C7E694733D6508s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibC6EA54189D92A8D515CE031AEFC97DF8s1

Journal of Computational Physics 495 (2023) 112527Y. Qian, Y. Zhang, Y. Huang et al.

[16] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations, Comput. Methods
Appl. Mech. Eng. 387 (2021) 114129, also arXiv :2012 .02895.

[17] S. Dong, Z. Li, A modified batch intrinsic plasticity method for pre-training the random coefficients of extreme learning machines, J. Comput. Phys. 445 (2021)
110585.

[18] S. Dong, N. Ni, A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural networks, J. Comput. Phys.
435 (2021) 110242.

[19] S. Dong, Y. Wang, A method for computing inverse parametric PDE problems with randomized neural networks, J. Comput. Phys. 489 (2023) 112263, also
arXiv :2210 .04338.

[20] S. Dong, J. Yang, Numerical approximation of partial differential equations by a variable projection method with artificial neural networks, Comput. Methods
Appl. Mech. Eng. 398 (2022) 115284, also arXiv :2201 .09989.

[21] S. Dong, J. Yang, On computing the hyperparameter of extreme learning machines: algorithms and applications to computational PDEs, and comparison with
classical and high-order finite elements, J. Comput. Phys. 463 (2022) 111290, also arXiv :2110 .14121.

[22] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.

[23] D. Elbrächter, D. Perekrestenko, P. Grohs, H. Bölcskei, Deep neural network approximation theory, IEEE Trans. Inf. Theory 67 (5) (2021) 2581–2623.

[24] G. Fabiani, F. Calabro, L. Russo, C. Siettos, Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines,
J. Sci. Comput. 89 (2021) 44.

[25] J. He, J. Xu, MgNet: a unified framework for multigrid and convolutional neural network, Sci. China Math. 62 (2019) 1331–1354.

[26] R. Hu, Q. Lin, R. Alan, S. Tang, Higher-order error estimates for physics-informed neural networks approximating the primitive equations, arXiv :2209 .11929.

[27] Z. Hu, A.D. Jagtap, G.E. Karniadakis, K. Kawaguchi, When do extended physics-informed neural networks (XPINNs) improve generalization?, SIAM J. Sci.
Comput. 44 (5) (2022) A3158–A3182.

[28] Z. Hu, C. Liu, Y. Wang, Z. Xu, Energetic variational neural network discretizations to gradient flows, arXiv :2206 .07303.

[29] T.J.R. Hughes, J.E. Marsden, Classical elastodynamics as a linear symmetric hyperbolic system, J. Elast. 8 (1) (1978) 97–110.

[30] A. Jagtap, G. Karniadakis, Extended physics-informed neural network (XPINNs): a generalized space-time domain decomposition based deep learning framework
for nonlinear partial differential equations, Commun. Comput. Phys. 28 (2020) 2002–2041.

[31] A. Jagtap, E. Kharazmi, G. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and
inverse problems, Comput. Methods Appl. Mech. Eng. 365 (2020) 113028.

[32] G. Karniadakis, G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (2021) 422–440.

[33] D.P. Kingma, J. Ba Adam, A method for stochastic optimization, arXiv preprint, arXiv :1412 .6980.

[34] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, M. Mahoney, Characterizing possible failure modes in physics-informed neural networks, Adv. Neural Inf. Process.
Syst. 34 (2021) 26548–26560.

[35] K. Kubota, K. Yokoyama, Global existence of classical solutions to systems of nonlinear wave equations with different speeds of propagation, Jpn. J. Math. 27 (1)
(2001) 113–202.

[36] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444.

[37] L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, DeepXDE: a deep learning library for solving differential equations, SIAM Rev. 63 (1) (2021) 208–228.

[38] S. Mishra, R. Molinaro, Physics informed neural networks for simulating radiative transfer, J. Quant. Spectrosc. Radiat. Transf. 270 (2021) 107705.

[39] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs, IMA
J. Numer. Anal. 42 (2) (2022) 981–1022.

[40] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating PDEs, IMA J. Numer. Anal. 43 (1) (2023)
1–43.

[41] S. Mishra, T.K. Rusch, Enhancing accuracy of deep learning algorithms by training with low-discrepancy sequences, SIAM J. Numer. Anal. 59 (3) (2021)
1811–1834.

[42] P. Niyogi, F. Girosi, Generalization bounds for function approximation from scattered noisy data, Adv. Comput. Math. 10 (1) (1999) 51–80.

[43] J. Nocedal, S.J. Wright, Numerical Optimization, second edn., Springer, New York, 2006.

[44] M. Penwarden, A. Jagtap, S. Zhe, G. Karniadakis, R. Kirby, A unified scalable framework for causal sweeping strategies for physics-informed neural networks
(PINNs) and their temporal decompositions, arXiv :2302 .14227.

[45] A.F. Psaros, K. Kawaguchi, G.E. Karniadakis, Meta-learning PINN loss functions, J. Comput. Phys. 458 (2022) 111121.

[46] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[47] J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differ. Equ. 46 (3) (1982) 409–425.

[48] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math. 38 (5) (1985) 685–696.

[49] Y. Shin, J. Darbon, G.E. Karniadakis, On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs, Commun.
Comput. Phys. 28 (5) (2020) 2042–2074.

[50] Y. Shin, Z. Zhang, G.E. Karniadakis, Error estimates of residual minimization using neural networks for linear PDEs, arXiv :2010 .08019.

[51] J. Siegel, Q. Hong, X. Jin, W. Hao, J. Xu, Greedy training algorithms for neural networks and applications to PDEs, arXiv :2107 .04466.

[52] J. Sirignano, K. Spoliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.

[53] A. Tartakovsky, C. Marrero, P. Perdikaris, G. Tartakovsky, D. Barajas-Solano, Physics-informed deep neural networks for learning parameters and constitutive
relationships in subsurface flow problems, Water Resour. Res. 56 (2020) e2019WR026731.

[54] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edn., Springer-Verlag, New York, 1997.

[55] X. Wan, S. Wei, VAE-KRnet and its applications to variational Bayes, Commun. Comput. Phys. 31 (2022) 1049–1082.

[56] B. Wang, Classical global solutions for non-linear Klein-Gordon-Schrödinger equations, Math. Methods Appl. Sci. 20 (7) (1997) 599–616.

[57] S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: a neural tangent kernel perspective, J. Comput. Phys. 449 (2022) 110768.

[58] Y. Wang, G. Lin, Efficient deep learning techniques for multiphase flow simulation in heterogeneous porous media, J. Comput. Phys. 401 (2020) 108968.

[59] K. Yosida, Functional Analysis, sixth edn., vol. 123, Springer-Verlag, Berlin-New York, 1980.

[60] U. Zerbinati, PINNs and GaLS: a priori error estimates for shallow physics informed neural networks applied to elliptic problems, IFAC-PapersOnLine 55 (20)
30

(2022) 61–66.

http://refhub.elsevier.com/S0021-9991(23)00622-8/bib3A718C13ECA39B9B7A4078B63E6FCDB6s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib3A718C13ECA39B9B7A4078B63E6FCDB6s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibE8E82CD422F4829349A44902D95CDB32s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibE8E82CD422F4829349A44902D95CDB32s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibEAB45161C115BDFF9BBBD6293B35F88As1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibEAB45161C115BDFF9BBBD6293B35F88As1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib0B0A3DB3726F1CD2B84C6D4CC5F7AC8Fs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib0B0A3DB3726F1CD2B84C6D4CC5F7AC8Fs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib99B1FF21133B44C51ED87AD742D9BC45s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib99B1FF21133B44C51ED87AD742D9BC45s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibB08018251A33786556BB878B03F637A4s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibB08018251A33786556BB878B03F637A4s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib6803099AB56151B697399F27AA7FA61Bs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib29C914CAFBB4552419CF03307206085Fs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib3F0D39EEAA76FD2046745CC7F3BB60C3s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib3F0D39EEAA76FD2046745CC7F3BB60C3s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibD593559529AC27243F9554C5BEBA979Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibF8497014FAB81C65B1BED5EF40BFCB98s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib4563D12DEB5A014CCE62AB62A7410070s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib4563D12DEB5A014CCE62AB62A7410070s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib9F276507A86D6EE16791B0FFB69D3B46s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib08BFE0958C6F12C907C2713A2E056C83s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib98CA47B06F39C92FD5063F220F7EFE8Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib98CA47B06F39C92FD5063F220F7EFE8Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibE9D3D92A6F7813D4489CCC1B87834B6As1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibE9D3D92A6F7813D4489CCC1B87834B6As1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib6C27A6F2C0614A88F7367DEA28A915DBs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibED4955BBB228DF00982FC295E655E1C5s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibED4955BBB228DF00982FC295E655E1C5s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib22BC3EC592DE07D20294523464666D62s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib22BC3EC592DE07D20294523464666D62s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib108D6C3326830365CB03DF3B6713EC8Cs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib9E5ACF8CEAEFFDD1B13E0A96DC193302s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib7CD50FB3A3023FF88E3E03BCD13C3DAAs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib0502F0384B8AC442D2C53CB2FC140280s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib0502F0384B8AC442D2C53CB2FC140280s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib860117C2307A933811C1A5F01018FF3Bs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib860117C2307A933811C1A5F01018FF3Bs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib8643EC035A1B6FB0EFAA6A23F4C93E04s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib8643EC035A1B6FB0EFAA6A23F4C93E04s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib02088AE53B1539AE7953CBB17ECAC347s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib80E45146C9D5A0246AC8122C7E71D030s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib8D94F4C6034D46DDFC34925B78ECFE40s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib8D94F4C6034D46DDFC34925B78ECFE40s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibC4594204562EE274A774383EE727E910s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib28484161E79E90E50C2E2426452BBC64s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib28484161E79E90E50C2E2426452BBC64s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib555691B25480FF8DFD92AF8E8A8F2704s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib9C2945C10D0980299D3BD775B392AE83s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib90B084DCA8F7E11E885C136D42E527B2s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib90B084DCA8F7E11E885C136D42E527B2s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibC8513FC4B2D6E0ED97158739C280E6FCs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibF894C4D9D5236E3A0DFD4FDF24D69F74s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib42B836C288A0B549BE6070E1B605BB69s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib531335B5A5EA685BDE007C9D871DC18Bs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib531335B5A5EA685BDE007C9D871DC18Bs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibD13458766B3F3A38C42547B54E0F2BEEs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib496FC8CA675D115041CFFA76ED6BF6D8s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bibF45295E08CFA3EAD33405CBB324D4A2Ds1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib45CDC1F6C853DF5A68F0D8530BF6F654s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib07511CF696DF1EB070CFFE1E244CA1BFs1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib3257A9BA515EA46C1924193CD2859689s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib38659DE4A274E39D49D75EA58D3512A2s1
http://refhub.elsevier.com/S0021-9991(23)00622-8/bib38659DE4A274E39D49D75EA58D3512A2s1

	Physics-informed neural networks for approximating dynamic (hyperbolic) PDEs of second order in time: Error analysis and al...
	1 Introduction
	2 Physics informed neural networks (PINN) for approximating PDEs
	2.1 Generic PDE of second order in time
	2.2 Neural network representation of a function
	2.3 Physics informed neural network for initial/boundary value problem
	2.4 Numerical quadrature rules

	3 Physics informed neural networks for approximating the wave equation
	3.1 Wave equation
	3.2 Physics informed neural networks
	3.3 Error analysis
	3.3.1 Bound on the residuals
	3.3.2 Bounds on the total approximation error

	4 Physics informed neural networks for approximating the nonlinear Klein-Gordon equation
	4.1 Nonlinear Klein-Gordon equation
	4.2 Physics informed neural networks
	4.3 Error analysis

	5 Physics informed neural networks for approximating linear elastodynamic equation
	5.1 Linear elastodynamic equation
	5.2 Physics informed neural networks
	5.3 Error analysis

	6 Numerical examples
	6.1 Wave equation
	6.2 Sine-Gordon equation
	6.3 Linear elastodynamic equation

	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Auxiliary results and proofs of theorems from Sections 4 and 5
	A.1 Some auxiliary results
	A.2 Proof of Theorem 4.3 and Theorem 5.4

	References

