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We present a generalized form of open boundary conditions, and an associated numerical 
algorithm, for simulating incompressible flows involving open or outflow boundaries. The 
generalized form represents a family of open boundary conditions, which all ensure the 
energy stability of the system, even in situations where strong vortices or backflows 
occur at the open/outflow boundaries. Our numerical algorithm for treating these open 
boundary conditions is based on a rotational pressure correction-type strategy, with a 
formulation suitable for C0 spectral-element spatial discretizations. We have introduced 
a discrete equation and associated boundary conditions for an auxiliary variable. The 
algorithm contains constructions that prevent a numerical locking at the open/outflow 
boundary. In addition, we have developed a scheme with a provable unconditional stability 
for a sub-class of the open boundary conditions. Extensive numerical experiments have 
been presented to demonstrate the performance of our method for several flow problems 
involving open/outflow boundaries. We compare simulation results with the experimental 
data to demonstrate the accuracy of our algorithm. Long-time simulations have been 
performed for a range of Reynolds numbers at which strong vortices or backflows occur 
at the open/outflow boundaries. We show that the open boundary conditions and the 
numerical algorithm developed herein produce stable simulations in such situations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Outflows or open boundaries are a crucial issue to incompressible flow simulations. Many types of flows, such as wakes, 
jets and shear layers, involve physically unbounded domains. To numerically simulate such problems, it is necessary to 
artificially truncate the domain to finite sizes. Therefore, some open boundary condition (OBC) will be required at the 
artificial boundary [75]. Open boundary conditions are also referred to as outflow boundary conditions or artificial boundary 
conditions in the literature. These boundary conditions have been under intensive studies by the community for decades, 
and a large volume of work has been accumulated. Some of the desirable features of an ideal method are summarized in 
e.g. [69]. A review of the status of the field up to the mid-1990s can be found in [69,25]; see also the references therein. 
Among the existing techniques the traction-free boundary condition or its variants (e.g. no-flux condition) [72,23,17,49,4,
69,29,50] and the convective boundary condition [61,25,43,60,20,68,10] are some of the most commonly used. A variety 
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of other methods have been contributed by various researchers; see e.g. [62,38,39,35,26,66,21,34,59,58,27,44,65,64], among 
others. Discussion of outflow conditions for incompressible two-phase flows has also appeared; see e.g. [12].

A commonly-encountered issue with outflows is the numerical instability associated with strong vortices or backflows 
at the open/outflow boundaries. It is often referred to as the backflow instability. When strong vortices or backflows occur 
at the open boundaries, the computation is observed to instantly become unstable (see e.g. [13,15], among others). If the 
Reynolds number is low, the presence of a certain amount of backflow or vortices at the open/outflow boundary usually 
does not cause difficulty. But when the Reynolds number increases beyond some moderate value, typically about several 
hundred to a thousand depending on the flow geometry, this numerical instability becomes a severe issue for simulations. 
It is observed that reducing the time step size or increasing the grid resolution does not help with this instability.

In production simulations a usual remedy for this problem is to employ a large computational domain for a given 
Reynolds number to be simulated, such that the outflow boundary can be placed far downstream and sufficiently away 
from the region of interest [15]. As a result, the vortices generated in the region of interest can be sufficiently dissipated 
before reaching the outflow boundary for the given Reynolds number. At high Reynolds numbers, the domain size essen-
tial for numerical stability can become very substantial [15]. As pointed out by [14], the drawback here is that the large 
computational domain requires larger meshes and induces increased computational costs. In addition, this strategy is not 
scalable with respect to the Reynolds number, because the domain size essential for numerical stability grows with increas-
ing Reynolds number.

In the literature there exist several open boundary conditions that are effective for coping with the backflow instability. 
The earliest one appears to be from [8]; see also [9]. Based on a symmetrization of the nonlinear term and the weak form 
of the incompressible Navier–Stokes equation, a modified traction condition containing a term with the form (n denoting 
the directional vector at boundary and u denoting the velocity)

1

2
(n · u)−u, where (n · u)− =

{
n · u, if n · u < 0
0, otherwise

(1)

was imposed on the outflow boundary in [8]. Note that the original form given in [8] includes a base velocity profile that 
is assumed to be known. This form of the open boundary condition has also appeared in later works by other researchers; 
see e.g. [48] among others. In [2,54,24,37], the traction in the open boundary condition contains a term with a similar form, 
(n · u)−u, but without the 1

2 factor compared to [8]. Note that in [2] the boundary conditions are given separately in the 
normal and tangential directions, and in [54] a form β(n · u)−u, where 0 < β < 1 is a constant, has also been considered. 
Based on the energy balance relation of the system, an open boundary condition is recently proposed in [14], which contains 
a term of the form, 1

2 |u|2 n�0(n · u), where �0(n · u) is a smoothed step function about n · u (see also Section 2.1), and 
|u| denotes the magnitude of the velocity. While the function �0(n · u) plays a role comparable to that of (n · u)− defined 
in (1), the form 1

2 |u|2 n from [14] is very different from those involving (n · u)u by the other researchers [8,2,54,24,37]. 
Another open boundary condition is proposed in a recent study [5], in which the tangential velocity derivative at the open 
boundary is penalized to allow for an improved energy balance.

In the current paper, we present a generalized form of the open boundary conditions that ensure the energy stability of 
the system. The generalized form represents a family of open boundary conditions. It contains the open boundary conditions 
of [8,2,24,37,14] as particular cases. In addition, it also provides new forms of energy-stable open boundary conditions. 
We further present an algorithm for numerically treating the generalized open boundary conditions based on a pressure 
correction-type strategy. It is noted that in [14] a splitting scheme based on a rotational velocity correction-type strategy [32,
16] has been developed for dealing with the proposed open boundary condition therein. The numerical algorithm developed 
in the current work is based on a different strategy, and has a different algorithmic formulation. We refer to [30] and the 
references therein for a review of the pressure-correction idea and an exposition of related concepts. The main algorithm 
in the current paper is semi-implicit and conditionally stable in nature. In addition, we also present a rotational pressure 
correction scheme with a provable unconditional stability for a sub-class of the generalized open boundary conditions.

The novelties of this paper lie in three aspects: (i) the generalized form of energy-stable open boundary conditions, 
(ii) the rotational pressure correction-type algorithm for treating the proposed open boundary conditions, and (iii) the 
unconditionally stable scheme for a sub-class of the open boundary conditions.

We employ C0 spectral elements [70,42,80] for spatial discretizations in the current paper. The algorithmic formulation 
presented here without change also applies to low-order finite elements. It should be noted that the open boundary con-
ditions and the numerical algorithm for treating these boundary conditions developed herein are general, and can also be 
used with other spatial discretizations such as finite difference and finite volume.

2. Open boundary conditions and algorithm

2.1. A generalized form of open boundary conditions

Let � denote the flow domain in two or three dimensions (2-D or 3-D), and ∂� denote the domain boundary. We 
consider the incompressible flow contained within �, which is described by the normalized incompressible Navier–Stokes 
equations:
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∂u

∂t
+ u · ∇u = −∇p + ν∇2u + f, (2a)

∇ · u = 0, (2b)

where u(x, t) is the velocity, p(x, t) is pressure, f(x, t) is an external body force, and x and t are respectively the spatial co-
ordinate and time. ν = 1

Re is the non-dimensional fluid viscosity, and Re is the Reynolds number defined after appropriately 
choosing a characteristic velocity scale and a characteristic length scale.

Let us assume that ∂� = ∂�d ∪ ∂�o , and ∂�d ∩ ∂�o = ∅. ∂�d is the Dirichlet boundary, on which the velocity is known,

u = w(x, t), on ∂�d, (3)

where w is the boundary velocity. On ∂�o neither the velocity u nor the pressure p is known. We will refer to ∂�o as the 
open (or outflow) boundary hereafter in the paper.

We consider the following boundary conditions for the open boundary ∂�o ,

OBC-A: −pn + νn · ∇u − 1

4

[
|u|2 n + (n · u)u

]
�0(n,u) = fb(x, t), on ∂�o, (4)

OBC-B: −pn + νn · ∇u −
(
|u|2 n

)
�0(n,u) = fb(x, t), on ∂�o, (5)

OBC-C: −pn + νn · ∇u − 1

2

[
|u|2 n + (n · u)u

]
�0(n,u) = fb(x, t), on ∂�o, (6)

where n is the outward-pointing unit vector normal to ∂�o , and |u| is the magnitude of the velocity u. fb is a function 
on ∂�o for the purpose of numerical testing only, and will be set to fb = 0 in actual simulations. �0 is a smoothed step 
function given by

�0(n,u) = 1

2

(
1 − tanh

n · u

δU0

)
(7)

where U0 is the characteristic velocity scale, and δ is a non-dimensional positive constant that is sufficiently small. The 
parameter δ controls the sharpness of the smoothed step function, and it is sharper if δ is smaller. As δ → 0, �0(n, u)

approaches the step function. When δ is sufficiently small, �0(n, u) takes essentially the unit value where n · u < 0 and 
vanishes otherwise. The simulation result is not sensitive to δ when it is sufficiently small; see [14].

In addition, we also consider the following conditions:

OBC-D: −pn + νn · ∇u − [(n · u)u] �0(n,u) = fb(x, t), on ∂�o, (8)

OBC-E: −pn + νn · ∇u −
(

1

2
|u|2 n

)
�0(n,u) = fb(x, t), on ∂�o, (9)

OBC-F: −pn + νn · ∇u −
[

1

2
(n · u)u

]
�0(n,u) = fb(x, t), on ∂�o, (10)

where the boundary condition (9) is developed in [14]. The condition (8) is a modified form for that of [2,24,37]. The 
condition (10) is a modified form based on that of [8].

These conditions belong to the following generalized form of open boundary condition

−pn + νn · ∇u −
[
(θ + α2)

1

2
|u|2 n + (1 − θ + α1)

1

2
(n · u)u

]
�0(n,u) = fb(x, t), on ∂�o, (11)

where θ , α1 and α2 are chosen constants satisfying the conditions

0 � θ � 1, α1 � 0, α2 � 0. (12)

For example, OBC-A corresponds to (11) with (θ, α1, α2) =
(

1
2 ,0,0

)
, OBC-B corresponds to (11) with (θ, α1, α2) = (1,0,1), 

and OBC-C corresponds to (11) with (θ, α1, α2) = (1,1,0). OBC-D, OBC-E and OBC-F respectively correspond to (11) with 
(θ, α1, α2) = (0,1,0), (θ, α1, α2) = (1,0,0) and (θ, α1, α2) = (0,0,0).

The generalized boundary condition (11) with fb = 0 represents a stress balance on the outflow boundary ∂�o , as 
elaborated in [14] with the OBC-E condition. The first two terms on the left hand side (LHS) can be considered as the 
fluid stress on the boundary. The term involving �0 is a linear combination of two effective stress forms. The term 1

2 |u|2n
denotes an effective stress induced by the flux of kinetic energy through ∂�o , as discussed in [14]. The term 1

2 (n · u)u

represents another effective stress similar in meaning, as 
[

1
2 (n · u)u

]
· u similarly denotes the kinetic energy flux through 

the outflow boundary. If backflow occurs on ∂�o , i.e. n · u < 0, the generalized boundary condition (11) requires that in the 
backflow regions the fluid stress should locally balance the linearly combined form of these two effective stresses.

The boundary condition (11) is in turn a special case of the following more general form of open boundary condition
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−pn + νn · ∇u −
[
θ

1

2
|u|2 n + (1 − θ)

1

2
(n · u)u

+ β(n,u)n × u − C1(n,u)u + C2(n,u)n
]
�0(n,u) = fb(x, t), on ∂�o, (13)

where β(n, u) is an arbitrary scalar function or constant, while C1(n, u) � 0 and C2(n, u) � 0 are two non-negative scalar 
functions or constants. The boundary condition (11) is obtained from (13) by letting β(n, u) = 0, C1(n, u) = −α1

2 (n · u)

(α1 � 0), and C2(n, u) = α2
2 |u|2 (α2 � 0).

To understand the rationale underlying these boundary conditions, we consider the energy-balance equation for the 
system (2a)–(2b),

∂

∂t

∫
�

1

2
|u|2 = −ν

∫
�

‖∇u‖2 +
∫
�

f · u +
∫

∂�d

(
n · T · u − 1

2
|u|2 n · u

)
+

∫
∂�o

(
n · T · u − 1

2
|u|2 n · u

)
, (14)

where T = −pI + ν∇u (I is the identity tensor). We assume fb = 0 in (13) and that δ → 0 in the smoothed step function 
�0(n, u). Employing boundary condition (13), one can then get

n · T · u − 1

2
|u|2 n · u = (−pn + νn · ∇u) · u − 1

2
|u|2 n · u

=
{ −C1 |u|2 + C2 (n · u) , if n · u < 0,

− 1
2 |u|2 (n · u) , if n · u � 0,

on ∂�o, as δ → 0. (15)

Therefore, with the boundary condition (13), the last surface integral over the open boundary ∂�o in the energy balance 
equation (14) will always be non-positive if δ is sufficiently small. This ensures the energy stability of the system (in the 
absence of external forces), even if there exists backflow or energy influx (i.e. n · u < 0) into the domain through the open 
boundary ∂�o . It should be noted that these boundary conditions are given in the reference frame in which the domain �
is fixed in time. They are not for arbitrary reference frames.

Apart from the boundary conditions, we assume the following initial condition for the velocity

u(x, t = 0) = uin(x), (16)

where uin is the initial velocity field satisfying Eq. (2b) and compatible with the boundary condition (3).
The governing equations (2a) and (2b), supplemented by the boundary condition (3) on ∂�d and an open boundary con-

dition (among Eqs. (4)–(6), or (8)–(10), or (11)) on ∂�o , together with the initial condition (16) for the velocity, constitute 
the system to be solved in numerical simulations.

2.2. Algorithm formulation

In this section we present an algorithm based on a pressure correction-type strategy for solving the governing equations 
together with the boundary conditions discussed above. Our emphasis here is on the numerical treatment of the open 
boundary conditions.

To facilitate subsequent discussions, we re-write the open boundary condition (11) in a more compact form as follows:

−pn + νn · ∇u − E(n,u) = fb(x, t), on ∂�o, (17)

where

E(n,u) =
[
(θ + α2)

1

2
|u|2 n + (1 − θ + α1)

1

2
(n · u)u

]
�0(n,u). (18)

The system to solve consists of Eqs. (2a) and (2b), together with the boundary conditions (3) and (17).
Let n (n � 0) denote the time step index, and (·)n denote the variable (·) at time step n. We use ũn and un to denote 

two slightly different approximations of the velocity u at step n. Define

ũ0 = uin, u0 = uin. (19)

Let H1
p0(�) = {

v ∈ H1(�) : v|∂�o = 0
}

. By enforcing Eq. (2a) at t = 0 and using Eqs. (2b) and (3), we obtain an equation 
in weak form about the initial pressure p0,∫

�

∇p0 · ∇q =
∫
�

(
f0 − uin · ∇uin

)
· ∇q − ν

∫
∂�d∪∂�o

n × (∇ × uin) · ∇q −
∫

∂�d

n · ∂w

∂t

∣∣∣∣
0

q, ∀q ∈ H1
p0(�), (20)

where q is a test function and n is the outward-pointing unit vector normal to ∂�. ∂w
∂t

∣∣0
denotes ∂w

∂t at time step zero, and 
can be approximated discretely (e.g. by the second-order backward differentiation formula) because the boundary velocity 
w(x, t) is known on ∂�d . This equation can be solved for p0, together with the following pressure Dirichlet condition
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p0 = νn · ∇uin · n − n · E(n,uin) − f0
b · n, on ∂�o. (21)

Given (ũn , un , pn), we compute (ũn+1, pn+1, un+1), together with an auxiliary scalar field variable φn+1, successively in 
a de-coupled fashion as follows:
For ũn+1:

γ0ũn+1 − û

�t
+ ũ∗,n+1 · ∇ũ∗,n+1 + ∇pn − ν∇2ũn+1 = fn+1, (22a)

ũn+1 = wn+1, on ∂�d, (22b)

n · ∇ũn+1 = 1

ν

[
p∗,n+1n + E(n, ũ∗,n+1) + fn+1

b

]
, on ∂�o. (22c)

For φn+1:

γ0

�t
φn+1 − ν∇2φn+1 = ∇ ·

[
fn+1 − ũ∗,n+1 · ∇ũ∗,n+1 − ∇pn

]
, (23a)

n · ∇φn+1 = 1

ν
n · γ0wn+1 − ŵ

�t
− 1

ν
n ·

[
fn+1 − ũ∗,n+1 · ∇ũ∗,n+1 − ∇pn

]
+ n · ∇ × ω̃n+1

, on ∂�d, (23b)

φn+1 = ∇ · ũn+1, on ∂�o. (23c)

For pn+1:

γ0un+1 − γ0ũn+1

�t
+ ∇

(
pn+1 − pn + νφn+1

)
= 0, (24a)

∇ · un+1 = 0, (24b)

n · un+1 = n · wn+1, on ∂�d, (24c)

pn+1 = νn · ∇ũn+1 · n − n · E
(

n, ũn+1
)

− fn+1
b · n − νφn+1, on ∂�o. (24d)

For un+1:

un+1 = ũn+1 − �t

γ0
∇

(
pn+1 − pn + νφn+1

)
. (25)

The meanings of the symbols involved in the above Eqs. (22a)–(25) are as follows. �t denotes the time step size. Let J
( J = 1 or 2) denote the temporal order of the scheme. Then ũ∗,n+1 and p∗,n+1 respectively denote the J -th order explicit 
approximations of ũn+1 and pn+1, given by

ũ∗,n+1 =
{

ũn, J = 1,

2ũn − ũn−1, J = 2,
p∗,n+1 =

{
pn, J = 1,

2pn − pn−1, J = 2.
(26)

û and the constant γ0 are given by

û =
{

un, J = 1,

2un − 1
2 un−1, J = 2,

γ0 =
{

1, J = 1,
3
2 , J = 2.

(27)

w is the boundary velocity on ∂�d , and ŵ is defined in the same way as û defined above. The auxiliary variable φn+1

represents an approximation of the quantity ∇ · ũn+1. n is the outward-pointing unit vector normal to the boundary. ω̃n+1

denotes the vorticity, ω̃n+1 = ∇ × ũn+1. E(n, u) is defined in Eq. (18).
One can recognize that the overall structure of the above algorithm resembles a rotational incremental pressure 

correction-type strategy (see [30]). Two features distinguish the above scheme from the usual pressure correction formula-
tions. One feature lies in the introduction of Eq. (23a) for the variable φn+1 and the associated boundary conditions (23b)
and (23c). One can note that this equation for φn+1 exists only in the discrete sense, and it differs from the dynamic equa-
tion about ∇ · u at the continuum level. Another aspect that this scheme differs from the usual formulation lies in the form 
of the second term on the left hand side (LHS) of Eq. (24a). This form allows us to compute the pressure pn+1 directly 
in the H1(�) space. On the other hand, one notes that with the usual rotational pressure-correction formulation [73,30]
the pressure pn+1 resides in the L2(�) space. More importantly, this form allows for a straightforward discrete pressure 
condition (see (24d)) on the open domain boundary. We would like to point out that the purpose of Eq. (25) is for the 
evaluation of un+1 in the L2(�) space, not for the projection to the H1(�) space.

We briefly mention some variants to the treatment of the governing equations. An alternative to the φn+1 step 
(Eqs. (23a)–(23c)) of the above algorithm is the following,

φn+1 = ∇ · ũn+1. (28)
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This amounts to a projection of ∇ · ũ to the H1(�) space, and requires the solution of a linear algebraic system involving 
the global mass matrix. The computational costs for solving (28) and for solving (23a)–(23c) are comparable. However, 
we observe that the algorithm using Eqs. (23a)–(23c) provides consistently improved accuracy for the pressure than that 
using (28). In Eqs. (23a)–(23b), replacing ũ∗,n+1 · ∇ũ∗,n+1 by ũn+1 · ∇ũn+1 makes little difference in terms of stability and 
accuracy in numerical simulations. However, it increases the computational cost to a certain extent because of the need for 
the extra computation of ũn+1 · ∇ũn+1.

Let us now comment on the numerical treatments of the boundary conditions. In the velocity substep for ũn+1, we have 
imposed a velocity Neumann-type condition (22c) on ∂�o , which is derived from the open boundary condition (17). The 
pressure and velocity are treated explicitly in this Neumann condition. A variant form for the velocity Neumann condition 
(22c) is

n · ∇ũn+1 = 1

ν

[
pnn + E(n, ũ∗,n+1) + fn+1

b

]
, on ∂�o, (29)

which is also observed to be stable. When solving for φn+1, we have imposed a Neumann-type condition (23b) on ∂�d
and Dirichlet-type condition (23c) on ∂�o . In the pressure substep for pn+1, a pressure Dirichlet-type condition (24d) has 
been imposed on the open boundary ∂�o . This pressure condition is essentially obtained from the open boundary condition 
(17), by taking the inner product between this equation and n, and it contains an extra term −νφn+1. The velocity in the 
pressure Dirichlet condition is approximated using ũn+1 computed from a previous substep. A variant form of the pressure 
Dirichlet condition (24d) is the following,

pn+1 = νn · ∇ũn+1 · n − n · E
(

n, ũn+1
)

− fn+1
b · n − ν∇ · ũn+1, on ∂�o, (30)

which is also observed to be stable. Note that the discrete formulations (24d) and (30) are numerically not equivalent, 
because of the need for a projection to the H1(∂�o) space (to be discussed below) when imposing the Dirichlet condition 
(23c) for φn+1 on ∂�o .

The construction −νφn+1 in (24d) (or −ν∇ · ũn+1 in (30)) is crucial to the current algorithm. If this term is absent, 
assuming fb = 0 and that no backflow occurs at the outflow boundary (i.e. n · u � 0), then by combining Eqs. (22c) and 
(24d) one can show that

pn+1|∂�o = pn|∂�o = · · · = p0|∂�o , n · ∇ũn+1|∂�o = n · ∇ũn|∂�o = · · · = n · ∇ũ0|∂�o , (31)

leading to a numerical locking at the open boundary ∂�o .

2.3. Implementation with C0 spectral elements

We employ high-order spectral element methods [70,42,80] for spatial discretizations in the current paper. Let us next 
discuss how to implement the algorithm, (22a)–(25), using C0-continuous spectral elements. The formulations given below 
without change can also be applied to low-order finite element methods.

The main issues are posed by the terms such as ∇ · (ũ∗,n+1 · ∇ũ∗,n+1
)

in (23a) and ∇ × ω̃n+1 in (23b), which cannot be 
readily computed in the discrete function space with C0 elements. We will derive the weak formulations for the algorithm, 
and in the process treat the trouble terms in an appropriate fashion.

Let H1
u0(�) = {

v ∈ H1(�) : v|∂�d
= 0

}
, and ϕ ∈ H1

u0(�) denote the test function. By taking the L2 inner product be-
tween ϕ and Eq. (22a), and integrating by part, on can obtain the weak form for ũn+1,

γ0

ν�t

∫
�

ϕũn+1 +
∫
�

∇ϕ · ∇ũn+1

= 1

ν

∫
�

[
fn+1 − ũ∗,n+1 · ∇ũ∗,n+1 − ∇pn + û

�t

]
ϕ

+ 1

ν

∫
∂�o

[
p∗,n+1n + E(n, ũ∗,n+1) + fn+1

b

]
ϕ, ∀ϕ ∈ H1

u0(�), (32)

where we have used the boundary condition (22c), and the fact that 
∫
∂�d

n · ∇ũn+1ϕ = 0 because ϕ ∈ H1
u0(�).

Let ϑ ∈ H1
p0(�) denote a test function. By taking the L2 inner product between ϑ and Eq. (23a) and integrating by part, 

we can get the weak form about φn+1,

γ0

ν�t

∫
�

φn+1ϑ +
∫
�

∇φn+1 · ∇ϑ

= − 1

ν

∫ [
fn+1 − ũ∗,n+1 · ∇ũ∗,n+1 − ∇pn

]
· ∇ϑ
�
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+ 1

ν

∫
∂�d

n · γ0wn+1 − ŵ

�t
ϑ +

∫
∂�d

n × ω̃n+1 · ∇ϑ +
∫

∂�o

n × ω̃n+1 · ∇ϑ, ∀ϑ ∈ H p0(�), (33)

where we have used the divergence theorem, the boundary condition (23b), and the following identity,∫
∂�d

n · ∇ × ω̃n+1
ϑ =

∫
∂�

n · ∇ × ω̃n+1
ϑ =

∫
�

∇ × ω̃n+1 · ∇ϑ =
∫
�

∇ ·
(
ω̃n+1 × ∇ϑ

)

=
∫
∂�

n × ω̃n+1 · ∇ϑ, ∀ϑ ∈ H p0(�). (34)

Let q ∈ H1
p0(�) denote the test function. Taking the L2 inner product between Eq. (24a) and ∇q, and integrating by part, 

we obtain the weak form for pn+1∫
�

∇pn+1 · ∇q =
∫
�

[ γ0

�t
ũn+1 + ∇

(
pn − νφn+1

)]
· ∇q − γ0

�t

∫
∂�d

n · wn+1q, ∀q ∈ H1
p0(�), (35)

where we have used Eqs. (24b) and (24c), and the fact that 
∫
∂�o

n · un+1q = 0 because q ∈ H1
p0(�).

The weak formulations (32), (33) and (35) contain no complicating terms with derivatives of order two or higher. All 
terms involved therein can be computed directly in the discrete space of C0 elements. These weak forms can be discretized 
using C0 spectral elements (or finite elements).

Let �h denote the domain � partitioned using a spectral element mesh, and ∂�h denote the boundary of �h , ∂�h =
∂�dh ∪∂�oh , where ∂�dh and ∂�oh are respectively the discretized ∂�d and ∂�o . We use Xh ⊂ [H1(�h)]d (d = 2 or 3 is the 
spatial dimension) to denote the approximation space for the velocity ũn+1

h , and Mh ⊂ H1(�h) to denote the approximation 
space for the pressure pn+1

h and the field variable φn+1
h . Let Xh0 = {v ∈ H1(�h) : v|∂�dh = 0}, and Mh0 = {v ∈ Mh : v|∂�oh =

0}. Then the fully discretized equations for (32) and (22b) are: find ũn+1
h ∈ Xh such that

γ0

ν�t

∫
�h

ϕhũn+1
h +

∫
�h

∇ϕh · ∇ũn+1
h = 1

ν

∫
�h

[
fn+1
h − ũ∗,n+1

h · ∇ũ∗,n+1
h − ∇pn

h + ûh

�t

]
ϕh

+ 1

ν

∫
∂�oh

[
p∗,n+1

h nh + E(nh, ũ∗,n+1
h ) + fn+1

bh

]
ϕh, ∀ϕh ∈ Xh0, (36)

and

ũn+1
h = wh, on ∂�dh, (37)

where the subscript (·)h represents the discretized version of (·). The fully discretized equations for (33) and (23c) are: find 
φn+1

h ∈ Mh such that

γ0

ν�t

∫
�h

φn+1
h ϑh +

∫
�h

∇φn+1
h · ∇ϑh

= − 1

ν

∫
�h

[
fn+1
h − ũ∗,n+1

h · ∇ũ∗,n+1
h − ∇pn

h

]
· ∇ϑh

+ 1

ν

∫
∂�dh

nh · γ0wn+1
h − ŵh

�t
ϑh +

∫
∂�dh∪∂�oh

nh × ω̃n+1
h · ∇ϑh, ∀ϑh ∈ Mh0, (38)

and

φn+1
h = ∇ · ũn+1

h , on ∂�oh. (39)

The fully discretized equations of (35) and (24d) are: find pn+1
h ∈ Mh such that∫

�h

∇pn+1
h · ∇qh =

∫
�h

[ γ0

�t
ũn+1

h + ∇
(

pn
h − νφn+1

h

)]
· ∇qh − γ0

�t

∫
∂�dh

nh · wn+1
h qh, ∀qh ∈ Mh0, (40)

and

pn+1
h = νnh · ∇ũn+1

h · nh − nh · E
(

nh, ũn+1
h

)
− fn+1

bh · nh − νφn+1
h , on ∂�oh. (41)
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In addition, un+1
h is evaluated by the following discretized version of Eq. (25),

un+1
h = ũn+1

h − �t

γ0
∇

(
pn+1

h − pn
h + νφn+1

h

)
. (42)

The final solution procedure can therefore be summarized as follows. Given (ũn
h , un

h , pn
h), we employ the following steps 

to compute the variables at time step (n + 1):

• Solve Eq. (36), together with the velocity Dirichlet condition (37) on ∂�dh , for ũn+1
h ;

• Solve Eq. (38), together with the Dirichlet condition (39) for φn+1
h on ∂�oh , for φn+1

h ;

• Solve Eq. (40), together with the pressure Dirichlet condition (41) on ∂�oh , for pn+1
h ;

• Evaluate un+1
h based on Eq. (42), using ũn+1

h , φn+1
h and pn+1

h computed above.

It can be observed that in Eq. (36) different components of the velocity ũn+1
h are not coupled and therefore can be computed 

individually.
We briefly comment on how to impose the Dirichlet conditions for φn+1

h and pn+1
h on the open boundary ∂�oh in the 

second and third steps of the above algorithm. The expressions for the boundary conditions (39) and (41) both involve 
derivatives of the velocity ũn+1

h . Consequently, the Dirichlet data for φn+1
h and pn+1

h on ∂�oh computed from (39) and (41)
may not be continuous across the element boundaries on ∂�oh with C0 spectral elements (or finite elements). Therefore, 
when imposing these Dirichlet conditions, one needs to first project the Dirichlet data computed from (39) and (41) into the 
H1(∂�oh) space, and then use the projected data for the Dirichlet conditions on ∂�oh . This projection essentially amounts 
to solving a small linear algebraic system with the coefficient matrix being the mass matrix on ∂�oh . If ∂�oh consists of 
several disjoint pieces, the projection can be performed on each individual piece separately.

As is well-known, the approximation spaces for the discrete velocity and pressure should satisfy an inf–sup condition 
for compatibility, otherwise spurious pressure modes may result; see e.g. [47,1,7,28,30,18] among others, and also the 
references therein. On the other hand, substantial evidence exists based on the works of a number of researchers that 
several types of schemes can work properly with approximation spaces that do not satisfy the usual inf–sup condition, 
e.g. with the equal-order approximation for the velocity and pressure; see e.g. [41,73,31,42,30,51,50,16,14] among others. 
Extensive numerical experiments of ours show that the current splitting scheme represented by Eqs. (36)–(42) using spectral 
element discretizations can work properly with equal-order approximations for the velocity and the pressure. No spurious 
modes for the pressure are observed. In the current implementation and in all the flow tests of Section 3, we have used the 
same orders of expansion polynomials to approximate the velocity and the pressure in the spectral element discretization.

There are two approximations, ũn and un , for the velocity from the above algorithm. The issue of which one to use 
in simulations has been discussed in detail by [30]. As shown by the analysis of [33] and pointed out by [30], the two 
approximation velocities have the same error estimates and in terms of accuracy there is no reason for preferring one 
to the other. In the current paper we will use the approximation velocity ũn when presenting results. All the results in 
Section 3 regarding the velocity are with ũn .

3. Representative numerical examples

In this section we use several flow problems in two dimensions (2-D) involving inflow/outflow boundaries to demon-
strate the performance of the numerical algorithm and the effectiveness of the open boundary conditions developed in 
the previous section. The flow regimes covered by the 2-D simulations range from low to quite high Reynolds numbers, 
at which strong backflows or vortices occur at the outflow/open boundaries and the physical flow in reality would have 
become three-dimensional. We compare our simulation results with experimental data and also with the other numerical 
simulations from the literature.

3.1. Convergence rates

3.1.1. Contrived flow with analytic solution
The goal of this subsection is to use an unsteady analytic flow problem to show the spatial and temporal convergence 

rates of the method developed here.
We consider the rectangular flow domain ABC D as sketched in Fig. 1(a), 0 � x � 2 and −1 � y � 1, and the following 

analytic expressions for the flow variables⎧⎪⎨
⎪⎩

u = A cosπ y sin ax sin bt,

v = − Aa

π
sinπ y cos ax sin bt,

p = A sinπ y sin ax cos bt,

(43)

where (u, v) are the x and y components of the velocity u, and A, a and b are prescribed constants whose values are to be 
given below. The above velocity expression satisfies the continuity equation (2b). The external body force f(x, t) in (2a) is 
chosen such that the expressions in (43) satisfy Eq. (2a).
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Fig. 1. Spatial and temporal convergence rates: (a) Flow configuration and boundary conditions; L2 errors of the flow variables as a function of the element 
order (b), and as a function of the time step size �t (c). In (b) the time step size is fixed at �t = 0.001. In (c) the element order is fixed at 18. Results are 
obtained with the OBC-E outflow boundary condition.

Table 1
Physical and numerical parameters for convergence-rate tests.

Parameter Value Parameter Value

A 2.0 δ 0.05
a π U0 1.0
b 1.0 J (temporal order) 2
ν 0.01

The domain is partitioned into two equal-sized spectral elements AFEC and FBDE along the x direction, see Fig. 1(a). On 
the faces AB, AC and CE the velocity Dirichlet boundary condition (3) is imposed, where the boundary velocity w is chosen 
according to the analytical expression from (43). On the faces BD and DE the outflow boundary condition (17) is imposed, 
where fb is chosen such that the analytic expressions in (43) satisfy Eq. (17) on these boundaries.

We employ the algorithm presented in Section 2.2 to integrate the Navier–Stokes equations in time from t = 0 to t = t f
(t f is the final time to be given below), and then compute the errors of the numerical solution at t = t f against the analytic 
solution given in (43). The element order or the time step size �t is varied systematically, and the numerical errors are 
monitored. Table 1 lists the physical and numerical parameters involved in this problem.

In the first group of tests, we fix the time step size at �t = 0.001 and the final integration time at t f = 0.1 (i.e. 100 time 
steps), and vary the element order systematically from 2 to 20. Fig. 1(b) shows the L2 errors of the flow variables at t = t f
as a function of the element order. These results are obtained with the outflow boundary condition OBC-E, corresponding to 
the parameters (θ, α1, α2) = (1, 0, 0). One can observe that the errors decrease exponentially as the element order increases 
while below order 10. As the element order increases further beyond 12, the errors remain essentially constant or decrease 
only slightly, because of the saturation by the temporal truncation errors. These results demonstrate the spatial exponential 
convergence rate of the our method.
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Fig. 2. Comparison between pressure-correction and velocity-correction schemes: L2 errors of velocity and pressure as a function of the element order 
(fixed �t = 0.001). Results correspond to the OBC-E outflow condition.

In the second group of tests, we fix the final integration time at t f = 0.2 and the element order at 18, and vary the 
time step size systematically between �t = 1.220703125 × 10−5 and �t = 0.0125. Fig. 1(c) shows the L2 errors of the flow 
variables as a function of �t in logarithmic scales. These results again correspond to the outflow condition OBC-E. On can 
observe a second-order convergence rate in time for the flow variables as �t becomes small.

We next briefly compare the results from the pressure correction and velocity correction schemes. In [14] the outflow 
condition OBC-E given by Eq. (9) is proposed, and a velocity correction-type scheme has been developed for numerically 
treating this boundary condition. By contrast, the scheme in the current paper is based on a pressure correction-type 
strategy. Fig. 2 shows the L2 errors of the y velocity component v and the pressure p as a function of the element order 
obtained with the current pressure correction scheme and the velocity correction scheme from [14], together with the OBC-E 
condition on the outflow boundary. The time step size and the final integration time are fixed at �t = 0.001 and t f = 0.1
in these tests, respectively. We can observe certain differences in the behaviors of these two schemes. The velocity errors 
from the two schemes are comparable. At large element orders (beyond 10) the velocity error from the pressure correction 
scheme is saturated at a level slightly lower than that from the velocity correction scheme. On the other hand, the errors for 
the pressure from the pressure correction scheme appear consistently larger than those from the velocity correction scheme. 
As the element order increases to 12 and beyond, the pressure error from the velocity correction scheme becomes saturated 
and the error curve levels off, while for the pressure correction scheme one can still observe a slight but noticeable decrease 
in the pressure error in this range.

3.1.2. Kovasznay flow
The goal of this subsection is to use a steady-state flow problem, the Kovasznay flow [45], to study the convergence 

behaviors of different outflow boundary conditions discussed in Section 2 and their effects on the flow field. This flow 
problem has been considered in [14] together with the OBC-E condition developed therein. Note that here we are testing 
a different numerical algorithm than that of [14] and different outflow boundary conditions. The problem parameters and 
configurations employed here largely follow those in [14].

Specifically, the velocity and the pressure of the Kovasznay flow are given by⎧⎪⎨
⎪⎩

u = 1 − eλx cos 2π y
v = λ

2π eλx sin 2π y

p = 1
2

(
1 − e2λx

) (44)

where λ = − 1
2ν

(√
1 + 16π2ν2 − 1

)
is a parameter. The non-dimensional viscosity is fixed at ν = 1

40 for this test problem. 
In Eq. (2a), the body force is set to f = 0 for this problem.

We consider a flow domain in accordance with [14], −0.5 � x � L and −0.5 � y � 0.5, where either L = −0.1 or L = 5.0
for this problem. Fig. 3(a) is a sketch of the streamlines on the smaller domain with L = −0.1.

We focus on the domain with L = −0.1. To simulate the problem, we discretize the domain using two equal-sized quadri-
lateral spectral elements along the y direction. The element order is varied systematically in the tests. Periodic boundary 
conditions are imposed on the top/bottom sides of the domain (y = ±0.5). On the left side of domain (x = −0.5) we impose 
the Dirichlet condition for the velocity according to the expressions given in (44). On the right side of domain (x = L) we 
impose the outflow boundary condition (17), where fb is chosen such that the velocity and the pressure as given in (44)
satisfy (17) on the boundary x = L. We employ a zero initial velocity, i.e. uin = 0 in (16), in the simulations. Table 2 lists the 
parameter values for this problem.
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Fig. 3. Kovasznay flow on domain L = −0.1: (a) Streamlines. (b) L2 errors as a function of element order, computed with OBC-C or (θ, α1, α2) = (1, 1, 0)

outflow condition. (c) L2 errors of the x velocity component as a function of element order, computed with different outflow boundary conditions.

Table 2
Kovasznay flow: physical and numerical parameters.

Parameter Value Parameter Value

ν 0.025 �t 0.001
L −0.1, 5.0 U0 1.0
J (temporal order) 2 δ 0.05

We vary the element order systematically between 2 and 14. For each element order we march in time using the 
algorithm discussed in Section 2 until the flow reaches a steady state. Then we compute the errors of the steady-state 
numerical solution against the exact expressions given by (44).

Let us look into the convergence behaviors. Fig. 3(b) shows the errors of the velocity and the pressure in L2 norm as a 
function of the element order obtained using the OBC-C condition, i.e. (θ, α1, α2) = (1, 1, 0), on the right domain boundary 
x = L. It clearly shows an exponential convergence rate. Fig. 3(c) shows the L2 errors of the x velocity component u as a 
function of the element order obtained using the different outflow conditions OBC-A to OBC-F on the right domain boundary. 
The different error curves essentially overlap with one another, indicative of an exponential convergence rate with all these 
outflow conditions.

Let us now consider another group of tests similar to that performed in [14]. In these tests we set fb = 0 in the outflow 
condition (17) to mimic real flows where the true fb is unknown. Because of this error on the outflow boundary, as the 
resolution increases, the total error of the numerical solution will eventually be dominated and saturated by this factor. 
Fig. 4(a) demonstrates this behavior with the L2 errors of the flow variables using the OBC-C outflow condition on the 
domain L = −0.1. Note that when computing the pressure errors we have used the shifted pressure p = 1

2

(
1 − e2λx

) −
1
2

(
1 − e2λL

)
, as explained in [14]. It can be observed that as the element order increases, after the initial exponential 

decrease, the errors rapidly saturate as the element order reaches 6 and above.
Fig. 4(b) compares the L2 errors of the x velocity component obtained using different outflow conditions at the right 

boundary. The same convergence behavior is observed with the various outflow boundary conditions. Some difference in the 
error magnitudes can be observed with different outflow conditions, especially upon saturation. But overall the difference 
is very small.

This observation is reinforced by the results obtained with fb = 0 on a larger domain corresponding to L = 5.0 as shown 
in Fig. 5. This figure shows the L2 errors of different flow variables obtained using the OBC-C outflow condition (Fig. 5(a)) 
and the L2 errors of the x velocity component corresponding to different outflow conditions (Fig. 5(b)). The larger domain 
(−0.5 � x � 5.0 and −0.5 � y � 0.5) has been partitioned using 6 quadrilateral spectral elements, with 2 uniform elements 
in the y direction and 3 non-uniform elements in the x direction (interior element boundaries located at x = 0 and 0.5). 
Fig. 5 demonstrates a similar behavior to that observed on the smaller domain. However, the error level at saturation is 
significantly lower than that for the smaller domain.

3.2. Flow past a circular cylinder

In this section we consider the canonical flow past a circular cylinder in a range of Reynolds numbers. In particular, 
we compare the simulation results obtained using our method with the experimental measurements and also with other 
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Fig. 4. Kovasznay flow on domain L = −0.1 computed with fb = 0 in outflow boundary condition: (a) L2 errors vs. element order, computed using the 
OBC-C outflow condition. (b) L2 errors of the x velocity component vs. element order, computed using different outflow boundary conditions.

Fig. 5. Kovasznay flow on domain L = 5.0 computed with fb = 0 in outflow boundary condition: (a) L2 errors vs. element order, computed using the OBC-C 
outflow condition. (b) L2 errors of the x velocity component vs. element order, computed using different outflow boundary conditions.

simulations from the literature. We also demonstrate the stability of our algorithm at high Reynolds numbers when strong 
vortices or backflows occur at the outflow boundaries.

The problem setting is as follows. Consider a circular cylinder (or disk) of diameter D , and the flow around the cylinder 
in a rectangular domain (see Fig. 6), −5D � x � L and −10D � y � 10D , where L is the length of the wake region to be 
specified subsequently. A uniform inflow, with a velocity along the horizontal direction and of unit magnitude, enters the 
domain through the left boundary (x = −5D). The flow leaves the domain on the right side (x = L). On the top and bottom 
sides of the domain we assume that the flow is periodic. So the configuration in practice corresponds to the flow past an 
array of circular cylinders.

We have considered four domain sizes corresponding to L = 5D , 10D , 15D and 20D (Fig. 6). The majority of simulations 
are performed on the domain with L = 10D , and simulations on the other domains have also been conducted at several 
selected Reynolds numbers. We define the Reynolds number as

Re = 1

ν
= U0 D

ν f
(45)

where U0 = 1 is the free-stream inflow velocity, ν f is the kinematic viscosity of the fluid, and ν is the non-dimensional 
viscosity as defined in Section 2. The Reynolds numbers covered in the current simulations range from Re = 20 to Re = 5000. 
All the length variables are normalized by L, and all the velocity variables are normalized by U0.
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Fig. 6. Circular cylinder flow: Flow domains of different sizes and spectral-element meshes with (a) 968, (b) 1228, (c) 1488, and (d) 1748 quadrilateral 
elements.

The flow domains have been discretized using several spectral element meshes. Corresponding to the four domain sizes, 
the meshes respectively consist of 968, 1228, 1488 and 1748 quadrilateral elements; see Fig. 6. On the left domain boundary 
we impose the Dirichlet condition (3), where the boundary velocity is set to w = (U0, 0). On the top and bottom boundaries 
(y/D = ±10) the periodic condition is imposed. On the right boundary (x = L) we impose the open boundary condition (17)
with fb = 0 and δ = 0.01.

We employ the algorithm developed in Section 2 for marching in time. An element order 6 has been used for each 
element at low Reynolds numbers (below Re = 100), and order 8 has been used for each element for higher Reynolds num-
bers. We have monitored the forces on the cylinder. The numerical experiments indicate that the drag and lift coefficients 
essentially do not change any more or only change slightly when we increase the element order further. We use a time step 
size �t = 10−3 for Reynolds numbers below 100, and �t = 2.5 × 10−4 for higher Reynolds numbers.

The general features of the circular cylinder flow at Reynolds numbers of various flow regimes have been discussed in 
detail in [77]. At Reynolds number around Re = 47 the cylinder wake experiences an instability, and it becomes unsteady 
with vortex shedding from the cylinder. The flow is two-dimensional at this point. When the Reynolds number increases 
to around Re = 180, another instability develops in the cylinder wake, and the physical flow becomes three-dimensional. In 
Fig. 7 we show contours of the instantaneous vorticity from our simulations at three Reynolds numbers Re = 20 (plot (a)), 
100 (plot (b)), and 300 (plot (c)). These results correspond to the domain size L = 10D and the outflow condition OBC-E, i.e. 
(θ, α1, α2) = (1, 0, 0) in (17). Fig. 7(a) corresponds to a steady-state flow, while Fig. 7(b) and (c) show vortex shedding at 
the higher Reynolds numbers. These are two-dimensional simulations. In reality, the physical flow at Re = 300 has already 
become three-dimensional.

We have monitored the signals of the forces acting on the cylinder. Fig. 8 shows time histories of the lift, i.e. the y
component of the force, at Reynolds numbers Re = 100 (Fig. 8(a)) and Re = 1000 (Fig. 8(b)). These results are obtained on 
the domain L = 10D using the OBC-E outflow condition on the right boundary. One can observe that the lift force fluctuates 
about a zero mean in a quite regular fashion at these Reynolds numbers, while the amplitude and frequency of these signals 
exhibit notable differences.
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Fig. 7. Circular cylinder flow: Contours of instantaneous vorticity at Reynolds numbers (a) Re = 20, (b) Re = 100, and (c) Re = 300. Dashed curves denote 
negative vorticity values.

Fig. 8. Circular cylinder flow: Time histories of the lift force on the cylinder at Reynolds numbers (a) Re = 100 and (b) Re = 1000.

We have computed the mean drag coefficient (Cd) and the root-mean-square (RMS) lift coefficient (CL ) on the cylinder 
from the simulations. These coefficients are respectively defined as

Cd = F x
1
2ρU 2

0

, CL = F ′
y

1
2ρU 2

0

, (46)

where F x is the mean (time-averaged) drag, i.e. the x component of force, on the cylinder, F ′
y is the RMS of the lift, and ρ

is the fluid density. In Fig. 9(a) we compare the mean drag coefficient as a function of the Reynolds number between cur-
rent simulations and the experimental measurements of [76,11,19,74,67]. The drag coefficients from the three-dimensional 
simulations of [52,13] are also shown in the figure. The results of the current simulations are obtained using the OBC-E 
(i.e. (θ, α1, α2) = (1, 0, 0)) open boundary condition. The majority are for the flow domain L = 10D , while at Re = 20 and 
Re = 100 results are also obtained using the domains L = 5D and L = 20D for this group of tests. Note also that the cur-
rent simulations are in 2-D. One can observe that, in the 2-D regime the drag coefficients from current simulations are in 
good agreement with the experimental data. In the 3-D regime, i.e. at Reynolds numbers beyond about Re = 180 when the 
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Fig. 9. Circular cylinder flow: Comparisons of (a) drag coefficients and (b) RMS lift coefficients as a function of the Reynolds number between current 
simulations and experimental measurements. Results of current simulations correspond to the OBC-E outflow condition, i.e. (θ, α1, α2) = (1, 0, 0).

Table 3
Circular cylinder flow: Comparison of RMS lift coefficients at Re = 100 and Re = 200 between current simula-
tions and existing simulations from literature.

Source Re = 100 Re = 200

Braza et al. (1986) [6] 0.21 0.55
Karniadakis (1988) [40] – 0.48
Engelman and Jamnia (1990) [17] 0.26 –
Meneghini and Bearman (1993) [53] – 0.54
Beaudan and Moin (1994) [3] 0.24 –
Zhang et al. (1995) [78] 0.25 0.53
Newman and Karniadakis (1995) [55] – 0.51
Tang and Audry (1997) [71] 0.21 0.45
Persillon and Braza (1998) [63] 0.27 0.56
Zhang and Dalton (1998) [79] – 0.48
Kravchenko et al. (1999) [46] 0.22 –
Hwang and Lin (1992) [36] 0.27 0.42
Newman and Karniadakis (1996) [56] 0.24 –
Dong and Shen (2010) [16] – 0.501
Franke et al. (1990) [22] – 0.46
Current simulations (wake = 5) 0.261 –
Current simulations (wake = 10) 0.254 0.527
Current simulations (wake = 15) 0.253 –
Current simulations (wake = 20) 0.253 –

physical flow of the wake becomes three-dimensional, one can observe a marked discrepancy between the drag coefficients 
from the current 2-D simulations and the experimental data. This discrepancy becomes more pronounced with increasing 
Reynolds number.

Fig. 9(b) shows a comparison of the RMS lift coefficient as a function of the Reynolds number between the current 
simulations and the empirical relation given by Norberg [57]. The simulation results are obtained on the domain L = 10D
with the OBC-E open boundary condition. In the 2-D regime, the RMS lift results from current simulations agree with the 
empirical relation reasonably well. However, at Reynolds numbers in the 3-D regime, the current simulations significantly 
over-predict the lift coefficient, which is a well-known issue with 2-D simulations [13,15].

In Table 3 we list the RMS lift coefficients at Re = 100 and Re = 200 from current simulations. At Re = 100 the lift 
coefficients have been obtained on four domains L = 5D , 10D , 15D and 20D , while at Re = 200 the result is for the domain 
L = 10D . For comparison, we have also listed in this table the lift coefficients from existing simulations from the literature 
for these two Reynolds numbers. First, one can observe that the domain size (or the size of the wake region) has a certain 
effect on the lift coefficient. As the wake region increases to a certain size, e.g. about L = 10D at Re = 100, the obtained lift 
coefficient essentially will not change any longer or only change very slightly. Second, the lift coefficients from the existing 
simulations in the literature exhibit a spread over a range of values. The results from current simulations appear in good 
agreement with the existing simulation data, and lie well within the range of existing data.

Let us now focus on the stability issue with the outflow boundaries at higher Reynolds numbers. As the Reynolds number 
becomes large, the vortices shed from the cylinder can persist a long time in the wake before being sufficiently dissipated. 
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Fig. 10. (Color online.) Instantaneous velocity fields and pressure distributions (color contours) of cylinder flow: (a) Re = 2000, corresponding to the OBC-E 
outflow condition or (θ, α1, α2) = (1, 0, 0), (b) Re = 5000, corresponding to the OBC-C outflow condition or (θ, α1, α2) = (1, 1, 0). Velocity vectors are 
plotted on every fifth quadrature point in each direction within each element.

For a given computational domain with a certain size for the wake region, as the Reynolds number becomes sufficiently 
large, the strong vortices shed from the cylinder will eventually reach the outflow/open boundary. These vortices can induce 
backflows at the open boundaries, and with usual outflow/open boundary conditions the simulations will instantly become 
unstable. This is a well-known numerical instability associated with the open boundaries.

The open boundary conditions we presented in Section 2 are effective in dealing with this instability, because these 
conditions ensure the energy stability of the system even in the presence of strong vortices or backflows at the open bound-
aries. Fig. 10 shows the instantaneous velocity fields and the pressure distributions (color contours) at Reynolds numbers 
Re = 2000 and Re = 5000. They are obtained with the domain size L = 10D . The results for Re = 2000 and Re = 5000 re-
spectively correspond to the OBC-E and OBC-C conditions at the open boundary. One can clearly observe the strong vortices 
at the open boundary at these Reynolds numbers. The current open boundary conditions and the pressure correction-based 
algorithm produce stable simulations in these situations. On the other hand, we observe that with the traction-free bound-
ary condition (see e.g. [69]) or its variant the no-flux boundary condition (i.e. ∂u

∂n = 0 and p = 0) the computation blows up 
instantly when the vortices hit the open boundary at these Reynolds numbers. We have performed very long-time simula-
tions of the cylinder flow with the open boundary conditions and the algorithm developed herein. Fig. 11 shows a window 
of the time histories of the drag force on the cylinder at Re = 5000 obtained with different open boundary conditions. These 
force histories demonstrate the long-time stability of our method.

Let us next consider the effect of different open boundary conditions on the results. We observe that the results obtained 
using the several open boundary conditions from Section 2.1 are quite similar. The two drag histories in Fig. 11 for Re = 5000
are obtained respectively with the OBC-E and OBC-C open boundary conditions. Their characteristics appear qualitatively 
similar to each other. In Table 4 we have listed the mean drag coefficient Cd, RMS drag coefficient Cdrms , and the RMS lift 
coefficient CL at Re = 5000 obtained with the several open boundary conditions in Section 2.1. The RMS drag coefficient is 
defined as Cdrms = F ′

x
1
2 ρU 2

0
, where F ′

x is the RMS of the drag. One can observe that these force coefficients are quantitatively 

very close, with the maximum difference on the order of 2 ∼ 3%.
Finally let us take a look at the discharge of vortices away from the domain through the open boundary and the effects of 

different open boundary conditions. We observe that with these open boundary conditions the vortices can cross the open 
boundary in a generally natural way, and that a certain amount of distortion to the vortices occurs during this process. 
This is illustrated in Fig. 12 by a temporal sequence of snapshots of the velocity fields at Re = 2000 computed using the 
open boundary condition OBC-C on a domain with L = 10D . This figure shows how the vortex initially located above the 
wake centerline and near the right boundary in Fig. 12(a) is discharged through the outflow boundary. As the vortex core 
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Fig. 11. Cylinder flow at Re = 5000: Time histories of drag obtained with different outflow boundary conditions corresponding to (a) OBC-E condition or 
(θ, α1, α2) = (1, 0, 0) and (b) OBC-C condition or (θ, α1, α2) = (1, 1, 0).

Table 4
Circular cylinder flow at Re = 5000: Comparison of the mean drag coefficient Cd , RMS drag coefficient Cdrms

and RMS lift coefficient CL obtained with different outflow boundary conditions corresponding to different 
parameters (θ, α1, α2).

(θ,α1,α2) or type Cd Cdrms CL

( 1
2 ,0,0) or OBC-A 1.743 0.377 1.440

(1,0,1) or OBC-B 1.738 0.386 1.434
(1,1,0) or OBC-C 1.738 0.378 1.428
(0,1,0) or OBC-D 1.736 0.379 1.423
(1,0,0) or OBC-E 1.726 0.380 1.420
(0,0,0) or OBC-F 1.699 0.373 1.403

passes through the open boundary (Fig. 12(d)–(f)), one can observe a distortion in the velocity patterns, and the vortex 
does not quite appear “circular” any more (see Fig. 12(e)). This distortion to the vortices has also been observed with the 
other open boundary conditions considered here. In addition, when the vortices cross the open boundary, we have observed 
that the individual (n · u)u term in the open boundary condition (as in OBC-D and OBC-F) tends to have the effect of 
somewhat causing the vortices to move sideways along the open boundary, and that the individual |u|2n term (as in OBC-B 
and OBC-E) tends to have the effect of somewhat squeezing the vortices along the direction normal to the open boundary. 
The conditions OBC-C and OBC-A are combinations of these two terms, and the two individual effects seem to fade and 
largely invisible when these open boundary conditions are used. It is also observed that the current method for treating 
the outflows is subject to the usual constraints of spatial and temporal resolutions. For example, if the mesh resolution is 
too low at the open boundary and when the vortices pass through, the velocity field computed from the current algorithm 
and open boundary conditions may exhibit characteristics of under-resolved flows at the open boundary near the vortex 
cores. The boundary condition OBC-E appears somewhat more sensitive to this resolution effect compared to the other 
open boundary conditions considered here.

3.3. Impinging jet on a wall with open boundaries

In this section we consider a jet impinging on a solid wall involving open domain boundaries in two dimensions. At 
moderate and high Reynolds numbers, the instability of the jet and the presence of the open boundaries make this problem 
very challenging to simulate.
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Fig. 12. Temporal sequence of snapshots of velocity fields at Re = 2000 showing the discharge of vortices away from the domain, computed using the 
outflow boundary condition OBC-C. (a) t = 438.5, (b) t = 438.75, (c) t = 439, (d) t = 439.25, (e) t = 439.5, (f) t = 440, (g) t = 440.5, (h) t = 441. Velocity 
vectors are plotted on every fifth quadrature point in each direction within each element.

We refer to Fig. 13 for the configuration of this problem. Consider a fluid jet, of diameter D , issuing into a rectangular 
domain through the top wall. The domain has the following dimension, − 5

2 D � x � 5
2 D and 0 � y � 5D . The top and bottom 

of the domain are solid walls, while the left and right sides of the domain are open, where the fluid can leave or enter the 
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Fig. 13. Flow configuration for the impinging jet on a wall with open boundaries.

Fig. 14. Impinging jet on a wall: Instantaneous velocity distributions at Reynolds numbers (a) Re = 2000 and (b) Re = 5000, obtained using the OBC-C open 
boundary condition or (α, α1, α2) = (1, 1, 0). Velocity vectors are plotted on every eleventh quadrature point in each direction within each element.

domain freely. The center of the jet is aligned with the middle of the top wall. We assume that at the inlet the jet velocity 
is along the vertical direction and has the following profile,⎧⎨

⎩
u = 0

v = −U0

[
tanh

1 − x
R0√

2ε
[H(x,0) − H(x, R0)] + tanh

1 + x
R0√

2ε
[H(x,−R0) − H(x,0)]

]
(47)

where U0 = 1 is a velocity scale, R0 = D
2 is the jet radius, and ε = 1

40 D . H(x, x0) is the Heaviside step function, taking unit 
value if x � x0 and vanishing otherwise.

All the length variables are normalized by the jet diameter D , and all velocities are normalized by U0. The Reynolds 
number for this problem is defined by Eq. (45), noting the specific physical meanings of U0 and D for this problem. We 
assume that there is no external body force.

The domain has been discretized using 400 quadrilateral elements of equal sizes, with 20 elements in both the x and y
directions. We impose the velocity Dirichlet boundary condition (3) on the top and bottom sides of the domain, where the 
boundary velocity is set to w = 0 at the walls and set according to Eq. (47) at the jet inlet. On the left and right sides of the 
domain the open boundary condition (17) is imposed, with fb = 0 and δ = 1

100 . Different (θ, α1, α2) parameters have been 
tested corresponding to the open boundary conditions OBC-A to OBC-F.

We employ the algorithm developed in Section 2 in the simulations, and have considered several Reynolds numbers 
ranging from Re = 2000 to Re = 10 000. The element order in the simulations ranges from 12 for Re = 2000 to 16 for 
Re = 10 000. The time step size ranges from U0�t

D = 2.5 × 10−4 for Re = 2000 to U0�t
D = 2 × 10−4 for Re = 10 000.

We first look into the basic features of this flow. Fig. 14(a) shows the instantaneous velocity distribution at Re = 2000. 
The jet profile appears to be stable within a certain distance downstream of the inlet, 2 � y/D � 5 in this case. Beyond this 
region, the instability causes vortices to form along the profile of the jet. After impinging onto the bottom wall the jet splits 
into two streams, which run out of the domain respectively through the left and the right open boundaries. The vortices 
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Fig. 15. (Color online.) Impinging jet on a wall: Instantaneous velocity fields, and pressure distributions (color contours), at Re = 10 000 obtained using open 
boundary conditions (a) OBC-A, or (θ, α1, α2) = ( 1

2 , 0, 0) and (b) OBC-B, or (θ, α1, α2) = (1, 0, 1). Velocity vectors are plotted on every eleventh quadrature 
point in each direction within each element.

formed on the edges of the jet are convected out of domain alongside the horizontal streams. The velocity distribution 
appears to be symmetric about the jet centerline (x = 0) at this Reynolds number.

Fig. 14(b) shows the distribution of the instantaneous velocity at a higher Reynolds number Re = 5000. One can observe 
a basic feature similar to that of Re = 2000. However, the region with a stable jet profile downstream of the inlet is smaller, 
with 3.5 � y/D � 5 at Re = 5000. In addition, the velocity distribution has lost the symmetry about the jet centerline.

The vortices formed along the jet profile cause the backflow instability on the left and right open boundaries, and 
pose a severe challenge to the simulation of this problem. The open boundary conditions and the numerical algorithm 
developed in Section 2 are crucial to the stability of the simulations. In contrast, usual open boundary conditions such as 
the traction-free condition and the no-flux condition are unstable for the Reynolds numbers simulated here, and we observe 
that the computation blows up instantly when the vortices hit the open boundaries.

Let us next look into the effect of different open boundary conditions on the flow characteristics and the physical 
quantities. In Fig. 15 we show the instantaneous velocity fields and the pressure distributions at Re = 10 000 obtained using 
the OBC-A and OBC-B open boundary conditions. The characteristics of the flow obtained with these boundary conditions 
are qualitatively similar. One can observe that the jet profile develops an instability at an even shorter distance downstream 
of the inlet (around y/D = 4) than at the lower Reynolds numbers (Fig. 14). The vortices in the flow also appear more 
populous.

We have performed long-time simulations of this flow using different open boundary conditions. Fig. 16 shows a window 
of the time histories of the vertical force component (F y ) on the walls at Re = 10 000 obtained with the OBC-C and OBC-D 
open boundary conditions. Note that the horizontal component of the force is essentially zero. One can observe the chaotic 
fluctuations of the force signals about some mean value. The characteristics of the force histories appear to be qualitatively 
similar. A quantitative comparison is shown in Table 5, where we have listed the time-averaged mean and the RMS forces 
(vertical component) on the wall obtained using the several open boundary conditions from Section 2.1. The mean forces 
corresponding to different boundary conditions are very close, with the maximum difference among them about 4%. The 
RMS forces obtained with different open boundary conditions are also comparable. While the RMS forces with the other 
open boundary conditions are quite close, those corresponding to OBC-E and OBC-B are somewhat smaller.

4. A provably unconditionally stable scheme for a sub-class of open boundary conditions

In this section we briefly discuss a rotational pressure correction scheme with a provable unconditional stability for the 
following sub-class of the open boundary conditions (11),

θ = α2 = 0, α1 � 0. (48)

The boundary conditions OBC-D and OBC-F belong to this sub-class.
Our discussions here will be limited to the temporal discretization only, and it is assumed that the field variables are 

continuous in space in this section. The stability proof is provided for the scheme with a nominal first order in time. We 
assume a homogeneous velocity Dirichlet condition on ∂�d , i.e. w = 0 in (3), and that there is no external body force, i.e. 
f = 0 in (2a). In addition, we assume that fb = 0 in the open boundary condition (11), and that δ → 0 in the �0(n, u)

function, that is,
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Fig. 16. Impinging jet on a wall at Re = 10 000: Time histories of the force (vertical component) on the wall obtained using open boundary conditions 
(a) OBC-C, or (θ, α1, α2) = (1, 1, 0) and (b) OBC-D, or (θ, α1, α2) = (0, 1, 0).

Table 5
Impinging jet on a wall at Re = 10 000: Mean and RMS forces (vertical component) on 
the wall obtained using different open boundary conditions.

(θ,α1,α2) or type Mean F y RMS F y

( 1
2 ,0,0) or OBC-A −1.015 0.241

(1,0,1) or OBC-B −1.005 0.181
(1,1,0) or OBC-C −1.009 0.220
(0,1,0) or OBC-D −1.016 0.231
(1,0,0) or OBC-E −0.984 0.156
(0,0,0) or OBC-F −1.024 0.258

lim
δ→0

�0(n,u) = �s0(n,u) =
{

1, if n · u < 0,

0, otherwise.
(49)

Given (ũn, un, pn), we compute these field variables at time step (n + 1) as follows. First, find ũn+1 satisfying

ũn+1 − un

�t
+ un · ∇ũn+1 + ∇pn − ν∇2ũn+1 = 0, (50a)

ũn+1 = 0, on ∂�d, (50b)

−pnn + νn · ∇ũn+1 − (1 + α1)
1

2
(un · n)ũn+1�s0(n,un) = 0, on ∂�o. (50c)

Then, find (un+1, pn+1) satisfying

un+1 − ũn+1

�t
+ ∇

(
pn+1 − pn + χ∇ · ũn+1

)
= 0, (51a)

∇ · un+1 = 0, (51b)

n · un+1 = 0, on ∂�d, (51c)

pn+1 − pn + χ∇ · ũn+1 = 0, on ∂�o, (51d)

where χ is a positive constant to be specified subsequently.
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Note that Eqs. (51a)–(51d) are equivalent to the following,

∇2
(

pn+1 − pn + χ∇ · ũn+1
)

= ∇ · ũn+1

�t
, (52a)

∂

∂n
(pn+1 − pn + χ∇ · ũn+1) = 0 on ∂�d; pn+1 − pn + χ∇ · ũn+1 = 0 on ∂�o, (52b)

and

un+1 = ũn+1 − �t∇(pn+1 − pn + χ∇ · ũn+1). (53)

To prove the stability of the scheme given by (50a)–(51d), we define the auxiliary variables qn and ψn by q0 = −p0, and

qn+1 = qn + χ∇ · ũn+1, ψn+1 = pn+1 + qn+1. (54)

Then, Eqs. (51a) and (51d) can be written as:

un+1 − ũn+1

�t
+ ∇

(
ψn+1 − ψn

)
= 0, (55)

ψn+1 − ψn = 0, on ∂�o. (56)

Note that ψ0 = p0 + q0 = 0, and hence we have

ψn = 0, on ∂�o, (57)

for all n based on Eq. (56).
Let ( f , g) denote the L2 inner product between field variables f (x, t) and g(x, t), and define ‖ f ‖2 = ( f , f ). Taking the 

L2 inner product between (50a) and 2�tũn+1, and noticing that (since ∇ · un = 0)

(un · ∇ũn+1, ũn+1) = 1

2

∫
∂�o

(un · n)|ũn+1|2,

we obtain

‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2ν�t‖∇ũn+1‖2 − 2�t(pn,∇ · ũn+1)

= 2�t

∫
∂�o

(νn · ∇ũn+1 − pnn) · ũn+1 − 2�t(un · ∇ũn+1, ũn+1)

= 2�t

∫
∂�o

(
νn · ∇ũn+1 − pnn − 1

2
(un · n)ũn+1

)
· ũn+1

= �t

∫
∂�o

[
(un · n)|ũn+1|2 (

�s0(n,un) − 1
) + α1(un · n)|ũn+1|2�s0(n,un)

]

� 0, (58)

where we have used integration by part, the divergence theorem, and Eq. (50c).
We deal with the term −2�t(pn, ∇ · ũn+1) = −2�t(ψn − qn, ∇ · ũn+1) as follows. Note that

−2�t(ψn,∇ · ũn+1) = 2�t(∇ψn, ũn+1) = 2�t(∇ψn,un+1 + �t∇(ψn+1 − ψn))

= 2�t2(∇ψn,∇(ψn+1 − ψn))

= �t2(‖∇ψn+1‖2 − ‖∇ψn‖2 − ‖∇(ψn+1 − ψn)‖2)

= �t2(‖∇ψn+1‖2 − ‖∇ψn‖2) − ‖un+1 − ũn+1‖2, (59)

where we have use (51b), (55), and (57). Note also that

2�t(qn,∇ · ũn+1) = 2�t

χ
(qn,qn+1 − qn)

= �t

χ

(
‖qn+1‖2 − ‖qn‖2 − ‖qn+1 − qn‖2

)

= �t
(‖qn+1‖2 − ‖qn‖2) − χ�t‖∇ · ũn+1‖2. (60)
χ
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Next we take the L2 inner product between (55) and 2un+1 to obtain

‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2 = 0. (61)

Combining the above four relations leads to

‖En+1‖2 + ‖ũn+1 − un‖2 + �t
(

2ν‖∇ũn+1‖2 − χ‖∇ · ũn+1‖2
)
� ‖En‖2, (62)

where

‖Ek‖2 := ‖uk‖2 + �t2‖∇ψk‖2 + �t

χ
‖qk‖2.

We recall that

‖∇ · u‖2 � d‖∇u‖2, ∀u ∈ H1(�)d, (63)

where d is the dimension of the domain. Hence, we can conclude from the above that

Theorem 1. Let 0 < χ � 2ν
d . Then the scheme (50a)–(51d) is unconditionally stable, and we have

‖un+1‖2 + �t2‖∇ψn+1‖2 + �t

χ
‖qn+1‖2 + �t(2ν − χd)‖∇ũn+1‖2 � ‖un‖2 + �t2‖∇ψn‖2 + �t

χ
‖qn‖2.

5. Concluding remarks

We have presented a generalized form of open/outflow boundary conditions for incompressible flows and a pressure 
correction-based algorithm for numerically treating these open boundary conditions. The generalized form represents a 
family of open boundary conditions, with the characteristic that they all ensure the energy stability of the system. These 
open boundary conditions are effective even when strong backflows or vortices occur at the open/outflow boundaries. 
Our algorithm is based on a rotational pressure-correction strategy, and introduces an auxiliary variable and an associated 
discrete equation together with boundary conditions. The formulation allows for the direct computation of the pressure in 
the H1(�) space. The algorithm imposes on the open boundary a pressure Dirichlet type condition in the pressure substep 
and a velocity Neumann type condition in the velocity substep. The current algorithm can work properly with equal orders 
of approximation for the pressure and the velocity.

In addition to the above algorithm, which is semi-implicit and conditionally stable in nature, for a sub-class of the 
generalized form of open boundary conditions we have also developed an unconditionally stable scheme and provided a 
proof for its unconditional stability.

Extensive numerical experiments have been presented for several problems involving outflow/open boundaries for a 
range of Reynolds numbers. We have compared the current simulation results with the experimental data from the litera-
ture, as well as with the existing numerical simulations by other researchers, to demonstrate the accuracy of the method 
developed in this work. We have also shown that our method produces long-time stable simulations at moderate and high 
Reynolds numbers when strong vortices and backflows occur at the open/outflow boundaries. By contrast, usual outflow 
boundary conditions such as the traction-free condition or the no-flux condition encounters numerical difficulties at these 
Reynolds numbers, and the computation blows up instantly when the vortices hit the open boundary.

Among the six open boundary conditions we have studied more closely, according to the energy balance equation, 
with OBC-A, OBC-E and OBC-F the power contributed by the fluid stress on the outflow boundary locally exactly balances 
the kinetic energy influx into the domain in the backflow regions. In contrast, with OBC-B, OBC-C and OBC-D the power 
contributed by the fluid stress in the backflow regions of the open boundary induces an extra dissipation to the total 
kinetic energy, while locally balancing the kinetic energy influx into the domain. In such a sense the boundary conditions 
OBC-B, OBC-C and OBC-D are more energy-dissipative. The numerical experiments indicate little quantitative difference in 
term of the numerical errors or the global physical quantities between these more dissipative boundary conditions and the 
other three less dissipative ones. On the other hand, in terms of the more qualitative aspects such as the velocity patterns 
and the discharge of vortices through the open boundary, our observation seems to suggest that the more dissipative open 
boundary conditions appear preferable. Among the three more dissipative ones, the open boundary condition OBC-C appears 
more favorable in terms of the distortion caused to the vortices while crossing the outflow boundary.

The numerical instability associated with strong vortices or backflows at the open/outflow boundaries are widely en-
countered in flow problems involving physically unbounded domains. The method developed in the current work provides 
an effective means for overcoming this instability. It provides the opportunity for using a substantially smaller computa-
tional domain in numerical simulations than otherwise for problems on physically unbounded domains. The domain size 
can be chosen solely based on the consideration of physical accuracy. The ability to use a substantially smaller computa-
tional domain will facilitate simulations at high Reynolds numbers, because of the increased grid resolution under identical 
grid sizes. The current method will be instrumental in numerical simulations at Reynolds numbers significantly higher than 
the state of the art.
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