
Journal of Computational Physics 418 (2020) 109624
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

An energy-stable scheme for incompressible Navier-Stokes

equations with periodically updated coefficient matrix

Lianlei Lin a,∗, Naxian Ni b, Zhiguo Yang b, Suchuan Dong b,∗
a School of Electronics and Information Engineering, Harbin Institute of Technology, China
b Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 September 2019
Received in revised form 25 March 2020
Accepted 28 May 2020
Available online 2 June 2020

Keywords:
Energy stability
Navier-Stokes equations
Incompressible flows
Auxiliary variable
Generalized positive auxiliary variable
Pressure correction

We present an energy-stable scheme for simulating the incompressible Navier-Stokes
equations based on the generalized Positive Auxiliary Variable (gPAV) framework. In the
gPAV-reformulated system the original nonlinear term is replaced by a linear term plus a
correction term, where the correction term is put under control by an auxiliary variable.
The proposed scheme incorporates a pressure-correction type strategy into the gPAV
procedure, and it satisfies a discrete energy stability property. The scheme entails the
computation of two copies of the velocity and pressure within a time step, by solving an
individual de-coupled linear equation for each of these field variables. Upon discretization
the pressure linear system involves a constant coefficient matrix that can be pre-computed,
while the velocity linear system involves a coefficient matrix that is updated periodically,
once every k0 time steps in the current work, where k0 is a user-specified integer. The
auxiliary variable, being a scalar-valued number, is computed by a well-defined explicit
formula, which guarantees the positivity of its computed values. It is observed that the
current method can produce accurate simulation results at large (or fairly large) time
step sizes for the incompressible Navier-Stokes equations. The impact of the periodic
coefficient-matrix update on the overall cost of the method is observed to be small in
typical numerical simulations. Several flow problems have been simulated to demonstrate
the accuracy and performance of the method developed herein.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

This work concerns the numerical approximation of the incompressible Navier-Stokes equations in an energy-stable
fashion. Energy-stable approximations are attractive in that they not only preserve the dissipative nature of the underlying
continuous Navier-Stokes system, but more practically can potentially allow the use of larger time steps in computer simula-
tions. This type of schemes are the focus of a number of previous works in the literature; see e.g. [27,30,32,12,20,10,25,15,4].
These schemes typically treat the nonlinear term fully implicitly or in a linearized fashion. Upon discretization, they would
typically entail the solution of nonlinear algebraic systems within a time step, or when only a linear system needs to be
solved, would involve time-dependent coefficient matrices and entail frequent re-computations (every time step) of these
coefficient matrices [10]. This is a main drawback of traditional energy-stable schemes. Their computational cost per time

* Corresponding authors.
E-mail addresses: linlianlei@hit.edu.cn (L. Lin), sdong@purdue.edu (S. Dong).
https://doi.org/10.1016/j.jcp.2020.109624
0021-9991/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2020.109624
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2020.109624&domain=pdf
mailto:linlianlei@hit.edu.cn
mailto:sdong@purdue.edu
https://doi.org/10.1016/j.jcp.2020.109624

2 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
step is typically high compared with that of semi-implicit type schemes [6,31,18,16,3,33,23,14,8,26], which, albeit only con-
ditionally stable, are more commonly-used in production simulations.

An interesting recent development in this area is [22], which describes a discretely energy-stable scheme employing an
auxiliary energy variable in its formulation. The Navier-Stokes equations are reformulated and augmented by a dynamic
equation for the auxiliary variable, which is a scalar-valued number rather than a field function. A prominent feature of this
scheme lies in the reformulation of the nonlinear term,

R(t)√
E(t)

u · ∇u, (1)

where u is the velocity, R(t) is the auxiliary variable and E(t) is the shifted total kinetic energy of the system. The numerical
scheme proposed in [22] treats the u · ∇u component in an explicit fashion, but controls this explicit component by an
implicit treatment of R(t)√

E(t)
. The scheme is shown to satisfy a discrete energy stability property, which is also demonstrated

by numerical experiments. The scheme has an interesting property that makes it computationally attractive and competitive.
Within each time step it requires only the solution of linear algebraic systems with constant coefficient matrices, which
can be pre-computed, for the field functions. One does need to additionally solve a nonlinear algebraic equation about a
scalar-valued number. But since this nonlinear equation is about a scalar number, not a field function, its cost is very low,
accounting for about a few percent of the total cost per time step [22]. A further development of this approach is discussed
very recently in [21], which presents a method for treating the so-called energy-stable open boundary conditions [9,8,11,7]
in an energy-stable fashion on the discrete level.

While the auxiliary-variable approach and the numerical scheme from [22] possess a number of attractive properties,
certain aspects of the method are less favorable and leave much to be desired. We list some of the issues here:

(i) The need for solving a nonlinear algebraic equation for the auxiliary variable is highly undesirable. While its compu-
tational cost can be negligible, the nonlinear equation causes two complications. First, the existence and uniqueness
of the solution for the auxiliary variable from the discrete scheme becomes unknown. Second, the positivity of the
computed values for the auxiliary variable, as is physically required by its definition, is uncertain.

(ii) The numerical scheme of [22] is formulated in a setting where the velocity and the pressure are fully coupled, and
the discrete energy stability is proven in this coupled setting. When implementing the scheme, the authors have made
a further approximation about the boundary vorticity, which de-couples the pressure/velocity computations in actual
simulations. The stability proof, however, does not hold if this further approximation is taken into account.

(iii) It is observed in [22] that the accuracy of the method deteriorates when the time step size becomes large (or fairly
large). How to improve the accuracy of the method for large (or fairly large) time step sizes, while simultaneously
preserving the favorable properties that keep the computational cost relatively low, is an open issue.

(iv) In the definition of the auxiliary variable, a biased total energy (shifted by an energy constant C0) has been used
in [22]. It is observed that the C0 value seems to have an influence on the accuracy of the simulation results (see the
Kovasznay flow test of [22]), which is an undesirable aspect.

The first and the second issues in the above list have been addressed by [21]. In the method presented in [21], the
nonlinear algebraic equation has been eliminated, and the auxiliary variable at each time step is given by an explicit formula,
which ensures that its computed values are always positive. The method is formulated in a setting in which the pressure and
velocity are de-coupled (barring the auxiliary variable) by a velocity-correction strategy. This scheme retains the attractive
properties found in [22], such as the discrete energy stability and the need to only solve linear algebraic systems with
constant pre-computable coefficient matrices.

The numerical scheme of [21] is able to achieve these important properties, in large part, thanks to the adoption of
the generalized Positive Auxiliary Variable (gPAV) approach, which was originally developed in [36] for general dissipative
systems. gPAV provides a means to use a general class of functions in defining the auxiliary variable, and a systematic
procedure for treating dissipative partial differential equations (PDE). The gPAV procedure endows energy stability to the
resultant scheme, and also can ensure the positivity of the computed values of the generalized auxiliary variable [36].
Compared with related works [22,37,35,28,34], the gPAV framework provides a more favorable way for treating the auxiliary
variables, and it applies to very general dissipative systems.

In the current work we focus on the accuracy issue of the auxiliary-variable method as listed above. We would like to
explore the possibility to expand its accuracy range, and aim to achieve accuracy at large (or fairly large) time step sizes,
without seriously sacrificing the computational cost for incompressible Navier-Stokes equations. Summarized in this paper
is our effort in this respect and a numerical scheme that largely achieves this goal.

In the current paper we present an energy-stable scheme for the incompressible Navier-Stokes equations employing
the gPAV strategy. The salient feature of the scheme lies in the reformulation and numerical treatment of the nonlinear
term. In the gPAV-reformulated system we replace the nonlinear term by a linear term plus a correction term, and put the
correction term under control by an auxiliary variable (a scalar-valued number). Upon discretization, this leads to a velocity
linear algebraic system with a coefficient matrix that can be updated periodically, in particular once every k0 time steps
in the current work, where k0 is a user-specified integer parameter. The proposed scheme is observed to produce accurate

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 3
results at large or fairly large time step sizes (depending on the Reynolds number). It substantially expands the accuracy
range for the time step size compared with the scheme of [22] and the scheme without the current reformulation of the
nonlinear term. Incidentally, we observe that this scheme is not sensitive to the energy constant C0 used in defining the
auxiliary variable.

The current scheme incorporates the gPAV idea and a pressure-correction type splitting strategy, and is endowed with
several attractive properties. It is energy-stable and satisfies a discrete energy stability property. No nonlinear solver is
involved in this scheme, for either the field functions or the auxiliary variable. The computations for the velocity and
the pressure are de-coupled. The method requires the computation of two copies of the velocity and pressure within a
time step, by solving an individual de-coupled linear equation for each of them. Upon discretization, the pressure linear
algebraic system involves a constant coefficient matrix that can be pre-computed, while the velocity linear system involves
a coefficient matrix that can be updated periodically (every k0 time steps). The auxiliary variable is computed by a well-
defined explicit formula, which guarantees the positivity of its computed values.

The coefficient-matrix update induces an extra cost, due to the re-computation and factorization involved therein. But
since this is performed only occasionally (every k0 time steps), this extra cost is effectively spread over k0 time steps. In
numerical simulations k0 can typically range from several dozen to several hundred, depending on the Reynolds number
(k0 = 20 in the majority of simulations reported herein). So the impact of occasional coefficient matrix update on the overall
computational cost of the current method is quite small, and can essentially be negligible in many cases.

The contribution of this work lies in the energy-stable scheme for the incompressible Navier-Stokes equations developed
herein. Its favorable properties include: (i) improved accuracy, producing accurate simulation results at large (or fairly large)
time step sizes; (ii) relatively low computational cost, requiring only the solution of linear systems with coefficient matrices
that are pre-computable or only need to be updated periodically; and (iii) low sensitivity to the energy constant C0.

The rest of this paper is organized as follows. In Section 2 we discuss the reformulation of the incompressible Navier-
Stokes equations based on the gPAV framework, and present the energy-stable scheme for the reformulated system. We
prove a discrete energy stability property of the scheme, and discuss the solution algorithm and its implementation based
on high-order spectral elements [29,1,17,5]. In Section 3 we test the proposed method using several flow problems and
investigate its accuracy, the effect of algorithmic parameters, and the computational cost. Section 4 then concludes the
presentation with comments on a number of related issues.

2. Energy-stable scheme for incompressible flows

2.1. Governing equations and gPAV-reformulated equivalent system

Consider some flow domain � (with boundary ∂�) in two or three dimensions, and an incompressible flow contained
in �. The dynamics of the system is described by the incompressible Navier-Stokes equations given by, in non-dimensional
form,

∂u

∂t
+ N(u) + ∇p − ν∇2u = f, (2)

∇ · u = 0, (3)

where u(x, t) is the velocity, p(x, t) is the pressure, the nonlinear term N(u) = u · ∇u, f(x, t) is an external body force, and
x and t are the spatial coordinate and time. ν is the non-dimensional viscosity (inverse of Reynolds number Re),

ν = 1

Re
= ν f

U0L
(4)

where U0 and L are respectively the characteristic velocity and length scales, and ν f is the kinematic viscosity of the fluid.
We assume Dirichlet boundary condition in this work,

u|∂� = w(x, t) (5)

where w is the boundary velocity and is assumed to be differentiable in time. The governing equations are supplemented
by the initial condition

u(x,0) = uin(x) (6)

where uin is the initial velocity distribution that satisfies equation (3) and is compatible with the boundary velocity w(x, t)
on ∂� at t = 0. To fix the pressure we will impose the often-used condition

∫
pd� = 0. (7)
�

4 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
By taking the L2 inner product between equation (2) and u, integrating by parts and using equation (3), we obtain the
energy balance equation

∂

∂t

∫
�

1

2
|u|2d� = −ν

∫
�

‖∇u‖2d� +
∫
∂�

[
−pn + νn · ∇u − 1

2
(n · u)u

]
· udA, (8)

where ‖∇u‖2 =∑dim
i, j=1 ∂iu j∂iu j and dim is the dimension in space.

We define a biased energy,

E(t) = E[u] =
∫
�

1

2
|u|2d� + C0, (9)

where C0 is a chosen energy constant such that E(t) > 0 for all t � 0. Following the gPAV framework from [36] and also the
work [22], we introduce an auxiliary variable R(t) by

R(t) =√E(t). (10)

It is important to note that both E(t) and R(t) are scalar-valued numbers, not field functions. Based on its definition, R(t)
satisfies the following evolution equation

2R
dR

dt
=
∫
�

u · ∂u

∂t
d�. (11)

Noting that R2(t)
E(t) = 1, we reformulate equation (2) into an equivalent form

∂u

∂t
+ M(u) + ∇p − ν∇2u + R2

E(t)
[N(u) − M(u)] = f, (12)

where M(u) is defined by,

M(u) = u0 · ∇u + 1

2
(∇ · u0)u, (13)

and u0 is a prescribed velocity field that is only occasionally updated in time. In the current paper we choose u0 to be the
velocity field u at every k0-th time step, where k0 is an integer parameter provided by the user. More specifically, at any
time step n, u0 is taken to be the velocity field u at time step mk0, where m is the integer satisfying mk0 � n < (m + 1)k0.
Therefore, u0 is updated only once every k0 time steps.

Note that the following terms are identically zero on the continuum level in light of R2

E = 1,

(
R2

E
− 1

)∫
�

[
−M(u) − ∇ P + ν∇2u + f

]
· ud�

+ R2

E

⎡
⎣∫

�

(N(u) − M(u)) · ud� −
∫
�

(N(u) − M(u)) · ud�

⎤
⎦

+
(

1 − R2

E

)∣∣∣∣∣∣
∫
�

f · ud�

∣∣∣∣∣∣+
(

1 − R2

E

)∣∣∣∣∣∣
∫
∂�

[
−P n + νn · ∇u − 1

2
(n · u)u

]
· udA

∣∣∣∣∣∣ .

(14)

In this expression P is a field function that equals the pressure p on the continuum level but is different from p on the
discrete level. To accentuate this difference we will employ a different symbol P (rather than p) to represent this field
variable. On the discrete level, this variable is specified by equation (26) in a later section.

We reformulate equation (11) by incorporating the zero terms in (14) into its right hand side (RHS). It is then trans-
formed into,

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 5
2R
dR

dt
=
∫
�

u · ∂u

∂t
d� +

∫
�

[
M(u) + ∇ P − ν∇2u + R2

E
(N(u) − M(u)) − f

]
· ud�

+ R2

E

⎡
⎣−

∫
�

∇ P · ud� +
∫
�

ν∇2u · ud� −
∫
�

N(u) · ud� +
∫
�

f · ud�

⎤
⎦

+
(

1 − R2

E

)∣∣∣∣∣∣
∫
�

f · ud�

∣∣∣∣∣∣+
(

1 − R2

E

)∣∣∣∣∣∣
∫
∂�

[
−P n + νn · ∇u − 1

2
(n · u)u

]
· udA

∣∣∣∣∣∣ .

(15)

Note that

−
∫
�

∇ P · ud� +
∫
�

ν∇2u · ud� −
∫
�

N(u) · ud� = −
∫
�

ν‖∇u‖2d� +
∫
∂�

[
−P n + νn · ∇u − 1

2
(n · u)u

]
· udA,

where the integration by parts, the divergence theorem, and equation (3) have been used. We can then re-write equation
(15) into

2R
dR

dt
=
∫
�

u · ∂u

∂t
d� +

∫
�

[
M(u) + ∇ P − ν∇2u + R2

E
(N(u) − M(u)) − f

]
· ud�

+ R2

E

⎡
⎣−

∫
�

ν‖∇u‖2d� +
∫
�

f · ud� +
∫
∂�

[
−P n + νn · ∇u − 1

2
(n · w)w

]
· wdA

⎤
⎦

+
(

1 − R2

E

)∣∣∣∣∣∣
∫
�

f · ud�

∣∣∣∣∣∣+
(

1 − R2

E

)∣∣∣∣∣∣
∫
∂�

[
−P n + νn · ∇u − 1

2
(n · w)w

]
· wdA

∣∣∣∣∣∣ .

(16)

Note that the boundary condition (5) has been applied in the above equation. This is the reformulated equivalent form of
equation (11)

The reformulated equivalent system of governing equations consists of equations (12), (3) and (16), the boundary condi-
tion (5), the condition (7), the initial condition (6) and the following initial condition for R(t),

R(0) =
√√√√
∫
�

1

2
|uin|2d� + C0. (17)

In this system the dynamic variables are u, p and R , and they are all coupled together. E(t) is given by equation (9). Note
that in the reformulated system, R(t) is treated as an approximation of

√
E(t) and is computed by solving this system of

equations, not by using equation (10).

2.2. Numerical scheme and unconditional energy stability

We next present an unconditionally energy-stable scheme for the reformulated system consisting of equations (12), (3),
(7) and (16), and the boundary condition (5).

Let n � 0 denote the time step index, and (·)n denote the variable (·) at time step n. Define

u0 = ũ0 = uin, R0 = R(0) defined in equation (17). (18)

In the above and subsequent equations un and ũn denote two different approximations of the velocity u at time step n. We
compute p0 by solving equation (2) (together with (7)) at t = 0, which in weak form is given by

∫
�

∇p0 · ∇qd� =
∫
�

[
f0 − N(uin)

]
· ∇qd� − ν

∫
∂�

n × (∇ × uin) · ∇qdA −
∫
∂�

n · ∂w

∂t

∣∣∣∣
0

qdA, ∀q ∈ H1(�), (19)

where q is a test function, and H1(�) denotes the linear space of square integrable functions whose first derivatives are
also square integrable on �. Note that the boundary velocity w(x, t) is known on ∂�, and ∂w

∂t

∣∣0 on the boundary can be
computed in the above equation.

6 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
The numerical scheme below incorporates a pressure correction type strategy for solving the reformulated system of
equations. Overall it first computes a velocity approximation, and then projects this velocity to the divergence free space.
These steps are apparently coupled together with the discrete form of the dynamic equation for the auxiliary variable. More
specifically, given (ũn, un, pn, Rn) we compute (ũn+1, un+1, pn+1, Rn+1) together with another auxiliary field function φn+1

through the following steps:

For ũn+1:

3
2 ũn+1 − 2un + 1

2 un−1

�t
+ M(ũn+1) + ∇pn − ν∇2ũn+1 + ξ

[
N(ũ∗,n+1) − M(ũ∗,n+1)

]= fn+1; (20a)

ξ =
(

Rn+3/2
)2

E[ūn+3/2] ; (20b)

E[ūn+3/2] =
∫
�

1

2

∣∣∣ūn+3/2
∣∣∣2 d� + C0; (20c)

ũn+1 = wn+1, on ∂�; (20d)

For φn+1:

φn+1 = ∇ · ũn+1; (21)

For pn+1 and un+1:

3
2 un+1 − 3

2 ũn+1

�t
+ ∇ (pn+1 − pn + νφn+1)= 0; (22a)

∇ · un+1 = 0; (22b)

n · un+1 = n · wn+1, on ∂�; (22c)∫
�

pn+1d� = 0; (22d)

For Rn+1:

(
3

2
Rn+1 + Rn − 1

2
Rn−1

) 3
2 Rn+1 − 2Rn + 1

2 Rn−1

�t
=
∫
�

ũn+1 ·
3
2 un+1 − 2un + 1

2 un−1

�t

+ ξ

⎡
⎣−ν

∫
�

‖∇ūn+1‖2d� +
∫
�

fn+1 · ūn+1d� +
∫
�

(
− P̄ n+1n + νn · ∇ūn+1 − 1

2
(n · wn+1)wn+1

)
· wn+1d�

⎤
⎦

−
∫
�

[
−M(ũn+1) − ∇ Pn+1 + ν∇2ũn+1 − ξ

(
N(ũ∗,n+1) − M(ũ∗,n+1)

)+ fn+1
]
· ũn+1d�

+ (1 − ξ)

⎡
⎣
∣∣∣∣∣∣
∫
�

fn+1 · ūn+1d�

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
�

(
− P̄ n+1n + νn · ∇ūn+1 − 1

2
(n · wn+1)wn+1

)
· wn+1d�

∣∣∣∣∣∣
⎤
⎦ .

(23)

The symbols in the above equations are defined as follows. �t is the time step size. ũn+1 and un+1 are two different
approximations of the velocity u at step (n + 1). ũ∗,n+1 is a 2nd-order explicit approximation of ũn+1, given by

ũ∗,n+1 = 2ũn − ũn−1. (24)

ūn+1 and ūn+3/2 are second-order approximations of ũn+1 and ũn+3/2 respectively, and are to be specified later in equa-
tion (38). Rn+3/2 and Rn+1/2 are 2nd-order approximations of R(t) at time steps (n + 3/2) and (n + 1/2), defined by

Rn+3/2 = 3
Rn+1 − 1

Rn, Rn+1/2 = 3
Rn − 1

Rn−1. (25)

2 2 2 2

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 7
By equation (21) we mean that φn+1 is a projection of ∇ · ũn+1 into the H1(�) space. In equation (23) Pn+1 and P̄ n+1 are
defined by

Pn+1 = pn+1 + νφn+1, P̄ n+1 = p̄n+1 + νφ̄n+1, (26)

where p̄n+1 and φ̄n+1 are second-order approximations of pn+1 and φn+1 to be specified later in equations (49) and (44). In
equation (23), note that 1

2 (3
2 Rn+1 + Rn − 1

2 Rn−1) is a second-order approximation of Rn+1, satisfying the following property,
(

3

2
Rn+1 + Rn − 1

2
Rn−1

)(
3

2
Rn+1 − 2Rn + 1

2
Rn−1

)

=
(

Rn+3/2
)2 −

(
Rn+1/2

)2 =
(

3

2
Rn+1 − 1

2
Rn
)2

−
(

3

2
Rn − 1

2
Rn−1

)2

.

(27)

Equations (20a)–(22d) are similar to the rotational pressure correction scheme for the incompressible Navier-Stokes
equations, except for the M(ũn+1) term and the term involving ξ , which couple these equations together with equation
(23). The equation (12) on the continuous level corresponds to the equations (20a) and (22a) on the discrete level. The
continuous equation (16) corresponds to the discretized equation (23). Equations (22b) and (22d) are the discretized forms
of the continuous equations (3) and (7), respectively. Equations (20d) and (22c) are the discretized versions of the boundary
condition (5) on the continuous level. With equation (20) we compute a velocity approximation ũn+1, which subsequently
is projected to produce a divergence free velocity un+1 in equation (22). We refer to the review [13] for a more detailed
discussion of the pressure correction strategy. Note that all the terms in these equations are enforced at the time step
(n + 1), except the term ξ , which is approximated at time step (n+3/2) according to equation (20b). This does not affect the

overall second-order accuracy, because ξ =
(

Rn+3/2)2
E[ūn+3/2] is a second-order approximation of R2(t)

E(t) = 1. Here the key is to realize

that R2(t)
E(t) = 1 for any time t on the continuum level. This approximation is a key point in the gPAV framework [36].

The scheme represented by equations (20a)–(23) is energy stable due to the following property.

Theorem 2.1. In the absence of the external force (f = 0) and with homogeneous boundary condition (w = 0), the following relation
holds with the scheme given by (20a)–(23),

∣∣∣∣32 Rn+1 − 1

2
Rn

∣∣∣∣
2

−
∣∣∣∣32 Rn − 1

2
Rn−1

∣∣∣∣
2

= −
(

Rn+3/2
)2

E[ūn+3/2]ν�t

∫
�

‖∇ūn+1‖2d� � 0. (28)

Proof. Take the L2 inner products between equation (20a) and ũn+1, and between equation (22a) and ũn+1. Summing up
the two resultant equations together with equation (23), we get

(
Rn+3/2

)2 − (Rn+1/2
)2

�t
= ξ

⎛
⎝−ν

∫
�

‖∇ūn+1‖2d� + A1 + A2

⎞
⎠+ (1 − ξ) (|A1| + |A2|) , (29)

where we have used the relation (27), and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1 =
∫
�

fn+1 · ūn+1d�,

A2 =
∫
∂�

(
− P̄ n+1n + νn · ∇ūn+1 − 1

2
(n · wn+1)wn+1

)
· wn+1d�.

(30)

If f = 0 and w = 0, then A1 = A2 = 0, and equation (29) leads to equation (28) in light of (20b) and (25). Noting that
E[ūn+3/2] > 0, the inequality in (28) holds. �
2.3. Solution algorithm and implementation

While the system of equations (20a)–(23) are coupled with one another, they can be solved in a de-coupled fashion and
the scheme can be implemented in an efficient way, thanks to the fact that the auxiliary variable R(t) is a scalar number,
not a field function. We next present such a solution algorithm.

Let

γ0 = 3 ; û = 2un − 1
un−1. (31)
2 2

8 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
We re-write equation (20a) into

γ0

�t
ũn+1 + M(ũn+1) − ν∇2ũn+1 = fn+1 + û

�t
− ∇pn − ξ

[
N(ũ∗,n+1) − M(ũ∗,n+1)

]
. (32)

Barring the unknown scalar number ξ , this is a linear equation with respect to ũn+1. We solve this equation together with
the boundary condition (20d) as follows. Define two field functions ũn+1

1 and ũn+1
2 as solutions to the following problems:

γ0

�t
ũn+1

1 + M(ũn+1
1) − ν∇2ũn+1

1 = fn+1 + û

�t
− ∇pn, (33a)

ũn+1
1 = wn+1, on ∂�; (33b)

γ0

�t
ũn+1

2 + M(ũn+1
2) − ν∇2ũn+1

2 = − [N(ũ∗,n+1) − M(ũ∗,n+1)
]

(34a)

ũn+1
2 = 0, on ∂�. (34b)

Then for given value ξ the solution to the equations (20a) and (20d) are given by

ũn+1 = ũn+1
1 + ξ ũn+1

2 . (35)

Let H1
0(�) = { v ∈ H1(�) : v|∂� = 0 }. The weak forms for equations (33a) and (34a) are given by

γ0

ν�t

∫
�

ũn+1
1 ϕd� +

∫
�

∇ϕ · ∇ũn+1
1 d� + 1

ν

∫
�

M(ũn+1
1)ϕd�

= 1

ν

∫
�

(
fn+1 + û

�t
− ∇pn

)
ϕd�, ∀ϕ ∈ H1

0(�);
(36)

γ0

ν�t

∫
�

ũn+1
2 ϕd� +

∫
�

∇ϕ · ∇ũn+1
2 d� + 1

ν

∫
�

M(ũn+1
2)ϕd�

= − 1

ν

∫
�

[
N(ũ∗,n+1) − M(ũ∗,n+1)

]
ϕ, ∀ϕ ∈ H1

0(�).

(37)

These weak forms, together with the boundary conditions (33b) and (34b), can be implemented using high-order spectral
elements in a straightforward fashion.

Define

ūn+1 = ũn+1
1 + ũn+1

2 , ūn+3/2 = 3

2
ūn+1 − 1

2
ũn. (38)

Note that these are second-order approximations of ũn+1 and ũn+3/2, respectively.
To solve for φn+1 from (21), in light of (35), we define two field variables φn+1

1 and φn+2
2 by

φn+1
1 = ∇ · ũn+1

1 ; (39)

φn+1
2 = ∇ · ũn+1

2 . (40)

Then the solution to (21) is given by

φn+1 = φn+1
1 + ξφn+1

2 , (41)

where ξ is still to be determined. The weak forms for equations (39) and (40) are given by∫
�

φn+1
1 ϕd� =

∫
�

∇ · ũn+1
1 ϕd�, ∀ϕ ∈ H1(�); (42)

∫
�

φn+1
2 ϕd� =

∫
�

∇ · ũn+1
2 ϕd�, ∀ϕ ∈ H1(�). (43)

We define φ̄n+1 in equation (26) as

φ̄n+1 = φn+1
1 + φn+1

2 . (44)

Note that this is a second-order approximation of φn+1.

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 9
To solve equations (22a)–(22d) for pn+1 and un+1, we first derive the weak form of the equations. Let q ∈ H1(�) denote
a test function. Taking the L2 inner product between equation (22a) and ∇q leads to∫

�

∇pn+1 · ∇qd� =
∫
�

(γ0

�t
ũn+1 + ∇pn − ν∇φn+1

)
· ∇qd� − γ0

�t

∫
∂�

n · wn+1qdA, ∀q ∈ H1(�), (45)

where we have used integration by part and equation (22c). In light of equations (35) and (41), we define two field variables
pn+1

1 and pn+1
2 as solutions to the following equations:∫

�

∇pn+1
1 · ∇qd� =

∫
�

(γ0

�t
ũn+1

1 + ∇pn − ν∇φn+1
1

)
· ∇qd� − γ0

�t

∫
∂�

n · wn+1qdA, ∀q ∈ H1(�); (46a)

∫
�

pn+1
1 d� = 0; (46b)

∫
�

∇pn+1
2 · ∇qd� =

∫
�

(γ0

�t
ũn+1

2 − ν∇φn+1
2

)
· ∇qd�, ∀q ∈ H1(�); (47a)

∫
�

pn+1
2 d� = 0. (47b)

Then for given ξ the solution to equations (45) and (22d) is

pn+1 = pn+1
1 + ξ pn+1

2 . (48)

With pn+1
1 and pn+1

2 given by equations (46a)–(47b), we define p̄n+1 in (26) as

p̄n+1 = pn+1
1 + pn+1

2 . (49)

Now we are ready to determine the scalar value ξ . Note that the combination of equations (20a), (22a) and (23) leads to
equation (29). In light of (20b), equation (29) yields the following formula for computing ξ ,

ξ =
(

Rn+1/2
)2 + (|A1| + |A2|)�t

E[ūn+3/2] + [ν ∫
�

‖∇ūn+1‖2d� + (|A1| − A1) + (|A2| − A2)
]
�t

, (50)

where Rn+1/2 is given by (25), ūn+1 and ūn+3/2 are given by (38), and A1 and A2 are given by (30). Then Rn+1 is computed
as follows,⎧⎪⎨

⎪⎩
Rn+3/2 =

√
ξ E[ūn+3/2],

Rn+1 = 2

3
Rn+3/2 + 1

3
Rn.

(51)

It can be noted that ξ > 0 and Rn+3/2 > 0 for all time steps, and also Rn+1 > 0 for all time steps, if Rn+1/2
∣∣
n=0 > 0,

irrespective of the �t value or the external force f and the boundary velocity w. The Appendix A outlines a method for
approximating the variables for the first time step, which ensures that R1 > 0 and Rn+1/2

∣∣
n=0 > 0.

Combining the above discussions, we end up with the solution algorithm listed in Algorithm 1. This algorithm has the
following properties: (i) The computations for the velocity and pressure are de-coupled. (ii) Only linear equations need to be
solved within a time step. (iii) The resultant linear algebraic systems upon discretization involve quasi-constant coefficient
matrices, which can be updated every k0 time step sizes (k0 denoting an integer parameter). (iv) The computed values for
the auxiliary variable are guaranteed to be positive. (v) Two copies of the field variables (velocity, pressure and ∇ · ũn+1)
are computed within a time step. (vi) The algorithm satisfies a discrete energy stability property.

Equations (36)–(37), (42)–(43), and (46a)–(47b) for the field functions ũn+1
i , φn+1

i and pn+1
i (i = 1, 2) are already in weak

forms, and they can be implemented using C0 type finite elements or spectral elements in a straightforward fashion. In the
current work, these equations are discretized in space using C0 type spectral elements [29,17]. A Schur complement (or
static condensation) is performed on the resultant linear algebraic systems to condense out the interior modes (or bubble
modes) [17]. Therefore, the computations for the boundary modes and the interior modes are de-coupled. The boundary
modes are computed first, by solving the Schur-complemented linear algebraic system using an iterative solver. Then the
interior modes are computed by a simple element-wise matrix-vector multiplication. The linear algebraic systems for the
pressure and φ involve a symmetric coefficient matrix and are solved using the conjugate gradient (CG) linear solver. The
coefficient matrix in the velocity linear algebraic systems is non-symmetric (but positive definite) and is solved using the
bi-conjugate gradient stabilized (BiCGStab) linear solver. In both the CG and BiCGStab solvers, we use a simple Jacobi pre-
conditioner (i.e. diagonal scaling) [24] for all the test problems presented subsequently in Section 3.

10 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
input : (un , ũn , pn , Rn), and these variables of previous time steps
output : (un+1, ũn+1, pn+1, Rn+1, φn+1)

begin
Solve equations (36) for ũn+1

1 ;

Solve equations (37) for ũn+1
2 ;

Solve equation (42) for φn+1
1 ;

Solve equation (43) for φn+1
2 ;

Solve equations (46a)–(46b) for pn+1
1 ;

Solve equations (47a)–(47b) for pn+1
2 ;

Compute ūn+1, ūn+3/2, φ̄n+1, p̄n+1 and P̄ n+1 based on equations (38), (44), (49), and (26);
Compute A1 and A2 based on equation (30);
Compute ξ based on equation (50);

Compute ũn+1 based on equation (35);
Compute φn+1 based on equation (41);
Compute pn+1 based on equation (48);
Compute Rn+1 based on equation (51);
Compute un+1 by equation (22a) as follows,

un+1 = ũn+1 − �t

γ0
∇ (pn+1 − pn + νφn+1) ; (52)

end

Algorithm 1: Solution algorithm within a time step.

Remark 1. In equation (12) we can also choose

M(u) = 0, (53)

and use the same algorithm represented by equations (20a)–(23). The energy stability property, Theorem 2.1, still holds
for this modified algorithm. The advantage of this modification lies in that the resultant linear algebraic systems upon
discretization now involve only constant and time-independent coefficient matrices, which can be pre-computed. However,
we observe that this modified algorithm is less accurate than the current algorithm when the time step size increases to
moderate or fairly large values. This point will be demonstrated by numerical experiments in Section 3.

3. Representative numerical tests

We next use several flow problems in two dimensions to test the performance of the method developed in the previous
section. The spatial/temporal convergence rates of the method are first investigated using a manufactured analytic solution.
Then the Kovasznay flow and the flow past a hemisphere in a narrow periodic channel are simulated to study the accuracy
and stability of the method at large (or fairly large) time step sizes.

3.1. Convergence rates

We first demonstrate the spatial and temporal convergence rates of the method developed herein using a manufactured
analytic solution to the incompressible Navier-Stokes equations. Consider the rectangular domain shown in Fig. 1(a), 0 �
x � 2 and −1 � y � 1, and the following analytic expressions for the flow variables on this domain,

⎧⎪⎨
⎪⎩

u = 2 sin(πx) cos(π y) sin t,

v = −2 cos(πx) sin(π y) sin t,

p = 2 sin(πx) sin(π y) cos t,

(54)

where (u, v) are the x and y components of the velocity u, respectively. In equation (2) the external body force f is chosen
such that this equation is satisfied by the analytic expressions given in (54). It can be verified that these expressions also
satisfy the equation (3).

We discretize the domain using a mesh of 8 quadrilateral elements as shown in Fig. 1(a), with 4 elements along the x
direction and 2 along the y direction. The scheme from Section 2 is employed to solve the incompressible Navier-Stokes
equations (2)–(3). Dirichlet boundary condition (5) is imposed on all boundaries, in which the boundary velocity w is chosen
according to the analytical expressions given in (54). The initial velocity uin is obtained by setting t = 0 in the expressions
of (54). We employ a fixed C0 = 1000 in the tests of this subsection. The field u0 in M(u) (see equation (13)) is updated
every 20 time steps (k0 = 20).

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 11
Fig. 1. Convergence rates: (a) Computational domain and mesh. L2 errors of the flow variables as a function of (b) the element order (with fixed t f = 0.1
and �t = 0.001), and (c) the time step size �t (with fixed t f = 0.1 and element order 14).

We integrate the Navier-Stokes equations from t = 0 to t = t f (t f to be specified below), and compare the numerical
solution at t = t f against the analytical solution given by (54). The L2 norms of the errors for different flow variables have
been computed. The element order and the time step size �t are varied in the spatial and temporal convergence tests, in
order to study their effects on the errors of the numerical solutions.

Fig. 1(b) illustrates the spatial convergence behavior of the method. Here we use a fixed t f = 0.1 and time step size
�t = 0.001, and then vary the element order systematically between 2 and 20. This figure shows the L2 errors of different
variables corresponding to these element orders. A clear exponential convergence rate can be observed for element orders
below 10. The error curves are observed to level off for element orders above 10, due to the saturation of the temporal
truncation errors.

Fig. 1(c) is an illustration of the temporal convergence behavior of the method. Here the integration time is fixed at
t f = 0.1 and the element order is fixed at 14. We vary the time step size systematically between �t = 0.05 and �t =
9.765625e − 5, and plot the L2 errors of the flow variables as a function of �t . The temporal convergence rate for the
velocity is clearly second-order. It is also observed to be second-order for the pressure when �t is small. But the pressure
convergence behavior is not as uniform as the velocity.

3.2. Kovasznay flow

In this subsection we employ the Kovasznay flow, a steady-state problem with a known analytic solution, to test the
accuracy and stability of the current method. This problem has been studied in a number of previous works (see e.g. [2,17,
10], among others).

12 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
Fig. 2. Kovasznay flow: (a) mesh of 6 quadrilateral elements, and (b) flow patterns visualized by streamlines.

Fig. 3. Kovasznay flow: Numerical errors of the steady-state velocity versus the element order.

Consider the domain, −0.5 � x � 1 and −0.5 � y � 0.5, as shown in Fig. 2(a). The Kovasznay flow is given by the
following expressions for the flow variables [19],

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = 1 − exp(λx) cos(2π y)

v = λ

2π
exp(λx) sin(2π y)

p = 1

2
(1 − exp(2λx))

(55)

with the constant λ = 1
2ν

(
1 − √

1 + 16π2ν2
)

. These expressions satisfy the Navier-Stokes equations (2)–(3) with f = 0.

Fig. 2(b) is a visualization of the flow patterns based on the streamlines. We employ a fixed ν = 1
40 in this test.

We employ the method presented in Section 2 to simulate the Kovasznay flow. The flow domain is first discretized using
a mesh of 6 quadrilateral spectral elements, as given in Fig. 2(a). The element order is varied in the tests, which will be
specified below. The external body force in the Navier-Stokes equation (2) is set to f = 0. Dirichlet boundary condition (5) is
imposed on all domain boundaries, with the boundary velocity w chosen according to the analytical expressions from (55).
Zero initial velocity (uin = 0 in (6)) has been employed in all the tests below. The governing equations are integrated to a
sufficiently long time so that the flow has reached the steady state. The steady-state solutions are then compared with the
analytical expressions from (55) to compute their errors in different norms. The simulation parameter values are varied to
investigate their effects on the results, which will be specified in the discussions below.

We vary the element order systematically and have computed the errors of the steady-state solution against the analytic
solution in (55) corresponding to different element orders. Fig. 3 shows the numerical errors of the steady-state velocity
in L∞ , L2 and H1 norms as a function of the element order. These results are computed with C0 = 1000 and �t = 0.001,
and the field u0 (and hence the coefficient matrix) is updated every 20 time steps (k0 = 20). The numerical errors decrease

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 13
Fig. 4. Kovasznay flow: time histories of the L∞ error of the x velocity obtained with two element orders (10 and 16) and a time step size �t = 0.4.

Fig. 5. Kovasznay flow: L∞ and L2 errors of the steady-state x-velocity versus �t computed with element orders 10 and 16. C0 = 1000 and u0 is updated
every 20 time steps (k0 = 20) in simulations.

exponentially with increasing element order for orders below 14, and the errors saturate at a level around 10−13 with
element orders beyond 14.

Fig. 4 illustrates the typical convergence behavior of the method for the Kovasznay flow. It shows the time histories of
the L∞ error of the x velocity component computed with a time step size �t = 0.4 with two element orders 10 and 16.
The field u0 is updated every 20 time steps (k0 = 20), and C0 = 1000 in the simulations. The error decreases over time
and eventually reaches a steady-state level, around 10−7 with element order 10 and around 10−12 with order 16. It can
take a quite long time for the simulation to reach the steady state, for instance about t = 1.5 × 104 with the element order
16.

Thanks to the energy stability property (Theorem 2.1), stable simulation results can be obtained using the current method
with various time step sizes, ranging from small to very large values. This point is demonstrated by the results in Fig. 5. This
figure shows the L∞ and L2 errors of the steady-state velocity (x component u) from current simulations corresponding to
various �t values ranging from �t = 0.004 to �t = 100. The results for two element orders, order 10 and order 16, are
provided. In these tests C0 = 1000, and the coefficient matrix is updated every 20 time steps (k0 = 20). With �t = 0.5
and larger, we observe that the numerical errors fluctuate over time about some level in the long-time simulations. So the
errors shown in this figure corresponding to such �t are the time-averaged values. We can make several observations from
these results. First, they verify that the current method is indeed stable in long-term simulations, even with large time step
sizes. Second, the computation using the current method starts to lose accuracy with time step sizes beyond a certain value,
which corresponds to �t = 0.5 and larger in this group of tests. Fig. 5 shows that, for element order 10 the errors for the
computed steady-state velocity are at levels 10−8 ∼ 10−7 with time step sizes �t � 0.4, and they increase to a level ∼ 10−2

with �t � 0.5. For element order 16 the numerical errors are at a level 10−14 ∼ 10−12 with �t � 0.4 and they increase to
a level ∼ 10−2 with �t � 0.5. It is evident that the current method can produce accurate results at quite large time step
sizes. The borderline time step size, beyond which the simulation accuracy starts to deteriorate, is around �t = 0.4 in this
group of tests for the Kovasznay flow. This is a very large �t value for all practical purposes.

14 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
Table 1
Kovasznay flow: effect of C0 on the errors of results. Element or-
der is 10, and �t = 0.005.

C0 L∞ − u L2 − u L∞ − v L2 − v

1e-4 1.806e-7 8.709e-8 2.285e-8 6.885e-9
1e-3 1.806e-7 8.709e-8 2.285e-8 6.885e-9
1e-2 1.806e-7 8.709e-8 2.285e-8 6.885e-9
1e-1 1.806e-7 8.709e-8 2.285e-9 6.885e-9
1.0 1.806e-7 8.709e-8 2.285e-8 6.885e-9
10 1.806e-7 8.709e-8 2.285e-8 6.885e-9
100 1.806e-7 8.709e-8 2.285e-8 6.885e-9
1e3 1.806e-7 8.707e-8 2.284e-8 6.884e-9
1e5 1.806e-7 8.706e-8 2.283e-8 6.883e-9
1e7 1.806e-7 8.706e-8 2.283e-8 6.883e-9
1e9 1.806e-7 8.706e-8 2.283e-8 6.883e-9
1e11 1.798e-7 8.678e-8 2.262e-8 6.865e-9
1e12 1.806e-7 8.706e-8 2.283e-8 6.883e-9

Table 2
Kovasznay flow: L∞ (maximum) errors of the x component of the steady-state velocity obtained with a matrix of values
for the parameters (C0, �t), showing the effect of C0 on the accuracy boundary in the parameter space. Element order
is 10 and k0 = 20 in the simulations.

�t = 0.1 0.3 0.4 0.5 1.0 5.0 10.0

C0 = 10−4 1.804e-7 1.804e-7 (inaccurate) (inaccurate) (inaccurate) (inaccurate) (inaccurate)
10−2 1.804e-7 1.804e-7 (inaccurate) (inaccurate) (inaccurate) (inaccurate) (inaccurate)
100 1.804e-7 1.804e-7 (inaccurate) (inaccurate) (inaccurate) (inaccurate) (inaccurate)
101 1.804e-7 1.804e-7 (inaccurate) (inaccurate) (inaccurate) (inaccurate) (inaccurate)
102 1.804e-7 1.804e-7 1.804e-7 (inaccurate) (inaccurate) (inaccurate) (inaccurate)
103 1.804e-7 1.804e-7 1.804e-7 (inaccurate) (inaccurate) (inaccurate) (inaccurate)
104 1.800e-7 1.803e-7 1.804e-7 (inaccurate) (inaccurate) (inaccurate) (inaccurate)
105 1.796e-7 1.798e-7 1.799e-7 1.799e-7 1.801e-7 (inaccurate) (inaccurate)
106 1.795e-7 1.797e-7 1.798e-7 1.798e-7 1.798e-7 1.799e-7 (inaccurate)

When defining the biased energy E(t) in (9), we need a chosen energy constant C0 to ensure that E(t) > 0 is satisfied
for all time, so that the expression R2

E(t) is well-defined in the algorithm. We observe that with the current method the
simulation result is not sensitive to the value of C0. This is demonstrated by the data in Table 1. Here we have varied C0
systematically in a range of values between 10−4 and 1012, and listed the numerical errors of the steady-state velocity
corresponding to these values. These results are computed with an element order 10 and a time step size �t = 0.005, and
the u0 field in M(u) is updated every 20 time steps (k0 = 20). It is evident that the different C0 values have little influence
on the numerical errors of the results.

The data in Fig. 5 indicate that, with other simulation parameters fixed, the simulation result loses accuracy as �t in-
creases beyond a certain level. For those tests in Fig. 5, the borderline �t is between �t = 0.4 and �t = 0.5. We observe
that the value for the borderline �t , beyond which the simulation becomes inaccurate, has a dependence on the value of
the energy constant C0, and that the borderline �t is generally larger with a larger C0 in the simulations. This point is
demonstrated by Table 2. Here we list the L∞ errors of the x component of the steady-state velocity computed using a
matrix of values for the parameters (C0, �t). If the simulation loses accuracy with a certain (C0, �t) value, the correspond-
ing entry in the table will be marked as “inaccurate”. In these tests the element order is 10 and the field u0 is updated
every 20 time steps (k0 = 20). The time step sizes considered in this table are generally quite large (�t � 0.1), because
we are interested in the boundary between the regions of accurate and inaccurate simulations in the parameter space. It is
observed that with C0 < 102 the borderline �t is located between �t = 0.3 and 0.4, and appears to be independent of C0.
With C0 � 102 the borderline �t exhibits a dependence on C0, and tends to increases as C0 increases. For instance, with
C0 = 103 the borderline �t is located between �t = 0.4 and �t = 0.5, and with C0 = 105 the borderline �t is between
�t = 1.0 and �t = 5.0. In the latter case one can attain accurate simulation results even with a time step size as large
as �t = 1.0. From Table 2 it can be further noticed that, in the region of the parameter space to the left of the accuracy
boundary (i.e. when �t is below the borderline �t), the change in the C0 value has essentially no influence on the errors
of the simulation results with the current method. This is consistent with our previous observations based on Table 1 that
the numerical errors are not sensitive to C0.

In the current method the field function u0 in M(u) is updated every k0 time steps, using a historical velocity field at the
time step that is the largest multiple of k0, as discussed in Section 2. We observe that for the Kovasznay flow the accuracy
of simulation results is not sensitive to the frequency for u0 update (k0 value) in the algorithm. This is demonstrated
by Table 3, which lists the errors of the steady-state velocity obtained with various k0 values ranging from k0 = 10 to
k0 = 1000 under two time step sizes (�t = 0.005 and 0.1). In this group of tests C0 = 1000 and the element order is 16.

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 15
Table 3
Kovasznay flow: effect of the frequency for u0 update on simulation errors.
Note that u0 is updated every k0 time steps. Element order is 16.

�t k0 L∞ − u L2 − u L∞ − v L2 − v

0.005 10 3.942e-13 1.728e-14 7.102e-14 8.136e-15
20 4.681e-13 1.820e-14 5.831e-14 9.803e-15
50 1.662e-13 1.918e-14 5.122e-14 8.171e-15
100 4.318e-13 1.860e-14 6.476e-14 9.647e-15
200 7.341e-13 1.724e-14 6.066e-14 8.516e-15
500 3.113e-13 1.779e-14 5.350e-14 1.367e-14
1000 2.643e-13 1.420e-14 5.748e-14 7.974e-15

0.1 10 1.725e-12 1.884e-13 5.914e-13 1.643e-14
20 2.151e-12 1.768e-13 6.692e-13 1.772e-14
50 2.185e-12 1.780e-13 6.876e-13 1.735e-14
100 2.177e-12 1.775e-13 6.913e-13 1.730e-14
200 2.186e-12 1.773e-13 6.874e-13 1.743e-14
500 2.191e-12 1.744e-13 6.804e-13 1.730e-14
1000 2.187e-12 1.732e-13 6.856e-13 1.755e-14

Fig. 6. Kovasznay flow: Errors of steady-state velocity versus �t obtained using the modified algorithm (M(u) = 0).

The results are evidently not sensitive to how frequently u0 is updated for this problem. The errors are comparable when
u0 is updated every 1000 time steps or every 10 time steps. The observed insensitivity is due to the fact that the Kovasznay
flow eventually reaches a steady state. If the problem is unsteady, very large k0 values can lead to the deterioration in
accuracy of the simulation results, which will be shown in later numerical tests.

In Remark 1 we have suggested a modified algorithm, corresponding to M(u) = 0 in the formulation. This modified
scheme has a lower computational cost, because the associated velocity coefficient matrix is constant and can be pre-
computed. However, it is inferior in accuracy to the current method at moderate and large �t values, and its accuracy
has a strong dependence on the energy constant C0. This point is demonstrated by Fig. 6, which shows the L∞ and L2

errors of the x-velocity component at steady state obtained using this modified algorithm with various �t ranging from
small to large values. The errors corresponding to the element order 10 and several C0 values are provided. This figure can
be compared with Fig. 5, which is obtained using the current method. One can observe that, with the modified algorithm
(M(u) = 0), the simulation loses accuracy with time step sizes �t = 0.004 and larger for element order 10 (and �t = 0.002
and larger for element order 16, not shown here). The errors reach a level around 10−1. In contrast, with the current
method, accurate results can be obtained with time step sizes up to �t = 0.4; see Fig. 5. Fig. 6 further indicates that with
small �t the accuracy of the modified algorithm (M(u) = 0) strongly depends on the energy constant C0. A larger C0 leads
to considerably more accurate results. This behavior is different from that of the current method, whose accuracy is not
sensitive to C0 as shown by Table 1. A comparison between Fig. 6 and the data from [22] indicates that this modified
algorithm seems also inferior in accuracy to the method of [22]. We note that the modified algorithm here from Remark 1
is based on the pressure-correction type strategy, while the method from [22] is more aligned with a velocity-correction
type scheme, which is likely the cause for the observed difference in accuracy.

3.3. Flow past a hemisphere in a narrow periodic channel

In this subsection we test the current method with the flow past a hemisphere in a narrow periodic channel in two
dimensions. Specifically, we consider the domain shown in Fig. 7(a). A hemisphere (or half-disk) with diameter d is mounted
on the bottom of a narrow channel, which occupies the domain −2.5d � x � 6.5d and 0 � y � 1.5d. The hemispheric

16 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
Fig. 7. Flow past a hemisphere: (a) flow configuration and a mesh of 480 quadrilateral elements. Flow patterns visualized by streamlines corresponding to
ν = 0.02 (b) and ν = 0.001 (c).

center coincides with the origin of the coordinate system. The top and bottom of the channel (y = 0, 1.5d) are walls, and
in the horizontal direction (x = −2.5d, 6.5d) the channel is assumed to be periodic. The flow is driven by a horizontal
pressure gradient. This configuration mimics the flow past an infinite array of hemispheres in an infinitely long channel. We
choose the hemisphere diameter d as the length scale and a unit velocity scale U0 = 1. All the other physical variables and
parameters are then normalized accordingly.

We discretize the domain using a mesh of 480 quadrilateral elements; see Fig. 7(a). On the top and bottom channel
walls and on the surface of the hemisphere we impose the no-slip condition, i.e. boundary condition (5) with w = 0. In
the horizontal direction periodic condition is imposed for all the flow variables. The Navier-Stokes equations (2)–(3), with a
horizontal body force (pressure gradient) of normalized magnitude |f| = 0.03, are solved using the algorithm from Section 2.
The element order, the time step size �t , the energy constant C0, the Reynolds number, and other algorithmic parameters
are varied to study their effects on the simulation results.

An overview of the characteristics of this flow is provided by Figs. 7(b, c), which visualize the flow patterns at two
Reynolds numbers corresponding to ν = 0.02 and ν = 0.001 using streamlines. At low Reynolds numbers one observes
a steady flow (Fig. 7(b)). As the Reynolds number increases, vortex shedding can be seen in the hemisphere wake. Due to
periodicity, these vortices re-enter the domain from the left, and can interact with the hemisphere and generate complicated
dynamics. For instance, vortices can at times be observed near the top channel wall (Fig. 7(c)).

We have monitored the total force exerting on the wall surfaces (channel walls and the hemispheric surface). Fig. 8
shows a typical signal of the force (x and y components) at the Reynolds number corresponding to ν = 0.001. These are
attained using an element order 7, �t = 0.001 and C0 = 1000 in the simulations. The force signals are fluctuational due to
the vortex shedding. The horizontal force (drag) exhibits large fluctuations in magnitude, while the vertical force is much
weaker in comparison. The long history and the signal characteristics indicate that the flow has reached a statistically
stationary state.

From the force histories we can compute the statistical quantities such as the time-averaged mean and root-mean-square
(rms) of the forces on the walls. In Table 4 we have listed the mean and rms forces at several Reynolds numbers (for ν
ranging from ν = 0.02 to ν = 0.0002), which are computed using element orders ranging from 4 to 8. In these simulations
fixed values of �t = 0.001 and C0 = 1000 are employed, and the field u0 is updated every 20 time steps (k0 = 20). The
total driving force on the domain, i.e. (driving pressure gradient) × (domain area) = 0.03 × (1.5 × 9 − π/8) ≈ 0.393, has
also been listed in the table. At a steady state or a statistically stationary state, the time-averaged total horizontal force on
the wall should physically match the total driving force in the domain. Therefore, these values can serve as a basic check on
the simulation results. At ν = 0.02 and ν = 0.005, it is a steady flow. So given in the table are the steady-state forces, and

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 17
Fig. 8. Flow past a hemisphere: Time histories of the forces on the walls with ν = 0.001.

Table 4
Flow past a hemisphere: Effect of spatial resolution on the forces on walls. f̄ x and f̄ y are the
time-averaged mean forces in x and y directions, and f ′

x and f ′
y are the rms forces in the two

directions.

ν Element order f̄ x f ′
x f̄ y f ′

y Driving force

0.02 4 0.396 0 7.6e-4 0 0.393
5 0.394 0 -5.6e-4 0 0.393
6 0.393 0 8.7e-5 0 0.393
7 0.393 0 1.4e-5 0 0.393
8 0.393 0 1.1e-5 0 0.393

0.005 4 0.395 0 -0.192 0 0.393
5 0.393 0 -4.6e-3 0 0.393
6 0.393 0 1.6e-2 0 0.393
7 0.393 0 7.0e-4 0 0.393
8 0.393 0 -1.3e-4 0 0.393

0.001 4 0.388 0.278 0.129 0.467 0.393
5 0.405 0.252 -0.0153 0.0443 0.393
6 0.394 0.238 -0.0636 0.0559 0.393
7 0.386 0.237 -9.29e-4 0.0134 0.393
8 0.391 0.241 0.0245 0.0135 0.393

0.0002 4 0.351 0.796 1.353 1.638 0.393
5 0.437 0.875 0.103 0.276 0.393
6 0.388 0.812 0.102 0.401 0.393
7 0.405 0.760 -1.43e-3 0.0829 0.393
8 0.399 0.725 -0.0865 0.167 0.393

no time-averaging is performed for these cases. It can be observed that with element orders beyond about 5 the computed
values of the horizontal force are quite close to (or for the lower Reynolds numbers the same as) the total driving force on
the domain. The rms horizontal force f ′

x also appears to exhibit a sense of convergence with increasing element order. The
mean and rms vertical forces (f y, f ′

y) are quite small when compared with the horizontal counterpart.
Fig. 9 shows a comparison of the steady-state streamwise and vertical velocity profiles across the channel at several

downstream locations at ν = 0.005, computed with various element orders. The velocity profiles corresponding to different
element orders essentially overlap with one another. This suggests that these simulations produce essentially the same
velocity distribution, and that they have numerically converged with respect to the spatial resolution. The majority of
simulation results reported below are computed with an element order 6 or 7.

Fig. 10 illustrates the dynamics of the hemisphere flow with a temporal sequence of snapshots of the velocity fields
at the Reynolds number corresponding to ν = 0.0005. These results are obtained using a time step size �t = 0.001 and
C0 = 1000, and the field u0 is updated every 20 time steps in the simulations. Several effects seem to play a role in the
dynamics of this flow: (i) vortex shedding behind the hemisphere; (ii) periodicity of the channel, which introduces vortices
into the domain upstream of the hemisphere; (iii) confinement of the narrow channel. The vortices in the hemisphere wake
appear to be mostly confined to the regions near the top and bottom walls.

18 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
Fig. 9. Flow past a hemisphere (ν = 0.005): comparison of profiles of the streamwise velocity u (top row) and the vertical velocity v (bottom row) at
several downstream locations, x/d = −1 (a, f), 0 (b, g), 1 (c, h), 3 (d, i), 5 (e, j).

The effect of the energy constant C0 on the simulation results is studied in Table 5 for the hemisphere flow. This table
lists the mean and rms forces on the wall with respect to a range of C0 values at three Reynolds numbers corresponding to
ν = 0.02, 0.001 and 0.0002. A time step size �t = 0.001 and element order 6 have been employed in this group of tests,
and the field u0 is updated every 20 time steps. We observe that the obtained forces are essentially the same or quite close
corresponding to different C0, suggesting that they have a low sensitivity to C0 using the current method. This is consistent
with what has been observed with the Kovasznay flow in the previous section.

We next investigate the effect of �t on the stability and accuracy of the simulations. Thanks to the discrete energy
stability property (Theorem 2.1), fairly large time step sizes can be employed in actual simulations with the current method.
Table 6 lists the mean and rms forces on the walls obtained using time step sizes ranging from �t = 2.5e − 4 to �t = 1.0
in the simulations of the hemisphere flow. A fixed C0 = 1000 and an element order 6 are employed, and the u0 field is
updated every 20 time steps. We observe that the current method can produce stable simulation results with various �t ,
ranging from small to very large values, at lower Reynolds numbers; see the case ν = 0.02 in Table 6. At higher Reynolds
numbers, we observe that the method produces stable results with small to fairly large �t values. However, when �t
becomes very large the method seems less robust, in that the BiCGStab linear solver may fail to converge for solving the
linear algebraic system of equations. For example, for Reynolds numbers corresponding to ν = 0.001 and ν = 0.0002, with
�t = 0.1 and larger we observe that the BiCGStab linear solver fails to converge after some time into the computation using
the current method. Because the current method involves a non-symmetric velocity coefficient matrix due to the M(u)

term, with large �t the conditioning of the velocity linear algebraic system can possibly become poor, which can cause
difficulty to the BiCGStab solver. It should be noted that these large �t values, with which BiCGStab solver encounters a
difficulty here, are considerably larger than those maximum �t values a typical semi-implicit scheme can use in order to
maintain stability. For instance, for the hemisphere flow with ν = 0.0002, using the semi-implicit scheme from [11] (which
also employs a pressure correction-type strategy), the simulation is only stable with �t = 2.5e − 4 or smaller under the
same mesh resolution.

Fig. 11 shows a comparison of profiles of the steady-state streamwise and vertical velocities across the channel at three
downstream locations (x/d = 0, ±1.0) for ν = 0.02. These profiles are computed using the current method with several
time step sizes ranging from �t = 0.001 to �t = 1.0. In these simulations C0 = 1000, the element order is 6, and the field
u0 is updated every 20 time steps. The velocity profiles obtained with different �t , ranging from small to large values,
exactly overlap with one another. This suggests that the current method can produce accurate results with large �t for this
problem.

With the current method the field u0, and hence the velocity coefficient matrix (see equation (13)), is updated every k0
time steps. We observe that the frequency for u0 update can have an influence on the accuracy of simulation results. With

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 19
Fig. 10. Flow past a hemisphere (ν = 0.0005): temporal sequence of snapshots of the velocity fields at time instants: (a) t = t0, (b) t = t0 + 0.8, (c)
t = t0 + 1.6, (d) t = t0 + 2.4, (e) t = t0 + 3.2, (f) t = t0 + 4.0, (g) t = t0 + 4.8, (h) t = t0 + 5.6, (i) t = t0 + 6.4, (j) t = t0 + 7.2, (k) t = t0 + 8.0, (l) t = t0 + 8.8.
t0 denotes the initial time instant. Velocity vectors are plotted on a sparser grid on clarity.

too large a k0 value, the simulation can lose accuracy. This point is demonstrated by Fig. 12, which shows time histories of
the forces on walls at ν = 0.001 with u0 updated with different frequencies, ranging from k0 = 20 to k0 = 500. In this set
of simulations we have employed �t = 0.001, element order 6 and C0 = 1000. It can be observed that the computed forces
have essentially the same characteristics when u0 is updated every 20, 100, or 200 time steps. When k0 increases to 500,
however, the computed forces are notably different in terms of the amplitude, frequency and the overall characteristics. This
indicates that the accuracy starts to deteriorate.

20 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
Table 5
Flow past a hemisphere: Effect of C0 on the computed forces on the walls.

ν C0 f̄ x f ′
x f̄ y f ′

y Driving force

0.02 1e-2 0.393 0 1.09e-4 0 0.393
1e0 0.393 0 1.19e-4 0 0.393
1e+3 0.393 0 8.7e-5 0 0.393
1e+5 0.393 0 4.3e-5 0 0.393
1e+7 0.393 0 8.9e-5 0 0.393

0.001 1e-2 0.394 0.242 -0.0696 0.0564 0.393
1e0 0.394 0.241 -0.0643 0.0563 0.393
1e+3 0.394 0.238 -0.0636 0.0559 0.393
1e+5 0.394 0.240 -0.0715 0.0565 0.393
1e+7 0.394 0.238 -0.0689 0.0558 0.393

0.0002 1e-2 0.386 0.805 0.117 0.408 0.393
1e0 0.389 0.800 0.0772 0.385 0.393
1e+3 0.388 0.812 0.102 0.401 0.393
1e+5 0.388 0.820 0.121 0.421 0.393
1e+7 0.387 0.825 0.139 0.444 0.393

Table 6
Flow past a hemisphere: Computed forces on the walls corresponding to a range of �t values.

ν �t f̄x f ′
x f̄ y f ′

y Driving force

0.02 0.001 0.393 0 8.7e-5 0 0.393
0.005 0.393 0 1.05e-4 0 0.393
0.01 0.393 0 -2.1e-5 0 0.393
0.1 0.393 0 8.7e-5 0 0.393
1.0 0.393 0 -2.1e-5 0 0.393

0.001 5e-4 0.393 0.238 -0.0625 0.122 0.393
0.001 0.394 0.238 -0.0636 0.0559 0.393
0.005 0.395 0.238 -0.0706 0.0115 0.393
0.01 0.395 0.216 -0.0681 0.00668 0.393
0.1 (BiCGStab fails to converge)
1.0 (BiCGStab fails to converge)

0.0002 2.5e-4 0.385 0.841 0.172 1.033 0.393
5e-4 0.387 0.840 0.103 0.784 0.393
0.001 0.388 0.812 0.102 0.401 0.393
0.005 0.399 0.671 0.177 0.175 0.393
0.01 0.393 0.459 -0.00365 0.127 0.393
0.1 (BiCGStab fails to converge)
1.0 (BiCGStab fails to converge)

Table 7 provides the mean and rms forces on the walls at three Reynolds numbers corresponding to ν = 0.02, 0.001 and
0.0002 obtained with various k0 (ranging from 10 to 1000) for updating the field u0. In these tests �t = 0.001, the element
order is 6, and C0 = 1000. These data confirm our observations based on the force histories. At ν = 0.02 the computed forces
are basically identical, irrespective of whether u0 is updated every 10 time steps or every 1000 time steps. At ν = 0.001 the
computed forces are quite close when k0 = 200 or below. But their values are notably different with k0 = 500 and larger. At
ν = 0.0002, the computed forces start to show notable differences when k0 increases to 50 and larger. These results suggest
that, when u0 is updated too rarely, the correction term [N(u) − M(u)] in equation (12) may become more significant and
this can cause larger errors in the simulation results. With higher Reynolds numbers the field u0 should be updated more
frequently in order to maintain accuracy in the simulation results.

The modified scheme with M(u) = 0 (see Remark 1) has also been used to simulate the hemisphere in channel problem.
Fig. 13 shows the steady-state streamwise and vertical velocity profiles at three downstream locations for ν = 0.02 obtained
using this modified scheme. These profiles correspond to several time step sizes ranging from �t = 0.001 to �t = 1.0.
C0 = 1000 and element order 6 are employed in the simulations. This figure can be compared with Fig. 11, which is
attained using the current method under identical conditions. While the velocity profiles computed using the modified
algorithm with �t = 0.01 and smaller all overlap with one another, those obtained with the larger �t = 0.1 and �t = 1.0
exhibit marked differences than with smaller �t values. This suggests that the velocity distributions obtained with the
larger �t values are no longer accurate using the modified scheme. In contrast, with the current method the velocity
profiles computed with the larger �t = 0.1 and �t = 1.0 are identical to those obtained with the smaller �t values; see
Fig. 11. It is further noted that all the velocity profiles obtained using the current method in Fig. 11 agree with those profiles
obtained using the modified scheme with the smaller �t values. These data suggest that the current method is superior
in accuracy to the modified scheme. The current method can produce accurate results at larger time step sizes where the

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 21
Fig. 11. Flow past a hemisphere (ν = 0.02): Comparison of profiles of the streamwise velocity (top row) and vertical velocity (bottom row) at locations (a,
d) x/d = −1, (b, e) x/d = 0, and (c, f) x/d = 1 computed using the current method with different time step sizes.

Table 7
Flow past a hemisphere: Effect of the frequency parameter k0 for u0 update on the computed
forces on walls.

ν k0 f̄ x f ′
x f̄ y f ′

y Driving force

0.02 10 0.393 0 2.56e-4 0 0.393
20 0.393 0 8.7e-5 0 0.393
50 0.393 0 2.61e-4 0 0.393
100 0.393 0 2.60e-4 0 0.393
200 0.393 0 2.61e-4 0 0.393
500 0.393 0 2.59e-4 0 0.393
1000 0.393 0 2.60e-4 0 0.393

0.001 10 0.394 0.238 -0.0668 0.0562 0.393
20 0.394 0.238 -0.0636 0.0559 0.393
50 0.394 0.240 -0.0701 0.0567 0.393
100 0.394 0.237 -0.0670 0.0561 0.393
200 0.394 0.243 -0.0685 0.0559 0.393
500 0.377 0.0858 -0.142 0.0300 0.393
1000 0.382 0.184 -0.105 0.0657 0.393

0.0002 10 0.389 0.807 0.103 0.410 0.393
20 0.388 0.812 0.102 0.401 0.393
50 0.390 0.818 0.212 0.547 0.393
100 0.397 0.772 0.233 0.530 0.393
200 0.395 0.554 0.182 0.772 0.393
500 0.398 0.341 -0.110 0.614 0.393
1000 0.365 0.327 0.0396 0.818 0.393

modified algorithm with M(u) = 0 ceases to be accurate. This is consistent with the observations with the Kovasznay flow
in the previous section.

Table 8 lists the mean and rms forces on the walls computed using the modified scheme (M(u) = 0) with a number of
time step sizes ranging from �t = 5.0e −4 to �t = 1.0 for ν = 0.02 and ν = 0.001. This table can be compared with Table 6,
which is obtained with the current method under identical conditions. We observe that the modified scheme with M(u) = 0

22 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
Fig. 12. Flow past a hemisphere (ν = 0.001): time histories of the forces on channel walls obtained with different frequency parameter k0 for updating the
field u0. (a) k0 = 20, (b) k0 = 100, (c) k0 = 200, (d) k0 = 500.

Table 8
Flow past a hemisphere: Mean and rms forces on the walls attained using the modified scheme
(with M(u) = 0) with different �t for ν = 0.02 and ν = 0.001.

ν �t f̄x f ′
x f̄ y f ′

y Driving force

0.02 0.001 0.393 0 1.11e-4 0 0.393
0.005 0.393 0 2.52e-4 0 0.393
0.01 0.393 0 2.51e-4 0 0.393
0.1 0.394 1.87e-4 5.03e-4 2.92e-4 0.393
1.0 0.393 1.77e-3 8.79e-5 8.07e-4 0.393

0.001 5e-4 0.393 0.238 -6.69e-2 0.123 0.393
0.001 0.400 0.182 -2.94e-2 0.0954 0.393
0.005 0.395 0.0620 8.28e-3 8.90e-3 0.393
0.01 0.394 1.17e-4 2.86e-2 1.59e-4 0.393
0.1 0.393 1.55e-5 6.90e-4 1.03e-3 0.393
1.0 0.393 3.37e-6 -4.04e-3 1.04e-2 0.393

is more robust for very large time step sizes. For example, stable simulation results are obtained using the modified scheme
with �t = 0.1 and �t = 1.0 for ν = 0.001. It is already discussed before that with the current method the BiCGStab
linear solver fails to converge for these two cases. Note that in the implementation of the modified scheme with M(u) = 0
the conjugate gradient (CG) solver has been used to solve the resultant linear systems, because the coefficient matrix is
symmetric positive definite. On the other hand, in the implementation of the current method, the BiCGStab linear solver is
used for the velocity linear system and the CG solver is used for the pressure linear system. In terms of accuracy, the data

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 23
Fig. 13. Flow past a hemisphere (ν = 0.02): Comparison of profiles of the streamwise velocity (top row) and vertical velocity (bottom row) at locations (a,
d) x/d = −1, (b, e) x/d = 0, and (c, f) x/d = 1 obtained using the modified scheme (M(u) = 0) with different time step sizes.

again indicate that the current method is superior for large or fairly large time step sizes. For ν = 0.02, the horizontal and
vertical forces (fx , f y) obtained using the modified scheme with �t = 0.1 and �t = 1.0 exhibits slight fluctuations in time,
as shown by the non-zero values of the rms forces corresponding to these cases in Table 8. The current method, on the
other hand, results in a constant force for these cases. For ν = 0.001, the rms forces corresponding to �t = 0.001 ∼ 0.01
obtained using the modified scheme exhibit a more pronounced difference when compared with that corresponding to
�t = 5e − 4 (see Table 8). With the current method there is essentially no difference or this difference is much smaller (see
Table 6).

As discussed in Section 2, we employ the conjugate gradient iterative solver for the pressure linear system and for
computing φ, and the bi-conjugate gradient stabilized iterative solver for the velocity linear system. A simple Jacobi pre-
conditioner has been used with these solvers. For the hemisphere-channel problem, we have used the following stopping
criterion with the iterative solvers,

‖r‖
‖r0‖ < 10−8,

where r and r0 are respectively the residual and the initial residual of the linear system, and ‖ · ‖ denotes the L2 norm. The
number of iterations to convergence varies from time step to time step, but generally fluctuates around some mean level.
The iteration counts differ also with respect to the flow variables. The typical iteration count ranges from a dozen to around
a hundred, depending on the Reynolds number and the flow variable. For example, for ν = 0.0005 with an element order 6
and �t = 0.001, the typical iteration count is around 35 with the bi-conjugate gradient stabilized solver for the velocities.
For the φ computations, the iteration count is around 30. For the pressure computations, the iteration counts for pn+1

1 and
pn+1

2 exhibit a more pronounced difference. The typical iteration count is around 50 for computing pn+1
1 and around 125

for computing pn+1
2 .

Let us now look into the computational cost of the current method. When the field u0 is updated at a time step, the
coefficient matrix of the linear algebraic system for the velocity needs to be re-computed and re-factorized at that step.
This induces an extra cost, which increases with the problem size and can become substantial with a fairly large or large
element order. If u0 is updated once every k0 time steps, this extra computational cost is effectively spread over k0 time
steps in the long run. Therefore, the impact induced by the coefficient matrix update can be considerably smaller in terms
of the average computational cost per time step. In Table 9 we provide the average wall time per time step (in seconds,
using two CPU cores) corresponding to different frequency parameter values (k0) with the current method for the flow past

24 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
Table 9
Computational cost of the flow past a hemisphere (ν = 0.001): average wall-
time per time step (on two CPU cores) for the current method when the
coefficient matrix is updated once every k0 time steps (element order 6,
�t = 0.001). With this problem size, it takes 0.109 seconds to compute a time
step when the coefficient matrix is updated at that particular step, and it takes
0.0685 seconds to compute a time step when the coefficient matrix is not up-
dated at that step.

Frequency parameter k0 for u0 update Average wall-time/step (seconds)

k0 = 10 0.0726
k0 = 20 0.0705
k0 = 50 0.0693
k0 = 100 0.0689
k0 = 200 0.0687
k0 = 500 0.0686
k0 = 1000 0.0685

a hemisphere in channel (ν = 0.001, element order 6, �t = 0.001, C0 = 1000). Note that this is the wall time averaged over
a number of time steps. In reality, with this problem size, when u0 is updated at a certain time step it takes about 0.109
seconds (on two CPU cores) to compute that step. When u0 is not updated at a time step it takes about 0.0685 seconds
(on two CPU cores) to compute that step. The wall-time values are collected on a Linux cluster in the authors’ institution
(Purdue University). These results indicate that with the current method if the field u0 is not updated very frequently, the
impact of the coefficient-matrix update on the overall computational cost is not significant.

Finally we compare the current method with the standard semi-implicit scheme from [11] in terms of the accuracy,
stability, and computational cost. Because two velocity and pressure fields are computed in the current scheme, the amount
of operations per time step and thus the cost of the current method is approximately twice (or a little larger) that of the
semi-implicit scheme. On the other hand, the time step size used in the semi-implicit scheme is restricted by CFL-type
conditions due to its conditional stability. We use the hemisphere-channel problem with a Reynolds number corresponding
to ν = 0.0002 for illustration and comparison. We have performed long-time simulations of this problem using the current
method and using the semi-implicit scheme of [11], which features a rotational pressure-correction type strategy for de-
coupling the pressure/velocity computations. An element order 6 is employed in the simulations with both algorithms. The
scheme of [11] is only conditionally stable. At this Reynolds number and mesh resolution it becomes unstable when the
time step size increases beyond �t = 2.5e − 4. On the other hand, much larger �t can be used in the simulations with the
current method. Let (u, v) denote the x and y components of the velocity. We have computed and monitored the following
physical quantities in the simulations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Umax(t) = max{|u(x, t)|}x∈�, Uave(t) =
⎛
⎝ 1

V�

∫
�

u2d�

⎞
⎠

1
2

, Uh(t) =
⎡
⎣ 1

V�

∫
�

(
u2 + |∇u|2

)
d�

⎤
⎦

1
2

,

V max(t) = max{|v(x, t)|}x∈�, Vave(t) =
⎛
⎝ 1

V�

∫
�

v2d�

⎞
⎠

1
2

, Vh(t) =
⎡
⎣ 1

V�

∫
�

(
v2 + |∇v|2

)
d�

⎤
⎦

1
2

,

Pmax(t) = max{|p(x, t)|}x∈�, Pave(t) =
⎛
⎝ 1

V�

∫
�

p2d�

⎞
⎠

1
2

, Ph(t) =
⎡
⎣ 1

V�

∫
�

(
p2 + |∇p|2

)
d�

⎤
⎦

1
2

,

(56)

where V� = ∫
�

d�, which denotes the volume of the flow domain. Fig. 14 shows the time histories of Umax(t), Uave(t) and
Uh(t) obtained using the scheme of [11] with �t = 2.5e − 4, and using the current method with �t = 1e − 3. We have
used C0 = 1000 and the field u0 is updated every 20 time steps with the current method (i.e. k0 = 20). Based on these
time histories, we have further computed the time-averaged mean and the root-mean-square (rms) of these quantities, de-
noted by (U max, U ave, U h, V max, V ave, V h, P max, Pave, P h) and (U ′

max, U ′
ave, U ′

h, V ′
max, V ′

ave, V ′
h, P ′

max, P ′
ave, P ′

h) respectively.
Table 10 lists the values of these statistical quantities computed using the semi-implicit scheme of [11] with �t = 2.5e − 4
and using the current method with �t = 1e − 3. It can be observed that the results produced by the current method, with
a time step size four times as large, are in good agreement with those produced by the semi-implicit scheme. In terms of
the computational cost, at this Reynolds number and mesh resolution, on the average it takes 0.0351 seconds (on two CPU
cores) to compute one time step using the scheme of [11] with �t = 2.5e − 4. On the average it takes 0.0807 seconds (on
two CPU cores) to compute one time step using the current method with �t = 1e − 3 and k0 = 20. The current method
therefore provides a speedup by a factor of about 10−3

2.5×10−4 ÷ 0.0807
0.0351 ≈ 1.74 times in long-time simulations of this Reynolds

number with respect to the semi-implicit scheme under the current setting.

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 25
Fig. 14. Flow past a hemisphere in channel (ν = 0.0002): Time histories of the statistical quantities Umax(t), Uave(t) and Uh(t) computed using the semi-
implicit scheme from [11] with �t = 2.5e − 4 (a), and using the current method with �t = 1e − 3 (b).

Table 10
Flow past a hemisphere in channel (ν = 0.0002): Time-averaged
mean (symbols with overlines) and rms (symbols with “′”) of
the statistical quantities obtained using the semi-implicit scheme
from [11] with �t = 2.5e − 4, and using the current scheme with
�t = 1e − 3.

Semi-implicit scheme [11] Current method

U max 4.23 4.16

U ′
max 0.41 0.42

U ave 1.62 1.59

U ′
ave 0.049 0.053

U h 11.65 11.50

U ′
h 0.77 0.76

V max 3.09 3.05

V ′
max 0.43 0.43

V ave 0.82 0.81

V ′
ave 0.062 0.059

V h 6.87 6.77

V ′
h 0.54 0.53

P max 10.36 9.94

P ′
max 2.06 2.10

Pave 1.51 1.47

P ′
ave 0.15 0.15

P h 17.25 17.06

P ′
h 4.96 3.74

4. Concluding remarks

In the current paper we have developed an energy-stable scheme for simulating the incompressible Navier-Stokes equa-
tions. The scheme incorporates a pressure-correction type strategy and the generalized Positive Auxiliary Variable (gPAV)
approach. The salient feature of the algorithm lies in that in the gPAV reformulated system the original nonlinear term is
replaced by the sum of a linear term (M(u)) and a correction term, and the correction term is put under control by the
auxiliary variable. The scheme satisfies a discrete energy stability property, irrespective of the time step sizes. Within each
time step, the scheme entails the computation of two copies of the velocity and the pressure, by solving an individual

26 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
de-coupled linear algebraic system for each of these field variables. The pressure linear system involves a constant and
time-independent coefficient matrix, which can be pre-computed. The coefficient matrix for the velocity linear system can
be updated periodically, once every k0 time steps in the current method. If the linear term is set to zero (M(u) = 0), the
velocity coefficient matrix becomes time-independent and can also be pre-computed, which corresponds to the modified
scheme suggested in Remark 1. The auxiliary variable, on the other hand, is computed by a well-defined explicit formula,
which guarantees the positivity of its computed values. No nonlinear algebraic solver is involved in the current method, for
either the field variables or the auxiliary variable.

It is observed that the current method can produce accurate results with large (or fairly large) time step sizes for the
incompressible Navier-Stokes equations. The maximum �t that can lead to accurate simulation results using the current
method is typically considerably larger than that with the scheme of [22,21] or the modified scheme from Remark 1. For
example, for the Kovasznay flow (under identical conditions), the current method can still produce accurate results with
�t = 0.4, and the method from [22,21] can produce accurate results with �t ∼ 0.009 (see Table 1 of [22]), while the
modified scheme from Remark 1 produces accurate results with only even smaller �t values. While the current method
substantially expands the accuracy range for the time step size, it is noted that when �t increases to a certain level the
method will similarly lose accuracy in the simulation results, even though the computation may be stable. This is similar to
those observations in [22,21].

An apparent downside of the current method is the need for periodic update of the coefficient matrix for the velocity
linear algebraic system, which induces an extra cost when compared with the method from [22] and the modified scheme
from Remark 1. Since this coefficient matrix is only updated once every k0 time steps, the extra cost induced by the re-
computation of the coefficient matrix is effectively spread over k0 time steps. In simulations k0 is typically on the order of
several dozen. So the impact of the coefficient-matrix update on the overall cost of the current method is in general quite
small, and can be essentially negligible when k0 is a sizable number.

Another potential drawback of the current method lies in that the coefficient matrix for the velocity linear system is
non-symmetric due to the M(u) term (but it is positive definite). In the current implementation we have employed the
BiCGStab solver when solving the velocity linear algebraic system. In numerical simulations we observe that when the
Reynolds number becomes large and with very large �t this solver can at times encounter difficulties for convergence (see
Section 3.3), thus making the method less robust in these cases. On the other hand, the modified scheme from Remark 1
involves coefficient matrices that are symmetric positive definite, and the linear systems are solved using the conjugate
gradient (CG) solver in the current implementation. In numerical experiments we observe that this method is very robust
with very large �t values at high Reynolds numbers. It should be noted that, at those �t values when the BiCGStab solver
starts to encounter difficulty, the simulation results are already no longer accurate.

We would like to make some further comments regarding the methods of [22,35,21,36], in which some auxiliary vari-
able is being used, and we will point out the relations and the differences of the current approach with respect to these
methods. The methods of [22] and [35] are for the incompressible Navier-Stokes equations and the system of coupled
Navier-Stokes/Cahn-Hilliard equations (two-phase flows), respectively. The auxiliary-variable approaches therein are inspired
by and are reminiscent of the approach for gradient-type dynamical systems from [28,37]. In [22,35], the velocity and
pressure (as well as the phase field function in the case of two-phase flows) are all coupled in the discrete formulations,
and the auxiliary variable needs to be computed by solving a nonlinear algebraic equation using Newton-type methods.
Given an arbitrary time step size, the existence, uniqueness and other properties (e.g. positivity) of the solution for the
auxiliary variable are unknown with the approach of [22,35]. The work [36] introduces a new approach (gPAV) for defin-
ing and treating auxiliary variables with important properties. It is with respect to a generic differential equation that can
accommodate an energy balance relation. It outlines a procedure for reformulating and treating the differential equation to
achieve four properties: (i) allowing the auxiliary variable to be defined by a general class of functions, (ii) energy stability
of the scheme, (iii) explicit computation for the auxiliary variable (no nonlinear solver), and (iv) positivity of computed
values for the auxiliary variable. In [36] three model equations (chemo-repulsion equation, Cahn-Hilliard equation, and the
nonlinear Klein-Gordon equation) are specifically considered to demonstrate the gPAV approach. The work [21] considers
the simulation of the incompressible flows on domains with outflow/open boundaries. Noting that the auxiliary-variable
approach of [22] encounters difficulties when open boundaries are present, the authors of [21] invoke the gPAV strategy
to reformulate the Navier-Stokes equations together with the energy-stable open boundary conditions. It should be noted
that the Navier-Stokes equations pose new challenges to the development of numerical schemes based on the auxiliary
variables. A primary new challenge is the coupling between the velocity and the pressure. This and other challenges are not
present in the generic equation considered in [36] where the gPAV is originally formulated. In the earlier works of [22,35],
this coupling issue is simply ignored and the schemes therein are formulated in a fully-coupled setting. In [21], on the
other hand, the authors present a scheme that de-couples the pressure and the velocity with a strategy reminiscent of
the velocity-correction idea. It is energy-stable and computes the auxiliary variable explicitly, with no nonlinear solver
involved.

Numerical experiments indicate that the schemes of [22,21] have a common issue with regard to the accuracy. As dis-
cussed in a previous paragraph, the accuracy of these schemes deteriorates when the time step size becomes fairly large.
The method presented in the current work, on the other hand, overcomes this accuracy issue. The current method signif-
icantly improves the accuracy with large (or fairly large) time step sizes, and substantially expands the accuracy range for
the time step size. It can produce accurate results with considerably larger time step sizes than the schemes from [22,21]. At

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 27
the same time, the current method retains the favorable properties that keep the computational cost relatively low, such as
the de-coupled computation for the pressure/velocity and the periodically updated coefficient matrix. The current method
also employs the gPAV idea to reformulate the Navier-Stokes equations and the dynamic equation for the auxiliary variable.
Algorithm-wise two major differences distinguish the current scheme from that of [21]:

• The reformulated Navier-Stokes equations and the reformulated dynamic equation for the auxiliary variable in the cur-
rent scheme are completely different from those in [21], even though both stem from the gPAV idea. The reformulation
and the numerical treatment of the nonlinear term in the current method is new and is key to its superior accuracy.

• The formulation of the numerical scheme in the current method is completely different from that of [21]. The current
method incorporates a strategy reminiscent of the pressure correction idea that de-couples the pressure and velocity
computations. This is different from that of [21], which is reminiscent of a velocity correction-type strategy. The differ-
ences in the algorithmic formulation result in disparate solution procedures in the two methods. In the current method
we compute the velocities first within a time step, followed by the pressures. In [21], on the other hand, the pressures
are computed first, followed by the velocities.

These differences in the formulation and the numerical algorithm lead to their disparate performance in terms of accuracy.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

This work was partially supported by NSF (DMS-1522537).

Appendix A. Approximation for the first time step

We summarize the approximation of the flow variables for the first time step in this Appendix. The scheme below
ensures that the computed values for Rn+1

∣∣
n=0, Rn+1/2

∣∣
n=0 and Rn+3/2

∣∣
n=0 are all positive. The notation here follows that

in the main text.
Given (ũ0, u0, R0, p0), we compute the first time step in two substeps. In the first substep we compute an approxi-

mation of (ũ1, u1, R1, p1), denoted by (ũ1
a , u1

a , R1
a , p1

a). In the second substep we compute the final (ũ1, u1, R1, p1). These
computations are as follows.

First Substep:

For ũ1
a :

ũ1
a − u0

�t
+ M(ũ1

a) + ∇p0 − ν∇2ũ1
a + ξa

[
N(ũ0) − M(ũ0)

]
= f1; (57a)

ξa =
(

R1
a

)2
E[ū1

a] ; (57b)

E[ū1
a] =

∫
�

1

2

∣∣ū1
a

∣∣2 d� + C0; (57c)

ũ1
a = w1, on ∂�; (57d)

For φ1
a :

φ1
a = ∇ · ũ1

a; (58)

For p1
a and u1

a :

u1
a − ũ1

a

�t
+ ∇

(
p1

a − p0 + νφ1
a

)
= 0; (59a)

∇ · u1
a = 0; (59b)

n · u1
a = n · w1, on ∂�; (59c)∫

�

p1
ad� = 0; (59d)

28 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
For Rn+1
a :

(
R1

a + R0
) R1

a − R0

�t
=
∫
�

ũ1
a · u1

a − u0

�t

+ ξa

⎡
⎣−ν

∫
�

‖∇ū1
a‖2d� +

∫
�

f1 · ū1
ad� +

∫
�

(
− P̄ 1

a n + νn · ∇ū1
a − 1

2
(n · w1)w1

)
· w1d�

⎤
⎦

−
∫
�

[
−M(ũ1

a) − ∇ P 1
a + ν∇2ũ1

a − ξa

(
N(ũ0) − M(ũ0)

)
+ f1

]
· ũn+1d�

+ (1 − ξa)

⎡
⎣
∣∣∣∣∣∣
∫
�

f1 · ū1
ad�

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
�

(
− P̄ 1

a n + νn · ∇ū1
a − 1

2
(n · w1)w1

)
· w1d�

∣∣∣∣∣∣
⎤
⎦ .

(60)

Second Substep:

For ũ1:

ũ1 − u0

�t
+ M(ũ1) + ∇p0 − ν∇2ũ1 + ξ

[
N(ũ0) − M(ũ0)

]
= f1; (61a)

ξ =
(

R3/2
)2

E[ū3/2] ; (61b)

E[ū3/2] =
∫
�

1

2

∣∣∣ū3/2
∣∣∣2 d� + C0; (61c)

ũ1 = w1, on ∂�; (61d)

For φ1:

φ1 = ∇ · ũ1; (62)

For p1 and u1:

u1 − ũ1

�t
+ ∇

(
p1 − p0 + νφ1

)
= 0; (63a)

∇ · u1 = 0; (63b)

n · u1 = n · w1, on ∂�; (63c)∫
�

p1d� = 0; (63d)

For Rn+1:

(
R3/2 + R1/2

) R3/2 − R1/2

�t
=
∫
�

ũ1 · u1 − u0

�t

+ ξ

⎡
⎣−ν

∫
�

‖∇ū1‖2d� +
∫
�

f1 · ū1d� +
∫
�

(
− P̄ 1n + νn · ∇ū1 − 1

2
(n · w1)w1

)
· w1d�

⎤
⎦

−
∫
�

[
−M(ũ1) − ∇ P 1 + ν∇2ũ1 − ξ

(
N(ũ0) − M(ũ0)

)
+ f1

]
· ũn+1d�

+ (1 − ξ)

⎡
⎣
∣∣∣∣∣∣
∫
�

f1 · ū1d�

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
�

(
− P̄ 1n + νn · ∇ū1 − 1

2
(n · w1)w1

)
· w1d�

∣∣∣∣∣∣
⎤
⎦ .

(64)

The symbols involved in the above equations are explained as follows. In equations (57b) and (60) ū1
a is an approximation

of u1
a and will be specified later in (81). P 1

a and P̄ 1
a are given by

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 29
P 1
a = p1

a + νφ1
a , P̄ 1

a = p̄1
a + νφ̄1

a , (65)

where p̄1
a and φ̄1

a are approximations of p1
a and φ1

a to be specified later in (81). In equations (61b) and (64) ū3/2, R3/2 and
R1/2 are given by,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ū3/2 = 3

2
u1

a − 1

2
u0,

R3/2 = 3

2
R1 − 1

2
R0,

R1/2 = 1

2

(
R1

a + R0
)

.

(66)

P 1 and P̄ 1 are given by

P 1 = p1 + νφ1, P̄ 1 = p̄1 + νφ̄1, (67)

where p̄1 and φ̄1 are approximations of p1 and φ1 to be specified later in (81).
A combination of equations (57a), (59a) and (60) leads to

(
R1

a

)2 − (R0
)2

�t
= ξa

⎡
⎣−ν

∫
�

∥∥∇ū1
a

∥∥2
d� + B1 + B2

⎤
⎦+ (1 − ξa) (|B1| + |B2|) , (68)

where

B1 =
∫
�

f · ū1
ad�, B2 =

∫
�

(
− P̄ 1

a n + νn · ∇ū1
a − 1

2
(n · w1)w1

)
· w1d�. (69)

In light of (57b) we then have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξa =
(

R0
)2 + (|B1| + |B2|)�t

E[ū1
a] +

[
ν
∫
�

∥∥∇ū1
a

∥∥2
d� + (|B1| − B1) + (|B2| − B2)

]
�t

,

R1
a =

√
ξa E[ū1

a].
(70)

Since R0 > 0 according to (18), we conclude that ξa > 0 and R1
a > 0 from the above equations. Then based on equation (66)

we conclude that R1/2 > 0.
A combination of equations (61a), (63a) and (64) leads to

(
R3/2

)2 − (R1/2
)2

�t
= ξ

⎡
⎣−ν

∫
�

∥∥∇ū1
∥∥2

d� + D1 + D2

⎤
⎦+ (1 − ξ) (|D1| + |D2|) , (71)

where

D1 =
∫
�

f · ū1d�, D2 =
∫
�

(
− P̄ 1n + νn · ∇ū1 − 1

2
(n · w1)w1

)
· w1d�. (72)

Note that R3/2 and R1/2 are defined by (66). In light of (61b) we then have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
(

R1/2
)2 + (|D1| + |D2|)�t

E[ū3/2] +
[
ν
∫
�

∥∥∇ū1
∥∥2

d� + (|D1| − D1) + (|D2| − D2)
]
�t

,

R3/2 =
√

ξ E[ū3/2],
R1 = 2

3
R3/2 + 1

3
R0.

(73)

Since R1/2 > 0, we conclude that ξ > 0, R3/2 > 0 and R1 > 0.
In the above formulas (ũ1

a , u1
a , p1

a , φ1
a) and (ũ1, u1, p1, φ1) still need to be determined, and the variables with overbars

need to be specified. We compute these variables as follows. First define two sets of field variables (ũ1
1, u1

1, p
1
1, φ

1
1) and

(ũ1, u1, p1, φ1) as solutions to the following equations:
2 2 2 2

30 L. Lin et al. / Journal of Computational Physics 418 (2020) 109624
For (ũ1
1,u1

1, p1
1, φ

1
1):

⎧⎪⎨
⎪⎩

ũ1
1

�t
+ M(ũ1

1) − ν∇2ũ1
1 = f1 + u0

�t
− ∇p0;

ũ1
1 = w1, on ∂�;

(74)

φ1
1 = ∇ · ũ1

1; (75)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
1

�t
+ ∇p1

1 = ũ1
1

�t
− ∇(−p0 + νφ1

1);
∇ · u1

1 = 0;
n · u1

1 = n · w1, on ∂�;∫
�

p1
1d� = 0.

(76)

For (ũ1
2,u1

2, p1
2, φ

1
2):

⎧⎪⎨
⎪⎩

ũ1
2

�t
+ M(ũ1

2) − ν∇2ũ1
2 = N(ũ0) − M(ũ0)

ũ1
2 = 0, on ∂�;

(77)

φ1
2 = ∇ · ũ1

2; (78)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
2

�t
+ ∇p1

2 = ũ1
2

�t
− νφ1

2;
∇ · u1

2 = 0;
n · u1

2 = 0, on ∂�;∫
�

p1
2d� = 0.

(79)

It is then straightforward to verify that the solutions to equations (57a)–(60) and (61a)–(64) are, for given ξa and ξ ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũ1
a = ũ1

1 + ξaũ1
2,

u1
a = u1

1 + ξau1
2,

φ1
a = φ1

1 + ξaφ
1
2 ,

p1
a = p1

1 + ξa p1
2;

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũ1 = ũ1
1 + ξ ũ1

2,

u1 = u1
1 + ξu1

2,

φ1 = φ1
1 + ξφ1

2 ,

p1 = p1
1 + ξ p1

2.

(80)

We specify the barred variables as follows,⎧⎪⎪⎨
⎪⎪⎩

ū1
a = ū1 = ũ1

1 + ũ1
2,

φ̄1
a = φ̄1 = φ1

1 + φ1
2 ,

p̄1
a = p̄1 = p1

1 + p1
2.

(81)

Note that the field equations (74)–(79) can be solved in a way analogous to the discussions in Section 2.3. The details will
not be provided here.

Therefore we compute (ũ1, u1, p1, R1) by the following procedure:

• Solve equations (74)–(76) for (ũ1
1, u

1
1, p

1
1, φ

1
1);

Solve (77)–(79) for (ũ1
2, u

1
2, p

1
2, φ

1
2);

• Compute (ū1
a , P̄ 1

a) by equations (81) and (65);
Compute ξa and R1

a by equation (70);
Compute (ũ1

a , u1
a , p1

a) by equation (80);
• Compute (ū1, P̄ 1) by equations (81) and (67);

Compute ū3/2 and R1/2 by equation (66);
Compute ξ and R1 by equation (73);
Compute (ũ1, u1, p1) by equation (80).

It is noted that the computed values have the property R1 > 0, R1/2 > 0 and R3/2 > 0.

L. Lin et al. / Journal of Computational Physics 418 (2020) 109624 31
References

[1] H.M. Blackburn, R.D. Henderson, A study of two-dimensional flow past an oscillating cylinder, J. Fluid Mech. 385 (1999) 255–286.
[2] H.M. Blackburn, S.J. Sherwin, Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical

geometries, J. Comput. Phys. 197 (2004) 759–778.
[3] D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 168 (2001) 464–499.
[4] H. Chen, S. Sun, T. Zhang, Energy stability analysis of some fully discrete numerical schemes for incompressible Navier-Stokes equations on staggered

grids, J. Sci. Comput. 75 (2018) 427–456.
[5] L. Chen, J. Shen, C.J. Xu, A unstructured nodal spectral-element method for the Navier-Stokes equations, Commun. Comput. Phys. 12 (2012) 315–336.
[6] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput. 22 (1968) 745–762.
[7] S. Dong, An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach, J. Comput. Phys. 266 (2014)

47–73.
[8] S. Dong, A convective-like energy-stable open boundary condition for simulations of incompressible flows, J. Comput. Phys. 302 (2015) 300–328.
[9] S. Dong, G.E. Karniadakis, C. Chryssostomidis, A robust and accurate outflow boundary condition for incompressible flow simulations on severely-

truncated unbounded domains, J. Comput. Phys. 261 (2014) 83–105.
[10] S. Dong, J. Shen, An unconditionally stable rotational velocity-correction scheme for incompressible flows, J. Comput. Phys. 229 (2010) 7013–7029.
[11] S. Dong, J. Shen, A pressure correction scheme for generalized form of energy-stable open boundary conditions for incompressible flows, J. Comput.

Phys. 291 (2015) 254–278.
[12] J.L. Guermond, P. Minev, J. Shen, Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions,

SIAM J. Numer. Anal. 43 (2005) 239–258.
[13] J.L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195 (2006)

6011–6045.
[14] B. Hyoungsu, G.E. Karniadakis, Subiteration leads to accuracy and stability enhancements of semi-implicit schemes for the Navier-Stokes equations, J.

Comput. Phys. 230 (2011) 4384–4402.
[15] N. Jiang, M. Mohebujjaman, L.G. Rebholz, C. Trenchea, An optimally accurate discrete regularization for second order timestepping methods for Navier-

Stokes equations, Comput. Methods Appl. Mech. Eng. 310 (2016) 388–405.
[16] G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 97 (1991)

414–443.
[17] G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn., Oxford University Press, 2005.
[18] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59 (1985) 308–323.
[19] L.I.G. Kovasznay, Laminar flow behind a two-dimensional grid, Proc. Camb. Philol. Soc. 44 (1948) 58.
[20] A. Labovsky, W.J. Layton, C.C. Manica, M. Neda, L.G. Rebholz, The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes

equations, Comput. Methods Appl. Mech. Eng. 198 (2009) 958–974.
[21] L. Lin, X. Liu, S. Dong, A gPAV-based unconditionally energy-stable scheme for incompressible flows with outflow/open boundaries, Comput. Methods

Appl. Mech. Eng. 365 (2020) 112969, https://doi .org /10 .1016 /j .cma .2020 .112969.
[22] L. Lin, Z. Yang, S. Dong, Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable, J. Comput. Phys.

388 (2019) 1–22.
[23] J.-G. Liu, J. Liu, R.L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate, Commun. Pure Appl. Math. LX (2007)

1443–1487.
[24] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[25] B. Sanderse, Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 233 (2013) 100–131.
[26] D. Serson, J.R. Meneghini, S.J. Sherwin, Velocity-correction schemes for the incompressible Navier-Stokes equations in general coordinate systems, J.

Comput. Phys. 316 (2016) 243–254.
[27] J. Shen, On error estimate of projection methods for Navier-Stokes equations: first-order schemes, SIAM J. Numer. Anal. 29 (1992) 57–77.
[28] J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys. 353 (2018) 407–416.
[29] S.J. Sherwin, G.E. Karniadakis, A triangular spectral element method: applications to the incompressible Navier-Stokes equations, Comput. Methods

Appl. Mech. Eng. 123 (1995) 189–229.
[30] J.C. Simo, F. Armero, Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations,

Comput. Methods Appl. Mech. Eng. 111 (1994) 111–154.
[31] R. Temam, Sur l’approximation de la solution des equations de Navier-Stokes par la methods des pas fractionnaires II, Arch. Ration. Mech. Anal. 33

(1969) 377–385.
[32] R.W.C.P. Verstappen, A.E.P. Veldman, Symmetry-preserving discretization of turbulent flow, J. Comput. Phys. 187 (2003) 343–368.
[33] C.J. Xu, R. Pasquetti, On the efficiency of semi-implicit and semi-Lagrangian spectral methods for the calculation of incompressible flows, Int. J. Numer.

Methods Fluids 35 (2001) 319–340.
[34] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput.

Phys. 327 (2016) 294–316.
[35] Z. Yang, S. Dong, An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with

different densities involving only precomputable coefficient matrices, J. Comput. Phys. 393 (2019) 229–257.
[36] Z. Yang, S. Dong, A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed

positivity, J. Comput. Phys. 404 (2020) 109121.
[37] Z. Yang, L. Lin, S. Dong, A family of second-order energy-stable schemes for Cahn-Hilliard type equations, J. Comput. Phys. 383 (2019) 24–54.

http://refhub.elsevier.com/S0021-9991(20)30398-3/bib5CEA4756FF58AF1EB29CC86B7D4A1E60s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibC307BB67BD8CA2328AF450C6661E0D87s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibC307BB67BD8CA2328AF450C6661E0D87s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibDC56ECF7A3AA299DF8F6EB605BE9AA00s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib3183AA322BE48B0D2A41B7A82D9F5167s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib3183AA322BE48B0D2A41B7A82D9F5167s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib4751596E976B3B578EFD33BFA7702ECEs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib77F997B6F31229C523AE09916386DAA0s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib2EFF98F34C16B3151882CE0EF4A72AC3s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib2EFF98F34C16B3151882CE0EF4A72AC3s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib8946B5E78C99DF1D9D506D65A476C77Bs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibA375288F9CE24F11AA9670FE24D4D4ECs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibA375288F9CE24F11AA9670FE24D4D4ECs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibE36D677FB77FF80DFAE3B4890B7317D5s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib82464B64AFA569A74293FABBE218CE88s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib82464B64AFA569A74293FABBE218CE88s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib856BCEBDB90335D44130645E051E8ABEs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib856BCEBDB90335D44130645E051E8ABEs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib209140BE5DE2C1AC74CCC0AF134CCA18s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib209140BE5DE2C1AC74CCC0AF134CCA18s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib522884910EC50EF9783A048810E5253As1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib522884910EC50EF9783A048810E5253As1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibDEF21FB78FCE6CD55D62374CFDD0DC05s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibDEF21FB78FCE6CD55D62374CFDD0DC05s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibB3BCFC9CA6FACF1E032F8BFC18F55D5As1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibB3BCFC9CA6FACF1E032F8BFC18F55D5As1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib414FCA57A8F34CBF8FFA3B414E79BD27s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibFEF696068455E421D849C6C00A093E5As1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib50A501A2E01FF40BCF0E1F259C705028s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib36F57A60E1144C0D78CF7DBAB70844F1s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib36F57A60E1144C0D78CF7DBAB70844F1s1
https://doi.org/10.1016/j.cma.2020.112969
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibDF50EB9326663E62BD959DBB1BEA6538s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibDF50EB9326663E62BD959DBB1BEA6538s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib32699FFCEC6951DFE8FB1FFEA12871DEs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib32699FFCEC6951DFE8FB1FFEA12871DEs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib61D9E0FC66FE9309C9F016C00D7D7DC8s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib464C4D5F18571E383BCF91B6B68D34ACs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib874713C0CCFB9F59262737171847C8DDs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib874713C0CCFB9F59262737171847C8DDs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib0A155BC6798AAE40F7F7530D377100DCs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib02728038CDF9C01C366C42C72B9CBBA0s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib71D96469A750E3F1AA2BBDF5DF5C2929s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib71D96469A750E3F1AA2BBDF5DF5C2929s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibDCA164465668C3BF74C1DF1A58BBB4C8s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibDCA164465668C3BF74C1DF1A58BBB4C8s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib9C3C481F6321B9C3EBD2C703109FF474s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib9C3C481F6321B9C3EBD2C703109FF474s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bibBFFA2F28204404258CA69C1099B27367s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib0DFBF49AF7CDF658D3DFB1FDEEDC925Bs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib0DFBF49AF7CDF658D3DFB1FDEEDC925Bs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib3D60F7D295B5CC428A00CAB4E20E33DFs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib3D60F7D295B5CC428A00CAB4E20E33DFs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib817661C769A41AEAB2AC87D37C0A343Cs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib817661C769A41AEAB2AC87D37C0A343Cs1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib5B4875BA22665F526C4F5932D30EFA10s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib5B4875BA22665F526C4F5932D30EFA10s1
http://refhub.elsevier.com/S0021-9991(20)30398-3/bib7B32CA4D089126C511D038B3E86865C6s1

	An energy-stable scheme for incompressible Navier-Stokes equations with periodically updated coefficient matrix
	1 Introduction
	2 Energy-stable scheme for incompressible flows
	2.1 Governing equations and gPAV-reformulated equivalent system
	2.2 Numerical scheme and unconditional energy stability
	2.3 Solution algorithm and implementation

	3 Representative numerical tests
	3.1 Convergence rates
	3.2 Kovasznay flow
	3.3 Flow past a hemisphere in a narrow periodic channel

	4 Concluding remarks
	Acknowledgement
	Appendix A Approximation for the first time step
	References

