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We study near-wall streaks that form herringbonelike patterns in Taylor-Couette turbulence and in counter-
rotating Taylor-Couette turbulence through three-dimensional direct numerical simulations. The orientation,
axial distribution, onset, and tilting angle of these streaks are characterized.
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Since the earliest studies around a century ago �1,2�,
Taylor-Couette flow has been the focus of a very large num-
ber of experimental and theoretical investigations �3–6�. The
majority of the early work has concerned the primary insta-
bility, but in the past three decades or so a significant number
of studies have examined regimes at high cylinder rotation
rates. At high Reynolds numbers the flow accommodates a
surprising wealth of states and exhibits remarkable phenom-
ena and pattern formations, e.g., bursting and spiral turbu-
lence �6–10�.

One of the most intriguing phenomena of Taylor-Couette
turbulence is the formation of near-wall organized patterns
with scales much smaller than that of Taylor vortices. Bar-
cilon et al. �11� showed photographs �aluminum particle vi-
sualization� of numerous fine streaks on the outer cylinder
wall in Taylor-Couette flow �inner-wall rotating, outer-wall
fixed�. The most striking feature of these streaks was that
they tilted alternately at small angles with respect to the
plane normal to the cylinder axis, forming “herringbonelike”
patterns. Figure 1 shows such a pattern, not from experiment,
but from numerical simulations reported here. Near-wall
streaky regions are a hallmark of turbulence and have been
observed in several types of flows, e.g., boundary layers,
channel, and plane Couette flow �12,13�. What is unique and
remarkable in Taylor-Couette turbulence is the intricate her-
ringbonelike patterns these streaks form and their preferen-
tial distribution at certain axial locations of the walls.

Since the revealing of their presence in Taylor-Couette
turbulence, only limited insights have been gained about
these herringbone streaks. A subsequent theoretical study by
Barcilon and Brindley �14� attempted to relate the herring-
bone patterns to Görtler vortices �15� using a mathematical
model. Later, a visualization study �16� reported the obser-
vation of Görtler vortices at the inner cylinder wall at Rey-
nolds numbers an order of magnitude lower than that in �11�.
So far near-wall herringbone streaks have remained largely a
mystery. Much of their characteristics are unknown.

In this Rapid Communication we report the first direct
numerical simulation of herringbone streaks in turbulent
Taylor-Couette flow and in counter-rotating turbulent Taylor-
Couette flow, and characterize several aspects of these
streaks. By Taylor-Couette flow we refer to the case with the
inner cylinder rotating and the outer one fixed �denoted by
TC flow hereafter�, and by counter-rotating Taylor-Couette
flow we refer to the case with the inner and outer cylinders
rotating in opposite directions �denoted by CRTC flow here-
after�. The flow geometry is characterized by the radius ratio

�=Ri /Ro and the aspect ratio �=Lz /d, where Lz, Ri, and Ro
are, respectively, the axial dimension and inner and outer
radii of the cylinders, and d is the gap width d=Ro−Ri. The
axis of the concentric cylinders is assumed to coincide with
the z axis. The inner cylinder rotates counterclockwise �when
viewed toward the −z direction� at a constant angular veloc-
ity �i, while the outer cylinder rotates at a constant angular
velocity �o ��o=0 for TC flow, �o�0 for CRTC flow�. We
define the inner- and outer-wall Reynolds numbers as
Rei=Uid /� and Reo=Uod /�, where Ui=�iRi and Uo=�oRo
are the inner- and outer-wall velocities, respectively, and � is
the fluid kinematic viscosity. We define “the Reynolds num-
ber” as Re=Rei−Reo �for TC flow, Re=Rei�.

Numerically, we solve the three-dimensional incompress-
ible Navier-Stokes equations employing a Fourier spectral
expansion of flow variables in the z direction, assuming that
the flow is periodic at z=0 and z=Lz, and a spectral element
discretization of the annular domain in x-y planes �17�. A
time-marching scheme with a third-order accuracy is em-
ployed for temporal integration �18�. No slip boundary con-
ditions are imposed on both cylinder walls. The extensive
resolution tests and comparisons with experimental data for
validation are documented in �17�. For the TC flow the Rey-
nolds number ranges from Re=2000 to 8000; for the CRTC
flow the inner- and outer-wall Reynolds numbers range from
2500 to 4000 while Rei=−Reo is maintained. The radius ratio
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FIG. 1. Herringbone streaks demonstrated by spatial-temporal
contours of azimuthal velocity along a line parallel to the z
axis and fixed near the inner cylinder wall: �a� Taylor-Couette
flow at Re=5000. �b� Counter-rotating Taylor-Couette
flow at Rei=−Reo=2500. t0 is an arbitrary time instant.
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is fixed at �=0.5 for both TC and CRTC flows. The axial
dimension of the domain is chosen to be Lz /d=2�, and 256
Fourier planes are employed in that direction based on the
test results in �17�. We have employed 400 spectral elements
in the x-y planes, with an element order 8 or 9 in each ele-
ment.

We begin with a demonstration of the herringbone streaks
near the wall. Figure 1�a� shows spatial-temporal contours
�z-t plane� of the azimuthal velocity along a line parallel to
the z-axis and adjacent to the inner cylinder wall for the TC
flow at Re=5000. Shown are eight contour levels between
0.65Ui and 0.95Ui. The distribution reveals fine high-speed
streaks tilting alternately at an angle in neighboring cells,
reminiscent of the flow photographs of Barcilon et al. �11�.
In Fig. 1�b� we plot spatial-temporal contours of the azi-
muthal velocity for the CRTC flow at Reynolds numbers
Rei=−Reo=2500. This is similarly based on data along a line
oriented in the z direction and adjacent to the inner cylinder,
and eight contour levels are shown between 0.57Ui and
0.77Ui. Key characteristics of the streaks observed in the TC
flow, such as the herringbone patterns, can also be observed
here in the CRTC flow.

Herringbone streaks in TC and CRTC flows share certain
common characteristics. For example, they become more
populous and tend to be less coherent �persisting shorter in
time� with increasing Reynolds number. Comparison of her-
ringbone streaks of TC and CRTC flows at identical Rey-
nolds numbers, Re=Rei−Reo, shows that the streaks in the
latter tend to be less populous and more coherent �persisting
longer in time�. We note that the visualization of Barcilon et
al. �11� was conducted with the inner cylinder rotating and
the outer cylinder fixed. The present simulations not only
confirm the near-wall herringbone streaks in this configura-
tion, but also reveal the presence of such streaks in an addi-
tional class of configurations of the counter-rotating Taylor-
Couette flow.

We next look into the orientation and the axial distribution
of the herringbone streaks. In Figure 2�a� we show a snap-
shot of the streaks on the inner wall by plotting contours of
the instantaneous azimuthal velocity on a grid surface
�nearly cylindrical� adjacent to the inner cylinder for the TC
flow at Re=5000. Bright and dark regions represent high and
low azimuthal velocities, respectively. Evidently the high-

speed streaks form herringbonelike patterns, which are clus-
tered around three axial locations for this particular configu-
ration �axial dimension and Reynolds number�. Note that the
z axis points upward in all plots of Fig. 2, and that the inner
cylinder rotates counterclockwise. The orientation of the her-
ringbone patterns apparently resembles the symbols “�” on
the inner cylinder wall.

It has been shown in �17� that although the organized
patterns of Taylor vortices can hardly be discerned from the
instantaneous velocity field at high Reynolds numbers, they
are clearly revealed to underlie the Taylor-Couette turbulence
by the time-averaged mean field. To determine the axial lo-
cations of the streak clusters relative to the underlying Taylor
vortices, we plot in Fig. 2�b� the time-averaged mean field
�in a radial-axial plane� of the TC flow at Re=5000. Orga-
nized Taylor vortices with scales commensurate to the gap
width can be clearly observed. The inflow boundaries �flow
from outer wall to inner wall� between Taylor vortices are
marked by “I” in the plot, and the outflow boundaries �flow
from inner wall to outer wall� are marked by “O.” Compari-
son of Figs. 2�a� and 2�b� shows that the axial loci of inner-
wall streak clusters correspond to the outflow boundaries.
This indicates that the herringbone streaks concentrate on the
outflow boundaries of Taylor vortices on the inner cylinder.

In Fig. 2�c� we show a snapshot of the streaks on the outer
wall �same time instant as Fig. 2�a�� by plotting contours of
the instantaneous azimuthal velocity on a grid surface
�nearly cylindrical� near the outer cylinder. Bright and dark
regions again represent high- and low-speed flows, respec-
tively. The streaks �low-speed� on the outer wall are signifi-
cantly fewer than the streaks �high-speed� on the inner wall,
consistent with the observation that turbulent intensity is
stronger near the inner wall than near the outer wall in TC
flow �17�. However, they appear to similarly form herring-
bonelike patterns. The sense of tilting, on the other hand, is
opposite to that on the inner wall; their orientation resembles
the symbols “	.” The streaks are apparently clustered
around several axial locations. Comparison between Figs.
2�b� and 2�c� indicates that these locations correspond to the
inflow boundaries of the underlying Taylor vortices. There-
fore the herringbone streaks on the outer wall concentrate on
the inflow boundaries of Taylor vortices, unlike those on the
inner cylinder.
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FIG. 2. Orientations and axial loci of herring-
bone streaks �TC flow, Re=5000�: �a� Snapshot
of high-speed streaks on a grid surface adjacent
to the inner wall; �b� time-averaged mean veloc-
ity field in a radial-axial plane �inner wall: r /d
=1, outer wall: r /d=2�; and �c� snapshot of low-
speed streaks on a grid surface adjacent to the
outer wall. Shown in �a� and �c� are contours of
the azimuthal velocity. Symbols “O” and “I” rep-
resent the outflow and inflow boundaries of Tay-
lor vortex cells.
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Herringbone streaks are observed only at sufficiently high
Reynolds numbers. As the Reynolds number decreases these
streaks will eventually vanish from the wall. To understand
their onset we have conducted simulations of the TC flow at
a series of Reynolds numbers between Re=1000 and 2500,
with an increment 
Re=500. No herringbone streaks are ob-
served at Re=1500 or below; they can be observed at
Re=2000 and above. Figure 3 shows contours of the azi-
muthal velocity on a grid surface near the inner cylinder for
Re=2000, at which the herringbone streaks start to appear
�as Reynolds number increases�. We can observe streaks en-
girdling the inner cylinder at three axial locations. One can
also observe that they branch at certain sections. For ex-
ample, the topmost streak forks into two at a section in the
plot. In the inset of Fig. 3 we plot the instantaneous velocity
field, together with the azimuthal velocity contours in a
radial-axial plane that intersects the branching section of the
topmost streak. First note the correlation of the presence of
streaks with the outflow boundary jet induced by the large-
scale Taylor vortices. The jet pumps the high-speed fluid
away from the inner wall. This produces a high-speed fluid
sheet in the outflow boundary between Taylor vortex cells,
which is responsible for the observed high-speed streak on
the inner wall. We further observe that a pair of small-scale
vortices with the opposite sense of rotation �with respect to
the Taylor vortex pair� forms at the outflow boundary toward
the inner wall, which apparently splits the high-speed fluid
sheet and thus results in the forked streak on the wall. By
examining the flow fields in different radial-axial planes, we
observe that this small vortex pair persists only on a section
of the cylinder circumference and extends away from the
wall along the azimuthal direction. The branching point in
the topmost streak corresponds to where this small vortex
pair originates.

The large-scale Taylor vortices �with scales commensu-
rate to the cylinder gap� appear to play a significant role. At
Reynolds numbers below the onset of herringbone streaks,
the outflow boundary jet induced by the Taylor vortices fa-

cilitates the formation of streaks �which do not branch or
appear like herringbone yet� by pumping the high-speed fluid
away from the inner wall. At the onset, the streaks branch
due to the formation of near-wall small-scale vortices at the
outflow boundaries. The branching multiplies as the Rey-
nolds number increases, and the streaks eventually attain the
herringbonelike appearance. This suggests that the outflow
boundary of Taylor vortices is the precursor to the herring-
bone streaks on the inner wall, and that the formation of
near-wall small-scale vortices is intimately related to the pro-
liferation of these streaks. Similar observations can be made
for the streaks on the outer wall.

We next investigate the Reynolds number dependence of
the tilting angle of herringbone streaks. Barcilon and Brind-
ley �14� showed tilting angle data �TC flow� for a range of
very high Reynolds numbers �roughly Re=10 000–200 000�
obtained from flow visualizations. The trend of their data
suggests that within that range the tilting angle increases as
the Reynolds number decreases. This trend may not sustain
as the Reynolds number further decreases, however, because
at sufficiently low Reynolds numbers the herringbone streaks
will disappear �e.g., no herringbone streaks at Re=1500 and
below for radius ratio �=0.5�. There may be two possibili-
ties as the Reynolds number further decreases �when the
streaks are about to disappear�: the tilting angle decreases or
the streaks maintain a high tilting angle but decrease in am-
plitude �or length�.

To investigate the tilting angle variation and the above
possibilities, we have computed the tilting angles of herring-
bone streaks at the Reynolds numbers that have been simu-
lated for the TC flow and the CRTC flow. The tilting angle
can be determined from the spatial-temporal velocity data
employing the Taylor hypothesis �17�. In Fig. 4 we plot the
average magnitude of the tilting angle as a function of a
characteristic Reynolds number, Re2 / ��2�1−��2�, as pre-
scribed by Barcilon and Brindley �14�. We have included
results from present simulations for the TC flow and CRTC
flow ��=0.5�, together with the data from Barcilon and
Brindley for the TC flow at three other radius ratios. When
plotting the data points of the CRTC flow we have used the
Reynolds number defined by Re=Rei−Reo. One can first ob-
serve that the tilting angles of the herringbone streaks in the

FIG. 3. �Color online� Onset of herringbone streaks: A snapshot
of the streaks �contours of azimuthal velocity� on the inner cylinder
�TC flow, Re=2000�. The inset shows velocity field and azimuthal
velocity contours �red or dark color: high velocity; cyan or light
color: low velocity� in a radial-axial plane that intersects the forked
section of the uppermost streak of the inner wall.
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FIG. 4. Average tilting angle of herringbone streaks from
present simulations �TC flow and CRTC flow� and Barcilon and
Brindley �14� �TC flow�.
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CRTC flow are notably lower than those in the TC flow at
identical Reynolds numbers �Re=Rei−Reo�. For the TC
flow, the data from present simulations extends the range of
Re2 / ��2�1−��2� to much lower values with respect to Bar-
cilon and Brindley’s data. In the range where the two data
sets overlap, the tilting angle values from both sets are in
good agreement. The composite of the present simulation
data and Barcilon and Brindley’s data provides a comprehen-
sive picture about the variation of the tilting angle over a
wide range of Reynolds numbers in the TC flow: At very low
Reynolds numbers no herringbone streaks exist on the wall;
after the herringbone streaks emerge, with increasing Rey-
nolds number the tilting angle first increases, reaching a peak
value at some point, and then decreases as the Reynolds
number further increases. In addition, the simulation data
indicates that as the Reynolds number decreases and the her-
ringbone streaks are about to disappear while their tilting
angle approaches zero their amplitudes �length� do not go to
zero but rather stay of order one.

Nearly three decades ago Barcilon et al. �11� revealed the
presence of a fine pattern of streaks on the cylinder wall at

high Reynolds numbers. They described this organized pat-
tern as “herringbone” because of its appearance. These her-
ringbone streaks have remained a mystery since then, and
little is known about their characteristics. In this Rapid Com-
munication we have characterized several aspects of the her-
ringbone streaks employing three-dimensional direct numeri-
cal simulations. We have shown that these streaks exist not
only in Taylor-Couette turbulence but also in counter-
rotating Taylor-Couette turbulence. The herringbone patterns
have opposite senses of tilting on the inner and outer cylin-
der walls. While they concentrate on the outflow boundaries
of Taylor vortices on the inner wall, on the outer wall they
concentrate on the inflow boundaries. We have also demon-
strated that the tilting angle of the streaks has a peak value
corresponding to a certain Reynolds number, and that it de-
creases toward both very low and very high Reynolds num-
bers.
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