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We present a high-order method employing Jacobi polynomial-based shape functions, as an alternative to
the typical Legendre polynomial-based shape functions in solid mechanics, for solving dynamic three-
dimensional geometrically nonlinear elasticity problems. We demonstrate that the method has an expo-
nential convergence rate spatially and a second-order accuracy temporally for the four classes of problems
of linear/geometrically nonlinear elastostatics/elastodynamics. The method is parallelized through
domain decomposition and message passing interface (MPI), and is scaled to over 2000 processors with
high parallel performance.
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1. Introduction occurring due to harmonic excitations. In regard to parallelism,
During the past two decades p/hp-versions of the finite element
method (FEM) have evolved considerably, shown to provide robust
and efficient results for problems of solid mechanics (particularly
linear elasticity) [32,33]. In linear elasticity the high-order meth-
ods possess many advantages over ‘‘classical FEMs”, such as con-
siderably higher convergence rates, the flexibility of using large
aspect ratios of elements without significant deterioration in accu-
racy, locking-free behavior with respect to thickness for plate and
shell-like structures, and with respect to the Poisson ratio for
nearly incompressible materials. The efficiency and advantages of
p-FEMs were also extended in recent years to nonlinear problems
such as elasto-plasticity [20,15], flow–structure interaction
[30,31], and finite-deformation problems with follower loads
[26,14,35,19], demonstrating that p-FEM’s advantages carry over
to nonlinear solid mechanics problems.

Despite the significant growth in the breadth of its applicability,
two areas have received relatively less attention in p/hp-FEM for
solid mechanics: dynamic problems and parallelism. To the best
of our knowledge, the only applications of p-FEMs to dynamic
problems are those in [18,29]. In [18] linear elastodynamic prob-
lems were investigated and some formulations towards future fi-
nite-deformation implementation were briefly mentioned. In [29]
p-FEMs for curved elastic and isotropic beams taking into account
geometric nonlinearities were used to investigate the vibrations
ll rights reserved.

).
to fully take advantage of present-day large-scale parallel comput-
ers which are usually equipped with 1000–10,000 processors, effi-
cient parallelization of solid mechanics p/hp-FEM codes is required
and remains an extremely challenging problem. The stringency of
the challenge becomes clear if one takes into account the fact that
existing p-FEM codes for solid mechanics usually scale to about 32
or 64 processors [2,17,27,22,25,28,7]. This is in part due to the less
efficient or obsolescent technologies such as purely shared-mem-
ory parallelism [2,22] and parallel virtual machine (PVM) [17,28]
employed in these applications. The situation will likely be exacer-
bated with the advent of peta-scale parallel computers at the end
of this or the beginning of next decade, with a processor count cur-
rently anticipated on the order of 1,000,000.

The shape functions based on Legendre polynomials [32] have
been the dominant bases in p-FEM implementations, and have wit-
nessed widespread applications in solid mechanics. In this paper,
we employ a new set of shape functions based on generalized/
warped tensor products of the more general Jacobi polynomials
[13,23] to solve the three-dimensional elasticity equations.
Although Jacobi polynomial-based shape functions have been used
for solving Navier–Stokes equations in high-order computational
fluid dynamics (CFD) [23,10,11,8,12], they have largely been ig-
nored in solid mechanics. (The method in high-order CFD is popu-
larly termed spectral element method.) Compared to those based
on Legendre polynomials, the Jacobi polynomial-based shape func-
tions possess several advantages. For example, they result in mass
and stiffness matrices with more favorable numerical conditioning
[6]. The Jacobi-based approach provides a unified treatment for
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polymorphic geometric shapes (i.e. hexahedrons, pentahedrons/
prisms, tetrahedrons and pyramids), and is very flexible in gener-
ating hybrid meshes in hp-extensions. They also allow for very
high element orders; up to the order p = 100 can be easily obtained.
It is therefore highly desirable to exploit these advantages of Jacobi
polynomial-based shape functions to construct an efficient high-
order method capable of handling commonly encountered poly-
morphic elements for three-dimensional solid mechanics
problems.

Herein we enlarge the fields of the application of p-FEMs to prob-
lems of three-dimensional solid dynamics, both linear elastodynam-
ics and geometrically nonlinear hyper-elastodynamics (finite
deformations). Since these problems are very demanding in terms
of computational resources, parallelization algorithms are intro-
duced through message passing interface (MPI) and the parallel per-
formance is demonstrated on more than 2000 CPUs. In our
implementation we employ the hierarchical shape functions based
on Jacobi polynomials for spatial discretizations, instead of the
typical Legendre polynomial-based shape functions [32]. The
resulting method can handle all types of commonly encountered
three-dimensional elements of high order, e.g. hexahedrons, penta-
hedrons/prisms, tetrahedrons and pyramids. For temporal discreti-
zation we have chosen to employ the average acceleration variant
of the Newmark-b scheme [5,3,21] (with Newmark parameters
c ¼ 1

2 and b ¼ 1
4). This is an implicit scheme that exhibits second-

order convergence in time and is unconditionally stable under linear
analysis. Although the Newmark scheme may become unstable in
some cases for geometrically nonlinear elastodynamic problems,
in the present applications stability is achieved, and other effective
time integration schemes (e.g. [1,4]) will be investigated in the
context of high-order methods in a future study.

For simplicity of presentation we consider the so-called St. Ve-
nant–Kirchhoff constitutive equation as a model problem for the fi-
nite-strain solid dynamic applications. This model, although non-
physical at large strains, is simple enough for detailed numerical
investigations, and can be easily replaced by any other more real-
istic hyper-elastic model. It is obtained from the strain energy den-
sity function:

WðEÞ ¼ k
2
ðtrEÞ2 þ lE : E ð1Þ

by using hyper-elasticity relations:

S ¼ oW
oE
¼ kðtrEÞIþ 2lE; ð2Þ

where S is the second Piola–Kirchhoff stress tensor, E is the Green–
Lagrange strain tensor, and k and l are material coefficients.

This paper is organized as follows. We first briefly introduce the
shape functions based on Jacobi polynomials in Section 2. The
departing point is the linear three-dimensional elastodynamic for-
mulation and its implementation in the p-FEM framework in Section
3.1. Both spatial discretization by p-FEM and temporal time-march-
ing Newmark scheme are briefly described. In Section 3.2, we formu-
late the dynamic-hyper-elastic problem where an iterative
Newton–Raphson scheme and the Newmark scheme are applied
to the nonlinear problem. In Section 4, we discuss the parallelization
of the linear and nonlinear solvers. In Section 5, example problems
having analytical solutions are used to demonstrate the spatial
exponential convergence rate and the temporal second-order accu-
racy of our schemes. Finally, we demonstrate the capabilities of the
linear and nonlinear solvers with several elastostatic and elastody-
namic test problems, and show that very large hyper-elastic prob-
lems can be computed on thousands of processors in a fraction of
the time required for classical codes (Section 6). We summarize
the paper in Section 7.
2. Shape functions based on Jacobi polynomials

In this section, we briefly introduce the hierarchical shape func-
tions based on Jacobi polynomials that are employed in this paper
(more details can be found in [23]). To facilitate the discussion we
first define three principal functions on the interval �1 6 x 6 1 de-
noted by wa

i ðxÞ, wb
ijðxÞ and wc

ijkðxÞ (0 6 i 6 I, 0 6 j 6 J, 0 6 k 6 K
where I, J and K are positive integers), which form the basis for con-
structing the shape functions in three-dimensional space:

wa
i ðxÞ ¼

1�x
2 ; i ¼ 0;

1�x
2

1þx
2 P1;1

i�1ðxÞ; 1 6 i < I;
1þx

2 ; i ¼ I;

8><>: ð3Þ

wb
ijðxÞ ¼

wa
j ðxÞ; i ¼ 0; 0 6 j 6 J;

ð1�x
2 Þ

iþ1; 1 6 i < I; j ¼ 0;

ð1�x
2 Þ

iþ1 1þx
2 P2iþ1;1

j�1 ðxÞ; 1 6 i < I; 1 6 j < J;

wa
j ðxÞ; i ¼ I; 0 6 j 6 J;

8>>>>><>>>>>:
ð4Þ

wc
ijkðxÞ ¼

wb
jkðxÞ; i ¼ 0; 0 6 j 6 J;

0 6 k 6 K;

wb
ikðxÞ; 0 6 i 6 I; j ¼ 0; 0 6 k 6 K;

ð1�x
2 Þ

iþjþ1
; 1 6 i < I; 1 6 j < J;

k ¼ 0;
ð1�x

2 Þ
iþjþ1 1þx

2 P2iþ2jþ1;1
k�1 ðxÞ; 1 6 i < I; 1 6 j < J;

1 6 k < K;

wb
ikðxÞ; 0 6 i 6 I; j ¼ J;

0 6 k 6 K;

wb
jkðxÞ; i ¼ I; 0 6 j 6 J;

0 6 k 6 K:

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

In the above expressions Pa;b
n ðxÞ (a,b > �1) are the Jacobi polynomi-

als which represent the family of polynomial solutions to a singular
Sturm–Liouville problem.

Assume that the coordinates of the standard domain are de-
noted by n1, n2 and n3. Then the hierarchical shape functions in
three-dimensional space are defined in the standard domain as fol-
lows in terms of the above principal functions (/pqr(n1,n2,n3)
denoting the shape function with p,q,r being appropriate indices):

� For a hexahedral element {(n1,n2,n3)j �1 6 n1,n2,n3 6 1}, the
shape function is defined by

/pqrðn1; n2; n3Þ ¼ wa
pðn1Þwa

qðn2Þwa
r ðn3Þ: ð6Þ

� For a prismatic element {(n1,n2,n3)j �1 6 n1,n3; n1 + n3 6 1;
�1 6 n2 6 1}, the shape function is defined by

/pqrðn1; n2; n3Þ ¼ wa
pðg1Þwa

qðn2Þwb
prðn3Þ; ð7Þ

where g1 ¼ 2ð1þn1Þ
1�n3

� 1.
� For a tetrahedral element {(n1,n2,n3)j �1 6 n1,n2,n3;

n1 + n2 + n3 6 1}, the shape function is defined by

/pqrðn1; n2; n3Þ ¼ wa
pðg1Þw

b
pqðg2Þw

c
pqrðn3Þ; ð8Þ

where g1 ¼
2ð1þn1Þ
�n2�n3

� 1 and g2 ¼
2ð1þn2Þ

1�n3
� 1.

� For a pyramidic element {(n1,n2, ,n3)j �1 6 n1,n2,n3; n1 + n3 6 1;
n2 + n3 6 1}, the shape function is defined by

/pqrðn1; n2; n3Þ ¼ wa
pðg1Þwa

qðg2Þw
c
pqrðn3Þ: ð9Þ

The set of shape functions can be classified into vertex modes,
edge modes, face modes and interior modes to facilitate implemen-
tations. Herein the basis functions defined in Eqs. (6)–(9) will be
employed to discretize the three-dimensional linear and geometri-
cally nonlinear elastodynamic equations.
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3. Formulation and discretization

Consider the deformation of a three-dimensional object occupy-
ing domain X � R3 with boundary oX = oXD [ oXN, where Dirich-
let boundary conditions (BC) are provided on oXD and Neumann-
type (traction) BCs on oXN.
3.1. Linear elastodynamics

Let us first assume infinitesimal deformations. The equation
describing the object deformation, in its weak form, can be ex-
pressed as follows: Find the displacement field u(x, t) 2 U(t) =
{w(x, t) 2 [H1(X)]3jw(x, t) = uD(x, t) on oXD} (uD(x, t) being Dirichlet
BCs) such that

Z
X
q

o2u
ot2 � vdX

¼ �
Z

X
S : rvdXþ

Z
oXN

T � vdCþ
Z

X
qf � vdX 8v 2 U0; ð10Þ

where U0 = {w(x, t) 2 [H1(X)]3jw(x, t) = 0 on oXD}. In the above
equation, S, T, f and q are the stress tensor, external traction force
on oXN, external body force and the mass density, respectively. This
equation is complemented by appropriate initial conditions (IC) to
form an initial/boundary-value problem. The St. Venant–Kirchhoff
constitutive equation is assumed for the material (Eq. (2)).

We expand the displacement u = (u1,u2,u3) and the test func-
tion v = (v1,v2,v3) in terms of the shape functions described in Sec-
tion 2:

uiðx; tÞ ¼
XNm

p¼1

ûipðtÞ/pðxÞ; ð11Þ

viðx; tÞ ¼
XNm

p¼1

v̂ipðtÞ/pðxÞ; i ¼ 1;2;3: ð12Þ

In the above equation, Nm is the total number of modes (shape func-
tions), ûip and v̂ip are the expansion coefficients. /p(x) denote the
shape functions, with p being the index after appropriately organiz-
ing the three-dimensional modal indices in Section 2 into a one-
dimensional vector. Substitute expressions (11) and (12) into Eq.
(10), and we obtain

M
d2U
dt2 ¼ �KUþ F: ð13Þ

In the above equation U is a vector of unknown expansion coeffi-
cients of length 3Nm

U ¼ ½� � � UT
p UT

pþ1 � � � �T; ð14Þ

where Up ¼ ½ û1p û2p û3p �T. The superscript (�)T denotes transposi-
tion. We have organized the vector in a way such that the three dis-
placement components corresponding to a particular mode are
adjacent, rather than that the Nm modes of y displacement follow
those of the x displacement and so forth. This ordering leads to a
smaller bandwidth of the coefficient matrix, facilitates the Schur
complement, and is conducive to domain decomposition in the par-
allel implementation. F is the vector of the external forces with
length 3Nm, and with the same ordering of indices, F ¼
½� � � FT

p FT
pþ1 � � � �

T, where Fp = [F1p F2p F3p]T and Fip ¼
R

oXN
Ti/p

dCþ
R

X qfi/p dX (i = 1,2,3), where Ti and fi are the components of
the external traction and body forces. Correspondingly, the
3Nm � 3Nm mass matrix M is organized into a matrix of Nm � Nm

blocks, each block being a 3 � 3 submatrix:
M ¼

M11 � � � M1Nm

..

. . .
. ..

.

MNm1 � � � MNmNm

2664
3775; Mpq ¼

Z
X
q/p/q dX

� �
I3;

p; q ¼ 1; . . . ;Nm; ð15Þ

where I3 is the 3 � 3 identity matrix. Similarly, the 3Nm � 3Nm stiff-
ness matrix K is also organized into a matrix of Nm � Nm blocks, and
the 3 � 3 submatrix Kpq (p,q = 1, . . . ,Nm) of a block is given by
Kpq ¼

R
XðD/pÞ

TBðD/qÞdX, where

D/p ¼

o/p

ox 0 0 o/p

oy 0 o/p

oz

0 o/p

oy 0 o/p

ox
o/p

oz 0

0 0 o/p

oz 0 o/p

oy
o/p

ox

26664
37775

T

;

B ¼

kþ 2l k k

k kþ 2l k

k k kþ 2l
l

l
l

2666666664

3777777775
:

In the implementation, in Eq. (13) the contributions from the
known expansion coefficients due to Dirichlet BCs are moved to
the right-hand side before the equation is solved.

We employ the Newmark-b scheme [3,5,21] with parameters,
c ¼ 1

2 and b ¼ 1
4, to discretize Eq. (13) in time. Let n denote the index

of the time step

M€Unþ1 þ KUnþ1 ¼ Fnþ1; ð16Þ

where we have used (�) to denote the temporal derivative. Employ-
ing the following expressions for the displacement and velocity at
time step (n + 1) from the Newmark scheme (Dt denoting the time
step size):

_Unþ1 ¼ _Un þ 1
2
ð€Un þ €Unþ1ÞDt; ð17Þ

Unþ1 ¼ Un þ _UnDt þ 1
4
ð€Un þ €Unþ1ÞðDtÞ2: ð18Þ

Eq. (16) is transformed to

4

ðDtÞ2
Mþ K

 !
Unþ1 ¼ Fnþ1 þM

4

ðDtÞ2
Un þ 4

Dt
_Un þ €Un

 !
: ð19Þ

The resulting symmetric linear system can be solved with the con-
jugate gradient iterative solver.

Remarks. Because the interior modes of an element are coupled
only with the boundary modes (i.e. vertex/edge/face modes) of the
same element, in the implementation we arrange the vector U such
that the vertex modes are followed by the edge modes, face modes,
and the interior modes, and a Schur complement is performed on
the linear system (19) to condense out all the interior modes. This
results in a smaller linear system of equations about the boundary
modes only, which is then solved with the conjugate gradient sol-
ver. Schur complement also results in Nel (Nel denoting the number
of elements) linear systems of much smaller sizes, with a separate
system for the interior modes of each element. These small linear
systems about the interior modes are solved with a direct solver.

3.2. Geometrically nonlinear elastodynamics

We next consider the finite deformation of the object. Let X de-
note the position vector of a material point in the initial configura-
tion of the object, X0, at time t = 0, and let x denote its position
vector at time t in the deformed configuration, X(t). Then the dis-
placement vector u is a function of X : u = x(X, t) � X.
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The weak form of the momentum equation represents the prin-
ciple of virtual work. With respect to the initial configuration, it
can be stated as follows: Find the displacement field u(X, t) 2 V(t) =
{w(X, t) 2 [H1(X0)]3jw(X, t) = uD(X, t) on oX0D} (oX0D is the Dirich-
let boundary in the initial configuration) such that

Pðu;vÞ¼
Z

X0

S :
1
2

ov
oX

� �T

�FðuÞþFTðuÞ � ov
oX

 !
dX0

�
Z

oX0N

T �vdC�
Z

X0

q0f �vdX0þ
Z

X0

q0
o2u
ot2 �vdX0¼0 8v2V0;

ð20Þ

where V0 = {w(X, t) 2 [H1(X0)]3jw(X, t) = 0 on oX0D}. In the above
equation S, f and q0 are the second Piola–Kirchhoff stress tensor,
external body force, and the structural mass density in the initial
configuration, respectively. The external traction force T is assumed
to be deformation-independent (i.e. non-follower load). The defor-
mation gradient tensor F(u) is defined by FðuÞ ¼ ox

oX ¼ I3 þ ou
oX.

We again consider the St. Venant–Kirchhoff constitutive law for
the material (Eq. (1)). Then Eq. (2) can be rewritten as

S ¼ kðtrEÞIþ 2lE ¼ Cð4Þ : E; ð21Þ

where Cð4Þ is a fourth-order constant tensor (elasticity tensor) rep-
resenting the material properties, and E is the Green–Lagrange
strain tensor, EðuÞ ¼ 1

2 ðF
TðuÞ � FðuÞ � I3Þ. We use Pintðu;vÞ to denote

the first term in Eq. (20), which represents the virtual work due to
the internal stress and is nonlinear with respect to the displacement
u. The second and the third terms represent the virtual work due to
the external forces, and will be denoted by Pextðu;vÞ. The last term
is the virtual work due to the inertia, and will be denoted by
Pinertðu;vÞ. Eq. (20) can therefore be symbolically written as

Pðu; vÞ ¼ Pintðu; vÞ �Pextðu;vÞ þPinertð€u;vÞ ¼ 0 8v 2 V0: ð22Þ

We now employ the Newmark scheme to solve the nonlinear
elastodynamic equation (22). At time step (n + 1)

Pðunþ1; vÞ ¼ Pintðunþ1;vÞ �Pextðunþ1; vÞ þPinertð€unþ1; vÞ ¼ 0
8v 2 V0: ð23Þ

The velocity and acceleration of time step (n + 1) can be expressed
in terms of variables of time step n:

_unþ1 ¼ � _un þ 2
Dt
ðunþ1 � unÞ; ð24Þ

€unþ1 ¼ �€un � 4
Dt

_un þ 4
ðDtÞ

2

ðunþ1 � unÞ: ð25Þ

Substitute expression (25) into Eq. (23), and we get

Pðunþ1; vÞ ¼ Pintðunþ1;vÞ �Pextðunþ1; vÞ
þ Pinertðunþ1;un; _un; €un;vÞ

¼ 0 8v 2 V0; ð26Þ

where Pinertðunþ1;un; _un; €un;vÞ ¼ Pinertð�€un � 4
Dt

_un þ 4
ðDtÞ2
ðunþ1 � unÞ;

vÞ. Eq. (26) needs to be solved for un+1 at every time step, and then
Eqs. (24) and (25) can be used to compute the velocity and the
acceleration.

Eq. (26) is nonlinear with respect to un+1 due to the nonlinearity
of the term Pintðunþ1; vÞ. We can solve this equation for un+1 itera-
tively. Let un+1,(k) denote the solution at the kth iteration, and let us
assume that un+1,(k) is close to the sought solution un+1. So we can
linearize equation (26) about un+1,(k) in the direction of an incre-
ment Du:

Pðunþ1; vÞ ¼ Pðunþ1;ðkÞ;vÞ þDPðunþ1;ðkÞ;vÞðDuÞ þ � � � ¼ 0
8v 2 V0: ð27Þ
In the above equation the neglected terms represent higher-order
terms with respect to Du. The tangential stiffness matrix
DPðunþ1;vÞ is determined by

DPðunþ1;vÞðDuÞ ¼ DPintðunþ1;vÞðDuÞ �DPextðunþ1;vÞðDuÞ
þDPinertðunþ1;un; _un; €un;vÞðDuÞ

¼
Z

X0

1
2

ov
oX

� �T

� Fðunþ1Þ þ FTðunþ1Þ � ov
oX

 !
: Cð4Þ

:
1
2

oðDuÞ
oX

� �T

� Fðunþ1Þ þ FTðunþ1Þ � oðDuÞ
oX

 !
dX0

þ
Z

X0

Sðunþ1Þ :
oðDuÞ

oX
� ov
oX

� �
dX0

þ 4

Dtð Þ2
Z

X0

q0ðDuÞ � vdX0:

ð28Þ

Since we consider the deformation-independent external loads only
in this paper, there is no contribution to the tangential stiffness ma-
trix from the external loads, i.e. DPextðunþ1;vÞ ¼ 0. The linear equa-
tion (27) (with respect to Du) indicates that if the known solution at
the kth iteration does not satisfy the principle of virtual work, i.e.
Pðunþ1;ðkÞ;vÞ–0, we must find a change in P in the direction of
Du. Therefore, we arrive at the following Newton–Raphson iterative
procedure to solve for un+1:

Loop over k until convergence
(1) Solve the following equation for Du with a linear equation

solver:
DPðunþ1;ðkÞ;vÞðDuÞ ¼ �Pðunþ1;ðkÞ;vÞ 8v 2 V0; ð29Þ
(2) Update solution, un+1,(k+1) = un+1,(k) + Du, and index,
k = k + 1.

To discretize Eq. (29) in space, we expand Du in terms of the
shape functions of Section 2:

ðDuÞiðX; tÞ ¼
XNm

p¼1

ðDûÞipðtÞ/pðXÞ; i ¼ 1;2;3; ð30Þ

where (DûÞip are the expansion coefficients. Then Eq. (29) is trans-
formed into the following system of linear equations:

4

ðDtÞ2
Mþ K

 !
DU ¼ R; ð31Þ

which can be solved with an iterative linear equation solver. In the
above equation, DU is a vector of the expansion coefficients ðDûÞip,
with the same ordering as that in linear elastodynamics (see Eq.
(14)). The mass matrix M is given by Eq. (15) with q replaced by
q0. Similar to the formulation of linear elastodynamics, the stiffness
matrix K is a 3Nm � 3Nm matrix organized into a Nm � Nm matrix of
blocks, each block being a 3 � 3 submatrix Kpq (p,q = 1, . . . ,Nm)
given by

Kpq;ms ¼
X3

i;j;k;l¼1

Z
X0

1
2

o/p

oXi
Fmj þ Fmi

o/p

oXj

� �
� C

ð4Þ
ijkl

1
2

o/q

oXk
Fsl þ Fsk

o/q

oXl

� �
dX0

þ dms

X3

i;j¼1

Z
X0

Sij
o/q

oXi

o/p

oXj
dX0;

m; s ¼ 1;2;3; ð32Þ
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where Fij, Sij, C
ð4Þ
ijkl and Xi are the components of the deformation ten-

sor F, second Green–Kirchhoff stress tensor S, elasticity tensor Cð4Þ,
and the position vector X, respectively. dms is the Kronecker delta
function. The right-hand side (RHS) of Eq. (31), R, is the residual
vector with length 3Nm, with the same ordering as DU. Its elements
can be represented by Rmp (m = 1,2,3 and p = 1, . . . ,Nm). Corre-
sponding to Eq. (22) there are three sources of contribution to the
residual vector

R ¼ Rint þ Rext þ Rinert; ð33Þ

where Rint represents the contribution from the internal stress

Rint
mp ¼ �

X3

i;j¼1

Z
X0

Sij
1
2

o/p

oXi

ounþ1;ðkÞ
m

oXj
þ ounþ1;ðkÞ

m

oXi

o/p

oXj

 !
dX0;

m ¼ 1;2;3;

ð34Þ

Rext represents the contribution from the external loads

Rext
mp ¼

Z
oX0N

Tm/p dCþ
Z

X0

q0fm/p dX0; m ¼ 1;2;3 ð35Þ

and Rinert represents the contribution from the inertia

Rinert
mp ¼

Z
X0

q0
€un

m þ
4
Dt

_un
m þ

4

Dtð Þ2
un

m

 !
/p dX0 �

4

Dtð Þ2

�
Z

X0

q0unþ1;ðkÞ
m /p dX0; m ¼ 1;2;3: ð36Þ

In Eqs. (34)–(36) we have used the symbol Am (m = 1,2,3) to denote
the three components of a vector A.

Remarks: (1) The above scheme is second-order accurate in
time, which will be demonstrated with an analytical solution in
Section 5.

(2) The Newton–Raphson iterative scheme typically converges
to the machine accuracy within only a few iterations. For the test
problems in Sections 5 and 6 the typical number of Newton–Raph-
son iterations is 3–8.

(3) In the implementation a Schur complement is employed to
condense out the interior modes in Eq. (31), which is then solved
with some linear equation solver such as the conjugate gradient
solver. Thus there exist two levels of iterations in the solution pro-
cess within a time step: Newton–Raphson iteration at the outer le-
vel and conjugate gradient iteration at the inner level.

(4) Initial conditions. The initial acceleration field €u0ðXÞ is re-
quired for computing the residual vector R; see Eq. (36). It can be
computed based on the initial displacement (u0) and velocity
( _u0) fields (provided by initial conditions) by solving the following
equation:

Pðu0;vÞ ¼ Pintðu0; vÞ �Pextðu0; vÞ þPinertð€u0;vÞ ¼ 0

8v 2 V0:
ð37Þ

Expand €u0 in terms of the shape functions

€u0ðXÞ ¼
XNm

p¼1

€̂u0
p/pðXÞ; ð38Þ

where €̂u0
p are the expansion coefficients. We substitute the above

expression into Eq. (37) and obtain

Mb€U0 ¼ R0; ð39Þ

where b€U0 is a vector of the expansion coefficients, with the same
ordering as DU of Eq. (31), and the vector R0 on RHS is given by
R0
mp ¼

Z
oX0N

Tm/p dCþ
Z

X0

q0fm/p dX0

�
Z

X0

Sij �
1
2

o/p

oXi

ou0
m

oXj
þ ou0

m

oXi

o/p

oXj

� �
dX0;

m ¼ 1;2;3; p ¼ 1; . . . ;Nm; ð40Þ

where R0
mp are the elements of R0 and u0

m are the components of the
initial displacement u0.

(5) Time-dependent Dirichlet boundary conditions. If the dis-
placement is provided as a time-dependent function on some
boundary, uðX; tÞjoX0D

¼ uDðX; tÞ; then _ujoX0D
and €ujoX0D

will be re-
quired when solving Eq. (31). To be consistent with the discretiza-
tion scheme, we employ Eqs. (24) and (25) to compute _ujoX0D

and
€ujoX0D

, which retains the second-order temporal accuracy for prob-
lems involving time-dependent Dirichlet boundary conditions.
4. Parallelization

The method in Section 3 has been parallelized through domain
decomposition and message passing interface (MPI). To facilitate
parallel processing the mesh of polymorphic elements has been
partitioned into Np (Np is the number of processors in the compu-
tation) disjoint subdomains (groups of elements) using METIS [24],
and each processor carries out computations on the group of ele-
ments of a subdomain. In contrast to the master/slave models
employing parallel virtual machine (PVM) (see e.g. [17,28]), in
the current mode of parallel processing there is no manager (or
master) process that plays a more prominent role (e.g. starting
computation, distributing data, assembling data). All processes
are cooperating peers that communicate with one another during
the computation.

All data structures are distributed across the processors, includ-
ing the stiffness/mass matrices, load and solution vectors, as well
as auxiliary data structures such as the boundary conditions. In
particular, for Schur complement only the local elemental Schur-
complemented stiffness matrices (to be exact, a combination of
the stiffness and mass matrices; see Eq. (31)) are stored. This is
made possible by the modal index ordering outlined in Section 3,
i.e. boundary modes (vertex/edge/face modes) followed by interior
modes. As a result, the global Schur-complemented system can be
assembled from the local elemental Schur-complemented system,
that is

Kb � KcK�1
i KT

c ¼AT
b½K

e
b � Ke

cðK
e
i Þ
�1ðKe

cÞ
T�Ab; ð41Þ

where Kb, Kc and Ki are submatrices of the global stiffness matrix
Kb Kc

KT
c Ki

� �
, respectively representing global boundary–boundary

coupling, boundary–interior coupling, and interior–interior interac-
tions. Note that Ki is a block diagonal matrix with each block corre-
sponding to the matrix of an elemental interior–interior modal
interactions The left-hand side (LHS) of Eq. (41) is the global
Schur-complemented coefficient matrix (for boundary modes). On
the RHS of Eq. (41) AT

b is the boundary assembly matrix, assembling
the global boundary degrees of freedom from the local boundary
degrees of freedom, and Ab scatters global boundary degrees of

freedom to the local boundary degrees of freedom. Ke
b, Ke

c and Ke
i

are submatrices of the elemental stiffness matrix,
Ke

b Ke
c

ðKe
cÞ

T Ke
i

� �
,

respectively representing local elemental boundary–boundary cou-
pling, boundary–interior coupling, and interior–interior interac-
tions. Only the elemental Schur-complemented coefficient matrix,
Ke

b � Ke
cðK

e
i Þ
�1ðKe

cÞ
T, needs to be stored in the implementation.
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The above distributed data structure is crucial to achieving high
performance. Note that different processors carry out the same
computation steps, but on different groups of elements (i.e. single
program multiple data). Within a time step, except for the calcula-
tion of the residual vector norm in the Newton iteration and the
conjugate gradient iteration for solving the boundary modes of
the increment displacement fields, all computations are local to
each processor, involving no inter-processor communications.
These include, for example, computations of the tangential stiff-
ness matrix, its Schur complement, the load vector, the interior
modes of the increment displacement fields, and the matrix–vector
multiplication inside the conjugate gradient iteration. No assembly
of the global matrix or the global equation system is needed with
the distributed data structures.

Inter-processor communications are involved predominantly in
the parallel solution of the Schur-complemented linear equation
system for the boundary modes, i.e. Eqs. (19) and (31), with the
preconditioned conjugate gradient solver. This solver is invoked
once every time step for linear elastodynamic problems, and once
every Newton–Raphson iteration (within a time step) for geomet-
rically nonlinear elastodynamic problems. It is also invoked for
computing the initial acceleration field at the pre-processing stage,
see Eq. (39). In the current implementation, we have employed a
simple Jacobi preconditioner in the solver. Since all the vectors
(and the coefficient matrix) involved in the conjugate gradient sol-
ver are distributed across the processors, each processor has only
parts of the vectors. some entries of the partial vectors stored on
different processors correspond to the same global degrees of free-
dom, which correspond to the modes residing on the boundaries of
different mesh partitions that are shared by two or more proces-
sors. The typical pattern of operations in the conjugate gradient
solver requiring inter-processor communications is the computa-
tion of the inner product of two distributed vectors. This type of
operations, for example, is used for computing the norm of the
residual vector for convergence check or for computing the coeffi-
cients to update the vectors. Inter-processor communications in
such operations require special care because entries in the partial
vectors on different processors corresponding to the shared global
degrees of freedom may contain inconsistent (or partial) results
from preceding operations. Even if these entries in partial vectors
contain consistent data on different processors, the multiplicities
of the shared global degrees of freedom still need to be taken into
account when taking the inner product. We employ a fan-in-fan-
out parallel reduction algorithm on a binary tree or hypercube
[16,34] for such communications.
5. Convergence studies

In this section, we establish the spatial and temporal accuracies
of the method presented in Section 3 by comparing simulation re-
sults against analytical solutions for four classes of problems: lin-
ear elastostatics, linear elastodynamics, geometrically nonlinear
elastostatics, and geometrically nonlinear elastodynamics. The pri-
mary purpose is not to study the physical structural behavior, but
rather to verify the consistency of the scheme and investigate its
convergence behavior. Therefore, for the test problems in the fol-
lowing sections we have used material properties with contrived
values, and paid little attention to their correspondence to the
structures in physical reality. In this section and Section 6, we have
also omitted all the units for physical parameters and variables
when working on the test problems. We have assumed that for
each test problem a system of consistent units are used for all
the physical variables and parameters. We consider the St. Ve-
nant–Kirchhoff material in the following tests, and use Young’s
modulus E and the Poisson ratio m for the material properties for
most test problems, which are related to the material properties
k and l in Eq. (1) by

l ¼ E
2ð1þ mÞ ; k ¼ mE

ð1þ mÞð1� 2mÞ : ð42Þ
5.1. Linear elastostatics

We first investigate the convergence of the scheme for linear
elastostatic problems. Consider the deformation of a cubic object
occupying the domain 0 6 x 6 1, 0 6 y 6 1 and 0 6 z 6 1, with a
Young’s modulus E and a Poisson ratio m (Fig. 1a), and assume small
deformations. The displacements on the face x = 0 is known

ux ¼ A sin ay; uy ¼ uz ¼ 0; ð43Þ

where ux, uy and uz are the displacements in x-, y- and z-direc-
tions, respectively, and A and a are prescribed constants. A traction
force field, T = (Tx,Ty,Tz), is applied on the rest of the faces, and is
given by

Tx ¼ nyE3ðaA cos ayþ bB cos bxÞ;
Ty ¼ nxE3ðaA cos ayþ bB cos bxÞ; Tz ¼ 0; ð44Þ

where n = (nx,ny,nz) is the outward-pointing unit vector normal to
the surface, B and b are prescribed constants, and E3 ¼ E

2ð1þmÞ. A body
force field, qf = (fx, fy, ,fz), is applied on the object with the following
functions:

fx ¼ E3a2A sin ay; f y ¼ E3b2B sin bx; f z ¼ 0: ð45Þ

This problem has the following analytic solution for the displace-
ments of the object:

ux ¼ A sin ay;

uy ¼ B sin bx;

uz ¼ 0:

8><>: ð46Þ

To compute the deformation of the object with the scheme in
Section 3 we discretize the domain with 5 tetrahedral elements;
Thick solid lines mark the edges of the elements in Fig. 1a. We im-
pose the Dirichlet BC on the face x = 0 with the displacements in
Eq. (43), and the traction/Neumann BCs on the other faces with
the traction forces in Eq. (44). To study the convergence behavior,
we systematically vary the element order (i.e. highest polynomial
degree in the expansions) from 2 to 11, and for each element order
calculate the L1, L2 and H1 errors of the computed displacement
fields with respect to the exact solution in Eq. (46). In Fig. 1b, we
plot these errors (in logarithmic scale) as a function of the element
order (in linear scale) for the problem with the following parame-
ter values:

A ¼ B ¼ 1:0; a ¼ b ¼ 1:0; E ¼ 1000; m ¼ 0:3:

The error curves show the trend of approximately a straight line,
indicating that the numerical errors decreases exponentially as
the element order increases.

5.2. Linear elastodynamics

We next study the spatial and temporal convergence of the
scheme for linear elastodynamic problems. Consider the vibration
of a cubic object (0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1) with a mass den-
sity q, a Young’s modulus E and a Poisson ratio m. Assume that the
deformation of the object is small throughout the time so that the
linear elastic equations can be used. The displacements on the face
x = 0 is known

ux ¼ C sin bx; uy ¼ uz ¼ 0; ð47Þ
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Fig. 1. Linear elastostatics: (a) cubic object discretized with 5 tetrahedral elements. (b) L1, L2 and H1 errors as a function of the element order showing spatial exponential
convergence rate.
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where C and b are prescribed constants. The following time-depen-
dent traction force field is applied on the rest of the faces:

Tx ¼ nxE1ðAþ B sin at þ bC cos bxÞ;
Ty ¼ nyE2ðAþ B sin at þ bC cos bxÞ;
Tz ¼ nzE2ðAþ B sin at þ bC cos bxÞ;

8><>: ð48Þ

where A, B and a are prescribed constants, t is time, n = (nx,ny,nz) is
the outward-pointing unit vector normal to the object surface, and
the parameters E1 ¼ ð1�mÞE

ð1þmÞð1�2mÞ and E2 ¼ mE
ð1þmÞð1�2mÞ. The following body

force field, qf = (fx, fy, fz), is applied on the object:

fx ¼ E1b2C sin bx� qa2Bx sin at; f y ¼ fz ¼ 0: ð49Þ

At t = 0 the displacement and velocity fields are provided as follows:

ux ¼ Axþ C sin bx; uy ¼ uz ¼ 0;
_ux ¼ Bax; _uy ¼ _uz ¼ 0:

�
ð50Þ

The above problem has the following analytic solution for the dis-
placements of the object:

ux ¼ ðAþ B sin atÞxþ C sin bx;

uy ¼ 0;
uz ¼ 0:

8><>: ð51Þ

To simulate the time-dependent deformation of the object, we
employ the method presented in Section 3.1 and discretize the do-
main with one hexahedral element. We impose the Dirichlet BC
(Eq. (47)) on the face x = 0 and traction/Neumann BCs (Eq. (48))
on the other faces, and use the displacement and velocity fields
from Eq. (50) as the initial conditions. In order to investigate the
spatial convergence of the scheme we fix the time step size Dt,
and systematically vary the element order between 2 and 8. For
each element order we integrate the momentum equation (10)
over time from t = 0 to t = tf, and compute the L1, L2 and H1 errors
of the computed displacement fields at t = tf with respect to the ex-
act solution (Eq. (51)). To check the temporal accuracy of the
scheme, we fix the element order and vary the time step size Dt.
For each value of Dt we integrate the momentum equation (10)
over time from t = 0 to t = tf, and compute the L1, L2 and H1 errors
of the displacement fields at t = tf with respect to the exact solution
(Eq. (51)). Fig. 2a shows the errors of the computed results (in log-
arithmic scale) versus the element order (in linear scale) for a fixed
time step size Dt = 0.01 for the problem with the following param-
eter values:

A ¼ 1:9; B ¼ 0:1; C ¼ 1:4; a ¼ 1:0; b ¼ 1:2;
q ¼ 1000; E ¼ 100; m ¼ 0:3; tf ¼ 0:1: ð52Þ

Evidently the numerical errors decrease exponentially as the ele-
ment order increases, suggesting an exponential convergence rate
of the scheme spatially. Fig. 2b plots the numerical errors versus
the time step size Dt, both in logarithmic scales, for a fixed element
order 3 for the problem with the following parameter values:

A ¼ 1:2; B ¼ 0:1; C ¼ 0:05; a ¼ 1:0; b ¼ 0:02;
q ¼ 1000; E ¼ 100; m ¼ 0:3; tf ¼ 1:6: ð53Þ

The results show that as Dt is reduced by half the numerical errors
is decreased by a factor of 4, suggesting that the scheme has
achieved a second-order accuracy in time.

5.3. Geometrically nonlinear elastostatics

We next investigate the convergence of the scheme for geomet-
rically nonlinear elastostatic problems. Consider the finite defor-
mation of the cubic object initially occupying the domain,
0 6 X 6 1, 0 6 Y 6 1 and 0 6 Z 6 1, with a Young’s modulus E and
a Poisson ratio m. It is known that the face X = 0 is clamped, and
there is a traction force, T = (TX,TY,TZ), applying on the rest of the
faces given by the following function:

TX ¼ nXðk=2þ lÞAa cosðaXÞðA2a2 cos2ðaXÞ � 1Þ;
TY ¼ nYðA2a2 cos2ðaXÞ � 1Þk=2;

TZ ¼ nZðA2a2 cos2ðaXÞ � 1Þk=2;

8><>: ð54Þ

where n = (nX,nY,nZ) is the outward-pointing unit vector normal to
the surface in the initial configuration, A and a are prescribed con-
stants, k and l are the material properties in Eq. (1). There is also
the following body force field on the object, q0f = (fX, fY, fZ):

fX ¼ �ðk=2þ lÞAa2 sinðaXÞð1� 3A2a2 cos2ðaXÞÞ; f Y ¼ fZ ¼ 0:

ð55Þ
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The displacements of the object for this problem can be expressed
by the following analytic functions in terms of coordinates of the
initial configurations:

uX ¼ A sinðaXÞ � X;

uY ¼ 0;
uZ ¼ 0;

8><>: ð56Þ

where uX, uY and uZ are the displacements in x-, y- and z-directions,
respectively.

We compute the displacement fields of the object by solving the
weak form of the momentum equation for geometrically nonlinear
problems with the scheme in Section 3.2 (omitting the inertia
term). In the initial configuration we discretize the domain with
2 prismatic elements. In Fig. 3a, thick solid lines mark the edges
of these elements. Dirichlet BC is imposed on face X = 0 and trac-
tion BCs according to Eq. (54) are imposed on the other faces.
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Fig. 3. Geometrically nonlinear elastostatics: (a) cubic object discretized with 2 prismati
convergence rate.
We study the convergence of the scheme by varying the element
order between 2 and 10, and at each element order calculate the
L1, L2 and H1 errors of the computed results against the exact solu-
tion in Eq. (56). In Fig. 3b, we plot these errors (logarithmic scale)
as a function of the element order (linear scale) for the problem
with the following parameter values:

A ¼ 1:9; a ¼ 1:0; E ¼ 1000; m ¼ 0:3: ð57Þ

The scheme has obviously achieved a spatially exponential conver-
gence rate for this class of problems.

5.4. Geometrically nonlinear elastodynamics

We next investigate the convergence of the scheme for geomet-
rically nonlinear elastodynamic problems. Consider the vibration
of the cubic object with the initial configuration, 0 6 X 6 1,
0 6 Y 6 1 and 0 6 Z 6 1, and an initial mass density q0, Young’s
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modulus E, and Poisson ratio m. We assume that the deformation of
the object is finite throughout the time so that geometrically non-
linear formulations of the momentum equation need to be used.
The face X = 0 of the object is clamped, and a time-dependent trac-
tion force field is applied on the other faces, T = (TX,TY,TZ):

TX ¼ nXðk=2þ lÞðAþ B sinðatÞ þ Cb cosðbXÞÞ
�ððAþ B sinðatÞ þ Cb cosðbXÞÞ2 � 1Þ;

TY ¼ nY ððAþ B sinðatÞ þ Cb cosðbXÞÞ2 � 1Þk=2;

TZ ¼ nZððAþ B sinðatÞ þ Cb cosðbXÞÞ2 � 1Þk=2;

8>>>><>>>>: ð58Þ

where A, B, C, a and b are prescribed constants, n = (nX,nY,nZ) is the
outward-pointing unit vector normal to the surface. The following
body force field is applied on the object, q0f = (fX, fY, fZ):

fX ¼ �Ba2X sinðatÞ � 1
q0
ðk=2þ lÞCb2 sinðbXÞ

�½1� 3ðAþ B sinðatÞ þ Cb cosðbXÞÞ2�; t > 0;
fY ¼ 0;
fZ ¼ 0:

8>>>><>>>>: ð59Þ

The displacements (uX,uY,uZ) and velocity ð _uX ; _uY ; _uZÞ at t = 0 is
known

uX ¼ ðA� 1ÞX þ C sinðbXÞ; uY ¼ uZ ¼ 0;
_uX ¼ BaX; _uY ¼ _uZ ¼ 0:

�
ð60Þ

With these conditions the problem has the following analytic solu-
tion (t P 0) for the displacements of the object in terms of coordi-
nates of the initial configuration:

uX ¼ ðA� 1þ B sinðatÞÞX þ C sinðbXÞ;
uY ¼ 0;
uZ ¼ 0:

8><>: ð61Þ

To simulate the time-dependent finite deformation of the ob-
ject, we employ the scheme in Section 3.2 and discretize the do-
main with 5 tetrahedral elements (see Fig. 1a). A Dirichlet BC is
employed on the face X = 0, and traction/Neumann BCs (Eq. (58))
are imposed on the rest of the faces. To study the spatial conver-
gence of the scheme, we fix the time step size Dt, and systemati-
cally vary the element order between 2 and 9. At each order we
integrate the momentum equation (20) over time from t = 0 to
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Fig. 4. Geometrically nonlinear elastodynamics: (a) L1, L2 and H1 errors of the displacem
(b) L1, L2 and H1 errors of the displacements at t = 0.2 as a function of Dt for a fixed ele
t = tf, and compute the L1, L2 and H1 errors of the displacement
fields at t = tf against the exact solution (see Eq. (61)). To study
the temporal convergence, we fix the element order and systemat-
ically vary the time step size Dt. For each value of Dt we integrate
the momentum equation (20) over time from t = 0 to t = tf, and
compute the L1, L2 and H1 errors of the displacement fields at
t = tf against the exact solution. In Fig. 4a, we plot the errors of
the computed results (logarithmic scale) as a function of the ele-
ment order (linear scale) for a fixed Dt = 0.01 for the problem with
the following parameter values:

A ¼ 1:2; B ¼ 0:1; C ¼ 1:0; a ¼ 1:0; b ¼ 1:4;
q0 ¼ 1:0; E ¼ 1000; m ¼ 0:3; tf ¼ 0:2: ð62Þ

Evidently, the numerical errors decrease exponentially with
increasing element order, indicating a spatially exponential conver-
gence rate. In Fig. 4b, we plot the errors as a function of Dt, with
both axis in logarithmic scales, for a fixed element order 4 for a
problem with the following parameter values:

A ¼ 1:2; B ¼ 0:2; C ¼ 0:1; a ¼ 1:0; b ¼ 0:01;
q0 ¼ 1:0; E ¼ 100; m ¼ 0:3; tf ¼ 0:2: ð63Þ

As the time step size Dt is reduced by half, the numerical errors are
reduced by a factor of 4, suggesting that the scheme has a second-
order accuracy in time for geometrically nonlinear elastodynamic
problems.

6. Test problems

In this section, we apply the method in Section 3 to solve sev-
eral test problems of linear/geometrically nonlinear elastostatics/
dynamics. We will demonstrate the capability of the method for
situations involving large deformations, and the parallel perfor-
mance of the method for up to more than 2000 processors. We as-
sume that the materials follow the St. Venant–Kirchhoff
constitutive equation.

6.1. Deformation of a prismatic bar

We first consider the deformation of a prismatic bar. The
purpose is to demonstrate the differences between linear and
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ment order 4. Five tetrahedral elements are used to discretize the domain.
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geometrically nonlinear elastostatic solutions of the problem un-
der identical conditions.

Fig. 5a illustrates the configuration of the bar in a deformed
state. In the initial undeformed state, the straight prismatic bar
has an axial length Lx = 3.0, and the cross-section of the bar is an
equilateral triangle with a side dimension 1.0. The triangular face
ADE (vertex D is invisible in Fig. 5a) is aligned with the plane
x = 0, and vertex E is located on the y-axis. The quadrilateral face
ABCD is initially aligned with the plane y = 0. The left face of the
bar, x = 0, is clamped, and on the right face, BCF, a traction force
is applied in the �y-direction, Ty = �Fy, where Fy is the force
magnitude.

We study the deformation of the bar under two situations: (1)
assuming small displacement so that the linear elastostatic equa-
tions can be used, and (2) assuming finite deformation so that geo-
metrically nonlinear elastostatic equations need to be considered.
We discretize the initial domain of the object with two identical
prismatic elements in the x-direction. The thick solid lines in
Fig. 5a mark the edges of these elements. We impose the Dirichlet
BC on the face ADE (zero displacements), a traction BC on the face
BCF, and a traction-free BC on the rest of the object surfaces.

To ensure that the computation results are converged, we sys-
tematically increase the element order from 2 to 13 for a fixed
force magnitude Fy = 1.0. In Fig. 5b, we plot the x and y displace-
ments (z displacement is zero) of the vertex F as a function of
the element order from the linear and geometrically nonlinear
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elastostatic solutions with a Young’s modulus E = 1000 and a Pois-
son ratio m = 0.3. As the element order increases, both the x and y
displacements, for both linear and geometrically nonlinear solu-
tions, increase quite significantly initially, and level off gradually
as the order further increases. The displacements remain essen-
tially unchanged beyond the element order 6. While the difference
in the y displacement between the converged linear and geometri-
cally nonlinear solutions for this traction force magnitude is minor,
the deviation in the x displacements is quite substantial. The x dis-
placement from the geometrically nonlinear solution is notably
smaller than that from the linear solution.

We next compare the linear and geometrically nonlinear solu-
tions under identical traction forces. Fig. 5c shows the x and y dis-
placements of vertex F, from both linear and geometrically
nonlinear solutions, as a function of the traction force magnitude
Fy for a fixed element order 12. Both x and y displacements from
the linear solution increase linearly with increasing traction force,
obviously unphysical under large force magnitudes. On the other
hand, compared to the linear solution the y displacement from
the geometrically nonlinear solution is about the same as the force
magnitude Fy is low, and becomes comparatively smaller as Fy be-
comes large (Fy > 2.5). The x displacement of the geometrically
nonlinear solution exhibits a trend qualitatively different from that
of the linear solution. As the force magnitude increases, the x dis-
placement of the nonlinear solution increases initially, reaching a
maximum value at some point, and decreases as Fy further in-
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creases. It is lower than that of the linear solution for the entire
range of Fy values studied here.

6.2. Free vibration of a rectangular board

In the second test problem we study the free vibration of a
three-dimensional long rectangular board. The purpose is to dem-
onstrate the differences between linear and geometrically nonlin-
ear solutions for elastodynamic problems under otherwise
identical conditions.

Fig. 6 shows the board at its equilibrium position (thin solid
lines) and at the initial configuration for dynamic simulations
(thick solid lines). At equilibrium, the board has a length Lx = 4.0
in the x-direction, a width Ly = 0.6 in the y-direction, and a thick-
ness Lz = 0.2 in the z-direction. The left face of the board, x = 0, is
clamped. We assume that at equilibrium the board has a mass den-
sity, q0 = 100, a Young’s modulus, E = 1000, and a Poisson ratio,
m = 0.3. The initial configuration of the board for the dynamic sim-
ulations is generated with the following steps:

1. At the equilibrium position apply a traction force in z-direction,
Tz = 0.2, on the right face of the board, x = Lx;

2. Compute the deformation of the board using the elastostatic
solver. Employ the linear elastostatic solver in this step if the
initial configuration is for linear elastodynamic simulations,
and employ the geometrically nonlinear elastostatic solver in
this step if the initial configuration is for geometrically nonlin-
ear elastodynamic simulations;

3. Use the deformed state of the board as the initial configuration
for the dynamic simulations.

For the dynamic simulations, the board is assumed to be at rest
with the initial configuration for t < 0. At t = 0 the board is released
from its initial configuration and allowed to freely vibrate. We
study the vibration of the board under two situations: (1) assum-
ing small displacement throughout the time so that linear elasto-
dynamic equations can be used, and (2) assuming finite
deformation so that geometrically nonlinear elastodynamic equa-
tions need to be employed. We discretize the domain of the board
at equilibrium with 8 identical hexahedral elements (see Fig. 6) in
the x-direction. Dirichlet BC (zero displacements) is applied to the
left face of the board, and traction-free BCs are imposed on the
x
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Fig. 6. Free vibration of a rectangular board. Thick solid lines mark the initial
configuration for dynamic simulations. Thin solid lines mark the equilibrium
position.
other faces of the board. The initial displacements are prescribed
based on the initial configuration of the board, with zero initial
velocities.

In Fig. 7a, we plot the time histories of the z displacements of
the vertex A (see Fig. 6) from the linear and geometrically nonlin-
ear simulations. The two signals have been shifted in time so that
they are aligned. The results are obtained using an element order 5
and a time step size Dt = 0.005. Simulations have also been con-
ducted using an element order 4, and we observe no significant dif-
ference in the results from those of order 5. We have also done
simulations using time step sizes Dt = 0.01 and 0.05, and observed
that the highest frequencies of the vibration are not well resolved
with Dt = 0.05, and only marginally resolved with Dt = 0.01. An
interesting result from Fig. 7a is that the linear and the geometri-
cally nonlinear elastodynamic simulations result in the same
essential frequency in this problem. The vibration amplitude from
the geometrically nonlinear solution is observed to be slightly low-
er than that from the linear solution.

The spectral content of the displacement signals reveals addi-
tional characteristics of the vibrations. We have calculated the FFTs
of the two z displacement signals in Fig. 7a corresponding to the
linear and geometrically nonlinear solutions, and computed their
power spectra. In Fig. 7b, we plot the power spectral densities of
the two signals as a function of the frequency. The overlap of the
primary peaks of the two signals confirms that they have the same
basic frequency. Compared to that of the linear solution, the spec-
trum of the geometrically nonlinear solution demonstrate signifi-
cantly more peaks at high frequencies, and clusters of discrete
peaks can also be observed around certain frequencies, which is
likely a manifestation of the nonlinear interactions between differ-
ent frequency components.

We next investigate the temporal and spectral characteristics of
the x displacements. In Fig. 8a, we plot the time histories of the x
displacements of the vertex A (see Fig. 6) of the linear and geomet-
rically nonlinear solutions, which have also been shifted in time for
alignment. The linear and the geometrically nonlinear solutions
exhibit qualitatively different characteristics. The x displacement
signal of the linear solution is essentially a sinusoidal function. In
contrast, the x displacement signal of the nonlinear solution dem-
onstrates an additional frequency component with twice the basic
frequency. Under the linear elasticity assumption, as the board is
displaced in the +z-direction the x displacement of vertex A in-
creases with increasing z displacement. And as the board is dis-
placed in the �z-direction the x displacement of vertex A
decreases with increasing z displacement magnitude. Therefore,
one observes essentially a sinusoidal signal from the linear solu-
tion. For the geometrically nonlinear solution, as the board is dis-
placed in the +z-direction, however, with increasing z
displacement the x displacement of vertex A increases initially,
reaching a maximum at some point, and then decreases as the z
displacement increases further. And as the board is displaced in
the �z-direction, the x displacement of vertex A decreases with
increasing z displacement magnitude. As a result, the x displace-
ment reaches the maximum twice within a period, which is why
an additional high-frequency component can be observed in the
nonlinear solution.

Fig. 8b shows a comparison of the power spectra of the x dis-
placement signals of the linear and geometrically nonlinear solu-
tions. It can be observed again that the linear and nonlinear
solutions yield the same basic frequency for this problem. The non-
linear solution exhibits a significantly more complicated spectrum.
In addition to the second main frequency, we observe a substan-
tially larger number of peaks at high frequencies and also clusters
of spectral peaks around certain frequencies, similar to that of the z
displacement. The cluster of peaks around some frequencies be-
comes so dense that the spectrum appears nearly continuous.
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6.3. Large deformation of a rectangular bar

In this problem we attempt to demonstrate the capability
of the geometrically nonlinear solver for problems involving
large deformations. We consider the large deformation of a
three-dimensional rectangular bar under multi-stage traction
forces. In its initial configuration (see Fig. 9), the bar has a length
Lx = 4.0 in the x-direction, a width Ly = 0.6 in the y-direction, and
a thickness Lz = 0.2 in the z-direction. The left end of the bar is in
the plane x = 0, and is clamped. The back surface of the bar is ini-
tially in the plane z = 0, and the bottom surface is initially in the
plane y = 0. The bar is assumed to have a Young’s modulus
E = 1000 and a Poisson ratio m = 0.3. Consider the following
three-stage traction forces applying on the free end (right end)
of the bar:

1. First apply a constant traction force in the z-direction, Tz, to the
free end of the bar at the initial configuration.
2. In the deformed configuration at the end of the previous stage,
apply a constant traction force in the �x-direction, �Tx, to the
free end of the bar.

3. In the deformed configuration at the end of the previous stage,
apply a constant traction force in the �z-direction, �T 0z, to the
free end of the bar.

Fig. 9 shows the final and intermediate configurations, together
with the initial configuration, of the bar under such a three-stage
force with values

Tz ¼ 1:0; �Tx ¼ �2:0; �T 0z ¼ �11:0: ð64Þ

The domain has been discretized with 8 hexahedral elements in the
x-direction, and the element order 4 is used in the computations. It
is evident that the bar has undergone extremely large deformations
under these traction forces. These results demonstrate that the
high-order scheme presented in Section 3.2 is capable of handling
problems involving very large deformations.



Fig. 10. Human aorta: Mesh consisting of 22,664 prismatic elements. Color
contours show the distribution of wall stress component rxy.
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6.4. Parallel performance – wall deformation of the human aorta

All the test problems considered so far involve simple meshes
with small numbers of elements. We next apply the method to-
gether with massively parallel computing to solve a test problem
involving realistic geometries with a significantly increased num-
ber of elements. We consider the deformation of the wall of the
human aorta. The primary purpose here is to demonstrate the effi-
ciency of the parallelized method and its capability in tackling
large-scale structural problems with massively parallel computers.
So we have chosen the material properties and the problem setup
primarily based on numerical convenience, and made little effort
concerning their correspondence to physical realities.

Fig. 10 shows the wall mesh around the bifurcation of the hu-
man aortic artery, and the color contours in the plot show the dis-
tribution of the wall stress component rxy. The geometry of this
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problem was extracted from patient-specific computed tomogra-
phy (CT) images [9]. The mesh consists of 22,664 prismatic ele-
ments, and the wall has been assumed to have a Young’s
modulus 1000 and a Poisson ratio 0.3. A traction force, T = (Tx,Ty,Tz)
has been applied on the inner surface of the wall. The surfaces at all
the outlets are assumed to be traction-free, and the outer surface of
the wall is assumed to be clamped. We have also assumed small
deformations for the arterial wall in this test. We realize that the
above conditions and assumptions by no means reflect the physical
or physiological reality. However, the problem provides a realistic
example for studying the performance of the parallel solver.

Under the above conditions and assumptions we solve this lin-
ear elastostatic problem with the parallelized method (see Sections
3 and 4). We employ an element order 9 (for all elements) so that
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the overall problem size is fixed, and systematically vary the num-
ber of processors in the computations. Fig. 11a shows the wall
clock time of the computations as a function of the number of pro-
cessors (between 384 and 2048). (384 is the minimum number of
processors that can handle this problem size in terms of memory
requirement.) This is for the traction force values Tx = Ty = 0.001
and Tz = 0. The wall time here refers to the total simulation time,
including the computations of the stiffness matrix and the load
vector, and the solution of linear systems. The timing data was col-
lected on the Cray XT3 (AMD Opteron processor, 2.6 GHz) machine
at Pittsburgh Supercomputing Center (PSC) under dedicated mode
with exclusive access to the allocated compute nodes. At least
three independent runs have been conducted at each data point,
and the average wall time from these runs are used. It is evident
from Fig. 11a that the wall clock time is reduced substantially
and consistently as the number of processors increases in the
computations.

Fig. 11b shows the parallel speedup as a function of the number
of processors, which is a more intuitive presentation of the infor-
mation contained in Fig. 11a. Parallel speedup Sp is defined bY
Sp ¼ DT1

DTp
; where DT1 is the wall time it takes to solve the problem

on one processor, and DTp is the wall time it takes to solve the
same problem on p processors. Since the minimum number of pro-
cessors for this problem size is 384, we have used the wall time it
takes on 384 processors as the baseline time when computing the
speedup in Fig. 11b, and correspondingly multiplied the speedup
by a coefficient 384. Within 1024 processors the actual speedup
is quite close to the ideal speedup. Beyond 1024 processors, the
curve of the actual speedup exhibits the trend of nearly a straight
line. These results suggest that the parallelized method has
achieved quite high parallel performance.
7. Concluding remarks

In this paper, we have presented a high-order method (p-ver-
sion) employing Jacobi polynomial-based hierarchical shape func-
tions, as an alternative to the typical Legendre polynomial-based
shape functions in solid mechanics, for solving three-dimensional
geometrically nonlinear elasticity problems. The Jacobi polyno-
mial-based approach provides a unified treatment for polymorphic
elements, and the resulting method can handle all commonly
encountered types of elements (hexahedrons, tetrahedrons,
prisms/pentahedrons, pyramids). We have employed the Newmark
scheme to discretize the dynamic three-dimensional geometrically
nonlinear momentum equations, and a Newton–Raphson iterative
scheme within a time step. The method has been parallelized with
domain decomposition and message passing interface, and the par-
allelized method has been scaled to over 2000 processors with high
parallel performance. By comparison with analytic solutions, we
have demonstrated that the method has an exponential conver-
gence rate spatially and a second-order accuracy in time for the
four classes of problems of linear elastostatics, linear elastodynam-
ics, geometrically nonlinear elastostatics, and geometrically non-
linear elastodynamics.
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