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We investigate the dynamical and statistical features of turbulent Taylor–Couette flow
(for a radius ratio 0.5) through three-dimensional direct numerical simulations (DNS)
at Reynolds numbers ranging from 1000 to 8000. We show that in three-dimensional
space the Görtler vortices are randomly distributed in banded regions on the wall,
concentrating at the outflow boundaries of Taylor vortex cells, which spread over
the entire cylinder surface with increasing Reynolds number. Görtler vortices cause
streaky structures that form herringbone-like patterns near the wall. For the Reynolds
numbers studied here, the average axial spacing of the streaks is approximately 100
viscous wall units, and the average tilting angle ranges from 16◦ to 20◦. Simulation
results have been compared to the experimental data in the literature, and the flow
dynamics and statistics are discussed in detail.

1. Introduction
Taylor–Couette flow becomes particularly complex as the Reynolds number

increases. With increasing Reynolds number, the flow undergoes a series of transitions
from circular Couette flow, to axially periodic Taylor vortex flow (Taylor 1923), to
a state with waves on the vortices (Coles 1965; Coughlin et al. 1991), to chaotic
and turbulent Taylor vortex flow (Coles 1965; Fernstermatcher, Swinney & Gollub
1979; Lathrop, Fineberg & Swinney 1992a; von Stamm et al. 1996; Parker & Merati
1996; Takeda 1999). In the cases considered in the present paper, the outer cylinder
is fixed while the inner cylinder rotates at a constant angular velocity. We focus on
values of the Reynolds number at which the flow becomes turbulent and small-scale
azimuthal vortices dominate the regions close to both cylinder walls. As there is
an overwhelming volume of literature on Taylor–Couette flows (see the review by
DiPrima & Swinney 1981 and the references therein), in order to provide a perspective
on the flow structures and statistics of Taylor–Couette turbulence herein, only related
experimental and numerical investigations are reviewed in the sections that follow.

Parameter definitions

It is necessary to first define several parameters before proceeding. The geometry of
the flow is characterized by the radius ratio, η = R1/R2, where R1 and R2 are the radii
of the inner and outer cylinders respectively, and the aspect ratio, Γ = Lz/d , where
Lz is the axial dimension of the domain and d is the gap width, d = R2 − R1. We
define the Reynolds number

Re =
U0d

ν
, (1.1)
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where U0 is the rotation velocity of the inner cylinder and ν the kinematic viscosity
of the fluid. There are several definitions of the Taylor number Ta in the literature.
Following Wei et al. (1992), we define it

Ta=
(
U 2

0 d2/ν2
)
(d/R1) = Re2

(
1

η
− 1

)
. (1.2)

Experimental investigations

Experimental measurement and flow visualization have been the predominant, if not
the exclusive, source of our knowledge about Taylor–Couette flows in the turbulent
regime. Insights into the scalings of the torque, velocity structural functions, mass
transfer coefficient, and the effects of Reynolds number in Taylor–Couette turbu-
lence are provided by the experiments in Wendt (1933), Donnelly & Simon (1959),
Bilgen & Boulos (1973), Tam & Swinney (1987), Brandstater & Swinney (1987), Tong
et al. (1990), Lathrop, Fineberg & Swinney (1992a, b), Lewis & Swinney (1999), She
et al. (2001), van den Berg et al. (2003), and Racina & Kind (2006). A detailed analysis
of the experimental data from several studies is available in Dubrulle et al. (2005).

Koschmieder (1979) measured the wavelengths of turbulent Taylor vortices (i.e. the
distance between adjacent Taylor vortex pairs) at two radius ratios 0.727 and 0.896,
and observed that the wavelength was substantially larger than that of laminar Taylor
vortices at the critical onset Taylor number Tc (defined as the Taylor number at which
the circular Couette flow transitions to the Taylor vortex flow). He also observed the
existence of a continuum of steady non-unique states of the flow, a phenomenon
first detailed by Coles (1965). The hot-wire anemometry measurements by Smith &
Townsend (1982) and Townsend (1984) for a radius ratio 0.667 suggested that for
Taylor numbers below 3 × 105Tc turbulent Taylor vortices encircling the inner cylinder
dominated the flow and were superimposed on a background of irregular motions.
Beyond 5 × 105Tc these turbulent vortices became fragmented and lost regularity, and
the flow became completely turbulent.

Barcilon et al. (1979) studied the coherent structures in Taylor–Couette turbulence
with visualizations for a radius ratio 0.908, and observed a fine herringbone-like
pattern of streaks at the outer cylinder wall for Taylor numbers over 400Tc. They
conjectured that these streaks were the inflow and outflow boundaries of Görtler
vortices (Görtler 1954) in the boundary layer region. Assuming a wide separation of
length scales of Taylor and Görtler instabilities at high Taylor numbers, Barcilon &
Brindley (1984) proposed a mathematical model by partitioning the flow into interior
(Taylor vortex) and boundary layer (Görtler vortex) regions and coupling these
regions through matched asymptotic expansions. They computed the Görtler vortex
scales based on this model and demonstrated good comparisons with experimental
observations. To test the Görtler hypothesis of Barcilon et al. (1979) and Barcilon &
Brindley (1984), Wei et al. (1992) performed laser-induced fluorescence flow visuali-
zations for three radius ratios (0.084, 0.5 and 0.88) at moderately high Reynolds
numbers. They observed that Görtler vortices appeared first near the inner cylinder
wall, and at Taylor numbers an order of magnitude lower than those in Barcilon
et al. (1979). In contrast, Barcilon et al. (1979) observed the herringbone streaks
primarily at the outer cylinder wall, although Barcilon & Brindley (1984) commented
on unpublished studies about observations of herringbone streaks at the inner cylinder
wall as well.
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Numerical simulations

Compared to experiments, numerical investigations of Taylor–Couette flow in the
turbulent regime have lagged far behind. A survey of literature indicates that almost
all the numerical simulations so far have concentrated on the laminar regime at low
Reynolds numbers, including Taylor vortex flow (Mujumdar & Spalding 1977; Jones
1981, 1982; Fasel & Booz 1984; Cliffe & Mullin 1985; Jones 1985; Barenghi & Jones
1989; Rigopoulos, Sheridan & Thompson 2003), wavy vortex flow (Marcus 1984a, b;
King et al. 1984; Moulic & Yao 1996; Riechelmann & Nanbu 1997; Czarny et al.
2004) and modulated wavy vortex flow (Coughlin et al. 1991; Coughlin & Marcus
1992a, b). Here we primarily restrict considerations to configurations with a fixed
outer cylinder and no imposed axial flow.

Several studies have been conducted at higher Reynolds numbers on ‘turbulent
bursts’ (Coughlin & Marcus 1996) and the chaotic behaviour of Taylor–Couette flow
(Vastano & Moser 1991). In addition, steady-state quasi-two-dimensional (ignoring
azimuthal dependence) Reynolds-averaged Navier–Stokes (RANS) simulations were
performed by several researchers (Wild, Djilali & Vickers 1996; Batten, Bressloff &
Turnock 2002) employing turbulence models.

In order to understand the mechanism of transition from quasi-periodicity to chaos
observed in experiments (Brandstater & Swinney 1987), Vastano & Moser (1991)
performed a short-time Lyapunov exponent analysis of the Taylor–Couette flow by
simultaneously advancing the full numerical solution and a set of perturbations for a
radius ratio 0.875 at Reynolds numbers between 1160 and 1340. A partial Lyapunov
exponent spectrum was computed and the dimension of the chaotic attractor was
estimated. Noting the concentration of perturbation fields on the outflow jet and
other characteristics, they argued that the chaos-producing mechanism was a Kelvin–
Helmholtz instability of the outflow boundary jet between counter-rotating Taylor
vortices. More recently, Bilson & Bremhorst (2007) simulated the Taylor–Couette
flow at Reynolds number 3200 for a radius ratio 0.617 using a second-order finite
volume method. A comprehensive verification for several parameters was conducted,
and the comparison with available experimental data showed an agreement of trends.
A number of statistical quantities were studied, and results of Reynolds stress budgets
indicated higher turbulence production and dissipation values near cylinder walls.

Objective

In this paper, we focus on the dynamics and statistics of small-scale near-wall
azimuthal vortices in turbulent Taylor–Couette flow. For this purpose, we have
performed three-dimensional direct numerical simulations at four Reynolds numbers,
ranging from 1000 to 8000, for a radius ratio η = 0.5. While the flow remains laminar
at the lowest Reynolds number Re = 1000, it becomes turbulent for the three higher
Reynolds numbers. We demonstrate the herringbone-like patterns of streaks near
cylinder walls that are reminiscent of the observations by Barcilon et al. (1979), and
elucidate how the increase in Reynolds number affects the characteristics of these
streaks and the Görtler vortices, as well as the distributions of statistical quantities.

2. Simulation methodology and parameters
Consider the incompressible flow between two infinitely long concentric cylinders.

The cylinder axis is aligned with the z-axis of the coordinate system. The inner
cylinder, with radius R1, rotates counter-clockwise (viewed toward the −z direction)
at a constant angular velocity Ω while the outer cylinder, with radius R2, is at rest. In
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Cases Nz P Lz/d CTinner CTouter

A 128 6 π −0.0125 0.0127
B 256 6 2π −0.0126 0.0127
C 128 7 π −0.0126 0.0126
D 256 7 1.5π −0.0126 0.0126
E 256 7 2π −0.0126 0.0127
F 128 8 π −0.0128 0.0128
G 128 9 π −0.0128 0.0128

Table 1. Grid resolution studies at Re= 8000. Nz, number of Fourier planes in the axial
direction; P , element order; CTinner, mean torque coefficient on inner cylinder wall; CTouter,
mean torque coefficient on outer cylinder wall.

the simulations, the coordinates and length variables are normalized by the cylinder
gap width d; The velocity components are normalized by the rotation velocity of the
inner cylinder U0 = ΩR1, and the pressure by ρU 2

0 , where ρ is the fluid density. So
the Reynolds number is defined by Equation (1.1).

We solve the three-dimensional incompressible Navier-Stokes equations by
employing a Fourier spectral expansion of flow variables in the z-direction (along the
cylinder axis), assuming the flow is periodic at z = 0 and z =Lz (the axial dimension of
the computational domain), and a spectral element discretization (Karniadakis &
Sherwin 2005) of the annular domain in (x, y)-planes. For time integration we
employ a stiffly stable velocity-correction-type scheme with a third-order accuracy
in time (Karniadakis, Israeli & Orszag 1991). The above numerical scheme has
been extensively used to study bluff-body flow and turbulence problems (Dong &
Karniadakis 2005; Dong et al. 2006). No-slip boundary conditions are employed on
the inner and outer cylinder walls.

We consider the Taylor–Couette flow at four Reynolds numbers, Re =1000, 3000,
5000 and 8000, for a radius ratio η = 0.5. The axial dimension of the computational
domain is varied between Lz/d = π and 2π. Extensive grid refinement tests have been
conducted. We employ a spectral element mesh with 400 quadrilateral elements in
the (x, y)-planes, and the element order is varied from 6 to 9, with over-integration
(Kirby & Karniadakis 2003). In the axial direction we employ 64 to 128 Fourier
modes (or 128 to 256 grid points), with 3/2-dealiasing. These parameters lead to grid
spacings near the cylinder surface, in viscous wall units, of 0.21 in the radial direction,
1.96 in the azimuthal direction and 3.70 in the axial direction for Re =8000, and
0.04 in the radial direction, 0.40 in the azimuthal direction and 0.76 in the axial
direction for Re = 1000. Table 1 summarizes the grid resolution studies at Re= 8000.
It shows the mean torque coefficients, averaged over a long time (typically about
100 inner-cylinder revolutions), on the inner and outer cylinder walls for different
resolutions. The mean torque coefficient is defined as

CT =
〈T 〉

0.5πρU 2
0 R2

1Lz

(2.1)

where 〈T 〉 is the time-averaged torque on the cylinder walls. From case A to case G,
the total degrees of freedom in the simulation have been increased 5-fold. The
torque is observed to increase slightly and converge to its final value. A comparison
among cases C to E (and between cases A and B) indicates that the mean torque
coefficient is not very sensitive to the axial dimension of the domain (variation less
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Figure 1. (a) Time history of instantaneous torque coefficients on inner and outer cylinder
walls (Re= 3000); torque values on the inner cylinder are made negative in the plot.
(b) Comparison of mean torque coefficient as a function of Reynolds number between the
present simulation and the experimental measurements of Wendt (1933), Bilgen & Boulos
(1973) and Racina & Kind (2006).

than 1 %). However, with a very large axial dimension (e.g. with an aspect ratio 16
or more) different flow states (with different wavelengths of the Taylor vortices) may
be realized in the computations, as reported by Bilson & Bremhorst (2007), which
is reminiscent of the non-unique flow states observed in experiments (Coles 1965;
Koschmieder 1979). A consistent flow condition would be achieved with a shorter
axial dimension (Bilson & Bremhorst 2007). Simulations at lower Reynolds numbers
are mainly conducted with the same resolutions as case E and case G in table 1. We
have performed long-time simulations of the flow at all Reynolds numbers considered.
For each Reynolds number, after the flow reaches a statistically stationary state the
statistical quantities are accumulated until convergence, which is typically averaged
over about 300 convective time units (d/U0).

Figure 1(a) shows time histories of the instantaneous torque coefficients on the
inner and outer cylinder walls at Reynolds number Re =3000. The constancy of the
mean demonstrates that the flow is statistically stationary while the small-scale rapid
fluctuations are indicative of the highly unsteady nature of the flow. We have computed
the mean torque coefficient for the four Reynolds numbers, and in figure 1(b) plotted
it as a function of the Reynolds number. The empirical relations between torque
and Reynolds number determined by Wendt (1933), Bilgen & Boulos (1973) and
Racina & Kind (2006) for η = 0.5 are also shown in the figure for comparison. Based
on both Wendt (1933) and Bilgen & Boulos (1973), the torque scales as Re−0.5 for
500 < Re< 10 000, although with slightly different coefficients in the two empirical
relations. Racina & Kind (2006) data, on the other hand, suggests a slightly different
power scaling, Re−0.555, for 800 < Re< 10 000. For Reynolds numbers ranging from
1000 to 8000, however, the differences among the three empirical relations are minor.
Figure 1(b) demonstrates that the computed torque coefficients from the present
simulation agree well with the experimental measurements, and appear to follow the
Re−0.5 scaling more closely. Overall, the simulated results are in closest agreement
with Wendt (1933) empirical relation.

In figure 2 we compare the profiles of the normalized mean angular momentum
〈ruθ〉/(R1U0), where uθ denotes the azimuthal velocity and r is the radial coordinate,
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Figure 2. Comparison of normalized mean angular momentum profiles between present
simulation (Re= 8000) and the experiment of Smith & Townsend (1982). uθ is the azimuthal
velocity.

between the present simulation at Re = 8000 and the experiment of Smith &
Townsend (1982). Smith & Townsend (1982) measured the mean angular momentum
at several Reynolds numbers. The experimental data for the lowest Reynolds
number, Re= 8698, in Smith & Townsend (1982) have been included in figure 2 for
comparison. Because Smith & Townsend’s (1982) data at this Reynolds number are
available only for the region near the inner cylinder, in figure 2 we have also included
data for the second lowest Reynolds number Re = 17 295 in the experiment for the
middle region of the gap. The computed profile from the current simulation agrees
with Smith & Townsend’s (1982) data reasonably well. The result shows that the core
of the flow (0.1 � (r − R1)/(R2 − R1) � 0.9) has an essentially constant mean angular
momentum 0.5R1U0, a phenomenon in turbulent Taylor–Couette flow also observed
by Lewis & Swinney (1999) at higher Reynolds numbers. The computed angular
momentum profile has a slightly positive slope in the core of the flow, consistent
with the experimental measurement. However, this slope is slightly smaller than that
from the experiment (figure 2). It should be noted that Smith & Townsend’s (1982)
data are at a radius ratio η =0.667 which is a little different from that in the current
simulations (η = 0.5). This difference is probably the cause of the slight difference in
the slope of the profile between the simulation and the experiment.

3. Görtler vortices and herringbone streaks
In this section we investigate the flow structures in turbulent Taylor–Couette flow

in detail. Emphasis is placed on the discussion of small-scale vortices near cylinder
walls and the related effects. At each Reynolds number we monitor the signal of the
torque on both cylinder walls (see figure 1a) during the simulation, and ensure that
the flow has reached a statistically stationary state. All the results presented below
are collected for statistically stationary states.

Figure 3 shows snapshots of instantaneous velocity fields in a radial–axial plane
(r, z plane, where r is the radial coordinate), from left to right at Reynolds numbers
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Figure 3. Instantaneous velocity fields in a radial–axial plane at Reynolds numbers
(from left to right) Re= 1000, 3000, 5000 and 8000.

Re = 1000, 3000, 5000 and 8000 (a time-averaged flow field will be shown later in
§ 4). Inner and outer cylinder walls correspond to r/d = 1.0 and 2.0, respectively. The
velocity vectors have been plotted on the quadrature points of the spectral elements.
The ‘stripes’ in the patterns are due to the non-uniform distribution of spectral
elements in the radial direction (finer elements near both walls, coarser elements
toward the middle of the gap) and the non-uniform distribution of quadrature points
within an element (finer near element boundaries, coarser in the middle of an element).
At Re =1000, large-scale Taylor vortices are observed to occupy the entire gap, with
well-defined inflow and outflow boundaries between the vortex cells. As the Reynolds
number increases to 3000, the Taylor vortices become severely distorted. Although
not as well-defined as at Re = 1000, a Taylor vortex cell can still be clearly identified,
with some cells consisting of two or more smaller vortices rotating in contiguous
directions. In addition, azimuthal vortices with scales significantly smaller than the
Taylor vortex, Görtler vortices, emerge on the inner cylinder wall around distorted
outflow boundaries of the Taylor vortex cells. These vortices are absent from the
outer cylinder wall at this Reynolds number.

At Re= 5000, the core of the flow is characterized by the presence of a number
of vortices, apparently randomly distributed and with scales significantly smaller
than the gap width. It is not obvious how to identify a large-scale Taylor vortex in
this case. Based on the sense of rotation of vortices, large-scale ‘Taylor cells’, each
encompassing a pack of vortices, may be vaguely recognized, but the ‘boundaries’
between cells are highly distorted and in some cases interrupted by vortices near the
wall. The number of small-scale vortices near the inner cylinder increases, and they
generate energetic fluid motions normal to the wall. Although these near-wall vortices
appear to concentrate on the highly distorted outflow boundaries between ‘Taylor
cells’, they are also observed in other regions of the wall such as near the inflow
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Figure 4. Iso-surfaces of instantaneous λ2, the intermediate eigenvalue in the vortex identifica-
tion method by Jeong & Hussain (1995): (a) Re =5000 and (b) Re= 8000. Two levels are shown
corresponding to λ2 = −2 and −3.5.

boundaries. Such small-scale vortices can be observed near the outer cylinder wall as
well at this Reynolds number.

As the Reynolds number increases to Re= 8000, the flow core teems with vortices,
and large-scale ‘Taylor cells’ can hardly be distinguished from the instantaneous
velocity field. A large number of small-scale vortices can be observed near the inner
cylinder, appearing randomly distributed on the wall. The number of small-scale
vortices near the outer cylinder has also increased, although it is notably smaller than
at the inner cylinder wall.

The above observation concerning the onset of small-scale Görtler vortices is
consistent with the previous studies. Although Barcilon et al. (1979) first hypothesized
the existence of Görtler vortices after observing near-wall herringbone-like streaks,
it was Wei et al. (1992) who demonstrated that Görtler vortices appeared first at
the inner cylinder wall with increasing Reynolds number. The present results have
confirmed Wei et al. (1992) observation. The simulation has further suggested that
these vortices appear first around the outflow boundaries (figure 3). These observations
support the instability analyses of Coughlin & Marcus (1992b) and Vastano & Moser
(1991), who suggested that the outflow boundary jets between the Taylor vortices
were the most unstable regions in the flow.

To explore the structural characteristics of the near-wall Görtler vortices in three-
dimensional space, we plot in figure 4 the iso-surfaces of λ2, the intermediate
eigenvalue of the tensor S : S + Ω: Ω (where S and Ω are the symmetric and
antisymmetric parts of the velocity gradient respectively) in Jeong & Hussain (1995),
and in Figure 5 the iso-surfaces of the instantaneous pressure (near the inner cylinder
wall), for Re= 5000 and 8000. A forest of small-scale vortical structures can be
clearly observed in the flow, extending along the azimuthal direction. At Re= 5000,
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Figure 5. Iso-surfaces of instantaneous pressure: (a) Re = 5000, p/(ρU 2
0 ) = −0.045 and

−0.04. (b) Re= 8000, p/(ρU 2
0 ) = −0.02 and −0.025.

the vortices exhibit an uneven distribution in the axial direction. They are observed to
concentrate in several axially banded regions encircling the cylinder, corresponding to
the outflow boundaries between the Taylor cells. Instantaneously, these vortices appear
to originate from the wall, stretch azimuthally and extend away from the wall. Careful
examination shows that the orientations of these vortices are not in the planes per-
pendicular to the z-axis. The majority are oriented at a small angle with respect to the
(x, y)-plane. Similar observations can be made for Re =8000. However, at Re= 8000
there appears to be a larger population of vortices and they are more randomly dis-
tributed in the axial direction, unlike the lower Reynolds number. The vortices are also
not as azimuthally stretched as at Re= 5000, and therefore tend to appear ‘shorter’.

The vortices observed here bear some resemblance to the quasi-streamwise vortices
in turbulent channel flows. By extracting the coherent structures in a turbulent
channel flow with a conditional sampling technique, Jeong et al. (1997) showed
that the dominant near-wall structures were elongated quasi-streamwise vortices that
overlapped in the streamwise direction as a staggered array. These overlapping vortices
were inclined in the streamwise–wall-normal planes and tilted in the streamwise–
spanwise planes. Recently, Jimenez and co-workers (del Alamo et al. 2006) also
reported the presence of wall-attached vortex clusters in turbulent channel flow at
high Reynolds numbers. They observed that these clusters were usually inclined
upward (away from wall) and along the streamwise direction.
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Figure 6. Herringbone-like streaks demonstrated by spatial–temporal plots of the azimuthal
velocity along a fixed line oriented in the z-direction a distance 0.033d away from the inner
cylinder wall. Shown are azimuthal velocity contours at 8 equi-levels between 0.65U0 and 0.9U0

for (a) Re =1000, (b) Re= 3000, (c) Re= 5000, (d) Re= 8000.

Figure 6 demonstrates the spatial–temporal characteristics of the azimuthal velocity.
The velocity data were collected along a fixed line oriented in the z-direction
and located near the inner cylinder wall (at a distance 0.033d). Shown are the
instantaneous azimuthal velocity contours in the spatial-temporal (t, z)-plane for
Reynolds numbers from Re = 1000 to 8000, with uθ/U0|min = 0.65, uθ/U0|max = 0.9
and an increment �uθ/U0 = 0.0357 between contour levels. At Re =1000, the contour
lines are clustered around axial locations that coincide with the outflow boundaries
between Taylor vortex cells, indicative of persistent high azimuthal velocity values
in those regions. Localized ‘defects’ can be observed in the distribution, indicating
occasional disturbances to the flow that die down over time. For Reynolds numbers
Re= 3000 and above, intriguing herringbone-like patterns of streaks can be observed
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(1984).

in the distribution, reminiscent of the flow photographs of Barcilon et al. (1979). At
Re = 3000, the herringbone streaks are distributed in disjoint bands around the outflow
boundaries of the Taylor cells, providing additional evidence of the concentration of
Görtler vortices in those regions. At Re = 5000, we observe a considerable increase
in the population of streaks compared to Re = 3000, and the spacing between neigh-
bouring streaks appears to be substantially decreased. Although the concentration of
streaks around the outflow boundaries is still quite clear from the banded distribution
pattern, adjacent bands of streaks are not completely disjoint. In fact, streaks from
neighbouring bands are observed to intersect and become entangled on occasions. As
the Reynolds number reaches Re = 8000, the herringbone streaks become significantly
finer and more closely packed, and the population has dramatically increased. The
streaks become less coherent in that more appear broken, shorter, and scattered.
Although the banded pattern may still be vaguely discerned, the bands meander in
the axial direction over time and the streaks appear to be randomly distributed.

The tilting angles of the herringbone streaks have been computed for these Reynolds
numbers. Assume the flow travels at a mean azimuthal velocity Uθ (rl) at the location
of the fixed line, where rl =R1 + 0.033d is the radial coordinate of the line. The
mean azimuthal velocity Uθ (rl) is available from the flow statistics (see § 4). In the
spatial–temporal plots of figure 6, a time interval �t is therefore equivalent to
a distance Uθ (rl)�t based on the Taylor hypothesis, and the tilting angle can be
evaluated as a result. In figure 7 we plot the average magnitude of the tilting angle of
the herringbone streaks as a function of Ω2R4

2/ν
2 = Re2/[η2(1 − η)2], a characteristic

Reynolds number prescribed by Barcilon & Brindley (1984), for Reynolds numbers
from 3000 to 8000. The figure includes results from the present DNS (η = 0.5) and the
data from Barcilon & Brindley (1984) for η = 0.712, 0.832 and 0.948. The data points
from the simulations lie at the lower end in terms of Ω2R4

2/ν
2, and they generally

follow the trend of Barcilon & Brindley’s (1984) data, which suggests an increase
in the tilting angle as Ω2R4

2/ν
2 decreases. The observed tilting angle at Re= 3000 is

somewhat lower than at Re= 5000 from the present simulation. One possibility is that
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distance 0.108d from the inner cylinder wall for different Reynolds numbers. (b) Power spectra
of the axial velocity in the middle of the gap, and at two other locations at distance 0.033d
from the inner and outer cylinder walls, respectively, for Re= 8000.

with decreasing Reynolds number the tilting angle may reach a peak value at some
point and then decrease as the Reynolds number further decreases, since at sufficiently
low Reynolds numbers the herringbone streaks will disappear, as demonstrated by
figure 6(a) for Re = 1000 in the present simulation and by the flow photographs at
low Taylor numbers in Barcilon et al. (1979).

We next investigate the spectral characteristics of turbulent fluctuations in Taylor–
Couette flow. Figure 8(a) shows a comparison of the temporal power spectra of the
azimuthal velocity at a distance 0.108d from the inner cylinder wall for Reynolds
numbers Re= 1000, 3000, 5000 and 8000. Velocity power spectra are computed based
on the time histories of the velocity at ‘history points’, and are averaged over the points
along the axial direction with the same radial and azimuthal coordinates. Compared to
higher Reynolds numbers, the spectrum at Re= 1000 lacks significant high-frequency
components, with negligible spectral density beyond the peak frequency, indicating
that the flow remains laminar at this Reynolds number. In contrast, the power
spectra at Re = 3000, 5000 and 8000 all exhibit a broadband distribution which is
characteristic of a turbulent power spectrum, demonstrating that the flow has become
turbulent at these Reynolds numbers. The power spectrum curves of these three
Reynolds numbers essentially collapse onto one at low frequencies (f d/U0 � 2). At
high frequencies, the larger the Reynolds number, the higher the power spectral
density, suggesting more energetic turbulent fluctuations with increasing Reynolds
numbers.

In figure 8(b) we compare the power spectra of the axial velocity at Re =8000 at
three locations: near the inner cylinder wall (at a distance 0.033d), in the middle of the
gap, and near the outer cylinder wall (at a distance 0.033d). Velocity spectra have been
averaged over points along the axial direction with the same radial and azimuthal
coordinates. Increasingly stronger high-frequency components are observed in the
power spectra with decreasing radial coordinates, indicating an uneven distribution
of the intensity of turbulent fluctuations. More energetic turbulent fluctuations
are observed toward the inner cylinder wall. The velocity spectra at Re= 3000
and 5000 possess similar characteristics. This demonstrates that turbulence at the
inner cylinder wall is substantially stronger than at the outer cylinder in turbulent
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Figure 9. Contours of instantaneous azimuthal velocity on two near-wall grid surfaces (nearly
cylindrical) showing the high-speed streaks on the inner cylinder and low-speed streaks on the
outer cylinder (Re= 8000).

Taylor–Couette flow. Note that in the configuration studied in this paper, the inner
cylinder rotates while the outer cylinder is stationary. Although in plane Couette flow
only the difference between velocities at the two walls is significant, this is not the case
in Taylor–Couette flow. The curvature effect causes the asymmetry in the intensity
distribution of turbulent fluctuations.

Streaky structures in near-wall regions are common characteristics of wall-bounded
turbulence. In turbulent Taylor–Couette flow the inner cylinder wall teems with
high-speed streaks while the outer cylinder wall teems with low-speed streaks. In
figure 9 we plot contours of the instantaneous azimuthal velocity on two grid surfaces
(nearly cylindrical) near the inner and outer cylinder walls at Re = 8000. Numerous
azimuthally elongated streaks with higher azimuthal velocities (high-speed streaks)
can be observed on the inner cylinder wall, while on the outer cylinder wall the
azimuthal velocity in these streaky regions is lower (low-speed streaks) and the
streaks are considerably fewer. Visually, these streaks are not dissimilar to the near-
wall ‘low-speed streaks’ observed in other turbulent flows in simpler geometries such
as a channel. Close examination of the high-speed streaks on the inner cylinder
and the low-speed streaks on the outer cylinder, however, reveals their intricate
herringbone-like pattern, which is absent from those in turbulent channel flows.

In order to determine the axial spacings of the high-speed and low-speed streaks
on the cylinder walls, we examine the spatial power spectrum of the velocity. The
spatial spectrum is obtained by computing the spatial FFT of the velocity data along
a line oriented in the axial direction. Figure 10(a) shows the time-averaged spatial
power spectrum of the radial velocity at a line adjacent to the inner cylinder wall (at a
distance 0.033d) at Re = 8000. The wavenumber at the sharp peak, kTaylor, is indicative
of the spacing of Taylor cells. In this case it corresponds to three pairs of Taylor
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Figure 10. Streak spacings. (a) Spatial power spectrum of the radial velocity (Re= 8000),
where k is the wavenumber. (b) Axial spacings of streaks in viscous wall units as a function
of the Reynolds number.

vortex cells for a domain with axial dimension Lz/d = 2π, as shown by the mean flow
in § 4. In addition, a prominent broadband peak can be observed in the spectrum at
high wavenumbers, corresponding to the streaks on the wall. The broadband nature
of the peak suggests that the streak spacing varies within a range. This broadband
peak has a higher power spectral density than the sharp peak at kTaylor, indicative
of the dominance of small-scale vortices near the wall. For comparison, we also
show the axial spectrum at a line away from the inner cylinder wall (at a distance
0.108d) in figure 10(a). The sharp peak at kTaylor is notably stronger (in terms of
spectral density) than the broadband peak, contrary to the case near the wall, which
suggests the dominance of motions at scales of Taylor vortices away from the wall.
Compared to the near-wall spectrum, the broadband peak has moved toward lower
wavenumbers. This indicates an increase in the streak spacing away from the wall,
which is consistent with observations in previous studies of turbulent channel flows
and boundary layers (Smith & Metzler 1983; Kim, Moin & Moser 1987; Rashidi &
Banerjee 1990). To determine the streak spacing near the wall, we use the average
wavenumber at the broadband peak of the near-wall spectrum.

Figure 10(b) shows the streak spacings on the inner and outer cylinder walls, in
viscous wall units, as a function of the Reynolds number. They have been normalized
by ν/uτ , where uτ is the friction velocity at the inner and outer cylinder walls.
At Re= 5000 and 8000, the streak spacing on both inner and outer cylinders is
approximately 100 viscous wall units, the same as that in turbulent channel flows
which have been investigated in numerous previous studies (see e.g. Kline et al. 1967).
At Re= 3000 the normalized streak spacing is somewhat smaller, probably due to the
relatively weak turbulence at this Reynolds number (see figure 8a). Since the viscous
wall unit decreases as Reynolds number increases, the scale of the azimuthal vortices
and wall streaks would become smaller at higher Reynolds numbers.

4. Statistical characteristics
We investigate the statistical characteristics of turbulent Taylor–Couette flow in

this section. Figure 11 compares the flow patterns in a radial–axial (r, z) plane of an
instantaneous snapshot and of the mean velocity field at Re =8000. The instantaneous
flow field teems with small-scale azimuthal vortices, and the Taylor vortex cells are by
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no means clear from the instantaneous velocity patterns (see also figure 3). The time-
averaged mean velocity field, on the other hand, reveals the presence of organized
Taylor vortex cells underlying turbulent fluctuations (figure 11b). Instantaneously,
turbulent fluctuations are superimposed on these organized Taylor vortices, distorting
and interrupting the inflow/out flow boundaries. As the Reynolds number increases,
the underlying Taylor vortices are overwhelmed by the turbulent fluctuations in
the instantaneous flow. These mean characteristics are consistent with the turbulent
toroidal eddies observed in previous flow visualizations and experiments (Koschmieder
1979; Smith & Townsend 1982; Townsend 1984). The signature of these underlying
Taylor vortex cells can also be seen in the spatial velocity spectrum (figure 10a) and
in the patterns of herringbone-like streaks.
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Figure 12. Comparison of (a) mean velocity and (b) mean angular momentum profiles of
different Reynolds numbers.

In figure 12 we compare profiles of the mean azimuthal velocity and the mean
angular momentum of different Reynolds numbers, which have been averaged over
time and also along the axial direction. The mean velocity has been normalized by the
rotation velocity of the inner cylinder, U0, and the mean momentum by R1U0. Note the
asymmetry of the mean velocity profiles at the inner and outer cylinder walls, unlike
plane Couette flows. An increase in the Reynolds number results in higher velocity
gradients at both cylinder walls and larger azimuthal velocities in the flow core, as
shown by figure 12(a). Figure 12(b) compares the mean angular momentum profiles at
the four Reynolds numbers. As demonstrated by the velocity spectra (figure 8a), the
flow is laminar at Re =1000 and becomes turbulent at Reynolds numbers Re= 3000
and above. Turbulent flows exhibit an essentially constant mean angular momentum
in the core (see also Smith & Townsend 1982 and Dubrulle et al. 2005). For the
laminar flow at Re =1000 the mean angular momentum is close to a constant in
the middle region of the gap, but there is a notable variation in the profile. With
increasing Reynolds number the region with constant angular momentum becomes
larger, occupying approximately 80 % of the gap width at Re = 8000. A comparison
between Re= 1000 and Re= 3000 indicates that there is a substantial increase in the
angular momentum of the core as the flow transitions from laminar to turbulent
states. On the other hand, the mean angular momentum in the core increases only
slightly with increasing Reynolds number once the flow becomes turbulent. The
bulk angular momentum is about 0.5R1U0 at Re= 8000. Lewis & Swinney (1999)
measured the angular momentum in the core of the flow for a radius ratio η = 0.724
at Reynolds numbers between Re = 1.2 × 104 and 5.4 × 105, and concluded that to
good approximation it was a constant given by 0.5R1U0. The present simulation
results are consistent with their measurement.

Figure 13 compares profiles of the root-mean-square (r.m.s.) azimuthal fluctuation
velocity (normalized by U0) at different Reynolds numbers. The double peaks in
the profiles suggest stronger velocity fluctuations near both cylinder walls, which
is analogous to those observed in turbulent channel flows (Moser & Moin 1987).
The inner peak is substantially higher than the outer one, indicating that the most
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energetic turbulence occurs near the inner cylinder wall. The two peaks in the r.m.s.
velocity profiles move closer to both cylinder walls with increasing Reynolds number.

5. Concluding remarks
In this paper we have studied turbulent Taylor–Couette flow at Reynolds numbers

ranging from 1000 to 8000 for a radius ratio η = 0.5 employing detailed three-
dimensional direct numerical simulations. We have focused on the dynamics of
small-scale Görtler vortices and the herringbone-like streaks near both cylinder walls,
and the statistical features of Taylor–Couette turbulence.

Barcilon et al. (1979) first reported observations of small-scale structures near
cylinder walls that formed a fine herringbone-like pattern of streaks in Taylor–
Couette experiments. They conjectured that these streaks were the inflow/outflow
boundaries of Görtler vortices, which were due to a centrifugal instability, occurring
in a curved flow in which the local angular momentum decreased outwards along
the radius of curvature (Saric 1994). This elementary theory was compared with
experiments, and good agreement was observed. Subsequently, Barcilon & Brindley
(1984) developed a mathematical formulation to model the system of Taylor and
Görtler vortices hypothesized in Barcilon et al. (1979), exploiting the separation of
scales of the Taylor mode (commensurate with the gap width) and the Görtler mode
(commensurate with the boundary layer thickness) and the assumption of ‘marginal
stability’ (see Barcilon et al. 1979). The results of this model were shown to be in good
agreement with a number of features of experimental observations. Wei et al. (1992)
critically evaluated the Görtler hypothesis of Barcilon et al. (1979) and Barcilon &
Brindley (1984) with detailed experiments for a wide range of radius ratios and
Reynolds numbers. They noted that the radius of curvature and the velocity gradient
were the crucial parameters governing the strength of the Görtler mechanism. The
combination of a smaller radius of curvature and a larger velocity gradient at the inner
cylinder (compared to the outer one) therefore suggested the emergence of Görtler
vortices at the inner cylinder wall before the outer cylinder. With flow visualizations,
they indeed observed that Görtler vortices appeared first at the inner cylinder wall,
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and at a Taylor number an order of magnitude lower than those reported by Barcilon
et al. (1979).

Results of the present simulations have confirmed the above experimental
observations of the near-wall herringbone streaks and the onset of Görtler vortices
at the inner cylinder wall. Furthermore, the simulations have revealed additional
characteristics. We observe that the Görtler vortices originate around the outflow
boundaries between Taylor vortex cells. In three-dimensional space these vortices are
distributed randomly in banded regions concentrating at the outflow boundaries. With
increasing Reynolds number they spread over the entire cylinder surface, and their
concentration around the outflow boundaries becomes less obvious. Instantaneously,
a Görtler vortex appears to originate from the wall, stretch azimuthally, and extend
away from the wall.

When studying the transition to turbulence in Taylor–Couette flow, Townsend and
co-workers (Smith & Townsend 1982; Townsend 1984) presented arguments that at
moderately high Reynolds numbers Görtler vortices dominated the near-wall struc-
ture, and as the Reynolds number increased further the near-wall structure became
more like that of a plane turbulent boundary layer. This implies a distinct difference
between Görtler vortices and the structures of plane turbulent boundary layers which
are dominated by quasi-streamwise vortices near the wall (Robinson 1991; Jeong
et al. 1997). Wei et al. (1992) noted that this assumption was in conflict with the
work of Blackwelder (see e.g. Swearingen & Blackwelder 1987) who argued that
the near-wall streamwise vortices found in plane turbulent boundary layers may be
created by the Görtler mechanism due to the curvature of small surface imperfections
present in physical experiments. The near-wall azimuthal vortices observed in the
present simulations are not dissimilar to the near-wall streamwise vortices observed
in plane turbulent channel flows. For example, both result in stronger r.m.s. velocity
fluctuations (figure 13) and the streaky structures near the wall. While the near-wall
streaks in turbulent Taylor–Couette flow form herringbone patterns, the average
streak spacing is about 100 viscous wall units (figure 10b) in both types of flows.

We summarize the main results of this study as follows:
(i) Görtler vortices originate from the outflow boundaries between Taylor vortex

cells at the inner cylinder wall.
(ii) In three-dimensional space Görtler vortices are randomly distributed in banded

regions on the wall, concentrating at the outflow boundaries. With increasing Reynolds
number these vortices spread over the entire cylinder surface.

(iii) Görtler vortices cause near-wall streaky structures that form herringbone-like
patterns. The average axial spacing of these streaks is approximately 100 viscous wall
units. The tilting angle of the streaks approximately ranges from 16 to 20◦ in the
range of Reynolds numbers studied here.

(iv) The mean angular momentum is essentially a constant in the core of turbulent
Taylor–Couette flow. The value of this constant increases slightly with increasing
Reynolds number in the range of turbulent Reynolds numbers in this study. It is
approximately 0.5R2

1Ω in the core at the highest Reynolds number studied here,
Re= 8000.

(v) The mean velocity field reveals organized Taylor vortices underlying the
turbulent Taylor–Couette flow. The instantaneous flow is a superposition of turbulent
fluctuations on these organized Taylor vortices.

The author gratefully acknowledges the support from the National Science
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