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a b s t r a c t 

We present an effective thermal open boundary condition for convective heat transfer problems on do- 

mains involving outflow/open boundaries. This boundary condition is energy-stable, and it ensures that 

the contribution of the open boundary will not cause an “energy-like” temperature functional to increase 

over time, irrespective of the state of flow on the open boundary. It is effective in coping with thermal 

open boundaries even in flow regimes where strong vortices or backflows are prevalent on such bound- 

aries, and it is straightforward to implement. Extensive numerical simulations are presented to demon- 

strate the stability and effectiveness of our method for heat transfer problems with strong vortices and 

backflows occurring on the open boundaries. Simulation results are compared with previous works to 

demonstrate the accuracy of the presented method. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In this work we focus on the numerical simulation of convec-

ive heat transfer in fluid flows on domains involving outflow/open

oundaries. The domain boundary is open in the sense that the

uid and the heat can freely leave or enter the domain through

uch a boundary. This type of problems are typically encoun-

ered in flows with physically unbounded domains, such as wakes,

ets, shear layers, and cardiovascular or respiratory networks [25] .

uoyancy-driven flows such as the natural convection in open-

nded cavities or open channels are other examples [15,16,21,68] ,

hich have widespread applications in solar energy receivers, cool-

ng of electronics, and control of smoke or fire. To numerically sim-

late such problems, it is necessary to truncate the domain to a

nite size, and some outflow/open boundary condition (OBC) will

e needed for the artificial boundary. How to properly deal with

he open boundary oftentimes holds the key to successful simu-

ations of these problems. This turns out to be a very challeng-

ng problem [37,59] as the Reynolds number increases to moderate

nd high values. A well-known issue, at least for the flow simu-

ations, is the backflow issue and the so-called backflow instabil-

ty [23,52] . This refers to the difficulty encountered in flow simula-

ions when strong vortices or backflows occur at the outflow/open

oundary at moderate and high Reynolds numbers. Many open
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oundary conditions that work well at low Reynolds numbers,

uch as the traction-free condition [4,29,35,38,48,59,63] and the

onvective condition [32,37,41,53,54,58,62] , cease to work and be-

ome unstable when strong vortices and backflows are present at

he outflow/open boundary. It is observed that an otherwise stable

omputation can instantly blow up when a strong vortex passes

hrough the outflow/open boundary [23–26,65] . The backflow in-

tability issue has attracted a number of effort s in the past years. A

lass of methods, the so-called energy-stable open boundary con-

itions [22,23,25,27,28,52,66] , turn out to be particularly effective

or overcoming the backflow instability; see also related works

n [3,8,10–12,30,33,36,39,45,50,57] , among others. These energy-

table open boundary conditions, by design, guarantee that the

ontributions from the open boundary will not cause the total sys-

em energy to increase over time, irrespective of the flow situa-

ions occurring at the open boundary (e.g. presence of backflows

r strong vortices). Therefore, stable results can be obtained with

hese methods even when strong vortices or backflows occur on

he outflow/open boundary at high Reynolds numbers. More im-

ortantly from the practical standpoint, these energy-stable OBCs

an be implemented in a straightforward way with the commonly-

sed semi-implicit splitting type (or fractional-step) schemes for

he incompressible Navier-Stokes equations [23,27] . 

For open-boundary convective heat transfer problems, a sur-

ey of literature indicates that how to deal with the thermal

pen boundary, especially for moderate and high Reynolds num-

ers where strong vortices or backflows are prevalent at the open
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boundary, seems to be much less developed when compared with

that for the fluid flows as outlined above. The Sommerfeld ra-

diation (or convective) condition (see e.g. [19,54] ) and the Neu-

mann type zero-flux condition (see e.g. [1,5–7,20,67] ) are tradi-

tional boundary conditions for the temperature applied to the

open/outflow boundary. In [14,15] the natural convection in an

open cavity has been studied numerically with an extended large

computational domain and with a smaller domain consisting of the

cavity only. On the extended domain the Neumann type zero-flux

condition is imposed for both the velocity and the temperature on

the outflow boundary [15] . For the smaller domain, on the open

boundary of the cavity the authors distinguish the sections where

the flow enters the cavity (inflow) and the sections where the flow

leaves the cavity (outflow), and impose a temperature Dirichlet

condition on the inflow portion and the Neumann zero-flux condi-

tion for the temperature on the outflow portion [14] . Additionally,

the authors therein employ a Neumann zero-flux condition for the

tangential velocity and the divergence-free condition for the nor-

mal velocity component on the open boundary [14] . While the use

of extended computational domains pushes the open boundary far-

ther away and can partially alleviate the issue that the true bound-

ary condition is unknown [42] , this can be computationally costly

because of the increased domain size [21] ; see also e.g. [34,64] for

investigations of the domain size effect on the computed physi-

cal quantities. The boundary condition of [14] and its many vari-

ants have been widely adopted in studies of natural convection in

subsequent years and have been one of the pre-dominant meth-

ods for handling thermal open boundaries where backflows may

be present; see e.g. [9,18,21,31,43,44,49,61,68] , among others. 

In the current paper we present a new thermal open boundary

condition that is energy-stable and effective for simulating con-

vective heat transfer problems involving outflow/open boundaries,

even at high (or moderate) Reynolds numbers when strong vor-

tices or backflows occur on the open boundary. This boundary con-

dition is formulated such that the contribution of the open/outflow

boundary will not cause an “energy-like” temperature function to

increase over time, regardless of the state of flow at the open

boundary. The form of this thermal open boundary condition has

much been inspired by the open boundary conditions from [23] for

the incompressible Navier-Stokes equations. In particular, it con-

tains an inertial term (time derivative of temperature) and an extra

nonlinear term combining the velocity and the temperature, apart

from the temperature directional derivative at the boundary. The

nonlinear term in the thermal open boundary condition can be

analogized to a term in those open boundary conditions for the

incompressible Navier-Stokes equations [11,23,27,52] , and it also

bears a similarity to the conditions considered in [2,13,51,55,56] . 

The presented thermal open boundary condition can be imple-

mented in a straightforward fashion. In the current paper we dis-

cretize this open boundary condition and the heat transfer equa-

tion based on a semi-implicit scheme. Upon discretization, this

open boundary condition becomes a Robin-type condition for the

temperature, and is implemented using a high-order spectral el-

ement technique [40,60,69] . The discretized system of algebraic

equations involves a coefficient matrix that is constant and time-

independent and can be pre-computed. The current scheme for

the thermal open boundary condition, with no change, also ap-

plies to finite element-type techniques. We note that the current

thermal open boundary condition is much simpler to implement

than the commonly-used boundary condition from [14] . The condi-

tion of [14] imposes a temperature Dirichlet condition on the back-

flow region of the boundary. Since such a region is dynamic and

changes over time, this in general will require the re-computation

and re-factorization (at least partially) of the temperature coeffi-

cient matrix every time step in the implementation. For finite ele-

ment type methods, the dynamic nature of the backflow region on
he open boundary can make the implementation of the tempera-

ure Dirichlet condition especially difficult. 

We combine the presented thermal open boundary condition,

ogether with the open boundary condition from [23] for the in-

ompressible Navier-Stokes equations, to simulate convective heat

ransfer on domains involving outflow/open boundaries. Only one-

ay coupling between the velocity and the temperature (veloc-

ty influencing temperature, but not the other way) is considered

n the current work. We have performed extensive numerical ex-

eriments to test the presented method, especially in regimes of

igh or fairly high Reynolds numbers, when strong vortices and

ackflows become prevalent at the open boundary and the back-

ow instability becomes a severe issue to conventional methods.

e compare our simulations with previous works to demonstrate

he accuracy of the current method. The long-term stability of this

ethod has been demonstrated in the presence of strong vortices

nd backflows at the outflow/open boundaries. We show that in

uch situations the current thermal open boundary condition leads

o reasonable simulation results, while the Neumann-type zero-

ux condition produces unphysical temperature distributions. 

The contributions of this paper lie in the thermal open bound-

ry condition developed herein and the numerical scheme for

reating the presented open boundary condition. Particularly note-

orthy are the effectiveness of the method in coping with ther-

al open boundaries where strong vortices or backflows may be

resent, and its ease in implementation. 

The rest of this paper is organized as follows. In Section 2 we

resent the thermal open boundary condition, look into its en-

rgy stability, and develop a semi-implicit scheme for implement-

ng this boundary condition together with the heat transfer equa-

ion. In Section 3 we demonstrate the convergence rates, and test

he current method using two-dimensional simulations of the heat

ransfer in two canonical flows: the flow past a circular cylinder

nd a jet impinging on a wall. Simulations are compared with pre-

ious works to show the accuracy of our method. We also demon-

trate the method’s long-term stability in regimes where strong

ortices and backflows are prevalent at the outflow/open bound-

ries. Section 4 concludes the presentation with some closing re-

arks. Appendix A provides a summary of the open boundary con-

ition and the numerical scheme from [23] for the incompressible

avier-Stokes equations, which are employed in the current work.

ppendix B and Appendix C provide derivations of two equations

nd the proof of a theorem in the main text. 

. Energy-stable thermal open boundary condition 

.1. Heat transfer equation and energy-stable open boundary 

ondition 

Consider a domain � in two or three dimensions, and an in-

ompressible flow contained within. We focus on the heat transfer

n this system. The problem is described by the following system

f equations (in non-dimensional form): 

∂u 

∂t 
+ u · ∇u + ∇p − ν∇ 

2 u = f (x , t) , (1a)

 · u = 0 , (1b)

∂T 

∂t 
+ u · ∇ T = α∇ 

2 T + g(x , t) , (1c)

here u ( x , t ) is the non-dimensional velocity, p ( x , t ) is the non-

imensional pressure, T ( x , t ) is the non-dimensional temperature

possibly with some reference temperature subtracted), f is an ex-

ernal body force, g ( x , t ) is an external volumetric heat source

erm, and x denotes the spatial coordinate and t is time. ν is the
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nverse of the Reynolds number ( Re ) or non-dimensional viscosity,

= 

1 

Re 
= 

ν f 

U 0 L 
(2) 

here ν f is the kinematic viscosity of the fluid, U 0 is the veloc-

ty scale and L is the length scale. α is the inverse of the Peclet

umber or the non-dimensional thermal diffusivity, 

= 

1 

P e 
= 

α f 

U 0 L 
, (3) 

here αf is the thermal diffusivity of the fluid. We assume that

oth ν and α are constants. In the current work we will con-

ider only the one-way coupling between the flow and tempera-

ure. In other words, the flow influences the temperature distri-

ution, while the effect of the temperature on the flow will not

e accounted for. In addition, some other effects such as the heat

roduction due to the viscous dissipation will also be ignored. Note

hat Eqs. (1a) and (1b) are the incompressible Navier-Stokes equa-

ions describing the motion of the fluid. 

Let ∂� denote the boundary of the domain �. We assume that

� consists of two types (non-overlapping with each other), ∂� =
 �d ∪ ∂ �o , with the following properties: 

• ∂�d is the inflow or solid-wall boundary. On ∂�d the ve-

locity u is known. In terms of the temperature, we assume

that ∂�d further consists of two sub-types (non-overlapping),

∂ �d = ∂ �dd ∪ ∂ �dn . On ∂ �dd the temperature is known, and

on ∂�dn the heat flux is known. 
• ∂�o is the outflow/open boundary. On ∂�o none of the field

variables (velocity, pressure, temperature) is known. 

How to deal with the thermal open/outflow boundary ∂�o 

s the subject of the current study. Open boundary con-

itions for the incompressible Navier-Stokes equations have

een studied extensively in a number of previous works (see

.g. [12,23,25,27,37,52,59] , among others). In this paper, for the

avier-Stokes equations, we will employ the open boundary con-

ition developed in [23] . This boundary condition, together with

 corresponding numerical algorithm, is summarized in the Ap-

endix A for the sake of completeness. 

We now concentrate on how to deal with the open/outflow

oundary for the heat transfer Eq. (1c) . Multiplying Eq. (1c) by T

nd integrating over the domain �, we obtain the following bal-

nce equation, 

∂ 

∂t 

∫ 
�

1 

2 

| T | 2 d� = −α

∫ 
�

| ∇T | 2 d� + 

∫ 
�

g(x , t) T d� + 

∫ 
∂ �dd ∪ ∂ �dn [ 

αn · ∇T − 1 

2 

(n · u ) T 
] 

T dA 

+ 

∫ 
∂�o 

[ 
αn · ∇T − 1 

2 

(n · u ) T 
] 

T ︸ ︷︷ ︸ 
outflow boundary term (OBT) 

dA, (4)

here n is the outward-pointing unit vector normal to the bound-

ry, and we have used integration by part, Eq. (1b) and the diver-

ence theorem. The quantity 1 
2 | T | 2 can be considered as an effec-

ive “energy” for the heat transfer equation. The last surface inte-

ral on the right hand side (RHS) represents the contribution of

he open/outflow boundary to this balance equation for the effec-

ive energy. This term (OBT) is indefinite, and can be positive or

egative depending on the imposed boundary condition and the

ow state on ∂�o . In particular, with the Neumann-type zero-flux

ondition (see e.g. [1,20,67] ), 

 · ∇T = 0 , on ∂�o , (5)

his open-boundary term would become positive locally when

ackflow occurs (i.e. n · u < 0) on the outflow/open boundary,
.g. when strong vortices pass through ∂�o at moderate or high

eynolds numbers. This can cause un-controlled growth in the ef-

ective energy, leading to poor simulation results or numerical in-

tabilities. 

We are interested in seeking open boundary conditions for

he temperature such that the open-boundary term in the bal-

nce Eq. (4) is always non-positive, regardless of the state of flow

n the open boundary ∂�o . As such, the contribution from the

utflow/open boundary will not cause the effective energy 1 
2 | T | 2 

o grow over time, in the absence of the external heat source

nd with appropriate boundary conditions for the other types of

oundaries. This will be conducive to the stability of computations.

e refer to such conditions as energy-stable thermal open bound-

ry conditions. 

In the current work, we consider the following open boundary

ondition for the temperature, 

D 0 
∂T 

∂t 
+ αn · ∇T − [ (n · u ) T ] �0 (n , u ) = 0 , on ∂�o . (6) 

n this equation D 0 ≥ 0 is a chosen constant, and U c = 

1 
D 0 

plays

he role of a convection velocity scale on the outflow/open bound-

ry ∂�o . In practice, one can first estimate the convection velocity

cale U c on ∂�o and then set D 0 = 

1 
U c 

in the boundary condition

6) . �0 ( n, u ) is a smoothed step function given by (see [23,27] ), 

�0 (n , u ) = 

1 

2 

(
1 − tanh 

n · u 

U 0 δ

)
;

lim 

δ→ 0 
�0 (n , u ) = �s 0 (n , u ) = 

{ 

1 , if n · u < 0 , 

1 / 2 , if n · u = 0 , 

0 , if n · u > 0 , 

(7) 

here U 0 is the characteristic velocity scale, and δ > 0 is a small

onstant that controls the sharpness of the smoothed step func-

ion. The function is sharper with a smaller δ. As δ → 0, �0 ( n, u )

pproaches the step function �s 0 ( n, u ), taking the unit value if

 · u < 0 and vanishing if n · u > 0. Therefore the term involving �0 

n the boundary condition (6) only takes effect in the regions of

ackflow on the outflow/open boundary ∂�o . 

The form of this thermal open boundary condition (6) has much

een inspired by the boundary condition for the incompressible

avier-Stokes equations from [23] . The boundary condition (6) ,

ith δ sufficiently small, is an energy-stable open boundary con-

ition for the heat transfer equation. Let us assume for now that

here is no heat source (or sink) inside the domain or on the

irichlet/Neumann boundaries, more specifically, 
 

 

 

 

 

g(x , t) = 0 , on �;
u = 0 , on ∂�d = ∂�dd ∪ ∂�dn ;
T = 0 , on ∂�dd ;
n · ∇T = 0 , on ∂�dn . 

(A1) 

hen with the boundary condition (6) on ∂�o , the balance

q. (4) is reduced to, under the assumption (A1) and as δ → 0, 

∂ 
∂t 

(∫ 
�

1 
2 | T | 2 d� + αD 0 

∫ 
∂�o 

1 
2 | T | 2 dA 

)
= −α

∫ 
� | ∇T | 2 d� + 

∫ 
∂�o 

1 
2 
(n · u ) T 2 [ 2�s 0 (n , u ) − 1 ] dA 

= −α
∫ 
� | ∇T | 2 d� − ∫ 

∂�o 

1 
2 | n · u | T 2 dA. 

(8) 

he details for the derivation of Eq. (8) are provided in the Ap-

endix B. 

The energy balance Eq. (8) implies that the non-negative

erm 

(∫ 
�

1 
2 | T | 2 d� + αD 0 

∫ 
∂�o 

1 
2 | T | 2 dA 

)
will not increase over time.

ith D 0 > 0, this equation provides an upper bound for both
 

�
1 
2 | T | 2 d�, which can be considered as some “effective energy”,

nd the quantity 
∫ 
∂�o 

1 
2 | T | 2 dA on the open boundary. This effec-

ively provides a control over the temperature on the outflow/open

oundary. Note that this control results from the inertial term
∂T 
∂t 

in the current thermal open boundary condition. Without this
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term, e.g. by setting D 0 = 0 , the control over the temperature on

the outflow/open boundary will be lost. This feature regarding the

temperature provided by the current thermal open boundary con-

dition is analogous to that regarding the velocity observed in [23] .

The open boundary condition for the incompressible Navier-Stokes

equations from [23] , thanks to a velocity inertial term therein, has

ben observed to provide a control over the velocity on the open

boundary [23] . 

Remark 2.1. One can also consider the following more general

form of open boundary condition for the temperature, 

αD 0 
∂T 

∂t 
+ αn · ∇T −

[
θ

2 

(n · u ) T 

]
�0 (n , u ) = 0 , on ∂�o , (9)

where the parameter θ is a chosen constant satisfying θ ≥ 1. The

boundary condition (6) corresponds to (9) with θ = 2 . Analogous

to Eq. (8) , we can show that Eq. (9) , with θ ≥ 1 and δ sufficiently

small, represents a family of energy-stable thermal open boundary

conditions, because in this case Eq. (4) is reduced to, under the

assumption (A1) and as δ → 0, 

∂ 
∂t 

(∫ 
�

1 
2 | T | 2 d� + αD 0 

∫ 
∂�o 

1 
2 | T | 2 dA 

)
= −α

∫ 
� | ∇T | 2 d� + 

∫ 
∂�o 

1 
2 
(n · u ) T 2 [ θ�s 0 (n , u ) − 1 ] dA 

� −α
∫ 
� | ∇T | 2 d�. 

(10)

The details for the derivation of Eq. (10) are provided in the Ap-

pendix B. More specifically, we have the following result: 

Theorem 2.1. Under the assumption (A1) , for the open boundary

condition (9) with θ > 1 on ∂�o , there exists a δ0 = δ0 (u , T ) > 0 such

that for all 0 < δ < δ0 , 

∂ 

∂t 

(∫ 
�

1 

2 

| T | 2 d� + αD 0 

∫ 
∂�o 

1 

2 

| T | 2 dA 

)
� −α

∫ 
�

| ∇T | 2 d�. 

The proof of this theorem is provided in the Appendix C. 

Apart from the outflow/open boundary, we impose the follow-

ing Dirichlet condition for the temperature on ∂�dd , 

T = T d (x , t) , on ∂�dd , (11)

where T d ( x , t ) denotes the boundary temperature distribution, and

the following Neumann type condition on ∂�dn , 

n · ∇T = g c (x , t) , on ∂�dn , (12)

where g c is a prescribed term associated with the boundary heat

flux. In addition, we assume the following initial condition for the

temperature, 

T (x , 0) = T in (x ) (13)

where T in denotes the initial temperature distribution. 

Besides the temperature, the incompressible Navier-Stokes

Eqs. (1a) –(1b) also require appropriate boundary conditions and

initial conditions. The boundary and initial conditions for the

Navier-Stokes equations employed in the current work are sum-

marized in the Appendix A. 

2.2. Numerical algorithm and implementation 

Let us now consider how to numerically solve the heat transfer

Eq. (1c) , together with the open boundary condition (6) (or (9) ) for

∂�o , and the boundary conditions (11) for ∂�dd and (12) for ∂�dn .

We assume that the velocity u has already been computed by solv-

ing the incompressible Navier-Stokes equations (1a) –(1b) , together

with appropriate boundary conditions for ∂�d and ∂�o . The nu-

merical algorithm employed in the current work for solving the

incompressible Navier-Stokes equations stems from our previous

work [23] , which has been summarized in Appendix A as men-

tioned before, 
We next focus on the solution of the temperature field. We re-

rite the boundary conditions (6) and (9) into a unified form, 

D 0 
∂T 

∂t 
+ αn · ∇T − H(n , u , T ) = g b (x , t) , on ∂�o , (14)

here 

(n , u , T ) = 

{
[ (n · u ) T ] �0 (n , u ) , for boundary condition (6) ,[

θ
2 
(n · u ) T 

]
�0 (n , u ) , for general form (9) , 

(15)

nd g b is a prescribed source term for the purpose of numerical

esting only, which will be set to g b = 0 in actual simulations. 

Let n ≥ 0 denote the time step index, and ( · ) n denote the vari-

ble ( · ) at time step n . Let J ( J = 1 or 2) denote the temporal

rder of accuracy. Given T n and u 

n +1 (computed using the algo-

ithm from Appendix A), we compute T n +1 based on the following

cheme: 

γ0 T 
n +1 − ˆ T 


t 
+ u 

n +1 · ∇ T ∗,n +1 = α∇ 

2 T n +1 + g n +1 ; (16a)

αD 0 
γ0 T 

n +1 − ˆ T 


t 
+ αn · ∇T n +1 −H(n , u 

n +1 , T ∗,n +1 ) = g n +1 
b 

, 

on ∂�o ;
(16b)

 

n +1 = T n +1 
d 

, on ∂�dd ; (16c)

 · ∇T n +1 = g n +1 
c , on ∂�dn . (16d)

In the above equations 
t is the time step size. 1 

t 

(γ0 T 
n +1 − ˆ T )

s an approximation of ∂T 
∂t 

∣∣n +1 
based on the J -th order backward

ifferentiation formula (BDF), in which 

0 = 

{
1 , J = 1 , 

3 / 2 , J = 2 ; ˆ T = 

{
T n , J = 1 , 

2 T n − 1 
2 

T n −1 , J = 2 . 
(17)

 

∗,n +1 is a J -th order explicit approximation of T n +1 , specifically

iven by 

 

∗,n +1 = 

{
T n , J = 1 , 

2 T n − T n −1 , J = 2 . 
(18)

ote that H(n , u 

n +1 , T ∗,n +1 ) is given by Eq. (15) . 

In the current work we employ C 0 -continuous high-order spec-

ral elements [40,69] for spatial discretizations. Let ϕ( x ) denote an

rbitrary test function that vanishes on ∂�dd , i.e. ϕ | ∂�dd 
= 0 . Mul-

iplying ϕ to Eq. (16a) and integrating over the domain �, we ob-

ain the weak form about T n +1 , ∫ 
�

∇ T n +1 · ∇ ϕ d� + 

γ0 

α
t 

∫ 
�

T n +1 ϕ d� + 

γ0 D 0 


t 

∫ 
∂�o 

T n +1 ϕ dA 

= 

1 

α

∫ 
�

(
g n +1 + 

ˆ T 


t 
− u 

n +1 · ∇T ∗,n +1 

)
ϕd� + 

∫ 
∂�dn 

g n +1 
c ϕdA 

+ 

∫ 
∂�o 

[ 
D 0 


t 
ˆ T + 

1 

α
g n +1 

b 
+ 

1 

α
H(n , u 

n +1 , T ∗,n +1 ) 
] 
ϕdA, 

∀ ϕ with ϕ| ∂�dd 
= 0 , (19)

here we have used integration by part, the divergence theorem,

nd the Eqs. (16b) and (16d) . 

The weak form (19) , together with the Dirichlet condition (16c) ,

an be discretized using C 0 spectral elements in the standard

ay [40] . Within a time step we first compute the velocity u 

n +1 

nd pressure p n +1 using the algorithm from the Appendix A, and

hen solve Eq. (19) together with (16c) for the temperature T n +1 . 
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emark 2.2. When D 0 = 0 , the boundary conditions (6) and

9) are reduced to 

n · ∇T − [ (n · u ) T ] �0 (n , u ) = 0 , on ∂�o ; (20)

n · ∇T −
[
θ

2 

(n · u ) T 

]
�0 (n , u ) = 0 , on ∂�o . (21)

he scheme given in (16a) –(16d) equally applies to these two

orms of boundary conditions, by simply setting D 0 = 0 and g b = 0

ithin. In this case, the weak form is still given by (19) , with

 0 = 0 and g b = 0 . 

It is noted that in [13] the authors therein use an effective tem-

erature in the formulation of the open boundary condition. They

efine the effective tem perature as the convex average of the out-

et temperature and the external temperature, and refer to the av-

rage coefficient, which can depend on the velocity, as the function

. In [13] β is defined to be a continuous (may be discontinuous

t the origin) function taking values between 0 and 1. We would

ike to mention that Eq. (20) is similar in form to the boundary

ondition considered in [13] (with a particular choice for the β
unction and assumption about the external temperature). Eq. (21) ,

ith 1 ≤ θ ≤ 2, can also be represented using some particular forms

or the β function. We further note that the conditions represented

y Eq. (21) , with θ > 2, cannot be represented by the β function

efined therein, because these conditions take values beyond the

ange [0,1]. Therefore, they do not correspond to the conditions

onsidered in [13] . We would also like to mention that the forms of

he temperature boundary conditions represented by Eqs. (20) and

21) are analogous to those forms of velocity open boundary con- 

itions that are studied in [27] . 

. Representative simulations 

We next test the performance of the method presented in the

revious section using several two-dimensional convective heat

ransfer problems involving outflow/open boundaries. In particu-

ar, we study flow regimes where strong vortices or backflows

re prevalent at the outflow/open boundary. In such cases, how

o handle the open boundary is the key to successful simulations

f these problems. We show that the current method produces

table and reasonable results for the temperature field, while the

eumann type zero-flux condition leads to unphysical temperature

istributions on the outflow/open boundary when the vortices pass

hrough. 

.1. Convergence rates 

We first demonstrate the spatial and temporal convergence

ates of the method from Section 2 by using a manufactured an-

lytic solution to the heat transfer equation. Consider the rectan-

ular domain ABCD shown in Fig. 1 (a), 0 ≤ x ≤ 2 and −1 � y � 1 ,

nd the flow and heat transfer problem on this domain. We em-

loy the following expressions for the flow/temperature fields of a

anufactured solution to the governing Eqs. (1a) –(1c) , 
 

 

 

 

 

u = 2 sin (πx ) cos (πy ) sin (2 t) , 
v = −2 cos (πx ) sin (πy ) sin (2 t) , 
p = 2 sin (πx ) sin (πy ) cos (2 t) , 
T = 2 cos (πx ) sin (πy ) sin (2 t) , 

(22) 

here u = (u, v ) . In Eqs. (1a) and (1c) the external force f and the

ource term g are chosen such that the expressions from (22) sat-

sfy these equations. Note that the ( u, v ) expressions in (22) also

atisfy the Eq. (1b) . 

We discretize the domain ABCD using two quadrilateral ele-

ents of the same size; see Fig. 1 (a). On the sides AD , AB and
F we impose the Dirichlet condition (11) for the temperature and

he Dirichlet condition (25) (in Appendix A) for the velocity, where

he boundary temperature and velocity are chosen according to

he analytical expressions from (22) . The sides F C and CD are as-

umed to be open boundaries, and we impose the boundary con-

ition (14) for the temperature and the condition (26) for the ve-

ocity. In Eq. (14) , H ( n, u , T ) is taken to be the first expression from

q. (15) , and g b is chosen such that the analytical expressions from

22) satisfy the Eq. (14) on the open boundary. In Eq. (26) , E ( n, u )

s given by (27) , and f b is chosen such that the analytic expres-

ions of (22) satisfy the Eq. (26) on the open boundary. The initial

onditions for the temperature and velocity are given by (13) and

29) , respectively, in which T in and u in are chosen according to the

nalytic expressions from (22) by setting t = 0 . 

The scheme from Section 2 is employed to solve for the temper-

ture field, and the algorithm from the Appendix A is employed to

olve for the velocity field, in time from t = 0 to t f (to be specified

elow). Then the numerical solution of the temperature at t = t f is

ompared with the analytic expression from (22) , and the errors in

he L ∞ , L 2 and H 

1 norms are computed and monitored. In the nu-

erical tests below we employ a fixed non-dimensional viscosity

= 0 . 01 and thermal diffusivity α = 0 . 01 . Other parameter values

nclude D 0 = 1 . 0 , U 0 = 1 . 0 and δ = 0 . 05 in Eqs. (14) , (26) and (7) .

he element order and the time step size are varied respectively

n the spatial and temporal convergence tests to study their effects

n the numerical errors. 

Fig. 1 (b) illustrates the behavior of the method in spatial con-

ergence tests. In this group of tests we employ a fixed t f = 0 . 1

nd 
t = 0 . 001 , and vary the element order systematically be-

ween 4 and 20. The figure shows the L ∞ , L 2 and H 

1 errors of

he temperature at t = t f as a function of the element order. For

lement orders below 12 the errors decrease exponentially with

ncreasing element order. For element orders above 12 the numer-

cal errors are observed to remain at a constant level, due to the

aturation of the temporal truncation error. 

Fig. 1 (c) illustrates the temporal convergence behavior of the

ethod. In this group of tests a fixed t f = 0 . 5 and an element or-

er 16 are employed, and the time step size 
t is varied system-

tically between 
t = 0 . 1 and 
t = 1 e − 4 . The figure shows the

umerical errors of the temperature as a function of 
t from these

ests. It is evident that the method exhibits a temporal second-

rder convergence rate for the temperature as 
t becomes small. 

.2. Flow past a warm circular cylinder 

In this section we use a canonical problem, the heat transfer

n the flow past a circular cylinder, to test the performance of

he thermal open boundary condition and the numerical scheme

erein. 

Consider the flow domain shown in Fig. 2 , occupying the region

2 . 5 d � x � 6 . 5 d and −1 . 5 d � y � 1 . 5 d, where d = 1 is the cylin-

er diameter. The cylinder center coincides with the origin of the

oordinate system. A cooler fluid with temperature T 0 = 20 degrees

elsius enters the domain from the left with a uniform velocity

 0 = 1 along the x direction. The flow exits the domain from the

ight side. The surface of the cylinder is maintained at a higher

emperature T h = 80 degrees Celsius. The top and bottom sides of

he domain ( y = ±1 . 5 d) are assumed to be periodic. This configu-

ation mimics the flow past an infinite array of circular cylinders

n the y direction. We would like to study the heat transfer in this

ow. We are particularly interested in the regimes of moderate to

airly high Reynolds numbers, when the vortices generated at the

ylinder can persist in the entire wake region and exit the domain

n the right. How the current thermal open boundary condition

erform in such situations will be studied. 
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Fig. 1. Convergence tests: (a) Flow domain and configuration. (b) Temperature errors ( L ∞ , L 2 and H 1 norms) as a function of the element order (fixed t f = 0 . 1 and 
t = 

0 . 001 ). (c) Temperature errors as a function of 
t (fixed t f = 0 . 5 and element order 16). 

Fig. 2. Cylinder flow: Flow domain and the mesh of 720 quadrilateral elements. 
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We choose the inflow velocity U 0 as the velocity scale, the

cylinder diameter d as the length scale, and the unit temperature

T d = 1 degree Celsius as the temperature scale. Then all the phys-

ical variables and parameters are normalized accordingly. So the

Reynolds number and the Peclet number are defined in terms of

the cylinder diameter in this problem. 

We discretize the domain using a mesh of 720 quadrilateral

elements; see Fig. 2 . On the left boundary ( x = −2 . 5 d), Dirichlet

boundary conditions (11) and (25) are imposed for the temperature

and the velocity, respectively, in which the boundary temperature

( T d ) and velocity ( w ) are set to the inflow temperature and inflow

velocity as given above. On the cylinder surface, no-slip condition

is imposed for the velocity, and the Dirichlet condition (11) with

T d = T h = 80 is imposed for the temperature. Periodic conditions

are imposed on the top/bottom boundaries for all field variables.

On the right boundary, the open boundary condition (6) is imposed

for the temperature, in which we set D 0 = 

1 
U 0 

= 1 and δ = 0 . 05 for

this problem. For the Navier-Stokes equations we impose the open

boundary condition (26) , with f b = 0 and E ( n, u ) given by (27) . 

We employ the algorithm from Section 2 to solve the temper-

ature Eq. (1c) with g = 0 and the algorithm from the Appendix

A to solve the Navier-Stokes Eqs. (1a) –(1b) with f = 0 . We have

conducted simulations at three Reynolds numbers ( Re = 30 0 , 20 0 0
nd 50 0 0) and two Peclet numbers (corresponding to α = 0 . 01 and

.005). The element order, the time step size, and other simulation

arameters are varied in the simulations to study their effects on

he results. For any given set of parameter values we have per-

ormed long-time simulations so that the flow has reached a sta-

istically stationary state. Therefore, the initial conditions have no

ffect on the reported results. 

Fig. 3 provides an overview of the characteristics of the flow

nd temperature fields for this problem. It shows the distribu-

ions of the instantaneous velocity (left column) and tempera-

ure (right column) at Reynolds numbers Re = 300 (top row) and

e = 50 0 0 (bottom row). For Re = 300 ( Figs. 3 (a) and (b)), the non-

imensional thermal diffusivity is α = 0 . 01 , and the simulations

re performed using an element order 6 and a time step size 
t =
 . 001 . For Re = 5000 ( Figs. 3 (c) and (d)), the non-dimensional ther-

al diffusivity is α = 0 . 005 , and the results are computed using

n element order 8 and a time step size 
t = 2 . 5 e − 4 . The flow is

nsteady at these Reynolds numbers and is characterized by regu-

ar or irregular vortex shedding in the cylinder wake. At the lower

e = 300 , the vortices are quite weak, and no backflow is observed

t the outflow boundary ( Fig. 3 (a)). At the higher Reynolds num-

er Re = 50 0 0 , the vortices persist in the entire wake region, and

trong backflows are observed at the outflow boundary while these

ortices are passing through. Because the vortices are generated

t the cylinder and shed into the wake, the vortex cores contain

armer fluids, as is evident from the temperature distributions in

igs. 3 (b) and (d). 

To characterize the overall evolution of the temperature field,

e have computed and monitored the following quantities: 

T L 2 (t) = 

√ 

1 

V �

∫ 
�

[ T (x , t) ] 
2 
d�, 

 H 1 (t) = 

√ 

1 

V �

∫ 
�

[
( T (x , t) ) 

2 + | ∇T | 2 ]d�, (23)
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Fig. 3. Cylinder flow: Instantaneous velocity distributions (plots (a) and (c)) and temperature distributions (plots (b) and (d)). Plots (a) and (b) are for Re = 300 and α = 0 . 01 , 

and plots (c) and (d) are for Re = 50 0 0 and α = 0 . 005 . Velocity vectors are shown on a sparser set of mesh points for clarity. 

Fig. 4. Cylinder flow: Time histories of the T L 2 (t) and T H 1 (t) at Reynolds numbers 

(a) Re = 300 and (b) Re = 20 0 0 . Thermal diffusivity is α = 0 . 01 for both cases. 
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Table 1 

Cylinder flow: Time-averaged mean and root-mean-square (rms) of T L 2 (t) and 

T H 1 (t) computed using various element orders at two Reynolds numbers. Thermal 

diffusivity is α = 0 . 01 . 

Reynolds number Element order T L 2 T ′ L 2 
T H 1 T ′ H 1 

300 3 26.124 5.27e-2 61.563 0.104 

4 26.128 5.33e-2 61.563 0.103 

5 26.130 5.37e-2 61.566 0.104 

6 26.129 5.36e-2 61.564 0.104 

2000 5 26.786 0.286 65.895 1.014 

6 26.764 0.314 65.833 0.908 

7 26.825 0.283 65.908 1.016 

8 26.854 0.284 65.932 1.046 

9 26.836 0.280 65.935 1.037 
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here V � = 

∫ 
� d� is the volume of the domain. These are basically

he L 2 and H 

1 norms of the temperature field. Fig. 4 shows time

istories of T L 2 (t) and T H 1 (t) at two Reynolds numbers Re = 300

nd Re = 20 0 0 . The non-dimensional thermal diffusivity is α =
 . 01 for both cases. The results for Re = 300 ( Fig. 4 (a)) are com-

uted with an element order 5, and those for Re = 20 0 0 ( Fig. 4 (b))

re obtained with an element order 7. At Re = 300 , both tempera-

ure norms exhibit a regular fluctuation in time with a small am-

litude. At the higher Reynolds number Re = 20 0 0 , the fluctuations

n these temperature signals are much stronger and irregular, es-

ecially with T H 1 (t) . The long histories in these plots signify the

tability of our simulations. The constant mean level and the in-

ariant characteristics of the fluctuations suggest that the temper-

ture field has reached a statistically stationary state. 
From the time histories of T L 2 (t) and T H 1 (t) we can compute

he time-averaged mean and root-mean-square (rms) of these tem-

eratures, which can be compared quantitatively to assess the ef-

ect of the simulation parameters. Table 1 lists the mean ( T L 2 and

 H 1 
) and rms ( T ′ L 2 

and T ′ H 1 
) values of T L 2 (t) and T H 1 (t) correspond-

ng to a range of element orders, for Reynolds numbers Re = 300

nd Re = 20 0 0 with a thermal diffusivity α = 0 . 01 . We have em-

loyed a time step size 
t = 0 . 001 for Re = 300 and 
t = 5 e − 4

or Re = 20 0 0 in this set of simulations. We observe that, for both

eynolds numbers, the change in the mean and rms temperatures

s not significant with increasing element order, indicating a con-

ergence of simulation results with respect to the mesh resolution.

n the results reported below, the majority of simulations are per-

ormed with an element order 5 for Re = 300 and with an element

rder 7 for higher Reynolds numbers. 

Let us next look into the effect of the open boundary condi-

ion on the simulated flow and temperature fields. We observe

hat for this problem the boundary condition imposed on the out-

ow boundary, especially at fairly high Reynolds numbers where

trong vortices or backflows occur on such boundary, is critical

o the stability of computations and to the physical soundness

f the simulated temperature field. When the Reynolds number

s low (e.g. Re = 300 ), no vortex or backflow occurs at the out-

ow boundary, and usual open boundary conditions (e.g. the Neu-

ann type zero-flux condition (5) ) can work well and produce rea-

onable results. When the Reynolds number becomes fairly high,

.g. with Re ≈ 20 0 0 or larger for the circular cylinder flow, strong

ortices or backflows can occur on the open boundary. In such
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cases the adoption of the energy-stable open boundary condi-

tion developed herein for the temperature field and those from

e.g. [23] (see also Appendix A) for the Navier-Stokes equations are

critical to the successful simulations of this problem. 

These points are demonstrated by two temporal sequences of

the velocity and temperature distributions shown in Figs. 5 –8 .

These results correspond to the Reynolds number Re = 20 0 0 and

a non-dimensional thermal diffusivity α = 0 . 01 , and they are ob-

tained respectively using the current thermal open boundary con-

dition (6) and the Neumann-type zero-flux condition (5) for the

outflow boundary. Note that in both cases we have employed the

open boundary condition (26) with E ( n, u ) given in (27) for the

Navier-Stokes equations. Figs. 5 and 7 show the two separate se-

quences of velocity fields. Fig. 6 shows the temporal sequence

of snapshots of the temperature fields, corresponding to the ve-

locity distributions in Fig. 5 , computed using the current ther-

mal open boundary condition (6) . Fig. 8 shows the temporal se-

quence of snapshots of the temperature fields, corresponding to

the velocity distributions in Fig. 7 , computed using the Neumann-

type zero-flux condition (5) for the temperature on the outflow

boundary. In these simulations we have employed an element or-

der 8 and a time step size 
t = 5 e − 4 . At this Reynolds num-

ber, strong vortices and backflows can be clearly observed on the

outflow boundary ( Figs. 5 and 7 ). The use of the energy-stable

OBC from [23] (see Appendix A) for the Navier-Stokes equations

employed here is crucial for the stable flow simulation. What is

striking concerns the temperature distribution near the outflow

boundary obtained by these two methods. A comparison between

Figs. 6 and 8 shows that the current thermal OBC (6) and the

Neumann-type OBC (5) lead to quite different results near the out-

flow boundary when the vortices are passing through, and that

in such cases the Neumann-type thermal OBC produces appar-

ently unphysical temperature distributions. With the Neumann-

type OBC (5) , we observe that when a vortex crosses the outflow

boundary the computed temperature at the vortex core can at-

tain unphysical values. In Fig. 8 those regions with unphysical tem-

perature distributions are marked by the dashed boxes. The com-

puted temperature in those regions can become nearly zero de-

grees Celsius (see the dark blue region in the inset of Fig. 8 (e)),

which is clearly unphysical given the inflow and the cylinder tem-

perature (20 and 80 degrees Celsius, respectively). We observe that

the unphysical temperature arises only when the vortices are pass-

ing through the outflow boundary, where backflows occur. After

the vortices exit the domain, the temperature field near the out-

flow boundary computed by the Neumann-type OBC (5) is restored

to a reasonable distribution. In contrast, with the current thermal

OBC (6) , we observe that the computed temperature field at/near

the outflow boundary exhibits a reasonable distribution through-

out the time, particularly when strong vortices pass through the

outflow boundary and when backflows occur there. This is evident

from Fig. 6 . 

The above observations are not limited to the Reynolds

number Re = 20 0 0 , or thermal diffusivity α = 0 . 01 (we have

also tested α = 0 . 005 ). At higher Reynolds numbers (we have

tested Re = 50 0 0 , α = 0 . 01 and 0.005), the same character-

istics in the computed temperature distributions have been

observed with regard to the current thermal OBC and the

Neumann-type OBC. These results demonstrate a clear advan-

tage of the current thermal OBC for dealing with thermal

open boundaries at high (and moderate) Reynolds numbers,

when strong vortices or backflows might occur there. At low

Reynolds numbers (we have tested Re = 300 ), when no vor-

tices or backflows occur at the outflow boundary, we observe

that both the current thermal OBC and the Neumann-type zero-

flux OBC produce reasonable temperature distributions for this

problem. 
.3. Warm jet impinging on a cool wall 

In this subsection we test the presented method by simulat-

ng the heat transfer in another canonical flow, a jet impinging on

 solid wall. At moderate and fairly high Reynolds numbers, the

hysical instability of the jet and the vortices formed along the jet

rofile, together with the open domain boundary, pose a significant

hallenge to the flow and temperature simulations. 

We consider the domain depicted in Fig. 9 , −5 d � x � 5 d and

 ≤ y ≤ 5 d , where d = 1 is the jet inlet diameter. The top and bot-

om of the domain are solid walls, which are maintained at a con-

tant temperature T w 

= 20 degrees Celsius. The left and right sides

f the domain are open, where the fluid can freely leave or enter

he domain. The initial fluid temperature in the domain is assumed

o be T in = 20 degrees Celsius, and the fluid is initially assumed to

e at rest. In the middle of the top wall there is an orifice with a

iameter d , through which a jet of fluid is issued into the domain.

he jet velocity and temperature at the inlet is assumed to have

he following distribution: 

 

 

 

 

 

 

 

 

 

 

 

u = 0 , 

v = −U 0 

[ 
( H(x, 0) −H(x, R 0 ) ) tanh 

1 −x/R 0 √ 

2 ε

+ ( H(x, −R 0 ) −H(x, 0) ) tanh 

1+ x/R 0 √ 

2 ε

] 
T = T w 

+ (T h − T w 

) 
(

1 − x 2 

R 2 
0 

)
, 

(24)

here R 0 = d/ 2 is the jet radius, U 0 = 1 is the velocity scale,

= 

1 
40 , and T h = 80 degrees Celsius is the centerline temperature.

(x, a ) is the Heaviside step function, taking a unit value if x ≥ a

nd vanishing otherwise. With the above expressions, the inlet ve-

ocity has a “top-hat” profile, essentially U 0 except in a thin layer

thickness controlled by the parameter ε) near the wall. With this

onfiguration, the jet enters the domain through the inlet, im-

inges on the bottom wall, and then exits the domain through

he open boundaries on the left and right sides. We would like

o study the heat transfer in this flow using the method from

ection 2 . 

We use U 0 as the velocity scale, d as the length scale, and T d =
 degree Celsius as the temperature scale. All the physical variables

nd parameters are then normalized accordingly. So the Reynolds

umber is defined based on the jet inlet diameter for this problem.

We employ the method presented in Section 2 to solve the heat

ransfer Eq. (1c) with g = 0 , and the algorithm from the Appendix

 to solve the Navier-Stokes Eqs. (1a) –(1b) with f = 0 . The domain

s discretized using a mesh of 800 uniform quadrilateral elements,

ith 40 elements along the x direction and 20 elements along the

 direction. On the top and bottom walls, no-slip condition (zero

elocity) has been imposed for the velocity, and the Dirichlet con-

ition (11) with T d = T w 

= 20 has been imposed for the tempera-

ure. At the jet inlet, we impose the Dirichlet conditions (25) for

he velocity and (11) for the temperature, with the boundary ve-

ocity and temperature chosen according to the expressions given

n (24) . On the left/right boundaries of the domain, we impose the

pen boundary condition (6) for the temperature, with D 0 = 

1 
U 0 

nd δ = 

1 
20 , and the condition (26) for the velocity, with f b = 0

nd E ( n, u ) given by (27) (for Re = 30 0 and 20 0 0) or (28) with

(β0 , β1 , β2 ) = (0 , 1 , 0) (for Re = 50 0 0 ). The initial temperature is

et to T in = 20 and the initial velocity is set to zero. We have per-

ormed long-time simulations, and the flow and temperature have

eached a statistically stationary state. So these initial conditions

ave no effect on the results reported below. The element order

nd the time step size are varied systematically in the simulations

o study their effects on the simulation results. The problem cor-

esponding to three Reynolds numbers (Re = 30 0, 20 0 0 and 50 0 0)
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Fig. 5. Cylinder flow (Re = 20 0 0): temporal sequence of snapshots of the velocity distribution, (a) t = t 0 , (b) t = t 0 + 0 . 2 , (c) t = t 0 + 0 . 4 , (d) t = t 0 + 0 . 6 , (e) t = t 0 + 0 . 8 , (f) 

t = t 0 + 1 . 0 , (g) t = t 0 + 1 . 2 , (h) t = t 0 + 1 . 4 , (i) t = t 0 + 1 . 6 , (j) t = t 0 + 1 . 8 . t 0 is the initial time instant of this sequence. Velocity vectors are plotted on a set of sparser mesh 

points for clarity. 
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t  
nd two thermal diffusivities ( α = 0 . 01 and 0.005) has been simu-

ated. 

Fig. 10 provides an overview of the distribution characteristics

f the velocity and temperature fields obtained using the current

ethod at two Reynolds numbers Re = 300 and Re = 20 0 0 and

 non-dimensional thermal diffusivity α = 0 . 01 . At low Reynolds
umbers (e.g. Re = 300 ) this is a steady flow. The vertical jet

plits into two horizontal streams after impinging on the bottom

all, which exit the domain through the open boundaries on the

eft/right sides. Strong flows are largely confined to regions of the

ertical jet and the near-wall horizontal streams ( Fig. 10 (a)), and

he velocity field is quite weak outside these regions. Correspond-
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Fig. 6. Cylinder flow (Re = 20 0 0): temporal sequence of snapshots of the temperature distribution computed using the current thermal OBC, at identical time instants as 

in Fig. 5 . (a) t = t 0 , (b) t = t 0 + 0 . 2 , (c) t = t 0 + 0 . 4 , (d) t = t 0 + 0 . 6 , (e) t = t 0 + 0 . 8 , (f) t = t 0 + 1 . 0 , (g) t = t 0 + 1 . 2 , (h) t = t 0 + 1 . 4 , (i) t = t 0 + 1 . 6 , (j) t = t 0 + 1 . 8 . Thermal 

diffusivity is α = 0 . 01 . 
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s

ingly, warm fluids are confined to the regions of the vertical jet

and the horizontal streams, and the temperature decays along the

profile of the jet streams ( Fig. 10 (b)). As the Reynolds number in-

creases (e.g. Re = 20 0 0 ), the vertical jet becomes unstable down-

stream of the inlet due to the Kelvin-Helmholtz instability, and

vortices can be observed to form on both sides of the jet profile
 Fig. 10 (c)). These vortices are advected along the vertical and hor-

zontal jet streams and exit the domain through the left/right open

oundaries. The temperature distributions at these Reynolds num-

ers are unsteady and exhibit more complicated features. The vor-

ices are observed to carry warm fluids with them, forming hot

pots along the jet profile ( Fig. 10 (d)). 
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Fig. 7. Cylinder flow (Re = 20 0 0): another temporal sequence of snapshots of the velocity distribution. (a) t = t 1 , (b) t = t 1 + 0 . 2 , (c) t = t 1 + 0 . 4 , (d) t = t 1 + 0 . 6 , (e) t = 

t 1 + 0 . 8 , (f) t = t 1 + 1 . 0 , (g) t = t 1 + 1 . 2 , (h) t = t 1 + 1 . 4 , (i) t = t 1 + 1 . 6 , (j) t = t 1 + 1 . 8 . t 1 denotes the initial time instant in this sequence. 
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Before proceeding further, we first compare our simulations

ith previous works for an assessment and verification of the ac-

uracy of our method. Fig. 11 shows the profiles of the local Nus-

elt number ( Nu ) at the bottom wall for Reynolds numbers Re =
25 and 250 from the current simulation and from the previous

orks of [17,46,47] . For comparison, we have employed here the

ame flow setting and simulation conditions as those from [47] for
his set of results. Note that these conditions are slightly different

rom those given above for the rest of current simulations. Specifi-

ally, here the upper wall is adiabatic with the boundary condition

 ·∇T = 0, and the lower wall is maintained at a constant temper-

ture T w 

. The velocity and temperature at the jet inlet are both

niform ( u = 0 , v = −U 0 , T = T h ), and the Prandtl number is fixed

t P r = ν/α = 0 . 7 [47] . On the left and right open boundaries, we
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Fig. 8. Cylinder flow (Re = 20 0 0): temporal sequence of snapshots of the temperature distribution computed using the Neumann-type zero-flux OBC ( Eq. (5) ), at identical time 

instants as in Fig. 7 . (a) t = t 1 , (b) t = t 1 + 0 . 2 , (c) t = t 1 + 0 . 4 , (d) t = t 1 + 0 . 6 , (e) t = t 1 + 0 . 8 , (f) t = t 1 + 1 . 0 , (g) t = t 1 + 1 . 2 , (h) t = t 1 + 1 . 4 , (i) t = t 1 + 1 . 6 , (j) t = t 1 + 1 . 8 . 

The inset of plot (e) shows a magnified view near the outflow boundary. Dashed boxes mark the regions with unphysical temperature distribution (below 20 degrees Celsius). 

Thermal diffusivity is α = 0 . 01 . 

 

 

 

 

F  

t

 

t  

p  
impose the open boundary condition (6) with D 0 = 

1 
U 0 

and δ =
0 . 05 for the temperature, and the boundary condition (26) with

f b = 0 and E ( n, u ) given by (27) . The local Nusselt number at the

bottom wall is defined as Nu = 

1 
T h −T w 

∂T 
∂y 

∣∣∣
y =0 

. It is evident from
ig. 11 that our simulation results are in good agreement with

hose of [17,46,47] . 

Let us now focus on the study of the temperature and flow fea-

ures of the impinging jet. For each set of physical and simulation

arameters (Reynolds number, thermal diffusivity, element order,
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Fig. 9. Impinging jet: Flow configuration and boundary conditions. 
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Fig. 11. Impinging jet: Comparison of the local Nusselt number at the lower wall 

between the current simulation and the previous works [17,46,47] for Reynolds 

numbers Re = 125 and Re = 250 . Inlet height to inlet diameter ratio is 5. 

Fig. 12. Impinging jet: Time histories of T L 2 (t) and T H 1 (t) (see Eq. (23) ) at Reynolds 

number Re = 20 0 0 and thermal diffusivity α = 0 . 01 . 
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F

a

c

ime step size), we have performed a long-time simulation, and

he flow and temperature fields of the jet have reached a statisti-

ally stationary state corresponding to that set of parameter val-

es. Fig. 12 shows the time histories of the temperature norms

 L 2 
(t) and T H 1 (t) defined in Eq. (23) for the impinging jet problem.

his corresponds to the Reynolds number Re = 20 0 0 and a ther-

al diffusivity α = 0 . 01 , and is computed with an element order 8

nd a time step size 
t = 2 . 5 e − 4 . These temperature histories are

uctuational in time. But their values all stay around some con-

tant mean levels, and the overall characteristics of these signals

emain the same over time. These results signify that our method

s long-term stable and that the temperature distribution has in-

eed reached a statistically stationary state. 

We have computed the time-averaged mean and rms of the

emperature norms based on the history data of T L 2 (t) and T H 1 (t) .

able 2 lists the mean ( T L 2 and T H 1 ) and rms ( T ′ 
L 2 

and T ′ 
H 1 

) of these

emperatures obtained with element orders ranging from 3 to 9.

hese results for two Reynolds numbers Re = 300 and Re = 20 0 0 ,

nd a thermal diffusivity α = 0 . 01 . A time step size 
t = 2 . 5 e − 4

s employed in these simulations. Since the flow at Re = 300 is

teady, shown in the table are the steady-state values and no time-

veraging is performed for this Reynolds number. We observe that

or Re = 300 , with element orders 4 and above, the computed val-

es for T L 2 and T H 1 are essentially the same (with a difference less

han 0.5%). For Re = 20 0 0 , as the element order increases to 6 and
ig. 10. Impinging jet: instantaneous velocity field (plots (a) and (c)) and temperature fie

nd (d) are for Reynolds number Re = 20 0 0 . Thermal diffusivity is α = 0 . 01 with both R

larity. 
bove, the computed values of T L 2 and T H 1 become very close, ex-

ibiting a sense of convergence. 

Fig. 13 shows a comparison of the temperature profiles along

he vertical direction at several horizontal locations in the domain

 x/d = 0 , 2 and 4), computed using different element orders for

e = 300 and α = 0 . 01 . It is evident that the temperature profiles

orresponding to element orders 4 and above all overlap with one

nother, again signifying the independence of simulation results
ld (plots (b) and (d)). Plots (a) and (b) are for Reynolds number Re = 300 . Plots (c) 

eynolds numbers. Velocity vectors are plotted on a sparser set of mesh points for 
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Fig. 13. Impinging jet ( Re = 300 ): Comparison of temperature profiles along the vertical direction at three horizontal locations, (a) centerline ( x = 0 ), (b) x = 2 . 0 and (c) 

x = 4 . 0 , computed using element orders ranging from 3 to 8. 

Table 2 

Impinging jet: Time-averaged mean ( T L 2 and T H 1 ) and root-mean-square (rms, 

T ′ L 2 
and T ′ H 1 

) temperatures of T L 2 (t) and T H 1 (t) computed using various element 

orders. Thermal diffusivity is α = 0 . 01 . 

Reynolds number Element order T L 2 T ′ L 2 
T H 1 T ′ H 1 

300 3 39.599 0 53.341 0 

4 38.513 0 52.611 0 

5 38.502 0 52.607 0 

6 38.498 0 52.606 0 

7 38.508 0 52.613 0 

8 38.559 0 52.645 0 

2000 5 39.934 0.228 54.036 0.355 

6 39.745 0.139 53.915 0.318 

7 39.663 0.175 53.846 0.367 

8 39.703 0.135 53.887 0.356 

9 39.743 0.171 53.902 0.342 
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with respect to the mesh resolution. The majority of simula-

tions reported below are performed with an element order 6 for

Re = 300 and element order 8 for Reynolds numbers Re = 20 0 0

and Re = 50 0 0 . 

We have also performed simulations at Re = 300 with several

time step sizes (ranging from 
t = 1 e − 3 to 
t = 2 . 5 e − 4 ), and

tested the sensitivity of the results with respect to 
t . It is ob-

served that the obtained results corresponding to different 
t are

basically the same. The majority of simulation results reported be-

low are computed with a time step size 
t = 2 . 5 e − 4 . 

We now look into the effect of the thermal open boundary con-

dition on the simulated temperature distributions, and compare

the current thermal OBC ( Eq. (6) ) and the Neumann-type zero-flux

OBC ( Eq. (5) ) for the impinging jet problem. We observe that at

low Reynolds numbers (such as Re = 300 ) these OBCs produce ap-

proximately the same temperature distribution. However, as the

Reynolds number increases to moderate and fairly large values

(about Re = 20 0 0 and beyond), these OBCs exhibit disparate per-

formance and produce quite different results for the temperature

field. It is observed that the Neumann-type OBC (5) results in un-

physical temperature distributions in large regions of the domain,

while the current OBC (6) leads to a reasonable temperature dis-

tribution in the entire domain. These points are demonstrated by
igs. 14 –17 . Figs. 14 and 16 respectively show two separate tempo-

al sequences of snapshots of the velocity fields at Reynolds num-

er Re = 50 0 0 of the impinging jet. Fig. 15 shows the temporal

equence of snapshots of the temperature fields corresponding to

he velocity fields in Fig. 14 , computed using the current thermal

BC (6) . Fig. 17 shows the temporal sequence of snapshots of the

emperature fields corresponding to those velocity fields in Fig. 16 ,

omputed using the Neumann-type zero-flux OBC (5) . The thermal

iffusivity is α = 0 . 005 , and these results are obtained with an el-

ment order 8 and a time step size 
t = 2 . 5 e − 4 . 

At Re = 50 0 0 , vortices are observed to constantly form and are

onvected along the jet streams. These vortices persist far down-

tream, and ultimately discharge from the domain through the

eft and right open boundaries ( Figs. 14 and 16 ). It is further ob-

erved that, while quite weak, there is a persistent backflow on

he upper portions of the left and right open boundaries (veloc-

ty vectors pointing generally inward), apparently due to the en-

rainment effect of the jet and the flow continuity. This charac-

eristic is different from that of the cylinder flow in Section 3.2 ,

here the backflows on the outflow boundary are transient

nd only occur when strong vortices pass through the open

oundary. 

We observe that at Re = 50 0 0 the Neumann-type zero-flux

BC (5) produces erroneous and unphysical temperature distri-

utions in vast regions of the domain, apparently due to the

trong vortices and persistent backflows on the open boundary.

n Fig. 17 , the dashed curves in each plot mark the tempera-

ure contour level T = 20 degrees Celsius. The computed temper-

ture in the regions outside the jet streams have values below

0 degrees, and in a large region the temperature is essentially

ero. These results are clearly unphysical. Similar unphysical tem-

erature distribution has been observed at Re = 20 0 0 with this

oundary condition. These results indicate that, while it seems

o work well at low Reynolds numbers, the Neumann-type zero-

ux OBC (5) is inadequate for moderate and high Reynolds num-

ers, when strong vortices or backflows are present on the open

oundary. 

In contrast, the current thermal OBC (6) performs quite well.

t produces a reasonable temperature distribution for all Reynolds

umbers tested here; see Fig. 15 for Re = 50 0 0 and Figs. 10 (b,d)
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Fig. 14. Impinging jet (Re = 50 0 0): temporal sequence of snapshots of the velocity distributions. (a) t = t 0 , (b) t = t 0 + 0 . 5 , (c) t = t 0 + 1 . 0 , (d) t = t 0 + 1 . 5 , (e) t = t 0 + 2 . 0 , 

(f) t = t 0 + 2 . 5 , (g) t = t 0 + 3 . 0 , (h) t = t 0 + 3 . 5 , (i) t = t 0 + 4 . 0 , (j) t = t 0 + 4 . 5 . t 0 is the initial time instant of this sequence. Velocity vectors are plotted on a set of sparser 

mesh points for clarity. 
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Fig. 15. Impinging jet (Re = 50 0 0): temporal sequence of snapshots of the temperature distribution at identical time instants as in Fig. 14 , computed using the current 

thermal open boundary condition. (a) t = t 0 , (b) t = t 0 + 0 . 5 , (c) t = t 0 + 1 . 0 , (d) t = t 0 + 1 . 5 , (e) t = t 0 + 2 . 0 , (f) t = t 0 + 2 . 5 , (g) t = t 0 + 3 . 0 , (h) t = t 0 + 3 . 5 , (i) t = t 0 + 4 . 0 , 

(j) t = t 0 + 4 . 5 . Thermal diffusivity is α = 0 . 005 . 
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Fig. 16. Impinging jet (Re = 50 0 0): another temporal sequence of snapshots of the velocity distribution. (a) t = t 1 , (b) t = t 1 + 0 . 5 , (c) t = t 1 + 1 . 0 , (d) t = t 1 + 1 . 5 , (e) t = 

t 1 + 2 . 0 , (f) t = t 1 + 2 . 5 , (g) t = t 1 + 3 . 0 , (h) t = t 1 + 3 . 5 , (i) t = t 1 + 4 . 0 , (j) t = t 1 + 4 . 5 . t 1 is the initial time instant of this sequence. Velocity vectors are plotted on a set of 

sparser mesh points for clarity. 



18 X. Liu, Z. Xie and S. Dong / International Journal of Heat and Mass Transfer 151 (2020) 119355 

Fig. 17. Impinging jet (Re = 50 0 0): temporal sequence of snapshots of the temperature distribution at identical time instants as in Fig. 16 , computed using the Neumann- 

type zero-flux OBC ( Eq. (5) ). (a) t = t 1 , (b) t = t 1 + 0 . 5 , (c) t = t 1 + 1 . 0 , (d) t = t 1 + 1 . 5 , (e) t = t 1 + 2 . 0 , (f) t = t 1 + 2 . 5 , (g) t = t 1 + 3 . 0 , (h) t = t 1 + 3 . 5 , (i) t = t 1 + 4 . 0 , (j) 

t = t 1 + 4 . 5 . Thermal diffusivity is α = 0 . 005 . Note that the color map represents temperature values ranging from T = 0 to T = 80 . The dashed curves mark the contour level 

T = 20 . The Neumann-type OBC leads to unphysical temperature distribution outside the jet stream. 
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or lower Reynolds numbers. The current method can handle ther-

al open boundaries well at moderate and high Reynolds num-

ers, even when strong vortices or backflows are prevalent there

nd pose a significant issue to other methods. 

. Concluding remarks 

We have presented a simple and effective thermal open bound-

ry condition for simulating convective heat transfer problems on

omains involving outflows or open boundaries. This boundary

ondition is energy-stable, and ensures that the contribution of

he open boundary will not cause an “energy-like” function of the

emperature to increase over time, regardless of the flow situa-

ion that occurs on the outflow/open boundary. This open bound-

ry condition can be implemented in a straightforward way into

emi-implicit type schemes for the heat transfer equation. Am-

le numerical experiments show that the presented open bound-

ry condition has a clear advantage over related methods such

s the Neumann-type zero-flux condition for high (and moderate)

eynolds numbers, where strong vortices or backflows might occur

n the open boundary. In the presence of strong vortices or back-

ows at the open boundary, the current method produces reason-

ble temperature distributions, while the Neumann-type zero-flux

ondition leads to unphysical and erroneous temperature fields.

e anticipate that the presented method can be a powerful tool

nd be instrumental in heat transfer simulations involving in-

ows/outflows at large Reynolds numbers. 
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ppendix A. Numerical algorithm and open boundary 

ondition for incompressible Navier-Stokes equations 

The numerical algorithm and the open boundary conditions for

he incompressible Navier-Stokes Eqs. (1a) –(1b) employed in the

urrent work stem from our previous work [23] . This Appendix

rovides a summary of these aspects. We use the same notation

ere as in the main text. 

For the Navier-Stokes Eqs. (1a) –(1b) , on the boundary ∂�d 

 ∂ �d = ∂ �dd ∪ ∂ �dn ) we impose the Dirichlet condition 

 = w (x , t) , on ∂�d , (25)

here w ( x , t ) is the boundary velocity. On the open boundary we

mpose the following condition (see [23] ), 

D 0 
∂u 

∂t 
− pn + νn · ∇u − E (n , u ) = f b (x , t) , on ∂�o , (26)

here D 0 ≥ 0 is the same constant parameter as in the temperature

ondition (6) , and E ( n, u ) is given by 

 (n , u ) = 

1 

[ (u · u ) n + (n · u ) u ] �0 ( n , u ) . (27)

2 
ote that �0 ( n, u ) is defined in (7) . A more general form for E ( n,

 ) is given by [23] , 

 (n , u ) = 

1 

2 

[ (β0 + β2 )(u · u ) n + (1 − β0 + β1 )(n · u ) u ] �0 (n , u ) ,

(28) 

here β0 , β1 and β2 are constant parameters satisfying 0 ≤β0 ≤ 1,

1 ≥ 0 and β2 ≥ 0. The open boundary condition (26) , with f b =
 , is an energy-stable boundary condition for the incompressible

avier-Stokes Eqs. (1a) –(1b) as δ → 0 [23] . In addition, we impose

he following initial condition for the velocity, 

 (x , 0) = u in (x ) (29)

here u in denotes the initial velocity distribution. 

Given ( u 

n , p n ) we compute p n +1 and u 

n +1 successively in a de-

oupled fashion as follows: For p n +1 : 

γ0 ̃  u 

n +1 − ˆ u 


t 
+ u 

∗,n +1 · ∇u 

∗,n +1 + ∇p n +1 + ν∇ × ∇ × u 

∗,n +1 = f n +1 ;
(30a) 

 · ˜ u 

n +1 = 0 ; (30b) 

 · ˜ u 

n +1 = n · w 

n +1 , on ∂�d ; (30c)

νD 0 
γ0 ̃  u 

n +1 − ˆ u 


t 
· n −p n +1 + νn · ∇u 

∗,n +1 · n −n · E (n , u 

∗,n +1 ) 

= f n +1 
b 

· n , on ∂�o . (30d) 

or u 

n +1 : 

γ0 u 

n +1 − γ0 ̃  u 

n +1 


t 
− ν∇ 

2 u 

n +1 = ν∇ × ∇ × u 

∗,n +1 ; (31a)

 

n +1 = w 

n +1 , on ∂�d ; (31b) 

νD 0 
γ0 u 

n +1 − ˆ u 


t 
− p n +1 n 

+ νn · ∇u 

n +1 − E (n , u 

∗,n +1 ) + ν
(∇ · u 

∗,n +1 
)
n = f n +1 

b 
, on ∂�o . 

(31c) 

In the above equations ˜ u 

n +1 is an auxiliary variable approximat-

ng u 

n +1 . We again use J ( J = 1 or 2) to denote the temporal order

f accuracy. γ 0 is defined in (17) . ˆ u and u 

∗,n +1 are defined by 

ˆ 
 = 

{
u 

n , J = 1 , 

2 u 

n − 1 
2 

u 

n −1 , J = 2 ; u 

∗,n +1 = 

{
u 

n , J = 1 , 

2 u 

n − u 

n −1 , J = 2 . 

(32) 

The weak form for the pressure p n +1 can be derived from

qs. (30a) –(30d) , and it is given by [23] , 
 

�
∇ p n +1 · ∇ q + 

1 

νD 0 

∫ 
∂�o 

p n +1 q = 

∫ 
�

G 

n +1 · ∇q − ν

∫ 
∂ �d ∪ ∂ �o 

n × ω 

∗,n +1 · ∇q 

+ 

∫ 
∂�o 

{ 

− 1 


t 
n · ˆ u + 

1 

νD 0 

[
νn ·∇u 

∗,n +1 · n −n · E (n , u 

∗,n +1 ) −f n +1 
b 

·n 

]} 

q

− γ0 


t 

∫ 
∂�d 

n · w 

n +1 q, ∀ q ∈ H 

1 (�) , (33)

here G 

n +1 = f n +1 + 

ˆ u 

t 

− u 

∗,n +1 · ∇u 

∗,n +1 . The weak form for the

elocity is given by, 

γ0 

ν
t 

∫ 
�

u 

n +1 ϕ + 

∫ 
�

∇ϕ · ∇u 

n +1 + 

γ0 D 0 


t 

∫ 
∂�

u 

n +1 ϕ = 

1 

ν

∫ 
�
o 

https://doi.org/10.13039/100000001
https://doi.org/10.13039/501100004543
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E
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fi  

o  

c  

v  

E

L

L  

(  

S  

 

ε

P  

L

 

 

(
G 

n +1 − ∇p n +1 
)
ϕ 

+ 

∫ 
∂�o 

{ 

D 0 


t 
ˆ u + 

1 

ν

[
p n +1 n + E (n , u 

∗,n +1 ) + f n +1 
b 

− ν
(∇ · u 

∗,n +1 
)
n 

]} 

ϕ, 

∀ ϕ ∈ H 

1 (�) with ϕ| ∂�d 
= 0 . (34)

The weak forms in (33) and (34) can be discretized using C 0 spec-

tral elements in the standard fashion [40] . Within each time step,

we first solve Eq. (33) for p n +1 . Then we solve Eq. (34) , together

with the boundary condition (31b) , for u 

n +1 . Note that the auxil-

iary velocity ˜ u 

n +1 is not explicitly computed. 

Appendix B. Derivation of Equations (8) and (10) 

In this appendix we derive the energy balance Eq. (8) , which

corresponds to the open boundary condition (6) on ∂�o , and also

the energy balance Eq. (10) , which corresponds to the open bound-

ary condition (9) on ∂�o . 

As pointed out in Section 2.1 , in the smoothed step function

�0 ( n, u ) given in Eq. (7) , the small positive constant δ ( δ > 0) con-

trols the sharpness of this function. Note that as δ approaches zero,

�0 ( n, u ) approaches the step function �s 0 ( n, u ). This limit rela-

tion and the definition of �s 0 ( n, u ) are given in the second part of

Eq. (7) . This relation will be employed in subsequent derivations. In

what follows we use “as δ → 0” to denote “as δ approaches zero”. 

Derivation of Eq. (8) 

With the open boundary condition (6) on ∂�o and the assump-

tions in (A1) , the energy balance Eq. (4) is transformed into 

∂ 

∂t 

∫ 
�

1 

2 

| T | 2 d� = −α

∫ 
�

|∇T | 2 d�+ 

∫ 
∂�o 

1 

2 

(n · u ) T 2 

[ 2�0 (n , u ) − 1 ] dA − αD 0 

∫ 
∂�o 

∂ 

∂t 

(
1 

2 

T 2 
)

dA. (35)

Let δ → 0 in the open boundary condition (6) . Note that

lim δ→ 0 �0 (n , u ) = �s 0 (n , u ) (see Eq. (7) ). Then as δ → 0, Eq. (35) is

reduced to 

∂ 

∂t 

(∫ 
�

1 

2 

| T | 2 d� + αD 0 

∫ 
∂�o 

1 

2 

| T | 2 dA 

)
= −α

∫ 
�

|∇T | 2 d�

+ 

∫ 
∂�o 

1 

2 

(n · u ) T 2 [ 2�s 0 (n , u ) − 1 ] dA, (36)

where we have moved the last term on the right hand side of

Eq. (35) to the left hand side. 

In light of the definition of �s 0 ( n, u ) in Eq. (7) , the last term on

the right hand side of Eq. (36) can be transformed into 

1 

2 

(n · u ) T 2 [ 2�s 0 (n , u ) − 1 ] 

= 

{ − 1 
2 
(n · u ) T 2 = − 1 

2 
| n · u | T 2 , if n · u > 0 ;

0 = − 1 
2 
| n · u | T 2 , if n · u = 0 ;

1 
2 
(n · u ) T 2 = − 1 

2 
| n · u | T 2 , if n · u < 0 . 

(37)

Therefore, Eq. (36) is reduced to, as δ → 0, 

∂ 

∂t 

(∫ 
�

1 

2 

| T | 2 d� + αD 0 

∫ 
∂�o 

1 

2 

| T | 2 dA 

)
= −α

∫ 
�

|∇T | 2 d� −
∫ 
∂�o 

1 

2 

| n · u | T 2 d A . (38)

Eq. (8) is the combination of Eqs. (36) and (38) . 
erivation of Eq. (10) 

With the open boundary condition (9) (with θ ≥ 1) on ∂�o and

he assumptions in (A1) , the energy balance Eq. (4) can be trans-

ormed into 

∂ 

∂t 

∫ 
�

1 

2 

| T | 2 d� = −α

∫ 
�

|∇T | 2 d�

+ 

∫ 
∂�o 

1 

2 

(n · u ) T 2 [ θ�0 (n , u ) − 1 ] dA 

−αD 0 

∫ 
∂�o 

∂ 

∂t 

(
1 

2 

T 2 
)

d A . (39)

s δ → 0, this equation is reduced to 

∂ 

∂t 

(∫ 
�

1 

2 

| T | 2 d� + αD 0 

∫ 
∂�o 

1 

2 

| T | 2 dA 

)
= −α

∫ 
�

|∇T | 2 d� + 

∫ 
∂�o 

1 

2 

(n · u ) T 2 [ θ�s 0 (n , u ) − 1 ] d A . (40)

Let us focus on the last term on the right hand side of equation

40) . In light of the definition of �s 0 ( n, u ) given in (7) and the

ondition θ ≥ 1, this term can be reduced to 

1 

2 

(n · u ) T 2 [ θ�s 0 (n , u ) − 1 ] = 

{ − 1 
2 
(n · u ) T 2 � 0 , if n · u > 0 ;

0 , if n · u = 0 ;
θ−1 

2 
(n · u ) T 2 � 0 , if n · u < 0 . 

(41)

e then conclude that, with θ ≥ 1, 
 

∂�o 

1 

2 

(n · u ) T 2 [ θ�s 0 (n , u ) − 1 ] dA � 0 . (42)

herefore we attain from Eq. (40) the following inequality, as

→ 0, 

∂ 

∂t 

(∫ 
�

1 

2 

| T | 2 d� + αD 0 

∫ 
∂�o 

1 

2 

| T | 2 dA 

)
� −α

∫ 
�

|∇T | 2 d�. (43)

q. (10) is a combination of (40) and (43) . 

ppendix C. Proof of Theorem 2.1 

In this Appendix we provide a proof of Theorem 2.1 . We will

rst state and prove several lemmas, which then lead to the proof

f Theorem 2.1 . In what follows we consider the open boundary

ondition (9) with θ ≥ 1 on ∂�o , n is the outward-pointing unit

ector normal to ∂�o , and �0 ( n, u ) and �s 0 ( n, u ) are defined in

q. (7) . 

emma C.1. | �0 (n , u ) − �s 0 (n , u ) | < 

1 
2 for all δ > 0 . 

This can be proved by straightforward verification. 

emma C.2. (a) If n · u = 0 , then �0 (n , u ) = �s 0 (n , u ) for all δ > 0 .

b) Given any ε � 

1 
2 , | �0 (n , u ) − �s 0 (n , u ) | < ε for all δ > 0 . (c)

uppose n · u � = 0 . Given any ε ( 0 < ε < 

1 
2 ), there exists a δ0 =

| n ·u | 
U 0 tanh −1 (1 −2 ε) 

such that for all 0 < δ < δ0 , | �0 (n , u ) − �s 0 (n , u ) | <
. 

roof. Part (a) can be verified readily. Part (b) follows from

emma Appendix C.1 . We next show that part (c) is true. 

The expression for δ0 can be transformed into ε =
1 
2 

(
1 − tanh 

| n ·u | 
U 0 δ0 

)
. 

• If n · u > 0, ε = 

1 
2 

(
1 − tanh 

n ·u 
U 0 δ0 

)
. Then �0 (n , u ) − �s 0 (n , u ) =

1 
2 

(
1 − tanh 

n ·u 
U 0 δ

)
> 0 . So for all 0 < δ < δ0 , 

0 < �0 (n , u ) − �s 0 (n , u ) < 

1 

(
1 − tanh 

n · u 

)
= ε. 
2 U 0 δ0 
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L

δ
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P  

a
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w

δ

T  

0
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I
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a

P  

|

D

∂

∂

∂

 

t

L

I

P
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∂

I  

P  

a

• If n · u < 0, ε = 

1 
2 

(
1 + tanh 

n ·u 
U 0 δ0 

)
. Then �0 (n , u ) − �s 0 (n , u ) =

− 1 
2 

(
1 + tanh 

n ·u 
U 0 δ

)
< 0 . So for all 0 < δ < δ0 , 

0 > �0 (n , u ) − �s 0 (n , u ) > −1 

2 

(
1 + tanh 

n · u 

U 0 δ0 

)
= −ε. 

ombining the above, we conclude that | �0 (n , u ) − �s 0 (n , u ) | < ε
or all 0 < δ < δ0 . �

This Lemma proves the limit relation between �0 ( n, u ) and

s 0 ( n, u ) given in Eq. (7) . 

efinition C.1. We define the following quantities: 

T m 

= max 
x ∈ ∂�o 

{ | T (x , t) | } , 
( maximum temperature magnitude on ∂�o ) ; (44a) 

U m 

= max 
x ∈ ∂�o 

{ | n · u (x , t) | } ;
( maximum normal velocity magnitude on ∂�o ) ; (44b) 

 0 = 

∫ 
∂�o 

dA, (area of open boundary) ; (44c) 

 0 (t) = 

∫ 
∂�o 

1 

2 

(n · u ) T 2 [ θ�0 (n , u ) − 1 ] dA ; (44d)

 s 0 (t) = 

∫ 
∂�o 

1 

2 

(n · u ) T 2 [ θ�s 0 (n , u ) − 1 ] dA ; (44e)

(t) = I 0 (t) − I s 0 (t) = 

∫ 
∂�o 

1 

2 

(n · u ) T 2 θ [ �0 (n , u ) − �s 0 (n , u ) ] d A . 

(44f) 

If T m 

= 0 or U m 

= 0 , then T ≡ 0 or n · u ≡ 0 (identically zero) on

�o , and I 0 (t) = I s 0 (t) = I(t) = 0 for all δ > 0. We next assume that

 m 

> 0 and U m 

> 0. 

efinition C.2. Let ε > 0 denote a given constant. We define: 

�a 
o (ε) = 

{
regions of ∂�o with | n · u | < 

2 ε

θT 2 m 

A 0 

}
; (45a) 

�b 
o (ε) = 

{
regions of ∂�o with | n · u | � 

2 ε

θT 2 m 

A 0 

}
; (45b) 

 

a (ε) = 

∫ 
∂�a 

o (ε) 

1 

2 

(n · u ) T 2 θ [ �0 (n , u ) − �s 0 (n , u ) ] dA ; (45c)

 

b (ε) = 

∫ 
∂�b 

o (ε) 

1 

2 

(n · u ) T 2 θ [ �0 (n , u ) − �s 0 (n , u ) ] d A . (45d)

Note that ∂�a 
o and ∂�b 

o do not overlap, ∂�o = �a 
o ∪ ∂�b 

o , and

(t) = I a (ε) + I b (ε) . 

emma C.3. Given any ε > 0, there exists a 

0 = 

2 ε
θT 2 m A 0 

U 0 tanh 

−1 
(1 − 2 ε1 ) 

, where ε1 = min 

{
1 

3 

, 
ε

θT 2 m 

U m 

A 0 

}
, 

(46) 

uch that for all 0 < δ < δ0 , 

(a ) | I a (ε) | < 

ε ; (b) 
∣∣I b (ε) 

∣∣ < 

ε
. (47)
2 2 
roof. For any given ε > 0, note that | n · u | < 

2 ε
θT 2 m A 0 

on ∂�a 
o (ε) ,

nd | n · u | � 

2 ε
θT 2 m A 0 

on ∂�b 
o (ε) . 

In light of (45c) , we have 

 

I a (ε) | � 

∫ 
∂�a 

o (ε) 

1 

2 

| n · u | T 2 θ | �0 (n , u ) − �s 0 (n , u ) | dA 

< 

θ

4 

T 2 m 

∫ 
∂�a 

o (ε) 
| n · u | dA < 

ε

2 A 0 

∫ 
∂�a 

o (ε) 

d A � 

ε

2 A 0 

∫ 
∂�o 

d A = 

ε

2 

, 

(48) 

here we have used Lemma Appendix C.1 , (4 4a) –(4 4c) , and (45a) . 

In light of (46) and (45b) , we find that on ∂�b 
o (ε) , 

0 = 

2 ε
θT 2 m A 0 

U 0 tanh 

−1 
(1 − 2 ε1 ) 

� 

| n · u | 
U 0 tanh 

−1 
(1 − 2 ε1 ) 

. (49) 

hen based on Lemma Appendix C.2 we conclude that for all

 < δ < δ0 , 

 

�0 (n , u ) − �s 0 (n , u ) | < ε1 � 

ε

θT 2 m 

U m 

A 0 

, on ∂�b 
o (ε) . (50)

n light of (45d) , we have ∣∣I b (ε) 
∣∣ � 

∫ 
∂�b 

o (ε) 

1 

2 

| n · u | T 2 θ | �0 (n , u ) − �s 0 (n , u ) | dA 

� 

θ

2 

U m 

T 2 m 

∫ 
∂�b 

o (ε) 
| �0 (n , u ) −�s 0 (n , u ) | dA < 

ε

2 A 0 

∫ 
∂�b 

o (ε) 

d A � 

ε

2 A 0 

∫ 
∂�o 

d A = 

ε

2 

, 

(51) 

here we have used (4 4a) –(4 4c) and (50) . �

emma C.4. Given any ε > 0, with δ0 given by Eq. (46) , we have for

ll 0 < δ < δ0 , | I 0 (t) − I s 0 (t) | < ε. 

roof. Invoking Lemma Appendix C.3 , for all 0 < δ < δ0 we have

 

I 0 (t) − I s 0 (t) | = 

∣∣I a (ε) + I b (ε) 
∣∣ � | I a (ε) | + 

∣∣I b (ε) 
∣∣ < 

ε
2 + 

ε
2 = ε. �

Lemma Appendix C.4 implies that lim δ→ 0 I 0 (t) = I s 0 (t) . 

efinition C.3. We define the following regions on ∂�o : 

 �+ 
o = { regions of ∂ �o with n · u > 0 } ; (52a) 

 �−
o = { regions of ∂ �o with n · u < 0 } ; (52b) 

 �0 
o = { regions of ∂ �o with n · u = 0 } . (52c) 

Note that the regions ∂�+ 
o , ∂�−

o and ∂�0 
o do not overlap, and

hat ∂ �o = ∂ �+ 
o ∪ ∂ �−

o ∪ ∂ �0 
o . 

emma C.5. With θ ≥ 1, 

 s 0 (t) = −
[∫ 

∂�+ 
o 

1 

2 

| n · u | T 2 dA + (θ − 1) 

∫ 
∂�−

o 

1 

2 

| n · u | T 2 dA 

]
� 0 . 

(53) 

roof. This conclusion follows from Eqs. (44e) and (41) . �

heorem C.6. For the open boundary condition (9) with θ > 1 on

�o , there exists a δ0 = δ0 (u , T ) > 0 such that for all 0 < δ < δ0 , 

 0 (t) = 

∫ 
∂�o 

1 

2 

(n · u ) T 2 [ θ�0 (n , u ) − 1 ] dA � 0 . (54)

roof. If ( n · u ) T 2 ≡ 0 (identically zero) on ∂�o , then I o (t) = 0 for

ll δ > 0, and the conclusion is true. 
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Let us now assume that ( n · u ) T 2 is not identically zero on ∂�o .

Then U m 

> 0, T m 

> 0, and 

∫ 
∂�o 

| n · u | T 2 dA > 0 . Let 

ε = 

∫ 
∂�+ 

o 

1 

2 

| n · u | T 2 dA + (θ − 1) 

∫ 
∂�−

o 

1 

2 

| n · u | T 2 d A . (55)

Then ε > 0, and in light of Lemma Appendix C.5 , 

I so (t) = −ε. (56)

Let δ0 be given by Eq. (46) , in which ε is given by (55) . Then for

all 0 < δ < δ0 , | I 0 (t) − I s 0 (t) | < ε according to Lemma Appendix C.4 .

Therefore, for all 0 < δ < δ0 , 

I 0 (t) = I s 0 (t) + [ I 0 (t) − I s 0 (t) ] = −ε + [ I 0 (t) − I s 0 (t) ] � −ε + 

| I 0 (t) − I s 0 (t) | < −ε + ε = 0 . �

Theorem 2.1 follows from Theorem Appendix C.6 and Eq. (39) . 

The Case with θ = 1 

In Theorems Appendix C.6 and 2.1 we have excluded the case

with θ = 1 for the open boundary condition (9) on ∂�o . We next

briefly discuss the case with θ = 1 . 

We only need to consider the situation in which ( n · u ) T 2 is not

identically zero on ∂�o . Then U m 

> 0, T m 

> 0 and 

∫ 
∂�o 

| n · u | T 2 dA >

0 . With θ = 1 , Eq. (53) is reduced to 

I s 0 (t) = −
∫ 
∂�+ 

o 

1 

2 

| n · u | T 2 dA � 0 . (57)

If I s 0 ( t ) < 0, then this case can be dealt with in the same way as

for θ > 1, and the proof for Theorem Appendix C.6 can be applied

here for θ = 1 . So we conclude that I 0 ( t ) < 0 for all 0 < δ < δ0 with

δ0 given by (46) , in which ε = 

∫ 
∂�+ 

o 

1 
2 | n · u | T 2 d A . . 

Let us now focus on the situation I s 0 (t) = 0 . This is possible be-

cause the region ∂�+ 
o may not exist, or ( n · u ) T 2 may be identically

zero on ∂�+ 
o . In this case we cannot conclude that I 0 ( t ) ≤ 0 any-

more. However, we can still show that, for all 0 < δ < δ0 with some

δ0 > 0, 

∂ 

∂t 

(∫ 
�

1 

2 

| T | 2 d �+ αD 0 

∫ 
∂�o 

1 

2 

| T | 2 d A 

)
= −α

∫ 
�

| ∇T | 2 d�+ I 0 (t) � 0 . (58)

Note that the equality in the above relation stems from Eq. (39) . 

If the temperature is a uniform field, then by subtracting this

uniform temperature during non-dimensionalization, we conclude

that the non-dimensional temperature T = 0 , and thus I 0 (t) = 0 .

So the relation (58) holds. In the following we assume that T is

not uniform and ∇T is not identically zero on �. Let 

ε = α

∫ 
�

|∇T | 2 d�. (59)

Then ε > 0. Let δ0 be given by Eq. (46) , in which ε is given by (59) .

Then by Lemma Appendix C.4 , for all 0 < δ < δ0 , we have | I 0 (t) −
I s 0 (t) | < ε. It follows that 

−α

∫ 
�

|∇T | 2 d� + I 0 (t) = −ε + [ I 0 (t) − I s 0 (t) ] � −ε

+ | I 0 (t) − I s 0 (t) | < −ε + ε = 0 . (60)

So the inequality in (58) holds. 
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