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Simulating two-phase flows in realistic industrial-complexity conditions remains an open 
problem. We present a phase-field method based on the Cahn-Hilliard equation that is able 
to simulate two-phase flow at high Reynolds number and at large density and viscosity 
ratios. We employ the entropy-viscosity method (EVM), applied both on the Navier-Stokes 
equations and phase-field equation, to stabilize the simulation in conjunction with an EVM-
based artificial interface compression method (AICM) that maintains the sharpness of the 
interface. We implement this method based on a hybrid spectral-element/Fourier (SEF) 
discretization and demonstrate second-order accuracy in time and spectral convergence 
rate in space for smoothed fabricated solutions. We first test the accuracy and robustness 
of the stabilized SEF-EVM solver by solving the so-called three-dimensional “LeVeque 
problem” and compare against other available methods. Subsequently, we simulate a rising 
air bubble in a water container and find that the method is robust with respect to various 
parameters of the phase-field formulation. Lastly, we apply the method to simulate the 
onset and subsequent evolution of an air/oil slug in a long horizontal pipe using realistic 
parameters and incorporating gravity and surface tension effects. This is a particularly 
difficult flow to simulate with existing methods in realistic conditions and here we show 
that the new stabilized phase-field methods yields results in good agreement with the 
experimental data.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Two-phase flows are of great interest in many industrial applications such as oil and gas production, cooling of nuclear 
reactors, boiling and condensation in power plants, and fuel oil atomization in engines. Despite the development of several 
Eulerian and Lagrangian numerical methods and the still rapidly increasing computational speeds, the numerical simulation 
of two-phase flows in realistic conditions is an open challenge as it requires resolution of extremely unsteady, irregular and 
multiscale flow motions as well as frequent interface topology (non-smooth) changes. Specifically, difficulties in the simu-
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lation are due, but are not limited to: (1) accurately describing the complex interface morphology; (2) achieving numerical 
stability in simulating two-phase flow at large density ratio and high Reynolds number; and (3) overcoming the computing 
bottleneck caused by the required highly resolved mesh. Currently, there are three widely used (Eulerian) methods that 
have attempted to tackle these difficulties, namely the volume of fluid (VoF) method, the level-set method, and the phase-
field method. The VoF method is very popular in the engineering community, as it has clear physical interpretation and 
good mass conservation properties, but in principle, the marker function of the VoF method is a discontinuous field, thus 
an interface reconstruction step, such as the piece-wise linear interface construction [1,2] is necessary to obtain accurate 
approximations of interface curvature and normal direction. We note that for the VoF method in OpenFoam, an interface 
compression technique [3,4] is employed to maintain the sharpness of the interface, instead of interface reconstruction. 
The level-set method uses a continuous signed distance function as the marker to distinguish different fluids. One of the 
appealing advantages of the level-set method is that no additional procedure is required to compute the interface curvature 
and normal direction. However, in practice, the level-set function has to be re-initialized [5–7] every once in a while in 
order to maintain the so-called property of “signed distance”. Moreover, the level-set method suffers considerably from the 
problem of losing mass and usually an explicit mass correction step is necessary [7]. Note that the conservative level-set 
method [8,9] and coupled level-set volume of fluid (CLSVOF) [10] method are also proposed to address the issue of mass 
conservation.

Conventionally, the above two methods are regarded as sharp interface methods, although the sharpness of the interface 
may be lost due to numerical effects, e.g., if the continuum surface force (CSF) is involved, which re-distributes the surface 
tension to a surrounding fluid. Nonetheless, in this paper, our interest is in the phase-field method. In contrast to the sharp 
interface approaches, here a diffuse interface is developed with nonzero thickness to connect the two immiscible fluids. A 
particularly attractive feature of the phase-field method is that the governing equations are derived from an energy varia-
tional approach, which leads to well-posed nonlinear coupled systems consistent with the thermodynamic laws [11]. Among 
the different formulations of the phase-field method, the Cahn-Hilliard approach is most popular since it has the intrinsic 
property of conserving mass [12] and it has been verified by numerical experiments of two phase fluids with different den-
sities [11]. In particular, [13] proposed an efficient time-stepping scheme for the coupled incompressible Navier-Stokes and 
Cahn-Hilliard equations, which is proved numerically to be suitable for problems with density ratio up to 1 000. However, as 
was pointed out in a recent review [14], there are no reports on the application of the phase-field method to realistic and 
industrial scale two-phase flows. For the realistic two-phase flow, the challenge is not only limited to large density ratio, but 
is also associated with high Reynolds number, as the combined effect of the two makes the simulation extremely difficult 
to stabilize for codes that use explicit or semi-implicit time marching schemes, which are very common in direct numerical 
simulation (DNS) and large-eddy simulation (LES). Hence, in the current work, we introduce the so-called entropy-viscosity 
method (EVM) proposed by [15,16] to control such explosive numerical instabilities. We note that EVM can be also re-
garded as a promising subgrid eddy viscosity model for LES, as has been demonstrated recently by systematic numerical 
experiments of single phase turbulent flows [17,18]. In this paper, our attention is to apply the phase-field method to the 
simulation of the two-phase slug flow in a circular pipe, which is one of the most complex two-phase flow patterns in 
fluid dynamics [19,20]. We note that there are several other popular methods, e.g., the marker-and-cell method [21], the 
front tracking method [22] and the two-fluid method [23], but these methods are either suitable to particular type of two 
phase flow or impractical for realistic applications. As a final note, we would like to mention that [7] (section 6.2) gives a 
theoretical prof that the formula of surface tension term in the phase-field method is equivalent to the CSF approach in the 
VoF or level-set methods.

The rest of the paper is organized as follows: in section 2 we will present the algorithms to solve the coupled Navier-
Stokes Cahn-Hilliard equations in the framework of the spectral-element/Fourier (SEF) discretization. In the same section, 
we will also propose the EVM with the associated AICM. In section 3, we test the convergence rate, and present the three-
dimensional LeVeque problem and another benchmark, i.e., a rising air bubble in a water container. In section 4, we apply 
our method to simulate slug initiation and propagation in a horizontal pipe of 54 mm diameter and 4 m length using 
realistic parameters.

2. Mathematical models and numerical methods

2.1. Governing equations

In this paper, we consider the phase-field approach introduced by [13] for incompressible flows of gas/liquid, i.e., two 
immiscible fluids, which are governed by the following coupled system of equations,

∂u

∂t
+ u · ∇u = −∇p

ρ
+ μ

ρ
∇2u + ∇μ

ρ
· (∇u + ∇uT) − λ

ρ
(∇2φ)∇φ + f(x, t)

ρ
+ ∇ · (νE∇u), (1)

∇ · u = 0, (2)

∂φ + u · ∇φ = −λγ1∇2
[
∇2φ − h(φ)

]
+ ∇ · (Cφ∇φ). (3)
∂t
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In the above equations, u(x, t) is velocity, p(x, t) is pressure, and f(x, t) is a body force (mainly gravity in this paper), 
where x is the spatial coordinate and t is time, also νE is the so called entropy-viscosity; the detailed formulas will be 
given in section 2.2. Here φ(x, t) is the so-called phase-field variable, whose value varies continuously in a range [−1, 1]
over the whole computational domain �. The region of φ = 1 and φ = −1 represent the first (gas) and second (liquid) 
fluid, respectively. The iso-surface of φ(x, t) = 0 marks the free interface between gas and liquid at time t . In equation 
(3), h(φ) = 1

η2 φ(φ2 − 1) is from the assumption of double-well potential, where η is the interface thickness parameter. Also 

λ = 3
2
√

2
ση is the mixing energy density, where σ is the interfacial surface tension coefficient that is assumed to be constant 

throughout this paper, and γ1 is the interface mobility. The value of γ1 could substantially affect the simulation results and 
will be discussed in section 4. In particular, νE (x, t) ≥ 0 is the so called entropy-viscosity that could stabilize the simulation 
of flow at high Reynolds number on a under-resolved mesh, while Cφ(x, t) is a combined coefficient of diffusion and 
anti-diffusion, the definition of which will be clear in section 2.3. Diffusion ensures that the solution overshoot (φ > 1.0) or 
undershoot (φ < −1.0) are in a reasonable range, while anti-diffusion can sharpen the interface dynamically and adaptively. 
The density ρ and dynamic viscosity μ are defined by the following formulas,

ρ(φ) = ρ1 + ρ2

2
+ ρ1 − ρ2

2
φ, μ(φ) = μ1 + μ2

2
+ μ1 − μ2

2
φ, (4)

where (ρ1, μ1) and (ρ2, μ2) are the pair of densities, dynamic viscosity of the first fluid (gas) and second fluid (liquid), 
respectively.

2.2. Entropy-viscosity method stabilization

In equation (1), the role that the scalar νE plays is similar to that of the eddy viscosity of LES models. Here, to simplify 
the calculation we will lump the value of the entropy-viscosity into a single number computed over an entire spectral 
element. The original formula of EVM was proposed by [15,24] and modified in [17,18] to compute the entropy-viscosity in 
each element K at the collocation points i jm as follows:

νE |K = min{βE‖u‖L∞(K )δK ,αE

‖R K
ijm(u)‖L∞(K )

‖E K
ijm(u) − Ē(u)‖L∞(� J )

δ2
K }, (5)

where δK is the minimum distance between two quadrature points in element K , αE and βE are two model parameters. In 
this paper, unless explicitly stated otherwise, βE = 0.5 is always used, while the value of αE will be discussed in subsequent 
sections. Note that we use the maximum norm L∞(K ) over an element K , while L∞(� J ) over the region � J , where 
J = 1, 2, represents the computational domain of φ ≥ 0 and φ < 0, respectively. Here we note that the entropy-viscosity 
model is a promising new approach for LES, as the systematic simulations [17] of single phase turbulent pipe flow show 
that the eddy-viscosity of this model scales with the cube of the distance from the wall and approaches zero at the wall, 
which is theoretically correct. We define the various quantities as follows:

E K
ijm(u) = 1

2
(uK

i jm − u(� J ))
2, Ē(u) =

∫
� J

E K
i jm(u) · dx∫
� J

dx
(6)

R K
ijm(u) = u · (

∂u

∂t
+ u · ∇u + ∇p

ρ
− μ

ρ
∇2u − ∇μ

ρ
· (∇u + ∇uT) + λ

ρ
(∇2φ)∇φ − f(x, t)

ρ
)|K

i jm, (7)

where u(� J ) is the mean value of u in region � J .

2.3. Entropy-viscosity method interface sharpening

A special difficulty for solving the fourth-order Cahn-Hilliard equation is that this equation cannot be discretized by C0

spectral-element or finite-element method directly. To this end, [13] proposed the following second-order stabilization term 
added on the right hand side of equation (3),

S
λγ1

η2
∇2(φn+1 − φ∗,n+1), (8)

where S is a chosen constant satisfying S ≥ η2
√

4γ0
λγ1�t and φ∗,n+1 = ∑ Je

k=0 βkχ
n−k is the Jeth order extrapolation of φn+1, 

n is the time step number, �t is the time step, and γ0 = ∑ Je
k αk , αk and βk are the weights of the stiffly-stable integration 

scheme, the values of which can be found in [25]. In the simulation of slug flow (see section 4), λγ1 ∝ η2, which gives rise 
to following estimation,



4 Z. Wang et al. / Journal of Computational Physics 397 (2019) 108832
S
λγ1

η2
≥ η�t−0.5. (9)

The above equation indicates that although φ∗,n+1 is a second-order approximation of φn+1 with respect to �t , the numeri-
cal diffusion introduced by the term in equation (8) is no longer negligible when η is large, which is very likely for the case 
of large scale simulation, and the results become worse when a long time simulation is involved. Therefore, in addition to 
its intrinsic diffusion, the method proposed in [13] introduces extra numerical diffusion. On one hand, numerical diffusion 
can smooth the solution making the simulation more stable, but on the other hand, one of the side effect due to the dif-
fusion is that the interface is eventually thickened. Moreover, our experience of the simulation of the two-phase flow using 
realistic parameters shows that the diffusion introduced by the term in equation (8) is not an effective remedy in terms of 
stabilization.

To stabilize the simulation and limit the thickening effect simultaneously, a term that combines the entropy-viscosity 
and artificial interface compression is introduced to equation (3). We note that the idea of compressing the interface is 
not totally new, it is also used in the VoF method in OpenFoam [3,26,4]. Sometimes it is referred to as the anti-diffusion 
method, e.g., VoF method in [27], conservative level-set method in [9,28], while its original form was proposed by [29]. In 
our implementation, Cφ is defined as follows,

Cφ = (
1 − Ccomp

νC

‖u‖(1 − φ2)

‖∇φ‖
)
νT , (10)

where ‖ · ‖ is the Euclidean norm, and the term 1 − φ2 ensures that Ccomp
νC

‖u‖(1−φ2)
‖∇φ‖ is non-negative and only active in the 

interfacial area where −1 < φ < 1. νT is the entropy-viscosity for the Cahn-Hilliard equation, the definition of which will 
become clear shortly; νC is the normalization of νT , the value of which can be obtained by using following formula,

νC = λγ1

η2
. (11)

Note that the level of compression depends on the adjustable constant Ccomp. In this paper, unless explicitly mentioned 
otherwise, we take Ccomp = 0.1. The value of νT is obtained by the following equations,

νT |K = min{βT ‖u‖L∞(K )δK ,αT

‖R K
ijm(φ)‖L∞(K )

‖E K
ijm(φ) − Ē(φ)‖L∞(�)

δ2
K }, (12)

where αT and βT are two parameters. Again, in this paper, unless explicitly mentioned otherwise βT = 0.5, thus only αT is 
the free parameter. In the above equations, the various quantities are defined as follows:

E K
ijm(φ) = 1

2
(φK

i jm − φ(�))2, Ē(φ) =
∫
�

E K
ijm(φ) · dx∫
�

dx
(13)

R K
ijm(φ) = φ · ( ∂φ

∂t
+ u · ∇φ + λγ1∇2

[
∇2φ + h(φ)

]
)|K

i jm. (14)

We note the difference between � J used in equations (5)-(7) and equations (12)-(14). We also note that if νC = ‖u‖hreg, 
the current artificial interface compression model by equation (10) is equivalent to the anti-diffusion model proposed in [9,
28], where hreg is a regularized version of mesh size. An alternative method was proposed by [12] who employed variable 
fractional order derivatives to control the sharpness of the interface in their phase-field simulation.

The above coupled system of equations is solved by the algorithm proposed in section 2.2 of [13], which was sub-
sequently extended to the simulation of N-phase flow [30,31], heat transfer of two-phase flow [32] and pipe vibration 
induced by internal two phase flow [33], which are all at low Reynolds number. The algorithm uses a velocity-correction 
scheme to update the velocity field and pressure field in the Navier-Stokes equations with variable density and viscosity. In 
space, equal-order spectral-element discretization is used for the velocity and the pressure over a (x − y) plane, and Fourier 
expansion is used in the homogeneous direction (z direction) [34,25]. The advantage of the algorithm is that only constant 
(time-independent) coefficient matrices are involved after discretization, despite the fact that the coupled system is associ-
ated with the variable density and variable viscosity. Another attractive feature of this algorithm is its capability of dealing 
with large density ratios. However, as we mentioned before, for simulation of two-phase flows using realistic parameters, 
the challenges come from both the large density ratio and the high Reynolds number, hence the entropy-viscosity approach 
is necessary to ensure the simulation remains stable.

3. Verification and convergences rates

In the aforementioned method, there are two free parameters, namely αE for EVM in Navier-Stokes equations and αT in 
the Cahn-Hilliard equation. In this section, we will study the sensitivity due to these two parameters. For all the simulations 
in this section, we use dimensionless parameters.
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Fig. 1. Temporal (a) and spatial (b) convergence rates of L2 errors against the fabricated smoothed solution: line with circles, velocity (x component u); line 
with triangles, pressure p; line with squares, phase-field variable φ. Blue lines represent the DNS (αE = 0.0 and αT = 0.0) results and red lines represent 
the results of simulation using both EVM stabilization and AICM with αE = 10−3, αT = 10−3. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

3.1. Convergence rates for analytic solution

Here we test the accuracy of the method for the coupled system of Navier-Stokes equations and Cahn-Hilliard 
equation by employing a manufactured solution that was also used by [13,32]. We consider a cubic domain � =
(x, y, z) : 0 ≤ x ≤ 2, −1 ≤ y ≤ 1, 0 ≤ z ≤ 2 and the analytic solution is defined as follows,

u(x, y, z) = A cos(a0x) cos(b0 y) cos(c0z) sin(w0t),

v(x, y, z) = 0, (15)

w(x, y, z) = B sin(a0x) cos(b0 y) sin(c0z) sin(w0t),

φ(x, y, z) = A1 cos(a1x) cos(b1 y) cos(c1z) sin(w1t),

where A = 1.0, a0 = π , b0 = 3
2 π , c0 = 1.0, w0 = 1.0, A1 = 1.0, a1 = π , b1 = π , c1 = π and w1 = 1.0. Note that during 

the simulation, a time-dependent body force for the Navier-Stokes equation and a source to the Cahn-Hilliard equations is 
imposed, which can be obtained by substituting the solution of (15) to the corresponding equations. On the four boundaries 
of the rectangular domain [0, 2] × [−1, 1] that was partitioned into two quadrilateral elements along the x direction evenly, 
Dirichlet boundary conditions for the velocity are imposed, while a homogeneous Neumann boundary condition is employed 
for the Chan-Hilliard equation. The initial condition is obtained from the solution of equation (15) by setting t = 0, and we 
use following set of parameters,

ρ1 = 1.0, ρ2 = 3.0, μ1 = 0.01, μ2 = 0.02,

λ = 10−3, γ1 = 10−3, η = 10−2. (16)

To obtain the convergence rate with respect to time step �t , we have fixed the spectral element order to be 18 and 
systematically varied the �t . For each �t , we perform the simulation from t = 0 to t = 1, then compute the L2 errors of 
the velocity, pressure and phase-field variable at t = 1.0. In space, in order to achieve spectral convergence, we have fixed 
the �t = 10−3 and systematically increased the spectral element order from 6 to 18, and the L2 errors are calculated at 
t = 1.0. We note that both EVM and AICM with αE = 10−3, αT = 10−3, are employed for solving the Navier-Stokes equations 
and the Cahn-Hilliard equation. Fig. 1a plots the temporal error variation with �t . We see that the method can achieve a 
second-order convergence rate for velocity and pressure, when the values of the parameters αE and αT are as small as 
10−3. The convergence rate of phase-field variable is second-order at large �t , but it reduces to approximate 1.9, when 
�t ≤ 2 × 10−2. Fig. 1b demonstrates the exponential convergence with respect to the spectral element order. As shown in 
this plot, the method with EVM and AICM is as accurate as that of DNS when the element order is up to 12 and produces 
slightly larger errors when the spectral element order is beyond 12.

3.2. The three-dimensional LeVeque benchmark test

In this section, we perform three-dimensional tests for the problem proposed by [35], which is often used in testing the 
level-set [36,9] and VoF [37] methods. However, to the best of our knowledge, this problem has not been tested using the 
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Fig. 2. Phase-Field simulation result of the interface evolution of the three dimensional LeVeque problem for different resolutions, (a) Nz = 64, (b) Nz = 128, 
(c) Nz = 256. Snapshots are at time t = 0, 0.3, 0.6, 1.0, 1.5, 2.0, 2.5, 3.0, from the left to right. Here, we have set λγ1 = 10−11 and αT = 0.1.

phase-field method before. For this problem, the velocity vector u = (u, v, w) in the unit cubic computational domain is 
given by

u(x, y, z) = 2 sin2(πx) sin(2π y) sin(2π z) cos(πt/T ),

v(x, y, z) = − sin(2πx) sin2(π y) sin(2π z) cos(πt/T ), (17)

w(x, y, z) = − sin(2πx) sin(2π y) sin2(π z) cos(πt/T ),

where T = 3 is the time period. The initial field of φ is given by

φ(x, y, z) = − tanh
(√

(x − x0)2 + (y − y0)2 + (z − z0)2 − R√
2η

)
, (18)

where x0 = y0 = z0 = 0.35, R = 0.15. As shown in equation (18), initially, the interface forms a sphere, and subsequently it is 
stretched out by the velocity field shown in equation (17). In particular, it develops a very thin film at t = T /2, which could 
be under-resolved depending on the mesh resolution and volume loss due to numerical diffusion. The interface recovers the 
sphere at t = T .

Here the solutions were obtained from three different grids: on grid 1, the unit square in the x − y plane is partitioned 
into 13 × 13 quadrangles and 64 Fourier planes along z direction; on grid 2, the domain is partitioned into 26 × 26 quadri-
lateral elements and 128 Fourier planes; on grid 3, the domain consists of 42 × 42 quadrilateral elements and 256 Fourier 
planes. In all three simulations, we have used 5 spectral-element modes and a constant time step �t = 6.25 × 10−4.

For the LeVeque problem, the evolution of the interface is governed by an advection equation, which is different form 
the Cahn-Hilliard equation (3), where on the right-hand-side there is a diffusion term that is controlled by the coefficient 
λγ1. In the test, we have used λγ1 = 10−11 to minimize the effect of the diffusion. For all the simulations in this section, 
αT = 0.1 is used to obtain νT .

Fig. 2 shows the time series of the iso-surfaces of φ = 0 for different resolutions. We see that for the case using 64
Fourier planes, the phase-field simulation can almost recover the sphere after one period, which is significantly better than 
the corresponding result presented in [36]. Using 128 Fourier planes, our simulation result is as good as that presented in 
[9] on a mesh with resolution 1003. Increasing the number of Fourier planes to 256, the current phase-field simulation can 
achieve very smooth iso-surface and recover the sphere after one period almost perfectly, which is comparable with the 
VoF simulation published in [37] using a mesh resolution of 2003, as well as the level-set simulation in [38] on a mesh 
consisting of 5123 cells.
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Fig. 3. Volume loss of the second fluid (φ ≤ 0) from the phase-field simulation of the three-dimensional LeVeque problem at different resolutions. Black 
line Nz = 64, blue line Nz = 128, red line Nz = 256.

Fig. 3 shows the volume loss from the phase-field simulation for different resolutions. We observe that in the worst 
scenario the volume loss error rises up to near 5%, for the mesh consisting of 64 Fourier planes, around time t = T

2 , when 
the iso-surface develops a very thin film. However, when the resolution is increased to 128 and beyond, the volume loss 
error is less than 2% for the whole simulation duration.

3.3. Two-dimensional air bubble rising in a water container

In this section, in order to further evaluate the performance of EVM and AICM, following the work in [13], we have 
performed simulations of a two-dimensional air bubble rising in a closed water container. Specifically, we have considered 
the case that the container’s size is 2 cm×3 cm and a bubble diameter is 1 cm. Note that here we still use non-dimensional 
parameters, and the normalization is the same as that in section 3.3 of [13]. The computational domain is a rectangle: 
� = {(x, y) : −0.5 ≤ x ≤ 0.5, 0.0 ≤ y ≤ 1.5} that consists of 28 × 42 quadrilateral elements. Initially, the water is still and a 
circular air bubble with radius R0 = 0.25 is placed at (x0, y0) = (0, 0.5), which corresponds to the following initial condition 
for the Cahn-Hilliard equation,

φ(x, y) = − tanh
(√

(x − x0)2 + (y − y0)2 − R0√
2η

)
. (19)

We have used the following physical parameters,

ρ1 = 1.0, ρ2 = 829.08,

μ1 = 5.2 × 10−3, μ2 = 0.2927, (20)

σ = 151.1628, g = −9.8,

as well as following numerical parameters,

η = 0.01, λγ0 = 10−7, (21)

where g is the non-dimensional gravitational acceleration along the −y direction. In all the simulations, 5 spectral-element 
modes and a time step �t = 2.5 × 10−3 are used.

Fig. 4 shows snapshots of the bubble interface at different value of αT , before it reaches the top wall. The difference 
is negligible among the results from the simulations using αT ≤ 0.01, while for the simulation using αT = 0.1, the result 
is slightly different at the position where the interface has large curvature, see the figure of t = 1.275. In Fig. 5 we plot 
the time history of the lost liquid volume for the four cases. Similarly as previously, we see that the volume losses for 
the simulations using αT ≤ 0.01 are indistinguishable, while the loss for αT = 0.1 is slightly larger than the previous 
simulations, but the overall loss is within 2% when the simulation reaches t = 2.5.

To summarize, our phase-field method based on the SEF can achieve second-order temporal accuracy and spectral spatial 
convergence for fabricated smooth solutions, which results in better simulation results compared with the Level-Set or VoF 
method using the low-order finite element or finite volume discretization. From the simulation of the rising air bubble in a 
water container, we find that the solution of the Cahn-Hilliard equation is not very sensitive to the entropy-viscosity, when 
the parameter αT ≤ 0.1.
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Fig. 4. Time sequence of snapshots of a rising air bubble in a water container. Black line, DNS (αE = 0, αT = 0); blue line, αE = 0.01, αT = 0; green line, 
αE = 0.01, αT = 0.01; red line, αE = 0.01, αT = 0.1. Initially, the air bubble is a circle of diameter 1 cm, the size of the container is 2 cm × 3 cm. The last 
lower right plot shows a direct comparison between current DNS result and previous results of [13] (orange circles) at t = 0.4.

Fig. 5. Time history of the lost liquid volume for the simulation of a rising air bubble in a water container. V 0 is the initial volume of liquid, V is the 
instantaneous value from the simulations. The vertical dashed line corresponds to t = 1.525, when the bubble reaches the top wall.

4. Application to slug flow

In this section, we will apply our method to simulate the two-phase slug flow initiating from the stratified flow in a 
horizontal pipe of diameter D = 54 mm. Note that this diameter is often used in experiments and simulations, see [39,
26,40]. A pipe aspect ratio Lz

D ≥ 150 with inflow and outflow boundary conditions is often used both in experiments [41,
42] and simulations [43], but the study of [39] found that it is difficult to exclude the artificial boundary effects in the 
simulation if inlet and outlet boundary conditions are used, while the effect is less pronounced for periodic boundary 
conditions. Nonetheless, the successful simulation [39] of slug flow with periodic boundary conditions in a shorter pipe 
( Lz

D = 74.1) clearly shows the advantages of using periodic boundary condition in simulations of slug flows in a very long 
pipe. Here we have carried out our simulations in a pipe with a length Lz = 75D . Different from previous sections, here we 
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Fig. 6. A sketch of the two-phase oil/air flow in a horizontal pipe of diameter D and the spectral element mesh for a cross section. In the pipe, the blue 
color area is oil, blank area is air and green color indicates the interfacial area. On the cross-section (x − y plane), there are 288 quadrilateral prismatic 
elements, while along the pipe axis direction (z direction), Fourier expansion is used. Note that for the elements on the cross-section, the maximum edge 
length is 0.0716D and the minimum length is 0.0165D .

have used dimensional parameters. The physical properties of the two fluids have realistic values corresponding to air and 
Shell Tellus 22 oil measured by [41], and are listed below,

ρ1 = 1.18 kg/m3, ρ2 = 860 kg/m3,

μ1 = 1.83 × 10−5 kg/(m · s), μ2 = 6.0 × 10−2 kg/(m · s), (22)

σ = 3.0 × 10−2 kg/s2, g = −9.8 m/s2.

Note that the above parameters result in a density ratio and viscosity ratio:

ρ2

ρ1
= 728.81,

μ2

μ1
= 3 287.7. (23)

The computational domain consists of 288 quadrilateral elements, as shown in the bottom panel of Fig. 6. On the pipe wall 
we have imposed homogeneous Dirichlet boundary conditions for velocity and homogeneous Neumann boundary conditions 
for the Cahn-Hilliard equation. We assume the initial oil/air two phase flow system is fully segregated, with air flowing 
above the oil and parallel to the pipe axis, as sketched in the top panel of Fig. 6, while the initial height of oil level along 
the pipe is given by [39] as follows,

φ(x, y, z) = tanh(
y + 0.2R sin(4π z

Lz
)√

2η
), (24)

where R = 27 mm is the radius of the pipe. Note that the above formula results in the air and oil volume fraction of 50%
and a sinusoidal disturbed free surface. In equation (24), the interface thickness parameter η is determined by the resolution 
of the simulations. In previous work, [44] reported that their phase-field method implemented in a Fourier code requires 
7 − 10 grid points across the interface to avoid numerical instabilities. Here, our own experience shows that the following 
rule is adequate to eliminate the spurious errors,

η = 1.2
Lz

Nz
, (25)

where Nz is the number of Fourier planes along the pipe. Note that for the current simulations, the above equation auto-
matically fulfills the resolution requirement on the cross section, where 3 spectral element modes are used, which results 
in a finer mesh grid point on the x − y plane than that on z direction. In the rest of this section, we will present simulation 
results for the following two cases:

case 1, Nz = 1024; case 2, Nz = 2048.

Moreover, the initial velocity field is obtained from our previous simulation of single phase flow [17], which is a fully 
developed turbulent flow at ReD = 5 300. To be precise, the initial bulk velocity re-scaled to Ubulk = 0.1 m/s.

In both simulations, we have employed a constant time step �t = 10−5 s, and entropy-viscosity parameter αE = 0.1, 
αT = 0.1. A dynamic driving force is used to maintain the air superficial velocity Usg = 2 m/s as follows,

F z = ρ1
Uinst − Usg

, (26)

�t
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where F z is z-component of the driving force and Uinst is the instantaneous air superficial velocity calculated at each time 
step. In the simulation, the above driving force accelerates the air superficial velocity to the target U sg = 2 m/s after 250 
iterations, while the oil superficial velocity Usl keeps increasing during the entire simulation reaching the value 1.68 m/s
after 125 000 iterations. It is worth noting that the pair of superficial velocities {Usg , Usl} is located inside the well-defined 
slug flow regime, see the flow pattern map in [45]. Also note that the characteristic Reynolds numbers for the current 
simulation are as follows,

Resg = ρ1Usg D

μ1
= 6 964, Resl = ρ2Usl D

μ2
≈ 1 300, (27)

where Usl ≈ 1.68 m/s is obtained at t = 1.25 s.
Before advancing to the simulation results, there is one more parameter to determine, that is the interface mobility γ1. In 

the previous section of the simulation of a rising air bubble in a water container, we have used the rule of [13] to determine 
the value of interface mobility γ1, which reports that the simulation results are virtually the same when γ ∗

1 ≤ 10−4, where 
γ ∗

1 = 3σγ1

2
√

2D2Usg
is the mobility number [46]. However, in the literature, γ ∗

1 is usually assumed to be a function of Cn = η
D , 

e.g., the following scaling law was suggested by [47,46,48],

γ ∗
1 = M0 CnM , (28)

where M0 and M are model constants. Actually, [47] proposes that 1 < M ≤ 2, concerning the relationship among diffusion, 
strain and chemical potential, while [46] gives a theoretical scaling law to calculate the optimal value, i.e. γ ∗

1 = 3Cn2. More 
recently, in a series of papers [48,49] rigorously proved that the phase-field model converges to sharp interface method 
when M = 0 or M = 1, but this is not true when M > 3. Based on the above studies, we have used the following scaling 
law in our simulation of slug flows,

γ ∗
1 = 0.2 Cn. (29)

We find that the above relationship leads to successful simulations of slug flow initiated from stratified flow, both for case
1 with Cn = 0.0879 and case 2 with Cn = 0.0439.

Fig. 7 exhibits the whole process of slug initiation and propagation along the pipe. Initially, at t = 0.005 s, the interface 
is smoothed but it is quickly transformed into a wavy structure at t = 0.13 s. The wave height keeps rising, and by t = 0.23
s, there are two notable large wave structures, one is in the middle and the other one is close to the right end of the pipe. 
At t = 0.29 s, as the large wave exits the right end and enters from the left end (note we use periodic boundary condition), 
it has gained more liquid and developed into a full slug, while the large wave on the middle also grows, but its size is not 
large enough to block the whole air flow passage. Note that for case 2, the full slug first forms at t = 0.277 s, while for case
1, the slug first forms at t = 0.227 s. Subsequently, the slug picks up more liquid as it is moved downstream by air flow 
and the large wave on the middle is still growing, see the snapshot at t = 0.405 s. Surprisingly, the slug becomes shorter 
and the height of the large wave is decreased when time reaches t = 0.62 s. The length of the slug grows continuously after 
t = 0.77 s, and notably, there is air entrained into the liquid slug body. Meanwhile, the previous large wave in the middle 
has totally disappeared, as shown in the snapshots at t = 1.0 s and t = 1.20 s. Fig. 8 shows the corresponding vortical flow 
structures in the pipe. At t = 0.005 s, small scale vortices are uniformly distributed in the gas flow, but the vortices quickly 
concentrate in an area where the wave is rising, as shown in the second snapshot from the top. By the time when the slug 
is fully formed, which is shown in the fourth snapshot, considerably more vortical structures are generated inside the pipe 
and there is a steep pressure drop between the slug front and the tail. As the slug is moving downstream and picking up 
more liquid, more vortical structures are produced in the area where free interface is evolving and changing rapidly.

Fig. 9 plots the liquid holdup along the pipe at time instant t = 1.05 s (black line) and t = 1.075 s (blue line). Here liquid 
holdup is defined as the ratio of the area occupied by liquid and the area of the entire cross-section. In Fig. 9, we compare 
the locations of the slug front at t = 1.05 s and t = 1.075 s. We can observe the fact that the slug moves a distance of 
2.38D , but the large wave shown on the left of the plot only moves a distance of 1.87D during the same time interval, 
indicating that the slug moves faster than a wave. The simulation result that the slug translational velocity U F is larger than 
the averaged air flow speed Us = 2Usg is consistent with the experimental observations in [50,51]. For this particular case, 
the relationship U F = 1.29Us is in good agreement with the experimental correlation proposed in [51], which shows that 
U F is in a range of 1.25 − 1.3 Us for the situation that slug has notable aeration. This figure also shows that at t = 1.075
s, the length of the slug has increased to about 12D . The slug length is still growing, and when t = 1.20 s, the length is 
over 17D , which is consistent with the experimental measurements, see Table 1. Fig. 10 shows the evolution of the slug 
signals at different axial locations. The overall patterns of these signals are very similar to the experimental measurements 
presented in [52].

5. Concluding remarks

We have presented a stabilized phase-field method based on the entropy-viscosity method (EVM) for simulating two-
phase flows at high Reynolds number, large density and viscosity ratios. We have introduced an artificial interface compres-
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Fig. 7. Time sequence of snapshots of the slug initiation and propagation along the 4 m long horizontal pipe. Note that in each snapshot, the blue color 
area is occupied by oil, while the green area is the interface between oil and air. The volume fraction of the air is 50%. View from top to bottom: t = 0.005
s; t = 0.13 s; t = 0.23 s; t = 0.29 s; t = 0.405 s; t = 0.62 s; t = 0.77 s; t = 1.00 s; t = 1.20 s. Flow is from left to right.

Table 1
Predicted slug length using the SEF-EVM. Note that case 1 and case 2 have same resolution 
on the pipe cross-section, but the former uses 1024 Fourier planes, while the latter uses 
2048 Fourier planes. For both cases, the slug length is obtained at t = 1.25 s. The defini-
tion of slug length is shown in Fig. 9. The VoF simulation of [53] and level-set simulation 
of [41] are done by commercial software TransAT and Fluent, respectively.

Study Method Fluids D (mm) Lz
D

Ls
D

case 1 phase-field air-oil 54 75 9.44
case 2 phase-field air-oil 54 75 16.48
[53] VoF air-water 20 200 15-20
[41] level-set air-water 78 205 2-4
[54] experiment air-water 53 321 15-20

sion technique that is also based on EVM for sharpening the interface. We have detailed the method that is implemented 
using Fourier/spectral-element discretization and gave explicit values for the parameter αE and αT . The method can achieve 
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Fig. 8. Time sequence of snapshots of the vortices in the 4 m long horizontal pipe. The vortices are represented by iso-surfaces of Q-criterion Q = 1.5
U 2

sg

D2

and colored by the magnitude of pressure p. The time of each snapshot is same as the corresponding slug images in Fig. 7.

second-order accuracy in time and spectral convergence in space for smoothed fabricated solutions. The simulation tests 
confirm that the method is very accurate and the simulation results are not very sensitive to the values of αE and αT .

We have applied the method to simulate the initiation and evolution of air-oil slug in a horizontal pipe of diameter 54 
mm and length 4 m using realistic physical parameters. The simulated slug body shows complex topology and air bubble 
entrainment. The liquid holdup signals from the simulation are very similar to those of the experiment. The predicted 
slug length and slug translational velocity are in excellent agreement with the experimental measurements. However, the 
small scale interfacial topology changes, such as small droplet injected into the air and small gas bubble entrained into 
liquid, which are observed in experiments, were not obtained in current simulations, due perhaps to the limitation of the 
resolution.
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Fig. 9. Liquid holdup along the pipe at different time instants: black line, t = 1.05 s; blue line, t = 1.075 s. Flow is from the left to the right. Note that 
during the time interval �t = 0.025 s, the slug translates 2.38D , the large wave moves 1.87D , while the displacement of air is 2Usg�t = 1.85D . The slug 
translational velocity is 1.29 times that of air flow.

Fig. 10. Time series of liquid holdup signals illustrating the slug propagation along the pipe. Lz is the length of the pipe, z = 0 is at the left end of the pipe, 
and flow is from left to the right.
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