
Journal of Computational Physics 435 (2021) 110242
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A method for representing periodic functions and enforcing 

exactly periodic boundary conditions with deep neural 
networks

Suchuan Dong ∗, Naxian Ni

Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 1 March 2021

Keywords:
Periodic function
Periodic boundary condition
Neural network
Deep neural network
Periodic deep neural network
Deep learning

We present a simple and effective method for representing periodic functions and 
enforcing exactly the periodic boundary conditions for solving differential equations 
with deep neural networks (DNN). The method stems from some simple properties 
about function compositions involving periodic functions. It essentially composes a DNN-
represented arbitrary function with a set of independent periodic functions with adjustable 
(training) parameters. We distinguish two types of periodic conditions: those imposing the 
periodicity requirement on the function and all its derivatives (to infinite order), and those 
imposing periodicity on the function and its derivatives up to a finite order k (k � 0). The 
former will be referred to as C∞ periodic conditions, and the latter Ck periodic conditions. 
We define operations that constitute a C∞ periodic layer and a Ck periodic layer (for any 
k � 0). A deep neural network with a C∞ (or Ck) periodic layer incorporated as the second 
layer automatically and exactly satisfies the C∞ (or Ck) periodic conditions. We present 
extensive numerical experiments on ordinary and partial differential equations with C∞
and Ck periodic boundary conditions to verify and demonstrate that the proposed method 
indeed enforces exactly, to the machine accuracy, the periodicity for the DNN solution and 
its derivatives.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Deep neural networks (DNN) have emerged in the past few years as a promising alternative to the classical numerical 
methods (such as finite difference and finite element) for solving ordinary and partial differential equations (PDE). DNN-
based solvers transform the PDE solution problem into an optimization problem. They typically represent the unknown field 
function in terms of a deep neural network, thanks to the universal approximation property of DNNs [18,19,4,23]. Then 
these methods compute the solution by minimizing a loss function that consist of residual norms of the governing equation 
and also possibly of the boundary and initial conditions in strong or weak forms (see e.g. [21,22,31,35,13,29,38,32], among 
others). DNN solutions are smooth analytical functions (depending on the activation function used) and, once the network 
is trained, can be evaluated for the function value and its derivatives exactly at any point inside the domain.

Boundary (and initial) conditions play a critical role in the solution of PDEs and make the problem well posed [17,
33,9,7,11,8,27]. To enforce the boundary conditions (BC) in DNN solvers, an often-used approach is the penalty method, 

* Corresponding author.
E-mail address: sdong@purdue.edu (S. Dong).
https://doi.org/10.1016/j.jcp.2021.110242
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110242
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110242&domain=pdf
mailto:sdong@purdue.edu
https://doi.org/10.1016/j.jcp.2021.110242


S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
by incorporating a penalty term consisting of the residual norm of the boundary conditions into the loss function. The 
penalty method enforces the boundary conditions only approximately, and the penalty coefficient strongly influences the 
DNN training and convergence [3]. Choosing an appropriate or near-optimal penalty coefficient is largely an art, usually 
conducted by trial and error.

Enforcing the boundary conditions exactly with deep neural networks, if feasible, would be highly desirable. In this case, 
the DNN is constructed such that the boundary conditions are automatically and exactly satisfied. The constrained optimiza-
tion problem for the PDE solution will then become less constrained or unconstrained, which will greatly facilitate the DNN 
training. Enforcing exactly the boundary conditions with deep neural networks is, however, highly non-trivial. For Dirichlet 
and Neumann type boundary conditions, several researchers have investigated the problem and promising techniques are 
available (see e.g. [21,22,25,1]). In [21] the unknown solution is decomposed into two components. One component satisfies 
the Dirichlet/Neumann boundary conditions and has no training parameters, while the other component vanishes on the 
boundary and is represented by a neural network in the domain. In [22] the authors decompose the unknown solution 
into a function represented by a deep neural network plus a linear combination of radial basis functions. The combination 
coefficients of the radial basis functions are determined by solving a linear system at every iteration of the DNN evaluation 
to satisfy the Dirichlet or Neumann boundary conditions. This process is understandably computationally expensive [22]. 
In [25] the authors rewrite the solution into two parts, similar to [21], with one part satisfying the Dirichlet/Neumann 
boundary conditions and the other part vanishing on the boundary but otherwise unconstrained. In order to deal with 
complex domain boundaries, the authors of [25] introduce a multiplicative length factor in front of the unconstrained part, 
which heuristically represents the distance of a point to the domain boundary. These ideas are further developed by [1], 
where the Dirichlet boundary condition is considered. In [1] the Dirichlet boundary data extension and the distance function 
to the boundary are both represented by low-capacity deep neural networks and pre-trained. This simplifies the implemen-
tation of the DNN solver. However, the enforcement of the boundary condition becomes only approximate. Similar ideas 
for the Dirichlet/Neumann type boundary conditions have also appeared in more recent works, see e.g. [30] for the DNN 
simulation of elastodynamic problems.

Periodic boundary conditions are widely encountered in computational science of various areas, especially when the 
physical domain involved in is infinite or homogeneous along one or more directions [10,6]. In such cases, usually only one 
cell will be computed in numerical simulations, and periodic boundary conditions are imposed on the cell boundaries. With 
classical numerical methods, another often-used technique for this type of problems is to express the unknown field function 
in terms of Fourier expansions, leading to what is known as the Fourier spectral or pseudo-spectral method [2,5,12]. While 
both are referred to as periodic conditions, the periodicity requirements imposed by the numerical method, when Fourier 
expansions are used and when they are not, are different. With the use of Fourier expansions, the method seeks a smooth 
periodic function as the solution to the governing equations, which automatically satisfies the periodicity for the solution 
value and all its derivatives (to infinite order) on the cell boundaries. On the other hand, when Fourier expansions are not 
used in the method, the periodicity needs to be imposed explicitly on the cell boundaries, and this can only be imposed for 
the solution value and its derivatives up to a certain finite order. We will distinguish these two types of periodic boundary 
conditions in this work. We refer to the former as the C∞ periodic conditions, and the latter as the Ck periodic conditions, 
where k � 0 denotes the highest derivative the periodic condition imposes on.

The penalty method has been used to enforce the periodic boundary conditions (for up to the first derivative) with 
DNN-based PDE solvers in some recent studies; see e.g. [3,26]. In [3] a penalty term representing the residual norms of the 
periodic conditions for the function and its first derivative is included in the loss function. In [26] a sinusoidal activation 
function is employed with a shallow neural network (one hidden layer) to mimic the Fourier decompositions of the function, 
which is termed the Fourier neural network by some researchers (see e.g. [14,34,24,39]), and then the periodicity condition 
for the solution is imposed by a penalty term in the loss function. The penalty method can only impose the periodic 
boundary conditions approximately. It becomes more difficult, and perhaps impractical, to enforce Ck periodic conditions 
using the penalty for moderate or large k values. In particular, it is practically impossible to impose the C∞ periodic 
conditions with the penalty method.

How to enforce exactly the C∞ and Ck (for any k � 0) periodic conditions with deep neural networks is the focus of the 
current work. This problem seems to have barely been investigated before. To the best of the authors’ knowledge, the only 
work close in theme to the current effort is perhaps [15], in which the authors enforce the periodicity condition for the 
solution value only, by adopting a similar idea to [21] and constructing a trial function with two parts. One part enforces 
the periodicity for the solution value, and the other part vanishes on the boundary and is represented by a DNN [15].

In the current paper we present a method for enforcing exactly the C∞ and Ck (for any k � 0) periodic boundary condi-
tions with deep neural networks. The DNN resulting from the current method, by design, automatically and exactly satisfies 
the C∞ or Ck (for any prescribed k) periodic conditions. This method is based on some simple properties about function 
compositions involving periodic functions (Lemmas 2.1 and 2.2 in Section 2), and leverages the universal approximation 
power of deep neural networks. It essentially composes a DNN-represented arbitrary function with a set of independent 
known periodic functions with adjustable parameters. We consider the feed-forward neural network architecture [16] in 
this work, and define the operations that constitute a C∞ periodic layer and a Ck periodic layer. To enforce the C∞ periodic 
conditions, one only needs to set the second layer of the DNN (i.e. the first hidden layer) as a C∞ periodic layer. To enforce 
the Ck periodic conditions, one only needs to set the second layer of the DNN as a Ck periodic layer. The C∞ periodic layer 
constructs a set of independent C∞ periodic functions with a user-prescribed period, based on sinusoidal functions, affine 
2



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
mappings and nonlinear activation functions (such as “tanh” and “sigmoid”). The Ck periodic layer constructs a set of inde-
pendent Ck periodic functions, based on the generalized Hermite interpolation polynomials, affine mappings and nonlinear 
activation functions. The output of the overall DNN, with the C∞ (or Ck) periodic layer incorporated therein, automatically 
and exactly satisfies the C∞ (or Ck) periodic conditions.

The operations involved in the C∞ and Ck periodic layers can be implemented as user-defined Tesorflow/Keras (http://
www.tensorflow.org and http://keras .io) layers, and incorporated into a DNN using Keras in a straightforward way. We 
present a number of numerical experiments with ordinary and partial differential equations to verify and demonstrate that 
the proposed method indeed enforces exactly, to the machine accuracy, the periodic boundary conditions as expected. All 
the numerical examples in the current paper are implemented and conducted based on Tensorflow, Keras and Python.

The contributions of this paper consist of two aspects: (i) the method for representing smooth periodic functions and 
exactly enforcing C∞ periodic boundary conditions with deep neural networks; (ii) the method for exactly enforcing the Ck

(for any k � 0) periodic boundary conditions with deep neural networks.
The rest of this paper is structured as follows. In Section 2 we define the operations that constitute the C∞ periodic 

layer and the Ck periodic layer in one and higher dimensions, and establish that a deep neural network with these layers 
incorporated as the second layer exactly satisfies the C∞ or Ck periodic boundary conditions for a given domain. In Section 3
we present extensive numerical experiments on periodic function approximations, and on solving the Helmholtz equations 
in one and two dimensions, the diffusion equation, and the wave equation, with C∞ and Ck periodic boundary conditions. 
We demonstrate numerically that the proposed method enforces exactly the periodic boundary conditions, to the machine 
accuracy, for the DNN solution and its corresponding higher derivatives. Section 4 then concludes the presentation with 
some closing remarks.

2. Enforcing exact periodic conditions with DNN

2.1. C∞ and Ck periodic conditions

Consider a smooth periodic function f (x) with period L defined on the real axis,

f (x + L) = f (x), ∀x ∈ (−∞,∞). (1)

Now restrict f (x) to a finite interval [a, b], where b − a = L. Then f satisfies the following relations on the boundaries:

f (a) = f (b), f ′(a) = f ′(b), f ′′(a) = f ′′(b), . . . , f (m)(a) = f (m)(b), . . . (2)

We refer to the conditions in (2) as the C∞ periodic conditions. Hereafter we will refer to a smooth function f (x) satisfying 
these conditions as a C∞ periodic function on [a, b], or simply a periodic function.

In practice, the function may not be smooth and the conditions in (2) may only be required for the derivatives up to a 
finite order k (k � 0), i.e.

f (l)(a) = f (l)(b), 0 � l � k, (3)

where f (0)(x) = f (x) by convention. We refer to the (k + 1) conditions in (3) as the Ck periodic conditions. With a slight 
abuse of notation, we will refer to a function f (x) satisfying the conditions (3) as a Ck periodic function on [a, b].

Our goal here is to devise a method for representing C∞ and Ck periodic functions with deep neural networks such that, 
by design, the output of the DNN automatically and exactly satisfies the C∞ or Ck periodic conditions. Such neural networks 
will be referred to as C∞ or Ck periodic deep neural networks. When solving a boundary value problem or initial/boundary 
value problem together with the C∞ or Ck periodic boundary conditions, one can use the method developed herein to 
construct periodic DNNs as the trial functions that automatically take into account the periodic boundary conditions.

2.2. Enforcing exact C∞ periodic conditions with DNN

We present a method below for representing C∞ periodic functions and enforcing exactly the C∞ periodic conditions 
with DNN. The method is based on the following property about function compositions involving periodic functions.

Lemma 2.1. Let v(x) be a given smooth periodic function with period L on the real axis, i.e. v(x + L) = v(x) for all x ∈ (−∞, ∞), and 
f(x) denote an arbitrary smooth function. Define u(x) = f (v) = f (v(x)). Then

u(x + L) = u(x), ∀x ∈ (−∞,∞); (4a)

u(l)(a) = u(l)(b), l = 0,1,2, . . . (4b)

where a and b denote two real numbers with b − a = L.
3

http://www.tensorflow.org
http://www.tensorflow.org
http://keras.io


S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 1. Sketch of a feed-forward deep neural network with a C∞ or Ck periodic layer incorporated as the second layer.

Fig. 2. Sketch illustrating the internal structures of (a) 1D, and (b) 2D C∞ or Ck periodic layers.

This lemma can be proven by straightforward verifications.
We seek a DNN representation for an arbitrary smooth periodic function with a prescribed period L, such that the C∞

periodic conditions are automatically satisfied. In light of Lemma 2.1, our basic idea for the representation is to compose 
an arbitrary DNN-represented function, together with a set of independent known periodic functions with period L and 
adjustable (training) parameters. Let us first use a single known periodic function with prescribed period L for illustration. 
We consider the sinusoidal functions,

p(x) = A cos(ωx + φ) + c, with ω = 2π

L
, (5)

where the constants A, c and φ are scalar adjustable (training) parameters. Here ω is a fixed constant as given above and 
ensures that p(x) has a period L. Let σ(·) denote a nonlinear activation function (such as “tanh” or “sigmoid”). We define

v(x) = σ(p(x)) = σ(A cos(ωx + φ) + c). (6)

This step is crucial. The nonlinear function σ(·) will generate higher-frequency components in the output. So while p(x)
has a single frequency ω, v(x) contains not only the frequency ω, but components with other and higher frequencies, all 
with a common period L. Finally, we consider an arbitrary smooth function f (x) represented by a DNN, and define

u(x) = fdnn(v(x)), (7)

where fdnn denotes the DNN-represented arbitrary smooth function. By Lemma 2.1, this u(x) satisfies the C∞ periodic 
conditions exactly.

In practice, we would like to compose the DNN-represented arbitrary function fdnn(·) with a set of independent periodic 
functions v(x) as defined above with adjustable parameters. This leads to the idea of a periodic layer with multiple nodes 
(neurons) within the layer. We consider the feed-forward deep neural network architecture [16] in the current work. Fig. 1
illustrates the idea of the current DNN with a sketch. Let x denote the input layer to the network, and u(x) denote the 
output layer of the network. We use the second layer (behind the input x) to implement the set of independent known 
periodic functions (copies of v(x)) with period L and adjustable parameters, so that the output of the network u(x) satisfies 
exactly the C∞ periodic conditions (4). We refer to such a layer as a C∞ periodic layer, or simply a periodic layer.

The operations within the C∞ periodic layer are defined as follows (see Fig. 2(a)). Let Lp(m, n) denote the C∞ periodic 
layer, where n denotes the number of nodes in the output of this layer and m denotes the size of the set of independent 
4



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
periodic functions v(x). Here both m and n are hyper-parameters of the C∞ periodic layer Lp(m, n). The operations within 
Lp(m, n) are defined by:

vi(x) = σ(Ai cos(ωx + φi) + ci), 1 � i � m; (8a)

q j(x) = σ

(
m∑

i=1

vi(x)W ij + B j

)
, 1 � j � n. (8b)

In these equations q j(x) (1 � j � n) are the output of this layer, and the fixed constant ω is given in (5) for a prescribed 
period L. σ(·) is the nonlinear activation function, and it is used twice in this layer. The training parameters of Lp (m, n) are 
the constants Ai , φi , ci , W ij and B j , with 1 � i �m and 1 � j � n.

In the current work, we have employed Tensorflow (http://www.tensorflow.org) and Keras (http://keras .io) to imple-
ment the operations of the C∞ periodic layer as described above. The C∞ periodic layer is implemented as a user-defined 
Tensorflow/Keras layer, and it can be used in the same way as the built-in core Keras layers.

Remark 2.1. The operations of the C∞ periodic layer defined by (8) can be extended to two, three and higher dimensions 
(2D/3D) in a straightforward way. Here we outline the idea with two dimensions only (see Fig. 2(b)). Let (x1, x2) denote the 
coordinates in two dimensions, and u(x1, x2) denote a smooth periodic function to be approximated, with properties

u(x1 + L1, x2) = u(x1, x2), u(x1, x2 + L2) = u(x1, x2), ∀x1, x2 ∈ (−∞,∞), (9)

where L1 and L2 are the periods in the x1 and x2 directions, respectively. Equivalently, we can write the periodicity condi-
tions in terms of a single periodic cell [a1, b1] × [a2, b2],⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂α

∂xα
1

u(a1, x2) = ∂α

∂xα
1

u(b1, x2), ∀x2 ∈ [a2,b2],
∂α

∂xα
2

u(x1,a2) = ∂α

∂xα
2

u(x1,b2), ∀x1 ∈ [a1,b1], α = 0,1,2, . . .

(10)

where a1, b1, a2 and b2 are given constants satisfying b1 − a1 = L1 and b2 − a2 = L2. In this case, we define the 2D periodic 
layer, L2D

p (m, n), with the following operations:

v1i(x1) = σ (A1i cos(ω1x1 + φ1i) + c1i) , 1 � i � m; (11a)

v2i(x2) = σ (A2i cos(ω2x2 + φ2i) + c2i) , 1 � i � m; (11b)

q j(x1, x2) = σ

(
m∑

i=1

v1i(x1)W (1)
i j +

m∑
i=1

v2i(x2)W (2)
i j + B j

)
, 1 � j � n. (11c)

In these equations, m and n are hyper-parameters of the layer L2D
p , q j(x1, x2) (1 � j � n) denote the output of this layer, 

and the constants ω1 and ω2 are defined by

ω1 = 2π

L1
, ω2 = 2π

L2
, (12)

with prescribed periods (L1, L2). The training parameters of L2D
p (m, n) consist of the constants:

A1i, A2i, φ1i, φ2i, c1i, c2i, W (1)
i j , W (2)

i j , B j, 1 � i � m, 1 � j � n.

By composing an arbitrary DNN-represented function with the 2D C∞ periodic layer defined above, we attain an overall 
DNN whose output automatically and exactly satisfies the 2D C∞ periodic conditions. The C∞ periodic layer for three and 
higher dimensions can be defined in a similar way.

Remark 2.2. In two or higher dimensions, if the C∞ periodic conditions are imposed only in some (not all) directions, the 
C∞ periodic layer as defined above can be modified in a simple way to accommodate the situation. For example, consider 
the 2D C∞ periodic layer defined in (11) and suppose that the C∞ periodic conditions are imposed only in the x1 direction 
with period L1, but not in the x2 direction. In this case, we can retain the equations (11a) and (11c), and replace (11b) by 
the following equation

v2i(x2) = σ (A2i x2 + c2i) , 1 � i � m, (13)

where the constants A2i and c2i are the training parameters. The modified 2D periodic layer consisting of equations (11a), 
(13) and (11c), when composed with a DNN-represented arbitrary function, will give rise to an overall DNN that automati-
cally and exactly satisfies the C∞ periodic conditions in the x1 direction.
5

http://www.tensorflow.org
http://keras.io


S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
2.3. Enforcing exact Ck periodic conditions with DNN

We present in this subsection a method for representing Ck periodic functions and enforcing exactly the Ck periodic 
conditions (for any k � 0) with DNN. The method is based on the following simple property about function compositions 
involving Ck periodic functions:

Lemma 2.2. Let v(x) (x ∈ [a, b]) denote a given function with continuous derivatives up to the order k and satisfying the following 
property,

v(l)(a) = v(l)(b), 0 � l � k. (14)

Let f (x) denote an arbitrary function defined on the real axis with continuous derivatives up to the order k. Define u(x) = f (v) =
f (v(x)) (x ∈ [a, b]). Then

u(l)(a) = u(l)(b), 0 � l � k. (15)

Proof. By induction one can show that u(m)(x) = g(v, v ′, v ′′, . . . , v(m)) for 0 � m � k. In other words, u(m)(x) depends on x
only through v and its derivatives. Equation (15) follows immediately from this relation and the conditions (14). �

We seek a DNN representation for an arbitrary Ck periodic function on [a, b], such that the Ck periodic conditions are 
automatically and exactly satisfied. In light of Lemma 2.2, our basic idea for the representation is to compose an arbitrary 
function represented by a DNN, together with a set of independent known Ck periodic functions with adjustable (training) 
parameters. To construct a Ck periodic function v(x) on [a, b] in Lemma 2.2, i.e. satisfying the conditions (14), we note that 
these conditions are reminiscent of the Hermite interpolation conditions. So the Hermite interpolation polynomial of degree 
at most (2k + 1) can be used to construct v(x). Once v(x) is obtained, we compose an arbitrary DNN-represented function 
f with v(x), and the resultant function satisfies the Ck periodic conditions exactly.

Let us now use a single Ck periodic function v(x) (x ∈ [a, b]) to illustrate the idea in some detail. Let si (0 � i � k) denote 
(k + 1) adjustable (training) parameters. Let h(x) denote the unique Hermite interpolation polynomial of degree at most 
(2k + 1) that satisfies the following (2k + 2) interpolation conditions:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h(a) = s0, h(b) = s0;
h′(a) = s1, h′(b) = s1;
· · ·
h(k)(a) = sk, h(k)(b) = sk.

(16)

The Newton form for h(x) can be computed based on the divided differences, and the explicit Lagrange form for h(x) is 
available in e.g. [36,37]. We then define⎧⎨

⎩
p(x) = h(x) + (r0 + r1x)(x − a)k+1(x − b)k+1,

v(x) = σ(p(x)) = σ
(

h(x) + (r0 + r1x)(x − a)k+1(x − b)k+1
)

,
(17)

where r0 and r1 are two additional adjustable parameters, and σ(·) is a nonlinear activation function (e.g. “tanh” or “sig-
moid”). It is straightforward to verify that the v(x) (and also p(x)) given in (17) satisfies the conditions (14). The explicit 
forms for p(x) in (17) corresponding to k = 0, 1 and 2 are given by:

p(x) = s0 + (r0 + r1x)(x − a)(x − b), for k = 0;
p(x) = s0 + s1(x − a)(b − x)(a + b − 2x) + (r0 + r1x)(x − a)2(x − b)2, for k = 1;
p(x) = ξ3(x − a)3

[
s0 + (−3s0ξ + s1)(x − b) +

(
6s0ξ

2 − 3s1ξ + s2

2

)
(x − b)2

]
+ ξ3(b − x)3

[
s0 + (3s0ξ + s1)(x − a) +

(
6s0ξ

2 + 3s1ξ + s2

2

)
(x − a)2

]
+ (r0 + r1x)(x − a)3(x − b)3, for k = 2,

where ξ = 1
b−a . Let fdnn(x) denote an arbitrary function with continuous derivatives up to the order k represented by a 

deep neural network. With v(x) given by (17), we finally define

u(x) = fdnn(v(x)). (18)

Then by Lemma 2.2 u(x) satisfies exactly the Ck periodic conditions (15).
6



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
In practice, we would like to compose the DNN-represented arbitrary function fdnn(·) with a set of independent Ck peri-
odic functions v(x) with adjustable parameters. This leads to the idea of a Ck periodic layer with multiple nodes (neurons) 
within the layer. Consider again the feed-forward neural network architecture, and let x denote the input and u(x) denote 
the output of the network. Analogous to the C∞ periodic layer in Section 2.2, we define a Ck periodic layer below, and 
use it as the second layer (behind the input x) of the network to implement the set of independent Ck periodic functions 
(copies of v(x)) and enforce the Ck periodic conditions. Fig. 1 sketches the DNN with a Ck periodic layer incorporated as 
the second layer.

The operations within the Ck periodic layer are defined as follows (see Fig. 2(a)). Let LCk (m, n) denote the Ck periodic 
layer, where n denotes the number of nodes in the output of this layer and m denotes the size of the set of independent Ck

periodic functions v(x). Both m and n are hyper-parameters of this layer. Given the input x, we compute the output q j(x)
(1 � j � n) of the Ck periodic layer LCk (m, n) by:

vi(x) = σ
(

hi(x) + (r0i + r1i x)(x − a)k+1(x − b)k+1
)

, 1 � i � m; (19a)

q j(x) = σ

(
m∑

i=1

vi(x)W ij + B j

)
, 1 � j � n. (19b)

In these equations σ(·) is the nonlinear activation function, and hi(x) (1 � i � m) are the Hermite interpolation polynomials 
of degree at most (2k + 1) satisfying the conditions

h(l)
i (a) = sli, h(l)

i (b) = sli, 0 � l � k, 1 � i � m. (20)

The constant parameters involved in these equations, r0i , r1i , W ij , B j , sli , for 1 � i � m, 1 � j � n and 0 � l � k, are the 
training parameters of the Ck periodic layer LCk (m, n). By incorporating the Ck periodic layer defined by (19) as the second 
layer, the resultant DNN automatically and exactly satisfies the Ck periodic conditions with its output.

Remark 2.3. The operations of the Ck periodic layer LCk (m, n) defined by (19) can be extended to two, three and higher 
dimensions in a straightforward fashion. Here we use two dimensions only to illustrate the idea (see Fig. 2(b)). Let x1 and 
x2 (x1 ∈ [a1, b1], x2 ∈ [a2, b2]) denote the coordinates in two dimensions, and u(x1, x2) denote a 2D Ck periodic function, 
satisfying the Ck periodic conditions:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂α

∂xα
1

u(a1, x2) = ∂α

∂xα
1

u(b1, x2), ∀x2 ∈ [a2,b2],
∂α

∂xα
2

u(x1,a2) = ∂α

∂xα
2

u(x1,b2), ∀x1 ∈ [a1,b1], α = 0,1, . . . ,k.

(21)

In this case, we define the 2D Ck periodic layer L2D
Ck (m, n) with the following operations:

v1i(x1) = σ
(

h1i(x1) +
(

r(1)
0i + r(1)

1i x1

)
(x1 − a1)

k+1(x1 − b1)
k+1

)
, 1 � i � m; (22a)

v2i(x2) = σ
(

h2i(x2) +
(

r(2)
0i + r(2)

1i x2

)
(x2 − a2)

k+1(x2 − b2)
k+1

)
, 1 � i � m; (22b)

q j(x1, x2) = σ

(
m∑

i=1

v1i(x1)W (1)
i j +

m∑
i=1

v2i(x2)W (2)
i j + B j

)
, 1 � j � n. (22c)

In the above equations, m and n are the hyper-parameters of this layer, q j(x1, x2) (1 � j � n) denote the output of this layer, 
and h1i(x1) and h2i(x2) are the Hermite interpolation polynomials of degree at most (2k + 1) satisfying the conditions:{

h(l)
1i (a1) = s(1)

li , h(l)
1i (b1) = s(1)

li , 0 � l � k, 1 � i � m;
h(l)

2i (a2) = s(2)

li , h(l)
2i (b2) = s(2)

li , 0 � l � k, 1 � i � m.
(23)

The constant parameters involved in the above equations,

s(1)

li , s(2)

li , r(1)
0i , r(2)

0i , r(1)
1i , r(2)

1i , W (1)
i j , W (2)

i j , B j, 0 � l � k, 1 � i � m, 1 � j � n,

are the training parameters of the layer L2D
Ck (m, n). By using the 2D Ck periodic layer L2D

Ck (m, n) as the second layer of a 
DNN and with (x1, x2) as the input, the resultant DNN will automatically and exactly satisfy the 2D Ck periodic boundary 
conditions (21). The Ck periodic layer for three and higher dimensions can be defined in a similar way.
7



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Remark 2.4. In two and higher dimensions, if the Ck periodic conditions are only imposed in some (not all) directions, the 
Ck periodic layer as defined above can be modified in a simple way to accommodate the situation. The modification is 
similar to what is discussed in Remark 2.2 for the modified C∞ periodic layer. For illustration, let us consider the 2D Ck

periodic layer defined by (22), and suppose that the Ck periodic conditions are imposed only in the x1 direction, not in the 
x2 direction. In this case, we can retain the equations (22a) and (22c), and replace equation (22b) by the following equation 
for v2i(x2),

v2i(x2) = σ
(

r(2)
0i + r(2)

1i x2

)
, (24)

where the constants r(2)
0i and r(2)

1i are training parameters. The modified 2D Ck periodic layer consisting of equations (22a), 
(24) and (22c), when used as the second layer of a DNN, will impose exactly the Ck periodic conditions in the x1 direction 
in the output of this DNN.

Remark 2.5. In the current work we use the Hermite interpolation polynomial (see equations (16) and (17)) to implement 
the known Ck periodic function. There are other possibilities. Since the summation (or product) of a Ck periodic function 
and a C∞ periodic function produces a Ck periodic function, one can e.g. add a known C∞ periodic function to the Hermite 
interpolation polynomial when constructing the known Ck periodic function. For example, one can add the sinusoidal func-
tion from Section 2.2 (see equation (5)) to the p(x) in equation (17) to construct a new Ck periodic function with adjustable 
parameters.

Remark 2.6. To ensure the C∞ or Ck periodicity with the deep neural network, the nonlinear activation functions σ(·)
therein need to satisfy the corresponding regularity properties. With the C∞ periodic layer, all the activation functions 
employed in the neural network need to be smooth functions (infinitely differentiable). With the Ck periodic layer, all the 
activation functions employed in the neural network need to have continuous derivatives up to the order of at least k.

3. Numerical examples

We present several numerical examples in what follows to demonstrate the effectiveness of the method presented in 
the previous section. We consider the approximation of periodic functions, and the solution of the Helmholtz equation, 
the unsteady diffusion equation and the wave equation, together with periodic boundary conditions, using deep neural 
networks. We employ a variant of the deep Galerkin method [35] for solving the differential equations with DNN and 
also for enforcing the initial conditions with unsteady problems. The periodic boundary conditions (BC) are dealt with 
based on the method from Section 2. Note that with the current method the periodic boundary conditions are satisfied 
automatically by the DNN. Therefore there is no need to account for the periodic boundary conditions in the loss function. 
The application codes for all the tests reported here are implemented using Tensorflow/Keras and Python. We employ the 
hyperbolic tangent (“tanh”) as the nonlinear activation function in all the tests. The neural network is trained using either 
the Adam [20] or the L-BFGS [28] optimizer. In the current implementation, for the Adam optimizer we employ the routine 
from the Keras library, and for the L-BFGS optimizer we employ the routine available from the Tensorflow-Probability library 
(http://www.tensorflow.org /probability).

3.1. Approximation of periodic functions

Let us look into the DNN approximation of periodic functions using the method developed in Section 2. We employ 
three different functions to illustrate the performance characteristics of the method: a C∞ periodic function, a C0 periodic 
function, and a non-periodic function. Note that in the case of the non-periodic function, we are essentially seeking a 
periodic function approximation of the non-periodic function.

Consider first the function

u1(x) = sin(2πx + 0.25π) + cos(9πx − 0.1π) − 2 sin(7πx + 0.33π) (25)

on the domain 	 = {x|0 � x � 2}. This is a C∞ periodic function on this domain. We would like to approximate u1(x) using 
a C∞ periodic DNN, and using a Ck periodic DNN with k = 0 and k = 1.

To approximate u1(x), we employ a feed-forward neural network [16] as illustrated in Fig. 1. The input to the network 
is x, and the output is the approximation u(x). We use 3 hidden layers in between, each with a width of 30 neurons. The 
hyperbolic tangent (“tanh”) function is used as the activation function for all the hidden layers, and no activation is applied 
on the output layer. As discussed in Section 2, we set the second layer of the network (i.e. the first hidden layer) as a 
C∞ periodic layer for the C∞ periodic approximation, and as a Ck periodic layer for the Ck periodic approximation. More 
specifically, we employ a Lp(m, n) with m = 11 and n = 30 for the C∞ periodic layer, and a LCk (m, n) with m = 11 and 
n = 30 for the Ck-periodic layer with k = 0 and 1. In other words, a set of 11 independent periodic functions v(x) has been 
8

http://www.tensorflow.org/probability


Table 1
Function approximation: DNN and simulation parameters.

parameter value parameter value

hidden layers depth=3, width=30 Ne 3
1st hidden layer C∞ periodic layer Lp(11,30), Q 30 (C∞ periodic DNN),

or Ck periodic layer LCk (11,30) or 40 (Ck periodic DNN)
maximum epochs 10000 optimizer Adam
learning rate coefficient 1e − 3 activation tanh
input data xe

i (0 � e � Ne − 1, 0 � i � Q − 1) label data u1(xe
i ), or u2(xe

i ), or u3(xe
i )

xe
i Gauss-Lobatto-Legendre quadrature ω 2π/V	

used within the C∞ periodic layer and the Ck periodic layer. For the C∞ periodic layer Lp(m, n), the constant ω in equation 
(8a) is set to, according to equation (5),

ω = 2π

V	

= 2π

2
= π, (26)

where V	 = ∫
	

dx = 2 is the size of the domain 	.
We minimize the following loss function with this DNN,

Loss = 1

V	

∫
	

|u(x) − u1(x)|2 dx = 1

V	

Ne−1∑
e=0

∫
	e

|u(x) − u1(x)|2 dx

= 1

V	

Ne−1∑
e=0

Q −1∑
i=0

∣∣u(xe
i ) − u1(xe

i )
∣∣2

J e wi,

(27)

where Ne is the number of elements (i.e. sub-intervals) we have partitioned the domain 	 into in order to compute the 
integral, Q is the number of quadrature points within each element, 	e denotes the sub-interval occupied by the element e
(0 � e � Ne −1), xe

i (0 � i � Q −1) are the Gauss-Lobatto-Legendre quadrature points within 	e for 0 � e � Ne −1, J e is the 
Jacobian of the element 	e with respect to the standard element [−1, 1], and wi (0 � i � Q −1) are the quadrature weights 
associated with the Gauss-Lobatto-Legendre quadrature points. In the numerical experiments we have employed 3 elements 
(Ne = 3) to partition the domain 	, with 	0 = [0, 0.7], 	1 = [0.7, 1.4] and 	2 = [1.4, 2]. We employ 30 quadrature points 
(Q = 30) within each element for the C∞ periodic DNN, and 40 quadrature points (Q = 40) within each element for the Ck

(k = 0, 1) periodic DNN. The input data to the network consist of all the quadrature points xe
i (0 � i � Q −1, 0 � e � Ne −1), 

and the label data consist of u1(xe
i ). The Adam optimizer [20] has been used to train the network for 10000 epochs for each 

case, with the learning rate coefficient (i.e. the parameter α in [20]) fixed at the default value 10−3. The options of “early 
stopping” and “restore to best weight” have been used in Keras during the training process. The main parameters for the 
DNN and the simulations are summarized in Table 1.

Fig. 3 shows the training histories of the loss function corresponding to the C∞ , C0 and C1 periodic DNN approximations. 
The loss function decreases rather slowly as the training begins. Then we observe a short stage when the loss function 
decreases sharply. After that, the reduction in the loss function slows down again, resulting in a long tail in the training 
history curve. These characteristics seem to be common to the DNN training for all the problems we have considered in 
this work. During the stage with slow reduction in the loss function (long tail), we observe that the loss value fluctuates 
from time to time during the training, resulting in a sequence of spikes in the training history curves (Fig. 3). This is in 
part due to the fixed learning rate coefficient employed here. Reducing the learning rate coefficient gradually as the training 
progresses will likely reduce the loss fluctuations. In spite of the spikes, one can observe the trend of decreasing loss as the 
training proceeds. Since we have turned on the options of “early stopping” and “restore to best weight” in Keras, the spikes 
in the training curves have no effect on the simulation results we have obtained here.

In Fig. 4 we compare the DNN approximation results of u1(x) (top row) obtained with C∞ (plot (a)), C0 (plot (b)), and C1

(plot (c)) periodic conditions, together with the exact function u1(x). The distributions of the absolute error, |u(x) − u1(x)|, 
corresponding to these approximations are shown in Figs. 4(d,e,f), respectively. It is observed that the DNN approximations 
computed with all three methods agree well with the exact function u1(x), and the approximation function curves overlap 
with the exact function curve.

In Table 2 we list the values of the function u1(x) and its derivatives du1
dx and d2u1

dx2 on the domain boundaries x = 0 and 
x = 2, obtained from the C∞ , C0 and C1 periodic DNN approximations, as well as from the exact u1(x) function given in 
(25). The function derivatives have been computed based on auto-differentiation. Once the DNN is trained, the derivatives 
computed in this way are exact values corresponding to the given DNN representation. We have shown 14 significant digits 
(double precision) for the values in this table. It is evident that the C∞ periodic DNN enforces exactly, to the machine 
accuracy, the periodicity for the function as well as its derivatives. On the other hand, the C0 periodic DNN enforces exactly 
the periodicity only for the function value, and the C1 periodic DNN enforces exactly the periodicity only for the function 
value and the first derivative. These numerical results have verified the analyses about these methods in Section 2.
S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
9



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242

Fig. 3. Approximation of the periodic function u1(x): training loss histories corresponding to (a) C∞ , (b) C0, and (c) C1 periodic DNN approximations.

Fig. 4. Approximation of periodic function u1(x): comparison of DNN approximations (top row) and their absolute errors (bottom row) with (a,d) C∞ , (b,e) 
C0, (c,f) C1 periodic conditions. The exact function is shown in the plots (a,b,c) for reference.
10



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Table 2
Approximations of the periodic function u1(x): Values of the function and its first and second derivatives at the left/right domain boundaries (x = 0, 2) 
from the DNN approximations with C∞ , C0 and C1 periodic conditions and from the exact function. 14 significant digits (double precision) are listed to 
show that the current method enforces the periodic conditions exactly. The boxes highlight the values that mis-match on the boundaries.

C∞ periodic DNN C0 periodic DNN C1 periodic DNN Exact value
u1(0) 9.2478271387350e-01 9.5998617007276e-01 9.3202741230659e-01 9.3667924347381e-01
u1(2) 9.2478271387350e-01 9.5998617007276e-01 9.3202741230659e-01 9.3667924347381e-01
u′

1(0) -9.2010196979120e+00 -1.1103158994625e+01 -9.3797238469930e+00 -9.2086781968974e+00
u′

1(2) -9.2010196979120e+00 -7.1832211211812e+00 -9.3797238469930e+00 -9.2086781968972e+00
u′′

1(0) 6.0998633006437e+01 8.4031868694133e+01 1.0357079019194e+02 4.4301828505852e+01
u′′

1(2) 6.0998633006437e+01 8.6538176666730e+01 3.5624115949487e+01 4.4301828505854e+01

Fig. 5. Approximation of C0 periodic function u2(x): Comparison of approximation results (top row) and their absolute errors (bottom row) obtained with 
(a,d) C∞ , (b,e) C0, and (c,f) C1 periodic DNNs. The exact function is included for comparison. The insets are the magnified views near x = 0.

Table 3
Approximation of C0 periodic function u2(x): Values of the function and its derivatives at the left/right domain boundaries (x = 0 and x = 2) from the C∞ , 
C0 and C1 periodic DNN approximations and from the exact function. 14 significant digits are listed to demonstrate that the current method enforces the 
periodic conditions exactly.

C∞ periodic DNN C0 periodic DNN C1 periodic DNN Exact value
u2(0) 2.0077934937638e-02 -5.6212180516792e-05 1.0675453567003e-02 0
u2(2) 2.0077934937638e-02 -5.6212180516792e-05 1.0675453567003e-02 0
u′

2(0) 2.0046381097937e-03 1.5738634304121e+00 -8.9688048016955e-02 1.5707963267949e+00
u′

2(2) 2.0046381097902e-03 -1.5651374257149e+00 -8.9688048016955e-02 -1.5707963267949e+00
u′′

2(0) 4.8956024103701e+01 -3.0860019634346e-02 1.1444431255354e+02 0
u′′

2(2) 4.8956024103700e+01 1.7388612411815e-01 1.0788094853391e+02 0

We next consider the function

u2(x) = sin
πx

2
(28)

on the domain 	 = {x|0 � x � 2}. This is a C0 periodic function on this domain, with u2(0) = u2(2) and u′
2(0) �= u′

2(2). We 
would like to approximate u2(x) with C∞ and Ck (k = 0 and 1) periodic DNNs.

We employ the same DNN and simulation parameters to approximate u2(x) as for u1(x); see Table 1. The loss function 
is given by (27), with u1(x) replaced by u2(x). Fig. 5 is a comparison of the approximation results and their absolute errors 
obtained with C∞ , C0 and C1 periodic DNNs. The exact function u2(x) has also been included for comparison. The C0

periodic DNN produces results that are considerably more accurate than the other two methods, as expected. The C∞ and 
C1 periodic DNN approximations produce accurate results in the bulk of the domain, but exhibit larger errors near/at the 
domain boundaries. The C∞ and C1 periodic conditions appear to have the tendency of bending the function curve near 
the boundaries to achieve periodicity for the derivatives; see the insets of Figs. 5(a,b,c).

To verify the periodicity of the DNN approximations on the boundaries, we list in Table 3 the values of the approximated 
u2(x) and its derivatives (up to order two) on the domain boundaries x = 0 and 2 from different approximations and from 
the exact function u2(x). Again 14 significant digits have been shown for each value. It is observed that the current methods 
indeed enforce exactly the periodicity for the approximation function and its derivatives on the boundaries as expected. In 
the C∞ periodic DNN approximation, the function and its derivatives (up to order 2 considered here) have identical values 
on the two boundaries. In contrast, with the C0 periodic DNN approximation only the function value is identical on the 
11



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 6. Approximation of non-periodic function u3(x): Approximation results (top row) and their absolute errors (bottom row) obtained with (a,d) C∞ , (b,e) 
C0, (c,f) C1, periodic DNNs. The exact profile of the function u3(x) is also included. The insets are magnified views near x = 0.

Table 4
Approximation of the non-periodic function u3(x): Values of the function and its derivatives at the left/right domain boundaries (x = 0 and x = 2) from the 
approximations with C∞ , C0 and C1 periodic DNNs and from the exact function. 14 significant digits are listed to demonstrate that the current method 
enforces the periodic conditions exactly for the approximation function and its derivatives.

C∞ periodic DNN C0 periodic DNN C1 periodic DNN Exact value
u3(0) 1.3452550840065e-01 7.7219924514080e-02 6.4853245159018e-02 1
u3(2) 1.3452550840063e-01 7.7219924514080e-02 6.4853245159018e-02 -1
u′

3(0) 1.7647534129428e+02 7.0097116541954e+02 1.5259262265715e+03 0
u′

3(2) 1.7647534129428e+02 1.0015322821138e+03 1.5259262265715e+03 0
u′′

3(0) -9.2430741908226e+03 8.4509087153852e+05 -4.6596618576551e+05 -2.4674011002723e+00
u′′

3(2) -9.2430741908221e+03 -9.4100497028271e+05 -4.5176214142043e+05 2.4674011002723e+00

boundaries, and with the C1 periodic DNN approximation the function and the first derivative have identical values on the 
two boundaries.

We finally consider a non-periodic function,

u3(x) = cos
πx

2
, (29)

on the domain 	 = {x|0 � x � 2}. We would like to approximate this function using C∞ and Ck (k = 0, 1) periodic DNNs. 
The DNN and simulation parameter values employed here are the same as those for u1(x) and u2(x) (see Table 1), except 
for the number of quadrature points within each element. Here for u3(x) we employ Q = 40 with the C∞ periodic DNN, 
and Q = 50 with the C0 and C1 periodic DNNs.

Fig. 6 shows the approximation functions u3(x) and their absolute errors obtained with C∞ , C0 and C1 periodic DNNs. 
In the bulk of the domain the DNN approximations appear to be in good agreement with the exact function u3(x) with 
all three methods. In a region near the two boundaries, the periodic DNN approximations exhibit large errors, and one 
can observe fluctuations in the approximation functions (Gibbs phenomenon). Table 4 lists the values of the approximation 
function u3(x) and its derivatives on the two boundaries (x = 0, 2) obtained with the C∞ , C0 and C1 periodic DNNs as well 
as the exact function u3(x). The results again demonstrate that the current methods enforce exactly the periodicity for the 
approximation function and its derivatives.

3.2. One-dimensional Helmholtz equation with periodic BCs

In this subsection we test the performance of the proposed method with the one-dimensional (1D) Helmholtz equation,

d2u
2

− λu = f (x), (30)

dx

12



on the domain 	 = {x|a � x � b}, where λ (λ � 0), a and b are given constants and f (x) is a prescribed source term. We 
impose periodic boundary conditions (BC) on the domain boundaries, x = a and b.

Specifically, we consider two types of periodic boundary conditions. The first type is the C1 periodic condition,

u(a) = u(b), u′(a) = u′(b). (31)

The second type is the C∞ periodic condition,

u(a) = u(b), u′(a) = u′(b), u′′(a) = u′′(b), . . . , u(m)(a) = u(m)(b), . . . (32)

Note that with the C∞ periodic condition (32), we are effectively seeking a C∞ periodic function, with the period L = b −a, 
on the infinite domain x ∈ (−∞, ∞) that solves the equation (30). Since the Helmholtz equation is a second-order equation, 
imposing the C0 periodic condition only, i.e. u(a) = u(b), does not lead to a unique solution to the problem.

For the numerical tests in this section we fix the problem parameters to the following values:

λ = 10, a = 0, b = 4, L = b − a = 4. (33)

We choose the source term f (x) such that the Helmholtz equation (30) has an analytic solution

u(x) = sin[3π(x + 0.05)] cos[2π(x + 0.05)] + 2. (34)

This is a periodic function with L = 4 as a period, and it satisfies the boundary conditions (31) and (32).
To simulate this problem, we employ a feed-forward neural network (Fig. 1) with 4 hidden layers, with 20 nodes in each 

layer, apart from the input and output layers. The input to the network is the coordinate x (1 node), and the output of the 
network is the solution to the Helmholtz equation u (1 node). The second layer of the network (or the first hidden layer) is 
set to be a C∞ periodic layer Lp(m, n) with m = 11 and n = 20, in which we set the constant ω = 2π

L = π
2 in equation (8a), 

when the C∞ periodic boundary conditions in (32) are imposed. When the C1 periodic boundary conditions in (31) are 
imposed, we set the second layer of the network to be a C1 periodic layer LC1 (m, n) with m = 11 and n = 20, as detailed 
in Section 2.

We minimize the following loss function with this DNN,

Loss = 1

L

∫
	

[
d2u

dx2
− λu − f (x)

]2

dx = 1

L

Ne−1∑
e=0

∫
	e

[
d2u

dx2
− λu − f (x)

]2

dx

= 1

L

Ne−1∑
e=0

Q −1∑
i=0

[
d2u

dx2

∣∣∣∣
xe

i

− λu(xe
i ) − f (xe

i )

]2

J e wi .

(35)

In this equation, Ne is the number of elements (sub-intervals) we have partitioned the domain 	 into in order to compute 
the integral, 	e (0 � e � Ne − 1) denotes the region of element e, Q is the number of quadrature points within each 
element, J e is the Jacobian of 	e with respect to the standard element [−1, 1], xe

i (0 � i � Q − 1) are the Gauss-Lobatto-
Legendre quadrature points within element e for 0 � e � Ne − 1, and wi (0 � i � Q − 1) are the weights associated with 
the Gauss-Lobatto-Legendre quadrature. The input data to the network consist of xe

i (0 � i � Q − 1, 0 � e � Ne − 1), and the 
label data consist of f (xe

i ) (0 � i � Q − 1, 0 � e � Ne − 1). In the expression (35), u(xe
i ) can be obtained from the output of 

the DNN, and d2u
dx2

∣∣∣
xe

i

can be computed by auto-differentiation.

For the numerical experiments reported below, we have partitioned the domain into three elements (Ne = 3), with these 
elements being 	0 = [0, 1.3], 	1 = [1.3, 2.6] and 	2 = [2.6, 4.0]. We employ 40 quadrature points (Q = 40) within each 
element. The activation functions for all the hidden layers are the hyperbolic tangent function (“tanh”), and no activation 
function is applied to the output layer. The DNN is trained using the Adam optimizer. For both C∞ and C1 periodic BCs, the 
neural network has been trained for 31, 000 epochs, and the learning rate coefficient has been decreased linearly from 10−3

at the beginning to 10−5 at the end of the training process. The options of “early stopping” and “restore to best weight” 
have been used in Tensorflow/Keras when training the DNN. The training histories of the loss function for the C∞ and C1

periodic BCs are shown in Fig. 7. We observe characteristics in the loss histories similar to those observed in Section 3.1, 
such as the varied loss reduction rates at different stages and the fluctuations in the loss values.

Fig. 8 shows a comparison between the exact solution and the DNN solutions obtained with the C∞ and C1 periodic 
BCs enforced using the current method from Section 2 (left column), as well as the absolute errors of these DNN solutions 
against the exact solution (right column). The DNN solutions are observed to agree with the exact solution very well. The 
DNN solution curves almost exactly overlap with the exact-solution curve, and the maximum errors in the domain is on the 
order of 10−4 with both the C∞ and C1 periodic boundary conditions.
S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
13



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242

Fig. 7. 1D Helmholtz equation: training histories of the loss function with the (a) C∞ and (b) C1 periodic boundary conditions.

Fig. 8. 1D Helmholtz equation: (a,c), comparison between the exact and DNN solutions. (b,d), absolute errors of the DNN solutions. Results in (a,b) are 
obtained with the C∞ periodic BCs, and those in (c,d) are obtained with the C1 periodic BCs. Periodic BCs are enforced using the methods from Section 2.
14



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 9. 1D Helmholtz equation: DNN solution obtained with the C1 periodic BC enforced using the penalty method.

Table 5
1D Helmholtz equation: Values of the solution and its first and second derivatives on the left/right domain boundaries from the exact solution and from 
the DNN solutions with C∞ and C1 periodic BCs enforced using the current method, and with the C1 periodic BCs enforced using the penalty method.

DNN C∞ PBC (Current) DNN C1 PBC (Current) DNN C1 PBC (Penalty) Exact solution

u(0) 2.4317959997357e+00 2.4318435955019e+00 2.4318606137503e+00 2.4317706231133e+00
u(4) 2.4317959997357e+00 2.4318435955019e+00 2.4318130678898e+00 2.4317706231133e+00
u′(0) 7.1038526507927e+00 7.1041119004958e+00 7.1047853002015e+00 7.1050608901229e+00
u′(4) 7.1038526507927e+00 7.1041119004958e+00 7.1048251209190e+00 7.1050608901229e+00
u′′(0) -8.8126699519835e+01 -8.9042115478782e+01 -8.7001193825524e+01 -8.8007775637807e+01
u′′(4) -8.8126699519835e+01 -8.8678208091429e+01 -8.8802791765032e+01 -8.8007775637807e+01

For comparison, we have also computed this problem with the C1 periodic BCs in another way, by enforcing the C1

periodic BCs based on the penalty method. Fig. 9 shows the DNN solution computed using the penalty method. Here the 
DNN has the same parameters (4 hidden layers, with 20 nodes in each layer). The C1 periodic BCs are enforced by including 
a penalty term in the loss function as follows,

Loss = 1

L

∫
	

[
d2u

dx2
− λu − f (x)

]2

dx + θbc

(
[u(a) − u(b)]2 +

[
du

dx

∣∣∣∣
x=a

− du

dx

∣∣∣∣
x=b

]2
)

, (36)

where θbc = 10 is the penalty coefficient in front of the boundary residual terms. The DNN has been trained with the Adam 
optimizer for 31, 000 epochs, with the learning rate coefficient linearly decreasing from 10−3 at the beginning to 10−5 at 
the end of the training process. We observe that the DNN solution resulting from the penalty method also agrees well with 
the exact solution.

In Table 5 we list the values of the DNN solution and its first and second derivatives, with 14 significant digits shown, 
on the left and right domain boundaries obtained with the C∞ and C1 periodic boundary conditions enforced using the 
current method, together with those obtained with the C1 periodic BCs enforced using the penalty method. The boundary 
values from the exact solution (34) are also included in the table for comparison. We observe that the current method 
enforces exactly, to the machine accuracy, the periodicity for the solution and its derivatives (up to order 2 shown here) 
with the C∞ periodic BCs. With the C1 periodic BCs, the current method enforces exactly the periodicity for the solution 
and its first derivative, but not for the second derivative. In contrast, the penalty method enforces the periodic condition for 
none of these quantities exactly.

In addition to the above tests, we have also considered L2 regularization in the DNN simulation of the 1D Helmholtz 
equation. In this set of simulations we modify the loss function given in (35), by adding an L2 regularization term

γ

N p∑
i=1

|χi|2 ,

where the constant γ � 0 is a regularization coefficient, χi denotes a generic training parameter, and Np is the total number 
of training parameters in the neural network, including those involved in the C∞ or Ck periodic layers. This regularization 
term will tend to reduce the magnitudes of the training parameters. We vary the regularization coefficient γ in a range 
of values (between γ = 10−5 and γ = 0.1). For each case we train the neural network for 31, 000 epochs using the Adam 
optimizer, with the learning rate coefficient decreasing linearly from 10−3 at the beginning to 10−5 at the end of the 
15



Table 6
1D Helmholtz equation: Effect of the L2 regularization coefficient γ on the maximum and rms 
errors in the domain of the DNN solution computed using the C∞ and C1 periodic BCs.

Periodic BC γ maximum error rms error

C∞ 0 1.64e − 4 2.59e − 5
10−5 1.61e − 4 2.54e − 5
10−4 1.52e − 4 2.46e − 5
10−3 1.49e − 4 2.66e − 5
10−2 4.03e − 4 9.41e − 5
10−1 2.16e − 3 5.88e − 4

C1 0 2.41e − 4 3.97e − 5
10−5 2.40e − 4 3.98e − 5
10−4 2.37e − 4 3.92e − 5
10−3 2.61e − 4 4.58e − 5
10−2 3.31e − 4 7.26e − 5
10−1 2.19e − 3 4.38e − 4

Table 7
1D Helmholtz equation: Values of the DNN solution and its first/second derivatives on the left/right domain boundaries computed using C∞ and C1

periodic BCs, with different L2 regularization coefficient values. These can be compared with Table 5 (columns two and three), which corresponds to no 
regularization.

Periodic BC γ x u(x) u′(x) u′′(x)

C∞ 10−5 0 2.4317956200955e+00 7.1038405078644e+00 -8.8124787378696e+01
4 2.4317956200955e+00 7.1038405078644e+00 -8.8124787378695e+01

10−4 0 2.4317945868172e+00 7.1038451580625e+00 -8.8128268170738e+01
4 2.4317945868172e+00 7.1038451580625e+00 -8.8128268170738e+01

10−3 0 2.4317835455463e+00 7.1038350695957e+00 -8.8123605452033e+01
4 2.4317835455463e+00 7.1038350695957e+00 -8.8123605452033e+01

10−2 0 2.4316806415841e+00 7.1034826104860e+00 -8.8139635113550e+01
4 2.4316806415841e+00 7.1034826104861e+00 -8.8139635113549e+01

10−1 0 2.4306387295347e+00 7.0984545906631e+00 -8.8292285064056e+01
4 2.4306387295347e+00 7.0984545906631e+00 -8.8292285064056e+01

C1 10−5 0 2.4318435801313e+00 7.1041221348866e+00 -8.9044025046988e+01
4 2.4318435801313e+00 7.1041221348866e+00 -8.8677802019579e+01

10−4 0 2.4318446061993e+00 7.1041204904255e+00 -8.9043608588260e+01
4 2.4318446061993e+00 7.1041204904255e+00 -8.8680583719691e+01

10−3 0 2.4318516299914e+00 7.1040912750379e+00 -8.9090042771614e+01
4 2.4318516299914e+00 7.1040912750379e+00 -8.8705371438099e+01

10−2 0 2.4318885280959e+00 7.1042513140124e+00 -8.9485778332921e+01
4 2.4318885280959e+00 7.1042513140123e+00 -8.8652504850661e+01

10−1 0 2.4320845796666e+00 7.1044417448844e+00 -9.0794978595810e+01
4 2.4320845796666e+00 7.1044417448844e+00 -8.8619367934323e+01

training. In this group of tests, all the weight and bias coefficients in the neural network are initialized with identical values 
as those in the DNN simulations without regularization discussed before.

Fig. 10 shows the training histories of the loss function and the error distributions of the DNN solutions computed 
using the C∞ periodic BC with regularization coefficients γ = 10−4, 10−3 and 10−2. These results can be compared with 
Fig. 7(a) and Fig. 8(b), which corresponds to the C∞ periodic BC but with zero regularization in the loss function. With L2

regularization we again observe the fluctuations in the loss histories. However, the fluctuations appear to become relatively 
weaker with a larger regularization coefficient. The loss histories signify that with γ > 0 the loss function asymptotically 
approaches some non-zero constant as the training progresses. This appears qualitatively to be somewhat different from the 
case without regularization (see Fig. 7(a)). It is also observed that, compared with the case of zero regularization, the error 
of the DNN result seems to be nearly the same with a small γ value (see Figs. 10(b) and 8(b)). On the other hand, a larger 
γ value can markedly alter the error magnitude and distribution (see Fig. 10(f)). The simulation error for this problem 
appears to become worse with a large regularization coefficient γ .

Table 6 illustrates the effect of L2 regularization in some quantitative sense. Here we list the maximum errors and 
the root-mean-squares (rms) errors of the DNN solutions in the domain computed using the C∞ and C1 periodic BCs 
corresponding to different γ values in the L2 regularization. The simulation errors are essentially the same as those in 
the case without regularization, when γ is below about 10−3 with the C∞ periodic BC or below about 10−4 with the C1

periodic BC. Beyond these values, the simulation errors increase with increasing γ .
Regardless whether a regularization is imposed in the DNN simulation or not, the current method can exactly enforce the 

periodic conditions for the solution and its derivatives. This is demonstrated by Table 7 for the cases with L2 regularization. 
Here we list the values of the DNN solution and its first and second derivatives, with 14 significant digits shown, on the 
domain boundaries x = 0 and x = 4 corresponding to different γ values, obtained using the C∞ and C1 periodic BCs. It is 
S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
16



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242

Fig. 10. 1D Helmholtz equation: The training histories (left column) and the absolute-error distributions (right column) of the DNN simulation using the 
C∞ periodic BC, with L2 regularization coefficients γ = 10−4 (a,b), 10−3 (c,d), and 10−2 (e,f). These figures can be compared with Figs. 7(a) and 8(b), 
which are obtained using the C∞ periodic BC with no regularization.
17



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
evident that the current method enforces the periodicity to the machine accuracy, for the solution and all its derivatives as 
shown here with the C∞ periodic BC, and for the solution and its first derivative with the C1 periodic BC.

3.3. Two-dimensional Helmholtz equation with periodic BCs

We next test the performance of the proposed methods using the Helmholtz equation in two dimensions (2D),

∂2u

∂x2
+ ∂2u

∂ y2
− λu = f (x, y), (37)

on a rectangular domain 	 = {(x, y)|a1 � x � b1, a2 � y � b2}. Here λ, a1, a2, b1 and b2 are given constants, u(x, y) is the 
unknown field function to be solved for, and f (x, y) is a prescribed source term. We impose periodic boundary conditions 
in both the x and y directions.

Specifically, we consider C1 and C∞ periodic boundary conditions in 2D. The 2D C1 periodic BC imposes the relations:⎧⎪⎪⎨
⎪⎪⎩

u(a1, y) = u(b1, y),
∂

∂x
u(a1, y) = ∂

∂x
u(b1, y), ∀y ∈ [a2,b2];

u(x,a2) = u(x,b2),
∂

∂ y
u(x,a2) = ∂

∂ y
u(x,b2), ∀x ∈ [a1,b1].

(38)

The 2D C∞ periodic BC imposes the relations:⎧⎪⎪⎨
⎪⎪⎩

u(a1, y) = u(b1, y),
∂

∂x
u(a1, y) = ∂

∂x
u(b1, y),

∂2

∂x2
u(a1, y) = ∂2

∂x2
u(b1, y), . . . , ∀y ∈ [a2,b2];

u(x,a2) = u(x,b2),
∂

∂ y
u(x,a2) = ∂

∂ y
u(x,b2),

∂2

∂ y2
u(x,a2) = ∂2

∂ y2
u(x,b2), . . . , ∀x ∈ [a1,b1].

(39)

With the C∞ periodic BC, we are effectively seeking a smooth periodic function u(x, y) satisfying

u(x + L1, y) = u(x, y), u(x, y + L2) = u(x, y), ∀x, y ∈ (−∞,∞), (40)

where L1 = b1 − a1 and L2 = b2 − a2.
We specifically consider the following parameter values for the numerical tests in this section:

λ = 10, a1 = a2 = 0, b1 = b2 = 4, L1 = L2 = 4. (41)

We choose the source term f (x, y) such that the 2D Helmholtz equation (37) has the solution given by,

u(x, y) = − [1.5 cos(πx + 0.4π) + 2 cos(2πx − 0.2π)] [1.5 cos(π y + 0.4π) + 2 cos(2π y − 0.2π)] . (42)

This analytic solution satisfies the periodic boundary conditions (38) and (39).
To simulate this problem, we employ a feed-forward DNN with 2 nodes in the input layer, one node in the output layer, 

and 4 hidden layers in between. The input layer consists of the coordinates x and y, and the output layer is the solution to 
the 2D Helmholtz equation u. Each of the four hidden layers contains 20 nodes (neurons) in its output. For the C∞ periodic 
BCs, the second layer of this DNN (i.e. the first hidden layer) is set to be a 2D C∞ periodic layer L2D

p (m, n) with m = 12
and n = 20 (see equation (11)), in which the constants ω1 and ω2 are set to

ω1 = 2π

L1
= π

2
, ω2 = 2π

L2
= π

2
. (43)

For the C1 periodic BCs, the second layer of this DNN is set to be a 2D C1 periodic layer L2D
C1 (m, n) with m = 12 and n = 20

(see equation (22)).
We minimize the following loss function,

Loss = 1

V	

∫
	

[
∂2u

∂x2
+ ∂2u

∂ y2
− λu − f (x, y)

]2

d	

= 1

V	

Ne−1∑
e=0

Q −1∑
i, j=0

[
∂2u

∂x2

∣∣∣∣
(xe

i ,ye
j)

+ ∂2u

∂ y2

∣∣∣∣
(xe

i ,ye
j)

− λu(xe
i , ye

j) − f (xe
i , ye

j)

]2

J e wij,

(44)

where V	 = ∫
	

d	 = 16 is the area of the domain, Ne is the number of elements (sub-domains) we have partitioned 
the domain 	 into for computing the integral, Q is the number of quadrature points in the x and y directions within 
18



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 11. 2D Helmholtz equation: Contours of DNN Solutions (left column) and their absolute errors against the exact solution (right column), obtained with 
C∞ (top row) and C1 (bottom row) periodic boundary conditions. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

each element, J e is the Jacobian of the element e (0 � e � Ne − 1), (xe
i , y

e
j) (0 � i, j � Q − 1) are the Gauss-Lobatto-

Legendre quadrature points within the element e (0 � e � Ne −1), and wij (0 � i, j � Q −1) are the Gauss-Lobatto-Legendre 
quadrature weights associated with (xe

i , y
e
j). The input data to the DNN consist of (xe

i , y
e
j) (0 � i, j � Q − 1, 0 � e � Ne − 1), 

and f (xe
i , y

e
j) (0 � i, j � Q − 1, 0 � e � Ne − 1) are passed to the DNN as the label data. In the loss expression, u(xe

i , y
e
j)

can be obtained from the output of the DNN, and the derivatives ∂2u
∂x2 and ∂2u

∂ y2 on (xe
i , y

e
j) can be computed by auto-

differentiation.
In the numerical tests below, we partition the domain into 4 elements (Ne = 4), with 2 uniform elements in both 

the x and y directions. We use 30 quadrature points (Q = 30) in each direction within each element. We employ the 
hyperbolic tangent (“tanh”) function as the activation function for each of the hidden layers, and no activation is applied to 
the output layer. The DNN is trained using the L-BFGS optimizer for 30, 500 iterations with both the C∞ and the C1 periodic 
BCs. As mentioned before, we employ the L-BFGS routine “lbfgs_minimize()” from the Tensorflow-Probability library in our 
implementation, and use the default values for the parameters as specified in its documentation (e.g. the tolerance is 10−8).

Fig. 11 shows contours of the DNN solutions (left column) and their absolute errors (right column) against the exact 
solution (42), computed with the C∞ periodic boundary conditions (top row) and the C1 periodic boundary conditions 
(bottom row). The distributions of the DNN solutions are qualitatively the same as that of the exact solution, and no 
difference can be discerned visually. The maximum absolute error of the DNN solution in the domain is about 1.5 × 10−3

with the C∞ periodic BC and about 1.9 × 10−3 with the C1 periodic BC. Fig. 12 provides a quantitative comparison between 
the DNN solutions and the exact solution. It shows the profiles of the DNN solutions obtained using C∞ and C1 periodic 
BCs, as well as the exact solution, along several horizontal lines across the domain located at y = 0.5, 2, and 3.5. The error 
profiles of the DNN solutions along these lines are also shown in this figure. We observe that the DNN solutions with both 
the C∞ and C1 periodic BCs obtained using the current method agree very well with the exact solution.

To examine how well the current methods enforce the periodic boundary conditions for the 2D Helmholtz equation, we 
have extracted the values of the DNN solution and its partial derivatives (up to second order) on several corresponding 
points on the left and right boundaries, and on the top and bottom boundaries. Note that these derivatives are computed 
19



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 12. 2D Helmholtz equation: comparison of profiles of the solution (top row) and its absolute error against the exact solution (bottom row) along several 
horizontal lines located at (a,d) y = 0.5, (b,e) y = 2.0, and (c,f) y = 3.5, from the DNN solutions with C∞ and C1 periodic boundary conditions. The profiles 
of the exact solution are also included for comparison.

by auto-differentiation, and they are the exact derivatives corresponding to the given DNN representation of the field. 
Table 8 lists the values of the DNN solutions and their partial derivatives on several corresponding points on the left/right 
boundaries and top/bottom boundaries. The second-order mixed derivatives and some first derivatives are not listed in 
the table, such as ∂2u

∂x∂ y , ∂u
∂ y on the left/right boundaries, and ∂u

∂x on the top/bottom boundaries. These unlisted values are 
exactly the same on the corresponding boundary points with both the C∞ and C1 periodic BCs. The boxed values in this 
table highlight the difference in the second partial derivatives on the corresponding boundary points of the DNN solution 
obtained with C1 periodic BCs. As expected, the current methods have enforced the periodic boundary conditions exactly 
for the solution and the corresponding higher-order derivatives.

3.4. Diffusion equation with periodic BCs

The next test problem is the unsteady diffusion equation:

∂u

∂t
− ν

∂2u

∂x2
= f (x, t), (45)

where the constant ν > 0 is the diffusion coefficient, u(x, t) is the unknown field function to be solved for, f (x, t) is a 
prescribed source term, x is the spatial coordinate, and t is time. We consider the spatial-temporal domain 	 = {(x, t)|a �
x � b, 0 � t � T }, where a, b, T are prescribed constants whose values are specified below. This equation is supplemented 
by the initial condition,

u(x,0) = uin(x), (46)

where uin denotes the initial distribution.
We impose periodic boundary conditions on the spatial boundaries x = a and b. We specifically consider the C∞ and C1

periodic BCs. The C∞ periodic BC requires,

u(a, t) = u(b, t),
∂

∂x
u(a, t) = ∂

∂x
u(b, t),

∂2

∂x2
u(a, t) = ∂2

∂x2
u(b, t), . . . , ∀t ∈ [0, T ]. (47)

The C1 periodic BC requires,

u(a, t) = u(b, t),
∂

u(a, t) = ∂
u(b, t), ∀t ∈ [0, T ]. (48)
∂x ∂x

20



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Table 8
2D Helmholtz equation: Values of the solution and its derivatives on selected corresponding points of the left/right and top/bottom boundaries, obtained 
from the DNN solutions with C∞ and C1 periodic BCs and from the exact solution. ux = ∂u

∂x , u y = ∂u
∂ y , uxx = ∂2 u

∂x2 , and u yy = ∂2u
∂ y2 .

DNN C∞ PBC DNN C1 PBC Exact solution
u(0,0.5) 6.3376378742740e+00 6.3377710228780e+00 6.3375550504603e+00
u(4,0.5) 6.3376378742740e+00 6.3377710228780e+00 6.3375550504603e+00
ux(0,0.5) 8.8435063231492e+00 8.8494566780609e+00 8.8433359504634e+00
ux(4,0.5) 8.8435063231492e+00 8.8494566780609e+00 8.8433359504634e+00
uxx(0,0.5) -2.0831254187423e+02 -2.0869839735215e+02 -2.0841095826412e+02
uxx(4,0.5) -2.0831254187423e+02 -2.0835671494578e+02 -2.0841095826412e+02

u(0,3.5) 3.9895135572211e-01 3.9901841846678e-01 3.9851292703942e-01
u(4,3.5) 3.9895135572206e-01 3.9901841846678e-01 3.9851292703942e-01
ux(0,3.5) 5.4847970782262e-01 5.6649740417208e-01 5.5607938177296e-01
ux(4,3.5) 5.4847970782265e-01 5.6649740417208e-01 5.5607938177297e-01
uxx(0,3.5) -1.3183580874671e+01 -1.3617295595959e+01 -1.3105126558055e+01
uxx(4,3.5) -1.3183580874671e+01 -1.3406939322481e+01 -1.3105126558055e+01

u(1,0) -2.4026513592099e+00 -2.4026445343439e+00 -2.4031781074217e+00
u(1,4) -2.4026513592099e+00 -2.4026445343439e+00 -2.4031781074217e+00
u y(1,0) -3.3491228258428e+00 -3.3537672992540e+00 -3.3533612226667e+00
u y(1,4) -3.3491228258428e+00 -3.3537672992540e+00 -3.3533612226667e+00
u yy(1,0) 7.8862068922108e+01 7.9273831286344e+01 7.9028686655862e+01
u yy(1,4) 7.8862068922108e+01 7.8873562549603e+01 7.9028686655862e+01

u(3,0) -2.4027241121576e+00 -2.4024234030698e+00 -2.4031781074217e+00
u(3,4) -2.4027241121576e+00 -2.4024234030698e+00 -2.4031781074217e+00
u y(3,0) -3.3581682386601e+00 -3.3584974075468e+00 -3.3533612226667e+00
u y(3,4) -3.3581682386600e+00 -3.3584974075468e+00 -3.3533612226667e+00
u yy(3,0) 7.8767439914223e+01 7.9141884228911e+01 7.9028686655862e+01
u yy(3,4) 7.8767439914222e+01 7.8931266277797e+01 7.9028686655862e+01

For the numerical tests in this subsection we employ the following parameter values,

ν = 0.01, a = 0, b = 4, T = 4.5, L = b − a = 4. (49)

We choose the source term f (x, t) such that the function,

u(x, t) = (2 cos(πx + 0.2π) + 1.5 cos(2πx − 0.6π)) (2 cos(πt + 0.2π) + 1.5 cos(2πt − 0.6π)) , (50)

is a solution to the equation (45). We choose the initial distribution uin(x) by using the analytic expression (50) and setting 
t = 0. Note that the expression (50) satisfies the boundary conditions (48) and (47). So under the initial condition (46) and 
the periodic boundary conditions, the exact solution to the diffusion equation is given by (50).

We solve this initial/boundary value problem using DNN together with the method from Section 2 for enforcing the 
periodic BCs in x. We employ a DNN with two nodes in the input layer, which represent the spatial coordinate x and the 
time t , and one node in the output layer, which represents the unknown function u(x, t) to be solved for. This DNN contains 
3 hidden layers between the input and the output layers. Each of the hidden layers has an output consisting of 30 nodes. 
Note that periodic BCs are imposed only in the x direction, not in time. For the C∞ periodic BCs, the second layer of this 
DNN (or the first hidden layer) is set to be a modified 2D C∞ periodic layer as discussed in the Remark 2.2. For the periodic 
direction x, this modified 2D C∞ periodic layer corresponds to a 1D C∞ periodic layer Lp(m, n) with m = 12 and n = 30
(see equation (8a)), in which the constant ω is set to

ω = 2π

L
= π

2
. (51)

For the C1 periodic BCs, the second layer of this DNN is set to be a modified 2D C1 periodic layer as discussed in Remark 2.4. 
For the periodic direction x, this modified 2D C1 periodic layer corresponds to a 1D C1 periodic layer LC1 (m, n) with m = 12
and n = 30 (see equation (19)).

We minimize the following loss function,

Loss = θeq
1

V	

∫
	

[
∂u

∂t
− ν

∂2u

∂x2
− f (x, t)

]2

d	 + θic
1

b − a

b∫
a

[u(x,0) − uin(x)]2 dx

= θeq
1

V	

Nel−1∑
e=0

∫ [
∂u

∂t
− ν

∂2u

∂x2
− f (x, t)

]2

d	 + θic
1

b − a

Nx
el−1∑

e=0

be∫
a

[u(x,0) − uin(x)]2 dx
	e e

21



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
= θeq

(b − a)T

Nel−1∑
e=0

Q −1∑
i, j

[
∂u

∂t

∣∣∣∣
(xe

i ,t
e
j )

− ν
∂2u

∂x2

∣∣∣∣
(xe

i ,t
e
j )

− f (xe
i , te

j)

]2

J e wij

+ θic

b − a

Nx
el−1∑

e=0

Q −1∑
i=0

[
u(xe

i ,0) − uin(xe
i )

]2
J ex wi, (52)

where V	 = ∫
	

d	 = (b − a)T is the volume of the spatial-temporal domain 	, Nel is the number of spatial-temporal 
elements we have partitioned 	 into in order to compute the integral, 	e denotes the spatial-temporal element e for 
0 � e � Nel − 1, and Q is the number of Gauss-Lobatto-Legendre quadrature points in both the x and t directions within 
each spatial-temporal element. We use Nx

el to denote the number of elements in the spatial direction, and Nt
el to denote 

the number of elements in time, and then Nel = Nx
el N

t
el . The sub-interval [ae, be] denotes the spatial element e for 0 �

e � Nx
el − 1. The constants θeq and θic are the penalty coefficients for the equation residual term and the initial condition 

residual term in (52). The Gauss-Lobatto-Legendre quadrature points within the spatial-temporal element 	e are denoted by 
(xe

i , t
e
j), with the associated quadrature weights wij . J e is the Jacobian associated with the element 	e for 0 � e � Nel − 1. 

J ex is the Jacobian of the spatial element [ae, be] for 0 � e � Nx
el − 1. wi (0 � i � Q − 1) denote the quadrature weights 

associated with Gauss-Lobatto-Legendre quadrature points xe
i in the spatial direction. The input data to the DNN consist of 

all the quadrature points within the domain, (xe
i , t

e
j), for 0 � i, j � Q − 1 and 0 � e � Nel − 1. The values of the source term 

on the quadrature points, f (xe
i , t

e
j), are passed to the DNN as the label data. The terms ∂u

∂t

∣∣
(xe

i ,t
e
j )

and ∂2u
∂x2

∣∣∣
(xe

i ,t
e
j )

in (52) are 

computed based on auto-differentiation. It can be observed that here we are enforcing the initial condition by the penalty 
method.

In the numerical tests reported below, the domain 	 is partitioned into 9 spatial-temporal elements (Nel = 9), with 3
uniform elements in time (Nt

el = 3) and also 3 elements in the x direction (Nx
el = 3). Along the x direction, the two interior 

boundaries of the elements are located at x = 1.3 and 2.6. We employ 20 quadrature points (Q = 20) in space and time 
within each spatial-temporal element. The penalty coefficients are set to be θeq = 0.9 and θic = 1 − θeq = 0.1. The “tanh” 
activation function has been employed for each hidden layer, and no activation function is applied to the output layer of the 
DNN. The L-BFGS optimizer has been employed to train the DNN for 35, 000 iterations with the C∞ and C1 periodic BCs.

Fig. 13 shows contours in the spatial-temporal (x − t) plane of the DNN solutions (left column) and their absolute errors 
against the exact solution (right column), obtained using the C∞ periodic BCs (top row) and the C1 periodic BCs (bottom 
row). Qualitatively, no difference can be discerned between distributions of the DNN solutions and the exact solution given 
by (50). Fig. 14 provides a quantitative comparison between the DNN solutions and the exact solution. It shows profiles of 
the exact solution and the DNN solutions corresponding to C∞ and C1 periodic BCs at three time instants t = 0.75, 2.25
and 3.75. The profiles of the absolute errors of the DNN solutions are shown in this figure as well. The DNN solution profiles 
corresponding to both the C∞ and C1 periodic BCs are observed to overlap with those of the exact solution at different time 
instants. It can be observed from the error profiles that the DNN with the C∞ periodic BCs appears to result in generally 
smaller errors than that with the C1 periodic BCs for this problem.

To assess how well the current method enforces the periodic boundary conditions, we have extracted the values of the 
solution and its partial derivatives (up to order two) on the spatial boundaries (x = 0 and 4) at several time instants from 
the exact solution and the DNN solutions obtained using the C∞ and C1 periodic boundary conditions. Table 9 lists these 
boundary values for the solution and its derivatives, with 14 significant digits shown. As expected, the current method has 
enforced exactly the periodicity for the solution and all its derivatives extracted here with the C∞ periodic BCs, while with 
the C1 periodic BCs it enforces exactly the periodicity only for the solution and its first derivative.

3.5. Wave equation with periodic BCs

In the last numerical example, we test the proposed method using the wave equation,

∂u

∂t
− c

∂u

∂x
= 0, (53)

where the prescribed constant c represents the wave speed, u(x, t) is the unknown field function to be solved for, x is the 
spatial coordinate and t is the time. We consider the spatial-temporal domain 	 = {(x, t)|a � x � b, 0 � t � T } for this 
problem, where a, b and T are prescribed constants whose values are to be specified below. We consider the following 
initial condition,

u(x,0) = uin(x) = 2 sech
3(x − x0)

δ
, ∀x ∈ [a,b], (54)

where x0 ∈ [a, b] and δ are prescribed constants whose values are specified below.
We impose the periodic boundary condition on the spatial boundaries of the domain, x = a and b. Specifically, we con-

sider C∞ , C0, C1 and C2 periodic boundary conditions in this test. The Ck (k = 0, 1, 2) periodic BCs involve the conditions:
22



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 13. Diffusion equation: DNN solutions (left column) and their absolute errors (right column) obtained with C∞ (top row) and C1 (bottom row) periodic 
boundary conditions in the x direction.

u(a, t) = u(b, t), ∀t ∈ [0, T ]; (55)

∂

∂x
u(a, t) = ∂

∂x
u(b, t), ∀t ∈ [0, T ]; (56)

∂2

∂x2
u(a, t) = ∂2

∂x2
u(b, t), ∀t ∈ [0, T ]. (57)

The C0 periodic BC imposes the condition (55). The C1 periodic BC imposes the conditions (55) and (56). The C2 periodic 
BC imposes the conditions (55)–(57). The C∞ periodic BC imposes the conditions:

u(a, t) = u(b, t),
∂

∂x
u(a, t) = ∂

∂x
u(b, t), . . . ,

∂m

∂xm
u(a, t) = ∂m

∂xm
u(b, t), . . . , ∀t ∈ [0, T ]. (58)

This initial/boundary value problem has the solution,

u(x, t) =
{

uin(x + ct) = 2 sech 3(x−x0+ct)
δ

, if (x + ct) ∈ [a,b],
u(x ± L, t), otherwise,

∀(x, t) ∈ 	, (59)

where L = b − a. In the numerical tests reported below we have employed the following values for the parameters:

c = 2, T = 4, a = 0, b = 4, L = b − a = 4, δ = 1, x0 = 2. (60)
23



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 14. Diffusion equation: comparison of profiles of the solution (top row) and the absolute error (bottom row) at time instants (a,d) t = 0.75, (b,e) 
t = 2.25, (c,f) t = 3.75 from the DNN solutions with C∞ and C1 periodic boundary conditions and from the exact solution.

Table 9
Diffusion equation: values of the solution and its derivatives on the spatial boundaries (x = 0 and 4) at several time instants (14 significant digits shown), 
obtained from the DNN solutions with C∞ and C1 periodic BCs and from the exact solution. The boxes highlight the differences in the obtained values for 
the second derivatives.

DNN C∞ PBC DNN C1 PBC Exact solution
u(0,0.6) -2.4027959418736e+00 -2.4027209470767e+00 -2.4031781074217e+00
u(4,0.6) -2.4027959418736e+00 -2.4027209470767e+00 -2.4031781074217e+00
ux(0,0.6) -1.0992666323436e+01 -1.0826214093012e+01 -1.0970511273440e+01
ux(4,0.6) -1.0992666323436e+01 -1.0826214093012e+01 -1.0970511273440e+01
uxx(0,0.6) -4.8267691835142e+00 -6.7181257407543e+00 -4.8498203327099e+00
uxx(4,0.6) -4.8267691835143e+00 -4.7342701644443e+00 -4.8498203327100e+00

u(0,1.92) 8.8578278309199e-01 8.8939474834158e-01 8.8446899507453e-01
u(4,1.92) 8.8578278309200e-01 8.8939474834158e-01 8.8446899507453e-01
ux(0,1.92) 4.0439177602078e+00 3.9325284744288e+00 4.0376021450542e+00
ux(4,1.92) 4.0439177602078e+00 3.9325284744288e+00 4.0376021450542e+00
uxx(0,1.92) 1.3741473917761e+00 3.5766608911621e+00 1.7849345842144e+00
uxx(4,1.92) 1.3741473917761e+00 1.8868393439482e-03 1.7849345842144e+00

u(0,3.3) 1.7324193446499e+00 1.7385194442865e+00 1.7317627457812e+00
u(4,3.3) 1.7324193446499e+00 1.7385194442865e+00 1.7317627457812e+00
ux(0,3.3) 7.9201370767910e+00 7.7382513657243e+00 7.9054992498656e+00
ux(4,3.3) 7.9201370767909e+00 7.7382513657243e+00 7.9054992498656e+00
uxx(0,3.3) 3.2047702584285e+00 7.3508629515789e+00 3.4948463245323e+00
uxx(4,3.3) 3.2047702584286e+00 -1.0053353366089e+00 3.4948463245324e+00

To solve this initial/boundary value problem, we employ a feed-forward DNN together with the method from Section 2
for enforcing the periodic boundary conditions. The input layer of the DNN consists of two nodes, which represent the 
spatial coordinate x and the time t . The output layer of the DNN consists of one node, which represents the field function u
to be solved for. We employ 3 hidden layers between the input and the output layers. Each hidden layer has an output with 
30 nodes. Since the periodic BC is only imposed in the x direction, we employ the modified 2D periodic layers to enforce 
the periodic boundary conditions; see the Remarks 2.2 and 2.4. For the C∞ periodic BCs, the second layer of this DNN (or 
the first hidden layer) is set to be a modified 2D C∞ periodic layer as discussed in Remark 2.2. For the x direction, this 
modified periodic layer corresponds to the 1D C∞ periodic layer Lp(m, n) with m = 12 and n = 30 (see equation (8)), in 
which the constant ω is set to ω = 2π = π . For the Ck (k = 0, 1, 2) periodic BCs, the second layer of this DNN is set to be 
L 2

24



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
a modified 2D Ck periodic layer, which for the x direction corresponds to the 1D Ck periodic layer LCk (m, n) with m = 12
and n = 30 (see equation (19)).

We employ the following loss function for this DNN,

Loss = θeq
1

V	

∫
	

(
∂u

∂t
− c

∂u

∂x

)2

d	 + θic
1

b − a

b∫
a

[u(x,0) − uin(x)]2 dx

= θeq

V	

Nel−1∑
e=0

∫
	e

(
∂u

∂t
− c

∂u

∂x

)2

d	 + θic

b − a

Nx
el−1∑

e=0

be∫
ae

[u(x,0) − uin(x)]2 dx

= θeq

(b − a)T

Nel−1∑
e=0

Q −1∑
i, j=0

[
∂

∂t
u(xe

i , te
j) − c

∂

∂x
u(xe

i , te
j)

]2

J e wij

+ θic

b − a

Nx
el−1∑

e=0

Q −1∑
i=0

[
u(xe

i ,0) − uin(xe
i )

]2
J ex wi .

(61)

In the above expression, V	 = ∫
	

d	 = (b − a)T is the volume of the spatial-temporal domain 	, and the constants θeq
and θic are the penalty coefficients for the loss terms associated with the equation and the initial condition, respectively. In 
order to compute the integrals, we have partitioned the domain 	 into Nel spatial-temporal elements, with Nx

el elements 
in the spatial direction and Nt

el elements in time, leading to the relation Nel = Nx
el N

t
el . 	e denotes the region occupied by 

the spatial-temporal element e for 0 � e � Nel − 1. The interval [ae, be] denotes the region of the spatial element e for 
0 � e � Nx

el − 1. Q is the number of quadrature points in both the spatial and temporal directions within each spatial-
temporal element. (xe

i , t
e
j) (0 � i, j � Q − 1) are the Gauss-Lobatto-Legendre quadrature points within the spatial-temporal 

element 	e , for 0 � e � Nel − 1. J e is the Jacobian of the spatial-temporal element 	e (0 � e � Nel − 1), and J ex is the 
Jacobian of the spatial element [ae, be] (0 � e � Nx

el − 1). wij (0 � i, j � Q − 1) denote the weights associated with the 
Gauss-Lobatto-Legendre quadrature points (xe

i , t
e
j). wi (0 � i � Q − 1) denote the weights associated with the spatial Gauss-

Lobatto-Legendre quadrature point xe
i . The input data to the DNN are the quadrature points (xe

i , t
e
j) for 0 � i, j � Q − 1 and 

0 � e � Nel − 1. In the loss function (61), u(xe
i , t

e
j) is obtained from the output of the DNN, and the terms ∂u

∂t

∣∣
(xe

i ,t
e
j )

and 
∂u
∂x

∣∣
(xe

i ,t
e
j )

can be computed based on auto-differentiation. It can be observed that the initial condition is enforced by the 
penalty method.

For the numerical results reported below, we have partitioned the domain 	 into 4 spatial-temporal elements (Nel = 4), 
with 2 uniform elements along the spatial and temporal directions (Nx

el = Nt
el = 2). We employ 30 quadrature points in 

both space and time (Q = 30) within each spatial-temporal element. The penalty coefficients are set to be θeq = 0.9 and 
θic = 1 − θeq = 0.1. We use “tanh” as the activation functions for the hidden layers. No activation is applied to the output 
layer. The Adam optimizer has been employed to train the DNN for 60, 000 epochs with the C∞ and C1 periodic BCs, 
for 90, 000 epochs with the C0 periodic BC, and for 80, 000 epochs with the C2 periodic BCs. The learning rate coefficient 
decreases gradually in a staircase fashion from 10−3 at the beginning to 10−4 at the end of the training process. The options 
for “early stopping” and “restore to best weight” in Tensorflow/Keras are employed during the training of the DNNs. The 
training histories of the loss function are illustrated in Fig. 15 with the C∞ and C1 periodic BCs.

Fig. 16 shows the distributions of the DNN solutions and their absolute errors in the spatial-temporal plane. The plots in 
the left column of this figure are contours of the DNN solutions in the spatial-temporal (x − t) plane, obtained with the C∞
and Ck (k = 0, 1, 2) periodic BCs on the spatial boundaries. The plots in the right column are contours of the absolute errors 
of these solutions against the exact solution (59). Qualitatively, no difference can be discerned of the distributions between 
the DNN solutions and the exact solution. The maximum errors in the domain are approximately on the order of magnitude 
10−2.

Fig. 17 shows a temporal sequence of snapshots of the wave form, obtained from the DNN solution with the C∞ periodic 
boundary conditions. One can clearly observe the propagation of the wave form in the −x direction at a constant speed. 
Because of the imposed periodic conditions, as soon as the wave exits the left boundary (x = 0), it re-enters the domain 
through the right boundary (x = 4) in a seamless and smooth fashion.

In Fig. 18 we compare the wave profiles from the exact solution (59) and from the DNN solutions with different types of 
periodic BCs at three time instants (t = 0.5, 2 and 3.5). The error profiles of these DNN solutions are also included in this 
figure (bottom row). It is observed that the wave profiles obtained from the DNN with various types of periodic BCs are in 
good agreement with that of the exact solution, and that the largest errors appear to coincide with the peak of the wave.

Table 10 provides a verification that the current method enforces the periodic conditions exactly for the wave equation 
as expected. Here we list the boundary values of the DNN solutions obtained with different types of periodic BCs and the 
exact solution, as well as their partial derivatives (up to order two), at several time instants (t = 0.5, 2 and 3.5). We have 
again included 14 significant digits for each value. It is evident that, with the C∞ and C2 periodic BCs, the current method 
25



Fig. 15. Wave equation: training histories of the loss function with the (a) C∞ and (b) C1 periodic boundary conditions.

has enforced exactly the periodic conditions for the solution and its first and second derivatives. With the C0 periodic BC, 
the method enforces exactly the periodic condition only for the solution. With the C1 periodic BC, the method enforces 
exactly the periodic condition for the solution and its first derivative, but not for its second derivative.

4. Concluding remarks

In this paper we have presented a method for enforcing exactly the C∞ and Ck (for any k � 0) periodic conditions with 
deep neural networks. The method stems from some simple properties about function compositions involving periodic func-
tions. It essentially composes an arbitrary DNN-represented function with a set of independent known periodic functions 
with adjustable (training) parameters. More specifically, we have defined the operations that constitute a C∞ periodic layer 
and a Ck periodic layer. The DNN with a C∞ periodic layer incorporated as the second layer of the network (behind the in-
put) automatically and exactly satisfies the C∞ periodic boundary conditions in its output. The DNN with a Ck periodic layer 
incorporated as the second layer automatically and exactly satisfies the Ck periodic boundary conditions in its output. The 
C∞ periodic layer comprises constructions of a set of independent C∞ periodic functions with a prescribed period, based 
on sinusoidal functions, affine mappings, and nonlinear activation functions. The Ck periodic layer comprises constructions 
of a set of independent Ck periodic functions, based on the generalized Hermite interpolation polynomials, affine mappings, 
and nonlinear activation functions. We have tested the method in extensive numerical experiments with ordinary and par-
tial differential equations involving C∞ and Ck periodic boundary conditions. The numerical results demonstrate that the 
proposed method indeed enforces exactly, to the machine accuracy, the periodicity for the solution and its derivatives.

The proposed method can be implemented in a straightforward way. The C∞ and Ck periodic layers defined herein can 
be implemented as user-defined Keras layers, and used in the same way as the built-in core Keras layers. All the numerical 
examples in the current work are implemented based on Tensorflow and Keras.

Periodic functions and periodic boundary conditions have widespread applications in computational science of vari-
ous disciplines. The proposed method provides an effective tool, based on deep neural networks, for representing periodic 
functions and enforcing exactly the periodic boundary conditions. We anticipate that this method will be instrumental in 
expanding DNN-based techniques to new classes of applications that are unexplored or scarcely explored so far.

An outstanding question concerning the method developed herein is the following: Can an arbitrary periodic function of 
a certain regularity be represented by the current periodic DNNs to arbitrary accuracy? This is an important question and 
it is open at this point. Our extensive numerical experiments seem to suggest that the answer to this question is positive. 
The periodic DNNs from the current method are essentially compositions of an arbitrary DNN-represented function with a 
set of independent periodic functions with adjustable parameters. Can the universal approximation power of the original 
DNN carry over to the resultant periodic DNN as the set of independent periodic functions becomes sufficiently large? Can 
theoretical analysis establish an analogous universal approximation property for such periodic DNNs with respect to periodic 
functions? These are interesting questions that call for future research and should be pursued by the community.

CRediT authorship contribution statement

Suchuan Dong: Conceptualization, Methodology, Software, Data acquisition, Visualization, Writing of paper, Paper revi-
sion, Funding acquisition.

Naxian Ni: Software, Data acquisition, Data curation, Visualization.
S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
26



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242

Fig. 16. Wave equation: Contours of the DNN solutions (left column) and their absolute errors (right column) obtained with the C∞ (plots (a)-(b)), C0 (plots 
(c)-(d)), C1 (plots (e)-(f)), C2 (plots (g)-(h)) periodic boundary conditions in the x direction.
27



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 17. Wave equation: Snapshots of the wave profiles obtained with the C∞ periodic BC at time instants (a) t = 0, (b) t = 0.5, (c) t = 1.0, (d) t = 1.5, (e) 
t = 2.0, (f) t = 2.5, (g) t = 3.0, (h) t = 3.5, (i) t = 4.0.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgement

This work was partially supported by NSF (DMS-2012415, DMS-1522537).
28



S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
Fig. 18. Wave equation: comparison of profiles of the solution (top row) and the absolute error (bottom row) obtained with the C∞ , C0, C1 and C2 periodic 
boundary conditions and with the exact solution at several time instants: (a, d) t = 0.5, (b, e) t = 2.0, (c, f) t = 3.5.

Table 10
Wave equation: values of the solution and its derivatives on the left/right boundaries at several time instants (t = 0.5, 2 and 3.5), obtained from the DNN 
solutions with C∞ , C0, C1 and C2 periodic boundary conditions and from the exact solution.

DNN C∞ PBC DNN C0 PBC DNN C1 PBC DNN C2 PBC Exact solution
u(0,0.5) 2.0142799261625e-01 2.0190756733086e-01 2.0109869263559e-01 2.0083996838890e-01 1.9865585483886e-01
u(4,0.5) 2.0142799261625e-01 2.0190756733086e-01 2.0109869263559e-01 2.0083996838891e-01 1.9865585483886e-01
ux(0,0.5) 5.9482715294468e-01 5.7394660776802e-01 5.9323728164392e-01 5.8746219179701e-01 5.9302035811534e-01
ux(4,0.5) 5.9482715294468e-01 5.8248575768435e-01 5.9323728164392e-01 5.8746219179701e-01 5.9302035811534e-01
uxx(0,0.5) 1.6980636297410e+00 1.4696979666932e+00 1.5994875423905e+00 1.6679798466138e+00 1.7526236647042e+00
uxx(4,0.5) 1.6980636297410e+00 1.9395212811018e+00 1.5277304396975e+00 1.6679798466138e+00 1.7526236647042e+00

u(0,2) 9.8284051583224e-03 9.9241674367022e-03 9.9440310013471e-03 1.1696938690667e-02 9.9149477871207e-03
u(4,2) 9.8284051583222e-03 9.9241674367022e-03 9.9440310013471e-03 1.1696938690667e-02 9.9149477871207e-03
ux(0,2) 1.5256678688244e-03 -4.8521014846574e-03 9.9336770382177e-04 2.0456109624086e-03 2.9744477846340e-02
ux(4,2) 1.5256678688247e-03 2.3815674708337e-03 9.9336770382177e-04 2.0456109624087e-03 2.9744477846340e-02
uxx(0,2) 2.4222108105432e-01 4.2985279066538e-01 1.1927388753390e-01 2.1278569005620e-01 8.9230143930769e-02
uxx(4,2) 2.4222108105432e-01 2.2731343637548e-01 2.6553423293645e-01 2.1278569005620e-01 8.9230143930769e-02

u(0,3.5) 2.0170117943758e-01 2.0200326210422e-01 2.0458115518013e-01 1.9932351260077e-01 1.9865585483886e-01
u(4,3.5) 2.0170117943758e-01 2.0200326210422e-01 2.0458115518013e-01 1.9932351260077e-01 1.9865585483886e-01
ux(0,3.5) -5.8538598646821e-01 -6.1113064140580e-01 -5.8981323269116e-01 -5.7592303278591e-01 -5.9302035811534e-01
ux(4,3.5) -5.8538598646821e-01 -5.9639323869798e-01 -5.8981323269116e-01 -5.7592303278591e-01 -5.9302035811534e-01
uxx(0,3.5) 1.6523878185422e+00 2.3592894577992e+00 1.6262664810111e+00 1.6631571855496e+00 1.7526236647042e+00
uxx(4,3.5) 1.6523878185422e+00 1.2305332426305e+00 1.8162774394782e+00 1.6631571855496e+00 1.7526236647042e+00

References

[1] J. Berg, K. Nystrom, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317 
(2018) 28–41.

[2] C. Canuto, M.Y. Hussaini, A. Quarteroni, T. Zang, Spectral Methods in Fluid Dynamics, Springer, New York, 1988.
[3] J. Chen, R. Du, K. Wu, A comprehensive study of boundary conditions when solving pdes by dnns, arXiv:2005 .04554, 2020.
[4] N.E. Cotter, The stone-weierstrass theorem and its application to neural networks, IEEE Trans. Neural Netw. 4 (1990) 290–295.
[5] S. Dong, Direct numerical simulation of turbulent Taylor-Couette flow, J. Fluid Mech. 587 (2007) 373–393.
[6] S. Dong, Turbulent flow between counter-rotating concentric cylinders: a direct numerical simulation study, J. Fluid Mech. 615 (2008) 371–399.
[7] S. Dong, An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach, J. Comput. Phys. 266 (2014) 

47–73.
[8] S. Dong, A convective-like energy-stable open boundary condition for simulations of incompressible flows, J. Comput. Phys. 302 (2015) 300–328.
29

http://refhub.elsevier.com/S0021-9991(21)00137-6/bib2CB9086577C81AF4B31FED7534E84B9Cs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib2CB9086577C81AF4B31FED7534E84B9Cs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibE08536C7D4AEC3A8D121DC25CBAA47C4s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibE7607A368C69D14825694CDCE5110B50s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibD46D9750CBEF1A1E5D6F07AA18138DACs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibD92E218AAE0A01328F17F99C1F684FDDs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibDD175B47A47646282FF99C32EE3FA772s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib2EFF98F34C16B3151882CE0EF4A72AC3s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib2EFF98F34C16B3151882CE0EF4A72AC3s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib8946B5E78C99DF1D9D506D65A476C77Bs1


S. Dong and N. Ni Journal of Computational Physics 435 (2021) 110242
[9] S. Dong, G.E. Karniadakis, C. Chryssostomidis, A robust and accurate outflow boundary condition for incompressible flow simulations on severely-
truncated unbounded domains, J. Comput. Phys. 261 (2014) 83–105.

[10] S. Dong, G.E. Karniadakis, A. Ekmekci, D. Rockwell, A combined direct numerical simulation-particle image velocimetry study of the turbulent near 
wake, J. Fluid Mech. 569 (2006) 185–207.

[11] S. Dong, J. Shen, A pressure correction scheme for generalized form of energy-stable open boundary conditions for incompressible flows, J. Comput. 
Phys. 291 (2015) 254–278.

[12] S. Dong, X. Zheng, Direct numerical simulation of spiral turbulence, J. Fluid Mech. 668 (2011) 150–173.
[13] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.
[14] A.R. Gallant, H. White, There exists a neural network that does not make avoidable mistakes, in: Proceedings of the Second Annual IEEE Conference on 

Neural Networks, 1988.
[15] F.S. Gokuzum, L.T.K. Nguyen, M.-A. Keip, An artificial neural network based solution scheme for periodic computational homogenization of electrostatic 

problems, Math. Comput. Appl. 24 (2019) 40.
[16] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.
[17] P.M. Gresho, Incompressible fluid dynamics: some fundamental formulation issues, Annu. Rev. Fluid Mech. 23 (1991) 413–453.
[18] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359–366.
[19] K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, 

Neural Netw. 3 (1990) 551–560.
[20] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:1412 .6980, 2014.
[21] I.E. Lagaris, A.C. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (1998) 

987–1000.
[22] I.E. Lagaris, A.C. Likas, D.G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw. 

11 (2000) 1041–1049.
[23] X. Li, Simultaneous approximations of mulvariate functions and their derivatives by neural networks with one hidden layer, Neurocomputing 12 (1996) 

327–343.
[24] S. Liu, Fourier neural network for machine learning, in: Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC), 

2013.
[25] K.S. McFall, J.R. Mahan, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary condi-

tions, IEEE Trans. Neural Netw. 20 (2009) 1221–1233.
[26] M. Ngom, O. Marin, Approximating periodic functions and solving differential equations using a novel type of fourier neural networks, arXiv:2005 .

13100, 2020.
[27] N. Ni, Z. Yang, S. Dong, Energy-stable boundary conditions based on a quadratic form: applications to outflow/open-boundary problems in incompress-

ible flows, J. Comput. Phys. 391 (2019) 179–215.
[28] J. Nocedal, S.J. Wright, Numerical Optimization, second edition, Springer, 2006.
[29] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems 

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[30] C. Rao, H. Sun, Y. Liu, Physics informed deep learning for computational elastodynamics without labeled data, arXiv:2006 .0872, 2020.
[31] K. Rudd, S. Ferrari, A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks, Neurocomputing 

155 (2015) 277–285.
[32] E. Samanaiego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the solution of partial 

differential equations in computational mechanics via machine learning: concepts, implementation and applications, Comput. Methods Appl. Mech. 
Eng. 362 (2020) 112790.

[33] R.L. Sani, P.M. Gresho, Resume and remarks on the open boundary conidtion minisymposium, Int. J. Numer. Methods Fluids 18 (1994) 983–1008.
[34] A. Silvscu, Fourier neural networks, in: Proceedings of the International Conference on Neural Networks (IJCNN99), 1999, pp. 488–491.
[35] J. Sirignano, K. Spoliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[36] A. Spitzbart, A generalization of Hermite’s interpolation formula, Am. Math. Mon. 67 (1960) 42–46.
[37] J.F. Traub, On lagrange-hermite interpolation, J. Soc. Ind. Appl. Math. 12 (1964) 886–891.
[38] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411 (2020) 109409.
[39] A. Zhumekenov, M. Uteuliyeva, R. Takhanov, Z. Assylbekov, A.J. Castro, O. Kabdolov, Fourier neural networks: a comparative study, arXiv:1902 .03011, 

2019.
30

http://refhub.elsevier.com/S0021-9991(21)00137-6/bibA375288F9CE24F11AA9670FE24D4D4ECs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibA375288F9CE24F11AA9670FE24D4D4ECs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibAF2920B2C116F86DEBAD520B7F3EFB9Cs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibAF2920B2C116F86DEBAD520B7F3EFB9Cs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib82464B64AFA569A74293FABBE218CE88s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib82464B64AFA569A74293FABBE218CE88s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib2A03A30B7194336928D1F13872B9DE3Cs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib6803099AB56151B697399F27AA7FA61Bs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib8BB0C9DAC89E8D278ECDD685AE03E2BFs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib8BB0C9DAC89E8D278ECDD685AE03E2BFs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibB0AB5C09C9C92612BA8721A88912CAD3s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibB0AB5C09C9C92612BA8721A88912CAD3s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibF1D1D2222563CE940F8FAA364B1F9E4Ds1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibB14C034779B41D791970D13A0540624Es1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib97F6ACE817496D28A02B51C0E6A46AD3s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib11FD2948C60363F113E1A07E25C42B90s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib11FD2948C60363F113E1A07E25C42B90s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibF27D84C51976F3CE163CB79D64F599B5s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibBCAD6A11F63F0AE6D96BF7F2C0B543D2s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibBCAD6A11F63F0AE6D96BF7F2C0B543D2s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibE662A9089DF76E98AE008D67ADBA85ACs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibE662A9089DF76E98AE008D67ADBA85ACs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib26BB7D0B3D0108831C965C454D32C03Cs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib26BB7D0B3D0108831C965C454D32C03Cs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibF3EB3BA872E246C25CA168B64EA074BCs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibF3EB3BA872E246C25CA168B64EA074BCs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib71079805F094EE3D405A1D3D4F03C564s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib71079805F094EE3D405A1D3D4F03C564s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib1E53FBBA040B33C7AFD2A027933D4B11s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib1E53FBBA040B33C7AFD2A027933D4B11s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib3A13D92472CBF6E0CDADF6627C96F532s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib3A13D92472CBF6E0CDADF6627C96F532s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib8C1911AC3674D87C85B18514177B83D0s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib95D2ABC295020CAF8E28E8A7DF8F6687s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib95D2ABC295020CAF8E28E8A7DF8F6687s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib3E3BA77C6E5CFAB97EE3DA7075ED3C53s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib56B80EA0B59D6CD792B67DAB3E45F1D9s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib56B80EA0B59D6CD792B67DAB3E45F1D9s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibEF4C4EB5C5BEC0A95F2052C06143E25As1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib478A55C631195353E0FEFE13F696E6AAs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib42B836C288A0B549BE6070E1B605BB69s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bibE6989B1CB312ED7F648C26F103A11797s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib2347928F37D0AFF4E88DC6F17FEF1D2Cs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib0B5525B76F95ACEC50C58A7548874B04s1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib09DD597125026A607D0570382EEC76EFs1
http://refhub.elsevier.com/S0021-9991(21)00137-6/bib09DD597125026A607D0570382EEC76EFs1

	A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural networks
	1 Introduction
	2 Enforcing exact periodic conditions with DNN
	2.1 C∞ and Ck periodic conditions
	2.2 Enforcing exact C∞ periodic conditions with DNN
	2.3 Enforcing exact Ck periodic conditions with DNN

	3 Numerical examples
	3.1 Approximation of periodic functions
	3.2 One-dimensional Helmholtz equation with periodic BCs
	3.3 Two-dimensional Helmholtz equation with periodic BCs
	3.4 Diffusion equation with periodic BCs
	3.5 Wave equation with periodic BCs

	4 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


