
Available online at www.sciencedirect.com

t
s
b
w
t
o
W
l
d
t
n
d
w
a
c
w
o
⃝

K
d

a

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 387 (2021) 114129
www.elsevier.com/locate/cma

Local extreme learning machines and domain decomposition for
solving linear and nonlinear partial differential equations

Suchuan Donga,∗, Zongwei Lib

a Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University West Lafayette, IN, USA
b Department of Mathematics, Purdue University, Fort Wayne, IN, USA

Received 19 December 2020; received in revised form 2 April 2021; accepted 17 June 2021
Available online xxxx

Abstract

We present a neural network-based method for solving linear and nonlinear partial differential equations, by combining
he ideas of extreme learning machines (ELM), domain decomposition and local neural networks. The field solution on each
ub-domain is represented by a local feed-forward neural network, and Ck continuity conditions are imposed on the sub-domain
oundaries. Each local neural network consists of a small number of hidden layers, while its last hidden layer can be wide. The
eight/bias coefficients in all the hidden layers of the local neural networks are pre-set to random values and fixed throughout

he computation, and only the weight coefficients in the output layers of the local neural networks are training parameters. The
verall neural network is trained by a linear or nonlinear least squares computation, not by the back-propagation type algorithms.
e introduce a block time-marching scheme together with the presented method for long-time simulations of time-dependent

inear/nonlinear partial differential equations. The current method exhibits a clear sense of convergence with respect to the
egrees of freedom in the neural network. Its numerical errors typically decrease exponentially or nearly exponentially as
he number of training parameters, or the number of training data points, or the number of sub-domains increases. Extensive
umerical experiments have been performed to demonstrate the computational performance of the presented method. We also
emonstrate its capability for long-time dynamic simulations with some test problems. We compare the presented method
ith the deep Galerkin method (DGM) and the physics-informed neural network (PINN) method in terms of the accuracy

nd computational cost. The current method exhibits a clear superiority, with its numerical errors and network training time
onsiderably smaller (typically by orders of magnitude) than those of DGM and PINN. We also compare the current method
ith the classical finite element method (FEM). The computational performance of the current method is on par with, and
ften exceeds, the FEM performance in terms of the accuracy and computational cost.
c 2021 Elsevier B.V. All rights reserved.

eywords: Local extreme learning machine; Extreme learning machine; Neural network; Least squares; Nonlinear least squares; Domain
ecomposition

1. Introduction

Neural network based numerical methods, especially those based on deep learning [1], have attracted a significant
mount of research in the past few years for simulating the governing partial differential equations (PDE) of

∗ Corresponding author.
E-mail address: sdong@purdue.edu (S. Dong).
https://doi.org/10.1016/j.cma.2021.114129
0045-7825/ c⃝ 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2021.114129
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2021.114129&domain=pdf
mailto:sdong@purdue.edu
https://doi.org/10.1016/j.cma.2021.114129


S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

f
T
t
1
e
t
t
g
w
i
T
c
P
fi
o
s
p
o

m
d
s
e
n
e
m
n
T
E
m
c
a
t
o

c

physical phenomena. These methods provide a new way for approximating the field solutions, in the form of
deep neural networks (DNN), which is different from the ansatz space with traditional numerical methods such
as finite difference or finite element techniques. This can be a promising approach, potentially more effective
and more efficient than the traditional methods, for solving the governing PDEs of scientific and engineering
importance. DNN-based methods solve the PDE by transforming the solution finding problem into an optimization
problem. They typically parameterize the PDE solution by the training parameters in a deep neural network, in
light of the universal approximation property of DNNs [2–5]. Then these methods attempt to minimize a loss
function that consists of the residual norms of the governing equations and also the associated boundary and initial
conditions, typically by some flavor of gradient descent type techniques (i.e. back propagation algorithm [6,7]).
This process constitutes the predominant computations in the DNN-based PDE solvers, commonly known as the
training of the neural network. Upon convergence of the training process, the solution is represented by the neural
network, with the training parameters set according to their converged values. Several successful DNN-based PDE
solvers have emerged in the past years, such as the deep Galerkin method (DGM) [8], the physics-informed neural
network (PINN) [9], and related approaches (see e.g. [10–20], among others). Neural network-based PDE solutions
are smooth analytical functions, provided that smooth activation functions are used therein. The solution and its
derivatives can then be computed exactly, by evaluation of the neural network or by auto-differentiation [21].

While their computational performance is promising, DNN-based PDE solvers, in their current state, suffer
rom a number of limitations that make them numerically less than satisfactory and computationally uncompetitive.
he first limitation is the solution accuracy of DNN-based methods [22]. A survey of related literature indicates

hat the absolute error of the current DNN-based methods is generally on, and rarely goes below, the level of
0−3
∼ 10−4. Increasing the resolution or the number of training epochs/iterations does not notably improve this

rror level. The accuracy of such levels is less than satisfactory for scientific computing, especially considering that
he classical numerical methods can achieve the machine accuracy given sufficient mesh resolution and computation
ime. Perhaps because of such limited accuracy levels, a sense of convergence with a certain convergence rate is
enerally lacking with the DNN-based PDE solvers. For example, when the number of layers, or the number of nodes
ithin the layers, or the number of training data points is varied systematically, one can hardly observe a consistent

mprovement in the accuracy of the obtained simulation results. Another limitation concerns the computational cost.
he computational cost of DNN-based PDE solvers is extremely high. The neural network of these solvers takes a
onsiderable amount of time to train, in order to reach a reasonable level of accuracy. For example, a DNN-based
DE solver can take hours to train to reach a certain accuracy, while with a traditional numerical method such as the
nite element method it may take only a few seconds to produce a solution with the same or better accuracy. Because
f their limited accuracy and large computational cost, there seems to be a general sense that the DNN-based PDE
olvers, at least in their current state, cannot compete with classical numerical methods, except perhaps for certain
roblems such as high-dimensional PDEs which can be challenging to classical methods due to the so-called curse
f dimensionality.

In the current work we concentrate on the accuracy and the computational cost of neural network-based numerical
ethods. We introduce a neural network-based method for solving linear and nonlinear PDEs that exhibits a

isparate computational performance from the above DNN-based PDE solvers. The current method exhibits a clear
ense of convergence with respect to the degrees of freedom in the system. Its numerical errors typically decrease
xponentially or nearly exponentially as the number of degrees of freedom (e.g. the number of training parameters,
umber of training data points) in the network increases. In terms of the accuracy and computational cost, it
xhibits a clear superiority to the often-used DNN-based PDE solvers. Extensive comparisons with the deep Galerkin
ethod [8] and the physics-informed neural network [9] are presented in this paper. The numerical errors, and the

etwork training time, of the current method are typically orders of magnitude smaller than those of DGM and PINN.
he computational performance of the current method is competitive compared with traditional numerical methods.
xtensive comparisons with the classical finite element method (FEM) are provided. The performance of the current
ethod is on par with, and often exceeds, the performance of FEM with regard to the accuracy and computational

ost. For example, to achieve the same accuracy, the network training time of the current method is comparable to,
nd oftentimes smaller than, the FEM computation time. With the same computational cost (training/computation
ime), the numerical errors of the current method are comparable to, and oftentimes markedly smaller than, those
f the FEM.

The superior computational performance of the current method can be attributed to several of its algorithmic
haracteristics:
2



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129
• Network architecture and training parameters. The current method is based on shallow feed-forward neural
networks. Here “shallow” refers to the configuration that the network contains only a small number (e.g. one,
two or three) of hidden layers, while the last hidden layer can be wide. The weight/bias coefficients in all the
hidden layers are pre-set to random values and are fixed, and they are not training parameters. The training
parameters consist of the weight coefficients of the output layer.
• Training method. The network is trained and the values for the training parameters are determined by a least

squares computation, not by the back propagation (gradient descent-type) algorithm. For linear PDEs, training
the neural network involves a linear least squares computation. For nonlinear PDEs, the network training
involves a nonlinear least squares computation.
• Domain decomposition and local neural networks. We partition the overall domain into sub-domains, and

represent the solution on each sub-domain locally by a shallow feed-forward neural network. Ck continuity
conditions, where k ⩾ 0 is an integer related to the PDE order, are enforced across sub-domain boundaries.
The local neural networks collectively form a multi-input multi-output logical network model, and are trained
in a coupled way with the linear or nonlinear least squares computation.
• Block time marching. For long-time simulations of time-dependent PDEs, the current method adopts a block

time-marching strategy. The overall spatial–temporal domain is first divided into a number of windows in
time, referred to as time blocks. The PDE is then solved on the spatial–temporal domain of each time block,
individually and successively. Block time marching is crucial to long-time simulations, especially for nonlinear
time-dependent PDEs.

The idea of random weight/bias coefficients in the network and the use of linear least squares method for
network training stem from the so-called extreme learning machines (ELM) [23,24]. ELM was developed for single-
hidden layer feed-forward neural networks (SLFN), and for linear problems. It transforms the linear classification
or regression problem into a system of linear algebraic equations, which is then solved by a linear least squares
method or by using the pseudo-inverse (Moore–Penrose inverse) of the coefficient matrix [25]. ELM is one example
of the so-called randomized neural networks (see e.g. [26–30]), which can be traced to Turing’s unorganized
machine and Rosenblatt’s perceptron [31,32] and have witnessed a revival in neuro-computations in recent years.
The application of ELM to function approximations and linear differential equations have been considered in
several recent works [33–38]. Domain decomposition has found widespread applications in classical numerical
methods [39–43]. Its use in neural network-based methods, however, has been very limited and is very recent (see
e.g. [22,38,44]).

The contribution of the current work lies in several aspects. A main contribution of this work is the introduction of
an ELM-like method for nonlinear differential equations, based on domain decomposition and local neural networks.
In contrast, existing ELM-based methods for differential equations have been confined to linear problems, and the
neural network is limited to a single hidden layer. For nonlinear problems, to solve the nonlinear system for the
training parameters, we have adopted two methods: (i) a nonlinear least squares method with perturbations (referred
to as NLSQ-perturb), and (ii) a combined Newton/linear least squares method (referred to as Newton-LLSQ). We
find that the random perturbation in the NLSQ-perturb method is crucial to preventing the method from being
trapped to local minima with cost values exceeding some given tolerance, especially in under-resolved cases and in
long-time simulations. We present an algorithm for effective generation of the random perturbations for the nonlinear
least squares method.

Another contribution of the current work is the aforementioned block time-marching scheme for long-time
simulations of time-dependent linear/nonlinear PDEs. When the temporal dimension of the spatial–temporal domain
is large, if the PDE is solved on the entire domain all at once, we find that the neural network becomes very hard to
train with the ELM algorithm (and also with the back propagation-based algorithms), in the sense that the obtained
solution can contain pronounced errors, especially toward later time instants in the spatial–temporal domain. On the
other hand, by using the block time-marching strategy and with a moderate time block size, the problem becomes
much easier to solve and the neural network is much easier to train with the ELM algorithm. Accurate results can
be attained with the block time-marching scheme for very long-time simulations. The block time marching strategy
is often crucial to the simulations of nonlinear time-dependent PDEs when the temporal dimension becomes even
moderately large.

We would also like to emphasize that, with the current method, each local neural network is not limited to a

single hidden layer, which is another notable difference from existing ELM-type methods. Up to three hidden layers

3



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

w

p
p
s
m
t
o
m
t
t
i

b
n
l
s
f
n
i
a
w
d
w

2

2

Ω
w

w
c

s
b
n
(

Ω
w
k
C
c
d

in the local neural networks have been tested in the current paper. We observe that with one or a small number
(more than one) of hidden layers in the local neural networks, the current method can produce accurate simulation
results.

Since the current method is a combination of the ideas of ELM, domain decomposition, and local neural networks,
e refer to this method as locELM (local extreme learning machines) in the current paper.
We have performed extensive numerical experiments with linear and nonlinear, stationary and time-dependent,

artial differential equations to test the performance of the locELM method, and to study the effects of the simulation
arameters involved therein. For certain test problems (e.g. the advection equation) we present very long-time
imulations to demonstrate the capability and accuracy of the locELM method together with the block time-
arching scheme. We compare extensively the current locELM method with the deep Galerkin method [8] and

he physics-informed neural network method [9], and demonstrate the superiority of the current method in terms
f both accuracy and the computational cost. We also compare the current method with the classical finite element
ethod, and show that the computational performance of the locELM method is comparable to, and often exceeds,

he FEM performance. The current locELM method, DGM and PINN have all been implemented in Python, using
he Tensorflow (www.tensorflow.org) and Keras (keras.io) libraries. The finite element method is also implemented
n Python, by using the FEniCS library (fenicsproject.org).

The rest of this paper is structured as follows. In Section 2 we outline the locELM representation of field functions
ased on domain decomposition and local extreme learning machines, and then discuss how to solve linear and
onlinear differential equations using the locELM representation and how to train the overall neural network by the
inear or nonlinear least squares method. We discuss the NLSQ-perturb method and the Newton-LLSQ method for
olving the nonlinear differential equations. We present the block time-marching scheme, and discuss how to use it
or long-time dynamic simulations. In Section 3 we present extensive numerical experiments with several linear and
onlinear PDEs to test the performance of locELM. We compare locELM with DGM and PINN, and demonstrate
ts superiority in terms of the accuracy and computational cost. We also compare locELM with the classical FEM,
nd show that locELM is on par with and often outperforms the FEM. Section 4 concludes the main presentation
ith a number of comments on the characteristics and properties of the current method. Appendix A provides more
etails about the Newton-LLSQ method for solving nonlinear PDEs. Appendix B summarizes further locELM tests
ith the classical Poisson equation, and further comparisons between locELM and FEM.

. Domain decomposition and local extreme learning machines

.1. Local extreme learning machines (locELM) for representing functions

Consider the domain Ω in d (d = 1, 2 or 3) dimensions, where one of the dimensions may denote time and so
in general can be a spatial–temporal domain. We consider a function f (x) (x ∈ Ω ) defined on this domain, and

ould like to represent this function using neural networks.
We partition Ω into Ne (Ne ⩾ 1) non-overlapping sub-domains,

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩNe ,

here Ωi denotes the i th sub-domain. If Ωi and Ω j (1 ⩽ i, j ⩽ Ne) share a common boundary, we will denote this
ommon boundary by Γi j .

We will represent f (x), in a spirit analogous to the finite elements or spectral elements [45–49], locally on the
ub-domains by local neural networks. More specifically, on each sub-domain Ωi (1 ⩽ i ⩽ Ne) we represent f (x)
y a shallow feed-forward neural network [1]. Here “shallow” refers to the configuration that each local neural
etwork has only a small number (e.g. one, two or perhaps three) of hidden layers, apart from the input layer
representing x) and the output layer (representing f (x), restricted to Ωi ).

Let fi (x) (1 ⩽ i ⩽ Ne) denote the function f (x) restricted to Ωi . On any common boundary Γi j between Ωi and
j (for all 1 ⩽ i, j ⩽ Ne), we impose the requirement that fi (x) and f j (x) satisfy the Ck continuity conditions
ith an appropriate k = (k1, k2, . . . , kd ). In other words, their function values and partial derivatives up to the order

s (1 ⩽ s ⩽ d) should be continuous across the sub-domain boundary in the sth direction. The order k in the
k continuity is a user-defined parameter. When solving differential equations, one can determine k for a specific

oordinate direction based on the order of the differential equation along that direction. For example, if the highest

erivative with respect to the coordinate xs (1 ⩽ s ⩽ d) involved in the equation is m, one would typically impose

4

http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org


S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

C

t

m−1 continuity to the solution on the sub-domain boundary along the sth direction. Thanks to these Ck continuity
conditions, the local neural networks for the sub-domains, while physically separated, are coupled with one another
logically, and need to be trained together in a coupled fashion. The local neural networks collectively constitute the
representation of the function f (x) on the overall domain Ω .

We impose further requirements on the local neural networks. Suppose a particular layer in the local neural
network contains n nodes, and the previous layer contains m nodes. Let φi (x) (1 ⩽ i ⩽ m) denote the output of
the previous layer, and ϕi (x) (1 ⩽ i ⩽ n) denote the output of this layer. Then the logic of this layer is represented
by [1],

ϕi (x) = σ

⎛⎝ m∑
j=1

φ j (x)w j i + bi

⎞⎠ , 1 ⩽ i ⩽ n, (1)

where the constants w j i and bi (1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m) are the weight and bias coefficients associated with this
layer, and σ (·) is the activation function of this layer and is in general nonlinear. We assume the following for the
local neural networks:

• The weight and bias coefficients for all the hidden layers are pre-set to uniform random values generated
on the interval [−Rm, Rm], where Rm > 0 is a user-defined constant parameter. Once these coefficients
are set randomly, they are fixed throughout the training and computation. These weight/bias coefficients are
not adjustable, and they are not training parameters of the neural network. We hereafter refer to Rm as the
maximum magnitude of the random coefficients of the neural network.
• The last hidden layer, i.e. the layer before the output layer, can be wide. In other words, this layer may contain

a large number of nodes. We use M to denote the number of nodes in the last hidden layer of each local neural
network.
• The output layer contains no bias (i.e. bi = 0) and no activation function. In other words, the output layer is

linear, i.e. σ (x) = x . The weight coefficients in the output layers of the local neural networks are adjustable.
The collection of these weight coefficients constitutes the training parameters of the overall neural network.
Therefore, the number of training parameters in each local neural network equals M , the number of nodes in
the last hidden layer of the local neural network.
• The set of training parameters for the overall neural network is to be determined and set by a linear or nonlinear

least squares computation, not by the back propagation-type algorithm.

Remark 2.1. When a subset of the above requirements is imposed on a single global neural network, containing
a single hidden layer, for the entire domain, the resultant network, when trained with a linear least squares method,
is known as an extreme learning machine (ELM) [23]. In the current work we follow this terminology, and will
refer to the local neural networks presented here as local extreme learning machines (or locELM).

Let N (N ⩾ 1) denote the number of nodes in the output layer of the local neural networks. Based on the above
assumptions, on the sub-domain Ωs (1 ⩽ s ⩽ Ne) we have the relation,

us
i (x) =

M∑
j=1

V s
j (x)ws

ji , x ∈ Ωs, 1 ⩽ i ⩽ N , (2)

where V s
j (x) (1 ⩽ j ⩽ M) denote the output of the last hidden layer, us

i (x) denote the components of output
function of the network, ws

ji are the training parameters on Ωs , and M denotes the number of nodes in the last
hidden layer. The function

fs(x) = (us
1, us

2, . . . , us
N ) (3)

is the local representation of f (x) on the sub-domain Ωs .
It should be noted that the set of output functions of the last hidden layer, V s

j (x) (1 ⩽ j ⩽ M), are known
functions and they are fixed throughout the computation. Since the weight/bias coefficients in the hidden layers
are pre-set to random values on [−Rm, Rm] and are fixed, V s

j (x) can be pre-computed by a forward evaluation of
he local neural network (up to the last hidden layer) against the input x data. The first, second, and higher-order

s
derivatives of V j (x) with respect to the input x can then be computed by auto-differentiations.

5



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129
The collection of local representations fs(x) (1 ⩽ s ⩽ Ne), with Ck continuity imposed on the sub-domain
boundaries and with ws

i j (1 ⩽ i ⩽ M , 1 ⩽ j ⩽ N , 1 ⩽ s ⩽ Ne) as the training parameters, form the set of
trial functions for representing the function f (x). Hereafter, we will refer to this representation as the locELM
representation of a function. Once the data for f (x) or the data for the governing equations that describe f (x)
are given, the adjustable parameters ws

i j can be trained and determined by a linear or nonlinear least squares
computation.

Remark 2.2. In the locELM representation, the hyper-parameters for the local neural networks associated with
different sub-domains (e.g. depths, widths and activation functions of the hidden layers) can in principle assume
different values. This can allow one to place more degrees of freedom locally in regions where the field function may
be more complicated and thus require more resolution. For simplicity of implementation, however, in the current
work we will employ the same hyper-parameters for all the local neural networks for different sub-domains.

In the following sub-sections we focus on how to use local extreme learning machines to represent the solutions
to ordinary or partial differential equations (ODE/PDE), and discuss how to train the overall neural network by
least squares computations. We consider two cases: (i) linear differential equations, and (ii) nonlinear differential
equations, and discuss how to treat them individually. Apart from the basic algorithm, we develop a block time-
marching scheme for long-time simulations of time-dependent linear/nonlinear PDEs. In the presentations we use
two spatial dimensions, and plus time if the problem is time-dependent, as examples. The formulations can be
reduced to one spatial dimension or extended to higher spatial dimensions in a straightforward fashion. For simplicity
we concentrate on rectangular spatial–temporal domains in the current work.

2.2. Linear differential equations

2.2.1. Time-independent linear differential equations
Let us first consider the boundary value problem involving linear partial differential equations together with

Dirichlet boundary conditions, and discuss how to solve the problem by using the locELM representation for the
solution. To make the discussion concrete, we concentrate on two dimensions (d = 2, with the coordinates x and y),
and consider second-order partial differential equations with respect to both x and y (i.e. highest partial derivatives
with respect to x and to y are both two). The procedure outlined below can be extended to higher dimensions or to
higher-order differential equations, with appropriate boundary conditions and Ck continuity conditions taken into
account.

Let us consider the following generic second-order linear partial differential equation

Lu = f (x, y), (4a)

u(x, y) = g(x, y), on ∂Ω , (4b)

where L is a linear second-order operator with respect to both x and y, u(x, y) is the scalar unknown field function to
be solved for, f (x, y) and g(x, y) are prescribed source terms for the equation and the Dirichlet boundary condition,
and ∂Ω denotes the boundary of Ω . We assume that this boundary value problem is well-posed. Our goal here is
to illustrate the procedure for numerically solving this problem by approximating its solution using local extreme
learning machines.

Here is the general idea for the solution process. We partition the overall domain into a number of sub-domains,
and represent the field solution using the locELM representation described in Section 2.1. We next choose a set of
points (collocation points) within each sub-domain, which can have a regular or random distribution. We enforce
the governing equations on the collocation points within each sub-domain, and enforce the boundary conditions on
those collocation points in those sub-domains that reside on ∂Ω . We further enforce the Ck continuity conditions on
those collocation points that reside on the sub-domain boundaries. Auto-differentiations are employed to compute
the first or higher-order derivatives involved in the above operations. These operations result in a system of algebraic
equations, which may be linear or nonlinear depending on the boundary value problem, about the training parameters
in the locELM representation. We seek a least squares solution to this algebraic system, and compute the solution
by either a linear least squares method or a nonlinear least squares method. The training parameters of the local

neural networks are then determined by the least squares computation.

6



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

w

T

t
o
f

R
d
G
L
i
w
g
i
g
r
t
i
c
S

For simplicity of implementation, we concentrate on the case with Ω being a rectangular domain, i.e. Ω =
[a1, b1]×[a2, b2]. Let Nx (Nx ⩾ 1) and Ny (Ny ⩾ 1) denote the number of sub-domains along the x and y directions,
respectively, with a total number of Ne = Nx Ny sub-domains in Ω . Let the two vectors [X0, X1, . . . , X Nx ]
and [Y0, Y1, . . . , YNy ] denote the coordinates of the sub-domain boundaries along the x and y directions, where
(X0, Y0) = (a1, a2) and (X Nx , YNy ) = (b1, b2). Let Ωemn = [Xm, Xm+1] × [Yn, Yn+1] denote the region occupied
by the sub-domain emn , for 0 ⩽ m ⩽ Nx − 1 and 0 ⩽ n ⩽ Ny − 1. Here emn represents the linear index of the
sub-domain associated with the 2D index (m, n), with emn = m Ny + n + 1, and so 1 ⩽ emn ⩽ Ne.

We approximate the unknown field function u(x, y) using the locELM representation as discussed in Section 2.1.
On each sub-domain emn we represent the solution by a shallow neural network, which consists of an input layer
with two nodes (representing the coordinates x and y), one or a small number of hidden layers, and an output layer
with one node (representing the solution uemn ). Let V emn

j (x, y) (1 ⩽ j ⩽ M) denote the output of the last hidden
layer, where M is the number of nodes in this layer. Then Eq. (2) becomes

uemn (x, y) =
M∑

j=1

V emn
j (x, y)wemn

j , (x, y) ∈ Ωemn , 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, (5)

here w
emn
j (1 ⩽ j ⩽ M) are the training parameters in the sub-domain emn . Again note that V emn

j (x, y) is known,
once the weight/bias coefficients in the hidden layers have been pre-set to random values on [−Rm, Rm].

Remark 2.3. Apart from the above logical operations, in the implementation we incorporate an additional
normalization layer immediately behind the input layer in each of the local neural networks. For each sub-
domain emn , the normalization layer performs an affine mapping and normalizes the input data, (x, y) ∈ Ωemn =

[Xm, Xm+1]× [Yn, Yn+1], such that the output data of the normalization layer fall into the domain [−1, 1]× [−1, 1].
his extra normalization layer contains no adjustable (training) parameters.

On the sub-domain emn (0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1), let (xemn
p , yemn

q ) (0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1)
denote a set of distinct collocation points, where xemn

p (0 ⩽ p ⩽ Qx − 1) denote a set of Qx collocation points on
he interval [Xm, Xm+1] and yemn

q denote a set of Q y collocation points on the interval [Yn, Yn+1]. The total number
f collocation points is Q = Qx Q y within each sub-domain emn . In the current work we primarily consider the
ollowing uniform distribution for the collocation points:

• Uniform distribution: xemn
p forms a set of Qx uniform grid points on [Xm, Xm+1], with both end points included,

i.e. xemn
0 = Xm and xemn

Qx−1 = Xm+1. yemn
q forms a set of Q y uniform grid points on [Yn, Yn+1], with both end

points included, i.e. yemn
0 = Yn and yemn

Qy−1 = Yn+1.

emark 2.4. Besides the uniform distribution, we also consider a quadrature-point distribution and a random
istribution for the collocation points. With the quadrature-point distribution, xemn

p are taken to be a set of Qx

auss–Lobatto–Legendre quadrature points on the interval [Xm, Xm+1], and yemn
q are taken to be a set of Q y Gauss–

obatto–Legendre quadrature points on the interval [Yn, Yn+1]. With the random distribution, the collocation points
n the sub-domain emn are taken to be uniformly generated random points (xemn

l , yemn
l ) ∈ Ωemn (0 ⩽ l ⩽ Q − 1),

here Q is the total number of collocation points in the sub-domain, among which a certain number of points are
enerated on the sub-domain boundaries and the rest are located inside the sub-domain. Numerical experiments
ndicate that, with the same number of collocation points, the result with the quadrature-point distribution is
enerally more accurate than that with the uniform distribution, which in turn is more accurate than that with the
andom distribution of collocation points. The quadrature-point distribution however poses some practical issues in
he current implementation. When the number of quadrature points exceeds 100, the library on which the current
mplementation is based cannot compute the Gaussian quadrature points accurately. This is the reason why in the
urrent work we predominantly employ the uniform distribution of collocation points in the numerical tests of

ection 3.

7



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

s

w

w

i
t
(

w

w

R
c
t

w

With the above setup, we solve the boundary value problem consisting of Eqs. (4a) and (4b) as follows. On each
ub-domain emn we enforce Eq. (4a) on all the collocation points (xemn

p , yemn
q ),

M∑
j=1

[
LV emn

j

(
xemn

p , yemn
q

)]
w

emn
j = f (xemn

p , yemn
q ),

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1,

(6)

here we have used Eq. (5). We enforce Eq. (4b) on the four boundaries of the domain Ω ,
M∑

j=1

V e0n
j

(
a1, ye0n

q

)
w

e0n
j = g

(
a1, ye0n

q

)
, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ q ⩽ Q y − 1; (7a)

M∑
j=1

V emn
j

(
b1, yemn

q

)
w

emn
j = g

(
b1, yemn

q

)
, m = Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ q ⩽ Q y − 1; (7b)

M∑
j=1

V em0
j

(
xem0

p , a2
)
w

em0
j = g

(
xem0

p , a2
)
, 0 ⩽ m ⩽ Nx − 1, 0 ⩽ p ⩽ Qx − 1; (7c)

M∑
j=1

V emn
j

(
xemn

p , b2
)
w

emn
j = g

(
xemn

p , b2
)
, n = Ny − 1, 0 ⩽ m ⩽ Nx − 1, 0 ⩽ p ⩽ Qx − 1, (7d)

here Eq. (5) has again been used.
The local representations of the field solution are coupled together by the Ck continuity conditions. Since Eq. (4a)

s assumed to be of second order with respect to both x and y, we impose C1 continuity conditions across
he sub-domain boundaries in both the x and y directions. On the vertical sub-domain boundaries x = Xm+1

0 ⩽ m ⩽ Nx − 2), the C1 conditions are reduced to,
M∑

j=1

V emn
j

(
Xm+1, yemn

q

)
w

emn
j −

M∑
j=1

V
em+1,n
j

(
Xm+1, y

em+1,n
q

)
w

em+1,n
j = 0, (8a)

M∑
j=1

∂V emn
j

∂x

⏐⏐⏐⏐⏐
(Xm+1,yemn

q )

w
emn
j −

M∑
j=1

∂V
em+1,n
j

∂x

⏐⏐⏐⏐⏐(
Xm+1,y

em+1,n
q

) w
em+1,n
j = 0, (8b)

for 0 ⩽ m ⩽ Nx − 2, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ q ⩽ Q y − 1,

here it should be noted that yemn
q = y

em+1,n
q . On the horizontal sub-domain boundaries y = Yn+1 (0 ⩽ n ⩽ Ny−2),

the C1 continuity conditions are reduced to,
M∑

j=1

V emn
j

(
xemn

p , Yn+1
)
w

emn
j −

M∑
j=1

V
em,n+1
j

(
x

em,n+1
p , Yn+1

)
w

em,n+1
j = 0, (9a)

M∑
j=1

∂V emn
j

∂y

⏐⏐⏐⏐⏐
(xemn

p ,Yn+1)

w
emn
j −

M∑
j=1

∂V
em,n+1
j

∂y

⏐⏐⏐⏐⏐(
x

emn+1
p ,Yn+1

) w
em,n+1
j = 0, (9b)

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 2, 0 ⩽ p ⩽ Qx − 1,

here it should be noted that xemn
p = x

em,n+1
p .

emark 2.5. It should be noted that in the current work we have enforced the Ck continuity conditions only on the
ollocation points of the sub-domain boundaries, and the enforcement is only in the least squares sense. Therefore,
he resultant locELM solution does not exactly satisfy the Ck continuity across the sub-domain boundaries.

The set of equations consisting of (6)–(9b) is a system of linear algebraic equations about the training parameters
emn emn emn ∂V emn

j and
∂V emn

j

j (0 ⩽ m ⩽ Nx−1, 0 ⩽ n ⩽ Ny−1, 1 ⩽ j ⩽ M). In these equations, V j (x, y), LV j (x, y),

∂x ∂y

8



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

o
a
i
w
a

o
n
K
(
m
h
A

l
o

R
m
P
f
n
o
b
m

R
c
p
d
i
a
c

2

w
c
i

B
D

w
r

are all known functions, once the weight/bias coefficients in the hidden layers are randomly set. These functions can
be evaluated on the collocation points, including those on the domain boundaries and the sub-domain boundaries.
The derivatives involved in these functions can be computed by auto-differentiation.

This linear algebraic system consists of Nx Ny(Qx Q y + 2Qx + 2Q y) equations, and Nx Ny M unknown variables
f w

emn
j . We seek the least squares solution to this system with the minimum norm. Linear least squares routines

re available in a number of scientific libraries, and we take advantage of these numerical libraries in our
mplementation. In the current work we employ the linear least squares routine from LAPACK, available through
rapper functions in the scipy package in Python. Therefore, the adjustable parameters w

emn
j in the neural network

re trained by this linear least squares computation.
In the current work we have employed Tensorflow and Keras to implement the neural network architecture as

utlined above. Each local neural network consists of several “dense” Keras layers. The set of Ne = Nx Ny local
eural networks collectively forms an overall logical neural network, in the form of a multi-input multi-output
eras model. The input data to the model consist of the coordinates of the collocation points for all sub-domains,

xemn
p , yemn

q ), for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ p ⩽ Qx − 1 and 0 ⩽ q ⩽ Q y − 1. The output of the Keras
odel consists of the solution uemn (x, y) on the collocation points for all the sub-domains. The output of the last

idden layer of each sub-domain, V emn
j (x, y), are obtained by creating a Keras sub-model using the Keras functional

PIs (application programming interface). The derivatives of V emn
j (x, y), and those involved in LV emn

j (x, y), are
computed using auto-differentiation with these Keras sub-models. After the parameters w

emn
j are obtained by the

inear least squares computation, the weight coefficients in the output layer of the Keras model are then set based
n these parameter values.

emark 2.6. We observe from numerical experiments that the simulation result obtained using the current
ethod is considerably more accurate, typically by orders of magnitude, than those obtained using DNN-based
DE solvers, trained using gradient descent-type algorithms. Furthermore, the current method is computationally
ast. Its computational cost is essentially the cost of the linear least squares computation. We observe that the
etwork training time of the current method is considerably lower, typically by orders of magnitude, than those
f the DNN-based PDE solvers trained with gradient descent-type algorithms. These points will be demonstrated
y extensive numerical experiments in Section 3, in which we compare the current method with the deep Galerkin
ethod [8] and the Physics-Informed Neural Network [9].

emark 2.7. The computational performance of the current locELM method, in terms of the accuracy and the
omputational cost, is comparable to, and oftentimes exceeds, that of the classical finite element method. These
oints will be demonstrated by extensive numerical experiments in Section 3 with time-independent and time-
ependent problems. We observe that, with the same training/computation time, the accuracy of the current method
s comparable, and oftentimes considerably superior, to that of the finite element method. To achieve the same
ccuracy, the training time of the current method is comparable to, and oftentimes markedly smaller than, the
omputation time of the classical finite element method.

.2.2. Time-dependent linear differential equations
We next consider initial–boundary value problems involving time-dependent linear differential equations together

ith Dirichlet boundary conditions, and discuss how to solve such problems using the locELM method. We again
oncentrate on two spatial dimensions (with coordinates x and y) plus time (t), and assume second spatial orders
n the differential equation with respect to both x and y.

asic method. We consider the following generic time-dependent second-order linear PDE, together with the
irichlet boundary condition and the initial condition,

∂u
∂t
= Lu + f (x, y, t), (10a)

u(x, y, t) = g(x, y, t), for (x, y) on spatial domain boundary, (10b)

u(x, y, 0) = h(x, y), (10c)

here u(x, y, t) is the unknown field function to be solved for, L is a second-order linear differential operator with

espect to both x and y, f (x, y, t) is a prescribed source term, g(x, y, t) is the Dirichlet boundary data, and h(x, y)

9



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

[
i
a
i
s
(
r
a

l
c
h
T
u
i
d
l

w

a

d
[
o
o
a

d

w
d

denotes the initial field distribution. We assume that this initial–boundary value problem is well posed, and would
like to solve this problem by approximating u(x, y, t) using the locELM representation.

We seek the solution on a rectangular spatial–temporal domain, Ω = {(x, y, t) | x ∈ [a1, b1], y ∈ [a2, b2], t ∈
0,Γ ]}, where ai , bi (i = 1, 2) and Γ are prescribed constants. The solution procedure is analogous to that discussed
n Section 2.2.1. We partition Ω into Nx (Nx ⩾ 1) sub-domains along the x direction, Ny (Ny ⩾ 1) sub-domains
long the y direction, and Nt (Nt ⩾ 1) sub-domains in time, leading to a total of Ne = Nx Ny Nt sub-domains
n Ω . Let the vectors [X0, X1, . . . , X Nx ], [Y0, Y1, . . . , YNy ] and [T0, T1, . . . , TNt ] denote the coordinates of the
ub-domain boundaries along the x , y and temporal directions, respectively, where (X0, Y0, T0) = (a1, a2, 0) and
X Nx , YNy , TNt ) = (b1, b2,Γ ). We use Ωemnl = [Xm, Xm+1]× [Yn, Yn+1]× [Tl , Tl+1] to denote the spatial–temporal
egion occupied by the sub-domain with the index emnl = m Ny Nt+nNt+l+1, for 0 ⩽ m ⩽ Nx−1, 0 ⩽ n ⩽ Ny−1
nd 0 ⩽ l ⩽ Nt − 1.

We approximate u(x, y, t) using the locELM representation from Section 2.1. More specifically, we employ a
ocal shallow feed-forward neural network for the solution on each sub-domain emnl . The local neural network
onsists of an input layer with three nodes, representing the coordinates x , y and t , respectively, a small number of
idden layers, and an output layer consisting of one node, representing the solution uemnl (x, y, t) on this sub-domain.
he output layer is linear and contains no bias. The weight/bias coefficients in all the hidden layers are pre-set to
niform random values generated on [−Rm, Rm] and are fixed, as discussed in Section 2.1. Additionally, in the
mplementation, we incorporate an affine mapping operation right behind the input layer to normalize the input
ata, (x, y, t) ∈ Ωemnl , to the interval [−1, 1]× [−1, 1]× [−1, 1]. Let V emnl

j (1 ⩽ j ⩽ M) denote the output of the
ast hidden layer, where M denotes the number of nodes in this layer. Then we have, in accordance with Eq. (5),

uemnl (x, y, t) =
M∑

j=1

V emnl
j (x, y, t)wemnl

j ,

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 1,

(11)

here the coefficients w
emnl
j (1 ⩽ j ⩽ M) are the training parameters of the local neural network. Note that

V emnl
j (x, y, t) and its derivatives are all known functions, since the weight/bias coefficients of all the hidden layers

re pre-set and fixed.
On each sub-domain emnl , let (xemnl

p , yemnl
q , temnl

r ) (0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1, and 0 ⩽ r ⩽ Qt − 1)
enote a set of distinct collocation points, where xemnl

p (0 ⩽ p ⩽ Qx − 1) denotes a set of Qx collocation points on
Xm, Xm+1] with xemnl

0 = Xm and xemnl
Qx−1 = Xm+1, yemnl

q (0 ⩽ q ⩽ Q y − 1) denotes a set of Q y collocation points
n [Yn, Yn+1] with yemnl

0 = Yn and yemnl
Qy−1 = Yn+1, and temnl

r (0 ⩽ r ⩽ Qt − 1) denotes a set of Qt collocation points
n [Tl , Tl+1] with temnl

0 = Tl and temnl
Qt−1 = Tl+1. We primarily consider the uniform distribution of regular grid points

s the collocation points, analogous to that in Section 2.2.1.
With these setup, we next enforce Eqs. (10a)–(10c) on the collocation points inside each sub-domain and on the

omain boundaries. On the sub-domain emnl , Eq. (10a) is reduced to
M∑

j=1

(
∂V emnl

j

∂t
− LV emnl

j

)⏐⏐⏐⏐⏐
(x

emnl
p ,y

emnl
q ,t

emnl
r )

w
emnl
j = f

(
xemnl

p , yemnl
q , temnl

r

)
,

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 1,

0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1, 0 ⩽ r ⩽ Qt − 1,

(12)

here
(
xemnl

p , yemnl
q , temnl

r
)

are the collocation points. The boundary condition (10b), when enforced on the spatial
omain boundaries corresponding to x = a1 or b1 and y = a2 or b2, is reduced to∑M

j=1 V e0nl
j (a1, ye0nl

q , te0nl
r )we0nl

j − g(a1, ye0nl
q , te0nl

r ) = 0,

for 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ q ⩽ Q y − 1, 0 ⩽ r ⩽ Qt − 1;
(13a)∑M

j=1 V emnl
j (b1, yemnl

q , temnl
r )wemnl

j − g(b1, yemnl
q , temnl

r ) = 0,

for m = Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ q ⩽ Q y − 1, 0 ⩽ r ⩽ Qt − 1;
(13b)∑M

j=1 V em0l
j (xem0l

p , a2, tem0l
r )wem0l

j − g(xem0l
p , a2, tem0l

r ) = 0, (13c)

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ r ⩽ Qt − 1;

10



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

O

c
t
t

O

O

w

c
r
l
n

B
n
u
d
s

∑M
j=1 V emnl

j (xemnl
p , b2, temnl

r )wemnl
j − g(xemnl

p , b2, temnl
r ) = 0,

for n = Ny − 1, 0 ⩽ m ⩽ Nx − 1, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ r ⩽ Qt − 1.
(13d)

n the boundary t = 0 of the spatial–temporal domain, the initial condition (10c) is reduced to
M∑

j=1

V emn0
j (xemn0

p , yemn0
q , 0)wemn0

j − h(xemn0
p , yemn0

q ) = 0,

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1.

(14)

Since L is assumed to be a second-order operator with respect to both x and y, we impose C1 continuity
onditions across the sub-domain boundaries in both the x and y directions. Because Eq. (10a) is of first order in
ime, we impose the C0 continuity condition across the sub-domain boundaries along the temporal direction. On
he sub-domain boundaries x = Xm+1 (0 ⩽ m ⩽ Nx − 2), the C1 conditions become,∑M

j=1 V emnl
j (Xm+1, yemnl

q , temnl
r )wemnl

j −
∑M

j=1 V
em+1,nl
j (Xm+1, y

em+1,nl
q , t

em+1,nl
r )w

em+1,nl
j = 0,

0 ⩽ m ⩽ Nx − 2, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ q ⩽ Q y − 1, 0 ⩽ r ⩽ Qt − 1;
(15a)

∑M
j=1

∂V
emnl
j
∂x

⏐⏐⏐⏐
(Xm+1,y

emnl
q ,t

emnl
r )

w
emnl
j −

∑M
j=1

∂V
em+1,nl
j
∂x

⏐⏐⏐⏐
(Xm+1,y

em+1,nl
q ,t

em+1,nl
r )

w
em+1,nl
j = 0,

0 ⩽ m ⩽ Nx − 2, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ q ⩽ Q y − 1, 0 ⩽ r ⩽ Qt − 1.

(15b)

n the sub-domain boundaries y = Yn+1 (0 ⩽ n ⩽ Ny − 2) the C1 continuity conditions become,∑M
j=1 V emnl

j (xemnl
p , Yn+1, temnl

r )wemnl
j −

∑M
j=1 V

em,n+1,l
j (x

em,n+1,l
p , Yn+1, t

em,n+1,l
r )w

em,n+1,l
j = 0,

0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 2, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ r ⩽ Qt − 1;
(16a)

∑M
j=1

∂V
emnl
j
∂y

⏐⏐⏐⏐
(x

emnl
p ,Yn+1,t

emnl
r )

w
emnl
j −

∑M
j=1

∂V
em,n+1,l
j
∂y

⏐⏐⏐⏐
(x

em,n+1,l
p ,Yn+1,t

em,n+1,l
r )

w
em,n+1,l
j = 0,

0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 2, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ r ⩽ Qt − 1.

(16b)

n the sub-domain boundaries t = Tl+1 (0 ⩽ l ⩽ Nt − 2), the C0 continuity conditions become,
M∑

j=1

V emnl
j (xemnl

p , yemnl
q , Tl+1)wemnl

j −

M∑
j=1

V
emn,l+1
j (x

emn,l+1
p , y

emn,l+1
q , Tl+1)w

emn,l+1
j = 0,

0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 2, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1.

(17)

The equations consisting of (12)–(17) form a system of linear algebraic equations about the training parameters
emnl
j (1 ⩽ j ⩽ M , 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1 and 0 ⩽ l ⩽ Nt − 1). In these equations, V emnl

j ,
∂V

emnl
j
∂t ,

∂V
emnl
j
∂x ,

∂V
emnl
j
∂y and LV emnl

j are all known functions and can be evaluated on the collocation points by the local neural
networks. In particular, the partial derivatives therein can be computed based on auto-differentiation.

This linear system consists of Nequ = Nx Ny Nt
[
Qx Q y Qt + 2(Qx + Q y)Qt + Qx Q y

]
equations, and is about

Nx Ny Nt M unknown variables w
emnl
j . We seek a least squares solution to this system with minimum norm, and

ompute this solution by the linear least squares method. In the implementation we employ the linear least squares
outine from LAPACK to compute the least squares solution. The weight coefficients in the output layers of the
ocal neural networks are then determined by the least squares solution to the above system. Training the neural
etwork basically consists of computing the least squares solution.

lock time-marching for long-time simulations. Since the linear least squares computation, and hence the neural
etwork training, is computationally fast, longer-time dynamic simulations of time-dependent PDEs become feasible
sing the current method. With the basic method, we observe that as the temporal dimension of the spatial–temporal
omain (i.e. Γ ) increases, the network training generally becomes more difficult, in the sense that the obtained
olution tends to become less accurate corresponding to the later time instants in the domain. When Γ is large,

the solution can contain pronounced errors. Therefore, using a large dimension in time (i.e. large Γ ) with the basic
method is generally not advisable.

To perform long-time simulations, we will employ the following block time-marching strategy. Given a spatial–
temporal domain with a large dimension in time, we divide the domain into a number of windows, referred to as time
11



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

s

o

w
t

T

w

N

t
T
b
s
e
t

2

e
i
n

2

b
h
p
(
s

t

blocks, along the temporal direction, so that the temporal dimension of each time block has a moderate size. We then
solve the initial–boundary value problem using the basic method as discussed above on the spatial–temporal domain
of each time block, individually and successively. We use the solution from the previous time block evaluated at
the last time instant as the initial condition for the computations of the current time block. We start with the first
time block, and march in time block by block, until the last time block is completed.

Specifically, let Ω = {(x, y, t) | x ∈ [a1, b1], y ∈ [a2, b2], t ∈ [0, t f ]} denote the spatial–temporal domain on
which the initial–boundary value problem (10a)–(10c) is to be solved, where t f can be large. We divide the domain
into Nb (Nb ⩾ 1) uniform blocks in time, with each block the size of Γ = t f

Nb
. We choose Nb such that the block

ize Γ is a moderate value.
On the kth (0 ⩽ k ⩽ Nb − 1) time block, we introduce a time shift and a new dependent variable as a function

f the shifted time based on the following transform:

ξ = t − kΓ , U (x, y, ξ ) = u(x, y, t), t ∈ [kΓ , (k + 1)Γ ], ξ ∈ [0,Γ ], (18)

here ξ denotes the shifted time and U (x, y, ξ ) denotes the new dependent variable. Eqs. (10a) and (10b) are then
ransformed into,

∂U
∂ξ
= LU + f (x, y, ξ + kΓ ), (19a)

U (x, y, ξ ) = g(x, y, ξ + kΓ ), for (x, y) on spatial domain boundary. (19b)

his is supplemented by the initial condition,

U (x, y, 0) = U0(x, y), (20)

here U0(x, y) denotes the initial distribution on the time block k, given by

U0(x, y) =
{

u(x, y, 0) = h(x, y), if k = 0,

u(x, y, kΓ ) computed on time block (k − 1), if k > 0.
(21)

ote that h(x, y) is the initial condition for the problem.
The initial–boundary value problem on time block k now consists of Eqs. (19a), (19b) and (20), to be solved on

he spatial–temporal domain Ω st
= {(x, y, ξ ) | x ∈ [a1, b1], y ∈ [a2, b2], ξ ∈ [0,Γ ]} for the function U (x, y, ξ ).

his is the same problem we have considered previously, and it can be solved using the basic method discussed
efore. With U (x, y, ξ ) obtained, the function u(x, y, t) on time block k is recovered by the transform (18). By
olving the initial–boundary value problem on successive time blocks, we can attain the solution u(x, y, t) on the
ntire spatial–temporal domain Ω . This is the block time-marching scheme for potentially long-time simulations of
ime-dependent linear PDEs.

.3. Nonlinear differential equations

In this section we look into how to solve the initial/boundary value problems involving nonlinear differential
quations using domain decomposition and the locELM representation for the solutions. The overall procedure
s analogous to that for linear differential equations. The main difference lies in that here the set of local neural
etworks needs to be trained by a nonlinear least squares computation.

.3.1. Time-independent nonlinear differential equations
We first consider the boundary value problems involving nonlinear differential equations together with Dirichlet

oundary conditions, and discuss how to solve such problems using the locELM method. We assume that the
ighest-order terms in the equation are linear, and that the nonlinear terms involve the unknown function and also
ossibly its derivatives of lower orders. To make the discussions more concrete, we again focus on two dimensions
with coordinates x and y), and assume that the highest partial derivatives with respect to both x and y are of
econd order in the equation.

Let us consider the following generic second-order nonlinear differential equation of such a form on domain Ω ,
ogether with the Dirichlet boundary condition on ∂Ω ,

Lu + F
(
u, ux , u y

)
= f (x, y), (22a)
u(x, y) = g(x, y), on ∂Ω , (22b)
12



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

i
d
d
(
a
l
L
d
h

o

w
c
t
C
c

e
t
n

t
p
c

where u(x, y) is the field function to be solved for, ux =
∂u
∂x , u y =

∂u
∂y , L is a second-order linear differential operator

with respect to both x and y, F denotes the nonlinear term, f (x, y) is a prescribed source term, and g(x, y) denotes
the Dirichlet boundary data.

The overall procedure for solving Eqs. (22a)–(22b) using the locELM method is analogous to that in Sec-
tion 2.2.1. We focus on a rectangular domain, Ω = {(x, y) | x ∈ [a1, b1], y ∈ [a2, b2]}, and partition this domain into
Nx and Ny sub-domains along the x and y directions, respectively, thus leading to a total of Ne = Nx Ny sub-domains
n Ω . Following the notation of Section 2.2.1, we denote the sub-domain boundary coordinates along the x and y
irections by two vectors [X0, X1, . . . , X Nx ] and [Y0, Y1, . . . , YNy ], respectively. Let Ωemn = [Xm, Xm+1]×[Yn, Yn+1]
enote the sub-domain with index emn for 0 ⩽ m ⩽ Nx − 1 and 0 ⩽ n ⩽ Ny − 1. We use (xemn

p , yemn
q )

0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1) to denote a set of uniform collocation points in the sub-domain emn , where Qx
nd Q y are the number of collocation points in the x and y directions on the sub-domain. The input layer of the
ocal neural network consists of two nodes (x and y), and the output layer consists of one node (representing u).
et uemn (x, y) denote the output of the local neural network on the sub-domain emn , and V emn

j (x, y) (1 ⩽ j ⩽ M)
enote the output of the last hidden layer of the local neural network, where M is the number of nodes in the last
idden layer. We have the following relations,

uemn (x, y) =
M∑

j=1

V emn
j (x, y)wemn

j ,
∂uemn

∂x
=

M∑
j=1

∂V emn
j

∂x
w

emn
j ,

∂uemn

∂y
=

M∑
j=1

∂V emn
j

∂y
w

emn
j ,

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1,

(23)

where the constants w
emn
j (1 ⩽ j ⩽ M) denote the weight coefficients in the output layer of the local neural network

n sub-domain emn , and they constitute the training parameters of the neural network.
Enforcing Eq. (22a) on the collocation points (xemn

p , yemn
q ) for each sub-domain leads to

M∑
j=1

[
LV emn

j (xemn
p , yemn

q )
]
w

emn
j + F

(
uemn , uemn

x , uemn
y

)⏐⏐
(xemn

p ,yemn
q )
− f (xemn

p , yemn
q ) = 0,

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1,

(24)

here uemn , uemn
x and uemn

y are given by (23) in terms of the training parameters w
emn
j . Enforcing the boundary

ondition (22b) on the collocation points of the four domain boundaries x = a1 or b1 and y = a2 or b2 leads
o Eqs. (7a), (7b), (7c) and (7d). Since Eq. (22a) is of second-order with respect to both x and y, we impose

1 continuity conditions across the sub-domain boundaries along both the x and y directions. Enforcing the C1

ontinuity conditions on the collocation points of the sub-domain boundaries x = Xm+1 (0 ⩽ m ⩽ Nx − 2) and
y = Yn+1 (0 ⩽ n ⩽ Ny − 2) leads to the Eqs. (8a)–(8b) and (9a)–(9b).

The set of equations consisting of (24), (7a)–(7d), (8a)–(8b) and (9a)–(9b) is a system of nonlinear algebraic
quations about the training parameters w

emn
j (1 ⩽ j ⩽ M , 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1). In these equations

he functions V emn
j (x, y) are all known and their partial derivatives can be computed by auto-differentiation. This

onlinear algebraic system consists of Nx Ny(Qx Q y + 2Qx + 2Q y) equations with Nx Ny M unknowns.
This system is to be solved for the determination of the training parameters. We seek a least squares solution

o this system for the training parameters w
emn
j , thus leading to a nonlinear least squares problem. To solve this

roblem, we take advantage of the nonlinear least squares implementations from the scientific libraries. In the
urrent implementation, we employ the nonlinear least squares routine “least squares” from the scipy.optimize

package. This method typically works quite well, and exhibits a smooth convergence behavior. However, we observe
that in certain cases, e.g. when the simulation resolution is not sufficient or sometimes in longer-time simulations
with time-dependent nonlinear equations, this method at times can be attracted to and trapped in a local minimum
solution. While the method indicates that the nonlinear iterations have converged, the norm of the converged equation
residuals can turn out to be quite pronounced in magnitude. In the event this takes place, the obtained solution
can contain significant errors and the simulation loses accuracy from that point onward. This issue is typically
encountered when the resolution of the computation (e.g. the number of collocation points in the domain or the
number of training parameters in the neural network) decreases to a certain point. This has been a main issue with
the nonlinear least squares computation using this method.

To alleviate this problem and make the nonlinear least squares computation more robust, we find it necessary
to incorporate a sub-iteration procedure with random perturbations to the initial guess when invoking the nonlinear
13



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

w
a

Algorithm 1: NLSQ-perturb (nonlinear least squares with perturbations)
input : constant δ > 0, initial guess x0
output: solution vector x, associated cost c

1 call scipy.optimize.least squares routine using x0 as the initial guess
2 set x← returned solution
3 set c← returned cost
4 if c is below a threshold then
5 return
6 end

7 for i ← 0 to maximum number of sub-iterations do
8 generate a random number ξ1 on the interval [0, 1]
9 set δ1 ← ξ1δ

10 generate a uniform random vector ∆x of the same shape as x on the interval [−δ1, δ1]

11 generate a random number ξ2 on the interval [0, 1]
12 set y0 ← ξ2x+∆x

13 call scipy.optimize.least squares routine using y0 as the initial guess
14 if the returned cost is less than c then
15 set x← the returned solution
16 set c← the returned cost
17 end
18 if the returned cost is below a threshold then
19 return
20 end
21 end

least squares routine. The basic idea is as follows. If the nonlinear least squares routine converges with the converged
cost (i.e. norm of the equation residual) exceeding a threshold, the sub-iteration procedure will be triggered. Within
each sub-iteration a random initial guess for the solution is generated, based on e.g. a perturbation to the current
approximation of the solution vector, and is fed to the nonlinear least squares routine.

Algorithm 1 illustrates the nonlinear least squares computation combined with the sub-iteration procedure, which
ill be referred to as the NLSQ-perturb (Nonlinear Least SQuares with perturbations) method hereafter. In this

lgorithm the parameter δ controls the maximum range on which the random perturbation vector is generated.
Numerical experiments indicate that the method works better if δ is not large. A typical value is δ = 0.5, which is
observed to work well in numerical simulations. Combined with an appropriate resolution (the number of collocation
points in domain, and the number of training parameters in the neural network) for a given problem, the NLSQ-
perturb method turns out to be very effective. The solution can typically be attained with only a few (e.g. around
4 or 5) sub-iterations if such an iteration is triggered. For the numerical tests reported in Section 3, we employ a
threshold value 10−3 in the lines 4 and 18 of Algorithm 1. The final converged cost value is typically on the order
10−13.

Remark 2.8. In Algorithm 1 the value ξ2 controls around which point the random perturbation will be generated.
In Algorithm 1, ξ2 is taken to be a random value from [0, 1]. An alternative to this is to fix this value at ξ2 = 0 or
ξ2 = 1, which has been observed to work well in actual simulations. By using ξ2 = 0, one is effectively generating
a random perturbation around the origin and use it as the initial guess. By using ξ2 = 1, one is effectively setting
the initial guess as a random perturbation to the best approximation obtained so far.

Besides the above nonlinear least squares formulation with the NLSQ-perturb method, we have considered
another method for solving the system (22a)–(22b), by a combination of Newton iterations and the linear least
14



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

c
s
n
g
t
a
i

R
s
l
u

m
r

w
r
D

t
d

B
[

v
c
0

squares approach, which we will refer to as the Newton-LLSQ (Newton-Linear Least SQuares) method hereafter.
With this method, we first linearize Eq. (22a) to arrive at a linear differential equation about the increment field.
This linear differential equation, the associated boundary condition, and the associated Ck continuity conditions
onstitute the system that determines the increment field. This system for the increment field is linear and can be
olved using the locELM method from Section 2.2.1 with the linear least squares approach. The solution to the
onlinear system consisting of (22a)–(22b) can be obtained with a Newton iteration, by starting with a zero initial
uess and updating the approximation to the solution with the increment field in each Newton step. We observe
hat the convergence behavior of the Newton-LLSQ method is not as regular as the NLSQ-perturb method, but it
ppears less likely to be trapped to local minimum solutions. The details of the Newton-LLSQ method are provided
n an Appendix of this paper (“Appendix A. The Newton-Linear Least Squares (Newton-LLSQ) Method”).

emark 2.9. It is observed that the computational cost of the Newton-LLSQ method is typically considerably
maller than that of the NLSQ-perturb method in training the locELM neural networks. On the other hand, the
ocELM solutions obtained with the Newton-LLSQ method are in general markedly less accurate than those obtained
sing the NLSQ-perturb method.

In the current work, we implement the local neural networks for each sub-domain emn using one or several dense
Keras layers, with the collocation points (xemn

p , yemn
q ) as the input data and uemn as the output. In the implementation,

an affine mapping is incorporated into each local neural network behind the input layer to normalize the input
(x, y) data to the interval [−1, 1]× [−1, 1] for each sub-domain. The set of local neural networks logically forms a

ultiple-input multiple-output Keras model. The weight/bias coefficients in all the hidden layers are set to uniform
andom values generated on [−Rm, Rm]. The weight coefficients of the output layers (wemn

j ) of the local neural
networks are determined and set by using the NLSQ-perturb or Newton-LLSQ methods. The partial derivatives
involved in the formulation are computed by auto-differentiation from the Tensorflow package.

2.3.2. Time-dependent nonlinear differential equations
We next consider the initial–boundary value problems involving time-dependent nonlinear differential equations

together with Dirichlet boundary conditions, and discuss how to solve such problems using the locELM method.
We make the same assumptions about the differential equation as in Section 2.3.1: The highest-order terms are
assumed to be linear, and the nonlinear terms may involve the unknown function or its partial derivatives of lower
orders. We again focus on two spatial dimensions, plus time t , and assume that the equation is of second order with
respect to both spatial coordinates (x and y).

Consider the following generic nonlinear partial differential equation of such a form on a spatial–temporal domain
Ω , supplemented by the Dirichlet boundary condition and an initial condition,

∂u
∂t
= Lu + F(u, ux , u y)+ f (x, y, t), (25a)

u(x, y, t) = g(x, y, t), for (x, y) on the spatial domain boundary, (25b)

u(x, y, 0) = h(x, y), (25c)

here u(x, y, t) is the unknown field function to be solved for, L is a second-order linear differential operator with
espect to both x and y, F denotes the nonlinear term, f (x, y, t) is a prescribed source term, g(x, y, t) denotes the
irichlet boundary data, and h(x, y) is the initial field distribution.
Our discussion below largely parallels that of Section 2.2.2. We first discuss the basic method on a spatial–

emporal domain, and then develop the block time-marching idea for longer-time simulations of the nonlinear partial
ifferential equations.

asic method. We focus on a rectangular spatial–temporal domain Ω = {(x, y, t) | x ∈ [a1, b1], y ∈ [a2, b2], t ∈
0,Γ ]}, and solve the initial–boundary value problem consisting of Eqs. (25a)–(25c) on this domain.

Following the notation of Section 2.2.2, we use Nx , Ny and Nt to denote the number of sub-domains along the
x , y and t directions, where the locations of the sub-domain boundaries along the three directions are given by the
ectors [X0, X1, . . . , X Nx ], [Y0, Y1, . . . , YNy ] and [T0, T1, . . . , TNt ], respectively. A sub-domain with the index emnl

orresponds to the spatial–temporal region Ωemnl = [Xm, Xm+1] × [Yn, Yn+1] × [Tl , Tl+1], for 0 ⩽ m ⩽ Nx − 1,
emnl emnl emnl
⩽ n ⩽ Ny − 1 and 0 ⩽ l ⩽ Nt − 1. Let (x p , yq , tr ) (0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1, 0 ⩽ r ⩽ Qt − 1)

15



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

o
f

w
a
o
E
t

c
r

c
t

t
a
S

i

B
b
[
t

a

w

denote the set of Q = Qx Q y Qt collocation points on each sub-domain emnl . Let uemnl (x, y, t) denote the output of
the local neural network corresponding to the sub-domain emnl , and V emnl

j (x, y, t) (1 ⩽ j ⩽ M) denote the output
f the last hidden layer of the local neural network, where M is the number of nodes in the last hidden layer. The
ollowing relations hold,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uemnl (x, y, t) =
M∑

j=1

V emnl
j (x, y, t)wemnl

j , uemnl
x (x, y, t) =

M∑
j=1

∂V emnl
j

∂x
w

emnl
j ,

uemnl
y (x, y, t) =

M∑
j=1

∂V emnl
j

∂y
w

emnl
j ,

∂uemnl

∂t
=

M∑
j=1

∂V emnl
j

∂t
w

emnl
j ,

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 1,

(26)

where w
emnl
j denote the weight coefficients in the output layers of the local neural networks and they constitute the

training parameters of the network.
Enforcing Eq. (25a) on the collocation points (xemnl

p , yemnl
q , temnl

r ) of each sub-domain emnl leads to

M∑
j=1

[
∂V emnl

j

∂t
− LV emnl

j

]⏐⏐⏐⏐⏐
(x

emnl
p ,y

emnl
q ,t

emnl
r )

w
emnl
j − F(uemnl , uemnl

x , uemnl
y )

⏐⏐
(x

emnl
p ,y

emnl
q ,t

emnl
r )

− f (xemnl
p , yemnl

q , temnl
r ) = 0,

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 1, 0 ⩽ l ⩽ Nt − 1, 0 ⩽ p ⩽ Qx − 1, 0 ⩽ q ⩽ Q y − 1,

0 ⩽ r ⩽ Qt − 1,

(27)

here uemnl , uemnl
x and uemnl

y are given by (26) in terms of the known function V emnl
j and its partial derivatives. This is

set of nonlinear algebraic equations about the training parameters w
emnl
j . Enforcing the boundary condition (25b)

n the collocation points of the four spatial boundaries at x = a1 or b1 and y = a2 or b2 leads to Eqs. (13a)–(13d).
nforcing the initial condition (25c) on the spatial collocation points at t = 0 results in Eq. (14). We impose

he C1 continuity conditions on the unknown field u(x, y, t) across the sub-domain boundaries along the x and
y directions, since L is assumed to be a second-order operator with respect to both x and y. We impose the C0

ontinuity condition across the sub-domain boundaries in the temporal direction, since Eq. (25a) is first-order with
espect to time. Enforcing the C1 continuity conditions on the collocation points on the sub-domain boundaries

x = Xm+1 (0 ⩽ m ⩽ Nx − 2) and y = Yn+1 (0 ⩽ n ⩽ Ny − 2) leads to Eqs. (15a)–(16b). Enforcing the C0

ontinuity condition on the collocation points on the sub-domain boundaries t = Tl+1 (0 ⩽ l ⩽ Nt − 2) leads
o Eq. (17).

The set of equations consisting of (27) and (13a)–(17) is a nonlinear algebraic system of equations about the
raining parameters w

emnl
j . This system consists of Nx Ny Nt [Qx Q y Qt + 2(Qx + Q y)Qt + Qx Q y] coupled nonlinear

lgebraic equations with Nx Ny Nt M unknowns. This system can be solved using the NLSQ-perturb method from
ection 2.3.1 to determine the training parameters w

emnl
j .

Similarly, the system consisting of (25a)–(25c) can also be solved by the Newton-LLSQ method; see Remark A.2
n Appendix A for more details.

lock time-marching. For longer-time simulations of time-dependent nonlinear differential equations, we employ a
lock time-marching strategy analogous to that of Section 2.2.2. Let Ω = {(x, y, t)|x ∈ [a1, b1], y ∈ [a2, b2], t ∈
0, t f ]} denote the spatial–temporal domain on which the problem is to be solved, where t f can be large. We divide
he temporal dimension into Nb uniform time blocks, with the block size Γ =

t f
Nb

being a moderate value, and solve
the problem on each time block separately and successively. On the kth (0 ⩽ k ⩽ Nb−1) time block, we introduce

shifted time ξ and a new dependent variable U (x, y, ξ ) as given by Eq. (18). Then Eq. (25a) is transformed into

∂U
∂ξ
= LU + F(U, Ux , Uy)+ f (x, y, ξ + kΓ ), (28)

here Ux =
∂U
∂x and Uy =

∂U
∂y . Eq. (25b) is transformed into (19b). The initial condition for time block k is given

by (20), in which the initial distribution data is given by (21).
16



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

Ω

s

c

The initial–boundary value problem consisting of Eqs. (28), (19b) and (20), on the spatial–temporal domain
st
= [a1, b1]× [a2, b2]× [0,Γ ], is the same problem we have considered before, and can be solved for U (x, y, ξ )

using the basic method. The solution u(x, y, t) on time block k can then be recovered by the transform (18).
Starting with the first time block, we can solve the initial–boundary value problem on each time block

uccessively. After the problem on the kth block is solved, the obtained solution can be evaluated at t = (k + 1)Γ
and used as the initial condition for the computation on the subsequent time block.

Remark 2.10. We observe from numerical experiments that the time block size Γ can play a crucial role in
long-time simulations of time-dependent nonlinear differential equations. In general, reducing Γ can improve the
convergence of the nonlinear iterations on the time blocks. If Γ is too large, the nonlinear iterations can become
hard to converge. With the other simulation parameters (such as the number of collocation points in the time block
and the number of training parameters in the neural network) fixed, reducing the time block size effectively amounts
to an increase in the resolution of the data on each time block.

Remark 2.11. We will present numerical experiments with nonlinear PDEs in Section 3 to compare the current
locELM method with the deep Galerkin method (DGM) and the physics-informed neural network (PINN), and also
compare the current method with the classical finite element method (FEM). We observe that for these problems the
locELM method is considerably superior to DGM and PINN, with regard to both the accuracy and the computational
cost. In terms of the computational performance, the locELM method is on par with the finite element method, and
oftentimes the locELM performance exceeds the FEM performance.

3. Numerical examples

In the forthcoming section we provide a number of numerical examples to test the locELM method. These
examples pertain to stationary and time-dependent, linear and nonlinear differential equations. They are in general
one- or two-dimensional (1D/2D) in space, and also plus time if time-dependent. For certain problems (e.g. the
advection equation) we provide results from long-time simulations, to demonstrate the capability of the locELM
method combined with the block time-marching scheme. We employ tanh as the activation function in all the local
neural networks of this section.

We focus on the accuracy and the computational cost in our discussions. For locELM, the computational cost
here refers to the total training time of the overall neural network, which includes the computation time for the

output functions of the last hidden layer and its derivatives (e.g. V emnl
j ,

∂V
emnl
j
∂x , etc.), the computation time for the

coefficient matrix and the right hand side of the least squares problem, and the solution time for the linear/nonlinear
least squares problem. It does not include, after the training is over, the evaluation of the neural network on a set of
given points for the output of the solution data. The timing data is collected using the “timeit” module in Python.

We compare the current locELM method with the deep Galerkin method (DGM) [8] and the physics-informed
neural network (PINN) method [9], in terms of the accuracy and the network training time. DGM and PINN
are trained using both the Adam [50] and the L-BFGS [51] optimizers. For L-BFGS, we have employed the
routine available from the Tensorflow-Probability library (www.tensorflow.org/probability). For DGM and PINN,
the training time refers to the time interval between the start and the end of the Adam or L-BFGS training loop for
a given number of epochs/iterations. The locELM, DGM and PINN methods are all implemented in Python with
the Tensorflow (www.tensorflow.org) and Keras (keras.io) libraries.

Additionally, we compare locELM with the classical finite element method (linear elements, second-order), in
terms of the accuracy and computational cost. For the numerical tests reported below, the finite element method
(FEM) is implemented also in Python, using the FEniCS library (fenicsproject.org). Defining the mesh, the finite
element space, the trial and test functions, the boundary conditions, and the variational problem, as well as forming
and solving the linear system, are all handled by FEniCS. In the implementation, a user only needs to specify these
components symbolically; see [52]. The linear system is solved by the default linear solver in the FEniCS library,
which is the sparse LU decomposition. For nonlinear differential equations, the resultant nonlinear algebraic system
is solved by the Newton’s method from the FEniCS library, with a relative tolerance 1e − 12.

When the FEM code is run for the first time, the FEniCS library uses Just-In-Time (JIT) compilers to compile

ertain key finite element operations in the Python code into C++ code, which is in turn compiled by the C++

17

http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org/probability
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org
http://www.tensorflow.org


S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

t

w
v
c

W
t

s
c
d
p
e

(
W
l
n
i
t
p

p
o
g
t

p
F

compiler and then cached. This is done only once. So the FEM code is slower as JIT compilation occurs when
run for the first time, but it is much faster in subsequent runs. For FEM, the computational cost here refers to
the computation time collected using the “timeit” module after the code has been compiled by the JIT compilers.
The FEM computation time includes the specifications of the mesh, the finite element space, the trial/test function
spaces, the variational problem, the forming and solution of the linear system. It does not include the output of the
solution data after the problem is solved. All the timing data with the locELM, DGM, PINN and FEM methods is
collected on a MAC computer (3.2 GHz Intel Core i5 CPU, 24GB memory) at the authors’ institution.

3.1. Helmholtz equation

In the first test we consider the boundary value problem with the one-dimensional (1D) Helmholtz equation on
he domain x ∈ [a, b],

d2u
dx2 − λu = f (x), (29a)

u(a) = h1, u(b) = h2, (29b)

here u(x) is the field function to be solved for, f (x) is a prescribed source term, and h1 and h2 are the boundary
alues. The other constants in the above equations and the domain specification are λ = 10, a = 0 and b = 8. We
hoose the source term f (x) such that Eq. (29a) has the following solution,

u(x) = sin
(

3πx +
3π

20

)
cos

(
2πx +

π

10

)
+ 2. (30)

e choose h1 and h2 according to this analytic solution by setting x = a and x = b in (30), respectively. Under
hese settings the boundary value problem (29a)–(29b) has the analytic solution (30).

We solve this problem using the locELM method presented in Section 2.2.1, by restricting the scheme to one
patial dimension. We partition [a, b] into Ne uniform sub-domains (sub-intervals), and impose the C1 continuity
onditions across the sub-domain boundaries. Let Q denote the number of collocation points within each sub-
omain, and consider three types of collocation points: uniform grid points, the Gauss–Lobatto–Legendre quadrature
oints, and random points. The majority of tests reported below are performed with uniform collocation points in
ach sub-domain.

For the majority of tests in this subsection, each local neural network consists of an input layer with one node
representing x), an output layer with one node (representing the solution u), and one hidden layer in between.

e have also considered local neural networks with two or three hidden layers between the input and the output
ayers. We employ tanh as the activation function for all the hidden layers. The output layer contains no bias and
o activation function, as discussed in Section 2.1. Additionally, an affine mapping operation that normalizes the
nput x data on each sub-domain to the interval [−1, 1] is incorporated into the local neural networks right behind
he input layer. This operation is implemented using the “lambda” layer in Keras, which contains no adjustable
arameters and we do not count it toward the number of hidden layers. Following Section 2, let M denote the

number of nodes in the last hidden layer, which is also the number of training parameters for each sub-domain. As
discussed in Section 2.1, the weight and bias coefficients in the hidden layers are pre-set to uniform random values
generated on the interval [−Rm, Rm] and are fixed in the computation.

The main simulation parameters with locELM include the number of sub-domains (Ne), the number of collocation
points per sub-domain (Q), the number of training parameters per sub-domain (M), the maximum magnitude of
the random coefficients (Rm), the number of hidden layers in the local neural network, and the type of collocation
points in each sub-domain. We will use the total number of collocation points (Ne Q) and the total number of training

arameters (Ne M) to characterize the total degrees of freedom in the simulation. The effects of the above parameters
n the simulation results will be investigated. To make the numerical tests repeatable, all the random numbers are
enerated by the Tensorflow library, and we employ a fixed seed value 1 for the random number generator with all
he tests with locELM in this sub-section.

Fig. 1 illustrates the effect of the number of sub-domains in the locELM simulation, with the degrees of freedom
er sub-domain (i.e. the number of collocation points and the number of training parameters per sub-domain) fixed.

igs. 1(a) and (b) show the solution and error profiles obtained with 1 sub-domain and 4 sub-domains in the locELM

18



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

f
a

s
a
f
l
c

t
s
l
t
m
a
t
s

d
o
t
p
w
i
I
T
c
n
p
a

Fig. 1. Effect of the number of sub-domains, with fixed degrees of freedom per sub-domain (1D Helmholtz equation): Profiles of (a) the
locELM solutions and (b) their absolute errors, computed using one sub-domain and four sub-domains. (c) The maximum and rms errors
in the domain, and (d) the neural-network training time, as a function of the number of sub-domains.

Fig. 2. Effect of the number of collocation points and training parameters (1D Helmholtz equation): the maximum and rms errors as a
unction of (a) the number of collocation points/sub-domain, and (b) the number of training parameters/sub-domain. Two uniform sub-domains
re used.

imulation. Fig. 1(c) shows the maximum (L∞) and the rms (L2) errors of the locELM solution in the overall domain
s a function of the number of sub-domains. Fig. 1(d) shows the training time of the overall neural network as a
unction of the number of sub-domains. Here the error refers to the absolute value of the difference between the
ocELM solution and the exact solution give by Eq. (30). As discussed before, the training time refers to the total
omputation time of the locELM method, and includes the time for computing the output of the last hidden layer

V s
j (x) (1 ⩽ s ⩽ Ne, 1 ⩽ j ⩽ M) and its derivatives, the coefficient matrix and the right hand side, and for solving

he linear least squares problem. In this set of tests, we have employed Q = 50 uniform collocation points per
ub-domain and M = 50 training parameters per sub-domain. Each local neural network contains a single hidden
ayer, and we have employed Rm = 3.0 when generating the random weight/bias coefficients for the hidden layers of
he local neural networks. It can be observed that the locELM method produces dramatically (nearly exponentially)

ore accurate results with increasing number of sub-domains, with the maximum error in the domain reduced from
round 101 for a single sub-domain to about 10−7 for 8 sub-domains. The training time for the neural network, on
he other hand, increases approximately linearly with increasing sub-domains, with the training time from about 0.1
econds for a single sub-domain to about 0.8 seconds for 8 sub-domains.

Fig. 2 illustrates the effects of the number of collocation points and the number of training parameters per sub-
omain on the simulation accuracy. Fig. 2(a) depicts the maximum and rms errors in the domain versus the number
f collocation points/sub-domain. Fig. 2(b) depicts the maximum and rms errors in the domain versus the number of
raining parameters/sub-domain. In these tests we have employed Ne = 2 uniform sub-domains, uniform collocation
oints in each sub-domain, one hidden layer in each local neural network, and Rm = 3.0 when generating the random
eight/bias coefficients for the hidden layer. For the tests in plot (a) the number of training parameters/sub-domain

s fixed at M = 200, and for the tests in plot (b) the number of collocation points/sub-domain is fixed at Q = 100.
ncreasing the collocation points per sub-domain causes an exponential decrease in the numerical errors initially.
he errors then stagnate as the number of collocation points/sub-domain exceeds a certain point (Q ∼ 100 in this
ase). The error stagnation is due to the fixed number of training parameters/sub-domain (M = 200) here. The
umber of training parameters/sub-domain appears to have a similar effect on the errors. Increasing the training
arameters per sub-domain also causes a nearly exponential decrease in the errors initially. The errors then stagnate
s the number of training parameters increases beyond a certain point (M ∼ 175 in this case).
19



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

p

Fig. 3. Effect of the collocation-point distribution (1D Helmholtz equation): the maximum error in the domain versus the number of
collocation points/sub-domain, obtained with three collocation-point distributions: uniform points, quadrature points, and random points.

Fig. 4. locELM simulations with 2 hidden layers in local neural networks (1D Helmholtz equation): profiles of (a) the locELM solutions
and (b) their absolute errors, computed with 30 and 200 uniform collocation points per sub-domain. (c) the maximum and rms errors in the
domain, and (d) the training time, as a function of the number of uniform collocation points per sub-domain.

The results in Figs. 1 and 2 show that the current locELM method exhibits a clear sense of convergence with
respect to the degrees of freedom. The numerical errors decrease exponentially or nearly exponentially, as the
number of sub-domains, or the number of collocation points per sub-domain, or the number of training parameters
per sub-domain increases.

Fig. 3 illustrates the effect of the collocation-point distribution on the simulation accuracy. It shows the maximum
error in the domain versus the number of collocation points/sub-domain in the locELM simulation using three
types of collocation points: uniform regular points, Gauss–Lobatto–Legendre quadrature points, and random points
(see Remark 2.4). In this group of tests we have employed two sub-domains (Ne = 2) with M = 200 training

arameters/sub-domain, and the local neural networks each contains a single hidden layer with Rm = 3.0 when
generating the random weight/bias coefficients. With the same number of collocation points, we observe that the
results corresponding to the random collocation points are the least accurate. The results obtained with the quadrature
points are the most accurate among the three, whose errors can be orders of magnitude smaller than those with the
random collocation points. The accuracy corresponding to the uniform regular collocation points lies between the
other two. With the quadrature points, however, we have encountered practical difficulties in our implementation
when the number of quadrature points becomes larger (above 100), because the library our implementation is based
on is unable to compute the quadrature points accurately when the number of quadrature points exceeds 100 due
to an inherent limitation. Consequently, we are unable to obtain results with more than 100 collocation points/sub-
domain when quadrature points are used, which hampers our ability to perform certain types of tests. Therefore,
the majority of locELM simulations in the current work are conducted with uniform collocation points.

The test results discussed so far are obtained using a single hidden layer in the local neural networks. Traditional
studies of global extreme learning machines are confined to such a configuration, using a single hidden layer in
the neural network [23]. With the current locELM method, it is observed that using more than one hidden layer in
the local neural networks one can also obtain accurate results. This is demonstrated by the results in Figs. 4 and
5. Fig. 4 shows locELM simulation results obtained with 2 hidden layers in each of the local neural networks, and
Fig. 5 shows locELM results obtained with 3 hidden layers in the local neural networks. In these tests two uniform
sub-domains (Ne = 2) have been used. The local neural networks corresponding to Fig. 4 each contains 2 hidden

layers with 20 and 300 nodes, respectively, and Rm = 3.0 is employed when the random weight/bias coefficients

20



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

g
a
f
o
l
r
o
e
l
W
n
w
l
o
h

o
s
n

Fig. 5. locELM simulations with 3 hidden layers in local neural networks (1D Helmholtz equation): profiles of (a) the locELM solutions
and (b) their absolute errors, computed with 30 and 200 uniform collocation points per sub-domain. (c) the maximum and rms errors in the
domain, and (d) the training time, as a function of the number of uniform collocation points per sub-domain.

for the hidden layers are generated. The local neural networks corresponding to Fig. 5 each contains 3 hidden layers
with 20, 20 and 300 nodes, respectively, and Rm = 1.0 is employed when the random weight/bias coefficients are

enerated for the hidden layers. The number of training parameters per sub-domain in these tests is therefore fixed
t M = 300, which corresponds to the number of nodes in the last hidden layer. We have used tanh as the activation
unction for all the hidden layers. Uniform collocation points have been used in each sub-domain, and the number
f collocation points is varied in the tests. In each of these two figures, the plots (a) and (b) are profiles of the
ocELM solutions and their absolute errors computed with 30 and 200 uniform collocation points per sub-domain,
espectively. The plots (c) and (d) show the maximum/rms errors in the domain and the training time as a function
f the number of collocation points per sub-domain, respectively. It is evident that the numerical errors decrease
xponentially with increasing collocation points/sub-domain, similar to what has been observed with a single hidden
ayer from Fig. 2(a), until the errors saturate as the number of collocation points increases beyond a certain point.

ith more than one hidden layer, the locELM method can similarly produce accurate results with a sufficient
umber of collocation points per sub-domain. The training time is also observed to increase essentially linearly
ith respect to the number of collocation points per sub-domain. Numerical experiments with even more hidden

ayers in the local neural networks suggest that the simulation tends to be not as accurate as those corresponding to
ne, two or three hidden layers. It appears to be harder to obtain accurate or more accurate results with even more
idden layers.

Apart from the number of collocation points and the number of training parameters in each sub-domain, we
bserve that the random weight/bias coefficients in the hidden layers can influence the accuracy of the locELM
imulation results. As discussed in Section 2.1, the weight/bias coefficients in the hidden layers of the local
eural networks are pre-set to uniform random values generated on the interval [−Rm, Rm], and they are fixed

throughout the computation. It is observed that Rm , the maximum magnitude of the random coefficients, can
influence significantly the simulation accuracy. Fig. 6 demonstrates this effect with two groups of tests. In the first
group, four uniform sub-domains (Ne = 4) are used. The number of (uniform) collocation points per sub-domain
(Q) and the number of training parameters per sub-domain (M) are kept to be the same, and several of these values
have been considered (Q = M = 50, 100, 300). Then for each of these cases we vary Rm systematically and record
the errors of the simulation results. Fig. 6(a) shows the maximum error in the domain as a function Rm for this
group of tests. In the second group of tests, two uniform sub-domains (Ne = 2) are used. The number of training
parameters per sub-domain is fixed at M = 200, and several values for the number of (uniform) collocation points
are considered (Q = 50, 100, 200, 300). For each of these cases, Rm is varied systematically and the corresponding
errors of the simulation results are recorded. Fig. 6(b) shows the maximum error in the domain as a function of
Rm for this group of tests. In both groups of tests, the local neural networks each contains a single hidden layer.
These results indicate that, for a fixed simulation resolution (i.e. fixed Q and M), the error tends be worse as Rm
becomes very large or very small. The simulation tends to produce more accurate results for a range of moderate
Rm values, which is typically around Rm ≈ 1 ∼ 10. As the simulation resolution increases, the optimal range of
Rm values tends to expand and shift rightward (toward larger values) on the Rm axis. Further tests also suggest
that with increasing number of sub-domains the optimal range of Rm values tends to shift leftward (toward smaller
values) along the Rm axis.

We observe that the use of multiple sub-domains and local extreme learning machines can significantly accelerate

the computation and reduce the network training time, without seriously compromising the accuracy, when compared

21



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

t
(

t
a

w
f
d
i
t
w
a
a
a
a
s
r
o
I
m
d

l
a
n
p
d

Fig. 6. Effect of random weight/bias coefficients in hidden layers (1D Helmholtz equation): (a) The maximum error in the domain versus
Rm , for several cases with the number of collocation points/sub-domain (Q) and the number of training parameters/sub-domain (M) kept
identical. (b) The maximum error in the domain versus Rm , for several cases with the number of training parameters/sub-domain fixed and
he number of collocation points/sub-domain varied. Four uniform sub-domains are used in (a), and two uniform sub-domains are used in
b).

Fig. 7. Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (1D Helmholtz equation): profiles of (a)
he locELM solutions and (b) their absolute errors, computed using one and four uniform sub-domains in the simulation. (c) The maximum
nd rms errors in the domain, and (d) the training time, as a function of the number of uniform sub-domains.

ith global extreme learning machines. This point is demonstrated by Fig. 7. Here we fix the total degrees of
reedom in the domain, i.e. the total number of collocation points and the total number of training parameters in the
omain, and vary the number of sub-domains in the locELM simulation. The locELM case with a single sub-domain
s equivalent to a global ELM. The total number of collocation points in the domain is fixed at Ne Q = 200, and
he total number of training parameters is fixed at Ne M = 400. Uniform sub-domains are employed in these tests,
ith uniform collocation points in each sub-domain. So with multiple sub-domains the total degrees of freedom

re evenly distributed to different sub-domains and local neural networks. The local neural networks each contains
single hidden layer, and the maximum magnitudes of the random coefficients (Rm) employed in the tests here

re approximately in their optimal range of values. Figs. 7(a) and (b) illustrates profiles of the localELM solutions
nd their absolute errors obtained using a single sub-domain (Q = 200, M = 400, Rm = 6.0) and using four
ub-domains (Q = 50, M = 100, Rm = 3.0) in the locELM simulations. Both simulations have produced accurate
esults, with comparable error levels. Fig. 7(c) shows the maximum and rms errors in the domain versus the number
f sub-domains in the simulations, and Fig. 7(d) shows the training time as a function of the number of sub-domains.
t can be observed that the error levels corresponding to multiple sub-domains are comparable to, or in certain cases
aybe slightly better or worse than, those of a single sub-domain. But the training time of the neural network is

ramatically reduced with multiple sub-domains, when compared with a single sub-domain.
The reduction in the training time is due to the fact that, with multiple sub-domains, the coefficient matrix in the

inear least squares problem becomes very sparse, because only the degrees of freedom in neighboring sub-domains
re coupled through the Ck continuity conditions while those in sub-domains that are not adjacent to each other are
ot coupled. In other words, the input collocation points on one sub-domain only directly contribute to the training
arameters of the local neural network for the same sub-domain. This relation is evident from Eq. (2). The input

s
ata x on the sub-domain Ωs only directly contributes to V j (x), the output functions of the last hidden layer, which

22



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129
Fig. 8. Comparison between locELM, PINN and DGM (1D Helmholtz equation): profiles of (a) the solutions and (b) their absolute errors,
obtained using PINN [9] and DGM [8] with the Adam and L-BFGS optimizers, and using the current locELM method.

are associated with the training parameters on the same sub-domain. Those input collocation points that reside on
the sub-domain boundaries also contribute to the training parameters of the adjacent sub-domains through the Ck

continuity conditions. In contrast, with a single global domain, all the degrees of freedom in the entire domain are
coupled with one another, and every input collocation point in the domain directly contributes to every training
parameter in the entire neural network. This leads to a dense coefficient matrix in the linear least squares problem,
and a larger time for the computation of the coefficient matrix data and the overall solution of the least squares
problem. The above results indicate that, when compared with global ELM, the use of domain decomposition and
local neural networks can reduce the coupling among the degrees of freedom in different sub-domains without
seriously compromising the accuracy, and this can significantly reduce the computation time for the least squares
problem, and hence the network training time.

We next compare the current locELM method with the physics-informed neural network (PINN) [9] method and
the deep Galerkin method (DGM) [8], two often-used PDE solvers based on deep neural networks. Fig. 8 compares
profiles of the solutions (plot (a)) and their absolute errors (plot (b)) obtained using PINN and DGM with the
Adam and the L-BFGS optimizers, and using the current locELM method. In the PINN and DGM simulations, the
neural network contains 6 hidden layers with 50 nodes and the tanh activation function in each layer, and the output
layer is linear. With PINN, the input data consist of 300 uniform collocation points in the domain. With DGM, we
partition the domain into 8 uniform sub-intervals, and employ 37 Gauss–Lobatto–Legendre quadrature points on
each sub-interval when computing the residual norm integral in the loss function. These quadrature points constitute
the input data to the neural network with DGM. In the PINN/Adam and DGM/Adam simulations, the network has
been trained on the input data for 45,000 epochs, with the learning rate coefficient gradually decreasing from 0.001
at the beginning to 2.5×10−5 at the end. In the PINN/L-BFGS and DGM/L-BFGS simulations, the network has been
trained for 22,500 L-BFGS iterations. In the locELM simulation, four uniform sub-domains (Ne = 4) have been
used, with M = 100 training parameters per sub-domain and Q = 100 uniform collocation points per sub-domain.
The four local neural networks each consists of one hidden layer with M = 100 nodes and the tanh activation
function, and we have employed Rm = 3.0 for generating the random hidden-layer coefficients. Fig. 8 shows that
PINN, DGM and the locELM method have all captured the solution quite accurately. The error levels obtained with
PINN and DGM are comparable. But the current method is considerably more accurate than PINN and DGM, by
a factor of nearly five orders of magnitude in terms of the errors.

Table 1 is a further comparison of PINN, DGM and locELM in terms of the maximum/rms errors in the domain,
and the computational cost (the network training time). The problem setting corresponds to that of Fig. 8. The
current method is not only much more accurate than PINN and DGM, but also considerably cheaper in terms of the
computational cost. The training time with the current locELM method is on the order of a second. In contrast, it
takes around 500 seconds to train DGM and PINN with Adam and around 1000 seconds to train them with L-BFGS.
We observe a clear superiority of the locELM method to the PINN/DGM solvers in terms of both accuracy and
the computational cost. These observations will be confirmed and reinforced with other problems in subsequent

sections.

23



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

t
s
s
e
A
u
I
p
a
s

w
t

Fig. 9. Comparison between locELM and FEM (1D Helmholtz equation): Profiles of (a) the solutions and (b) their absolute errors, computed
using the finite element method (FEM) and the current locELM method. (c) The maximum and rms errors in the domain versus the number
of elements from the FEM simulations, showing its second-order convergence rate.

Table 1
1D Helmholtz equation: Comparison between the current locELM method and PINN/DGM, in
terms of the maximum/rms errors in the domain, the number of epochs or iterations in the training
of neural networks, and the training time. The problem settings correspond to those of Figs. 8.

Method Maximum error rms error Epochs/iterations Training time
(seconds)

PINN (Adam) 1.06e − 3 1.57e − 4 45,000 507.7
PINN (L-BFGS) 1.98e − 4 3.15e − 5 22,500 1035.8
DGM (Adam) 1.57e − 3 2.98e − 4 45,000 457.0
DGM (L-BFGS) 3.83e − 4 5.70e − 5 22,500 1127.7
locELM 1.56e − 9 2.25e − 10 0 1.1

Table 2
1D Helmholtz equation: Comparison between the current locELM method and the finite element method (FEM),
in terms of the maximum/rms errors in the domain and the training or computation time. The problem settings
correspond to those of Fig. 9.

Method Elements Sub-domains Q M Maximum error rms error Wall time
(seconds)

locELM – 4 100 75 4.02e − 8 5.71e − 9 0.67
– 4 100 100 1.56e − 9 2.25e − 10 1.1
– 4 100 125 1.42e − 10 2.55e − 11 1.3

FEM 25,000 – – – 6.82e − 8 1.74e − 8 0.32
50,000 – – – 1.67e − 8 4.35e − 9 0.62
100,000 – – – 1.33e − 8 3.30e − 9 1.24

Finally we compare the current locELM method with the classical finite element method (FEM). We observe that
he computational performance of locELM is comparable to that of FEM, and oftentimes the locELM performance
urpasses that of FEM, in terms of the accuracy and computational cost. Figs. 9(a) and (b) are comparisons of the
olution profiles and the error profiles obtained using locELM and FEM. Fig. 9(c) shows the maximum and rms
rrors as a function of the number of elements obtained using FEM, demonstrating its second-order convergence rate.
s mentioned before, the finite element method is implemented in Python using the FEniCS library. In these tests
niform linear elements have been used. For the plots (a) and (b), 100,000 elements are used in the FEM simulation.
n the locELM simulation, we have employed Ne = 4 uniform sub-domains, Q = 100 uniform collocation points
er sub-domain, M = 100 training parameters per sub-domain, a single hidden layer in the local neural networks,
nd Rm = 3.0 when generating the random coefficients. It is evident that both FEM and locELM produce accurate
olutions.

Table 2 provides a more comprehensive comparison between locELM and FEM for the 1D Helmholtz equation,
ith regard to the accuracy and computational cost. Here we list the maximum and rms errors in the domain, and
he training or computation time, obtained using locELM and FEM corresponding to several numerical resolutions.

24



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

t
n

3

w
t
i

g

T
h

w

S
i

t
n
n
c
t

m
(

The data show that the current locELM method is very competitive compared with FEM. For example, the locELM
case with M = 75 training parameters/sub-domain is similar in performance to the FEM case with 50,000 elements,
with comparable values for the numerical errors and the wall time. The locELM cases with M = 100 and M = 125
raining parameters/sub-domain have wall time values comparable to the FEM case with 100,000 elements, but the
umerical errors of these locELM cases are considerably smaller than those of the FEM case.

.2. Advection equation

We next test the locELM method using the advection equation in one spatial dimension plus time, and we
ill demonstrate the capability of the method, when combined with the block time-marching strategy, for long-

ime simulations. Consider the spatial–temporal domain, Ω = {(x, t) | x ∈ [a1, b1], t ∈ [0, t f ]}, and the
nitial/boundary-value problem with the advection equation on this domain,

∂u
∂t
− c

∂u
∂x
= 0, (31a)

u(a1, t) = u(b1, t), u(x, 0) = h(x) (31b)

where u(x, t) is the field function to be solved for, the constant c denotes the wave speed, and we impose the
periodic boundary condition on the spatial domain boundaries x = a1 and b1. h(x) denotes the initial wave profile

iven by

h(x) = 2 sech
[

3
δ0

(x − x0)

]
, (32)

where x0 is the peak location of the wave and δ0 is a constant that controls the width of the wave profile. The above
equations and the domain specification contain several constant parameters, and we employ the following values in
this problem,

a1 = 0, b1 = 5, c = −2, δ0 = 1, x0 = 2.5, t f = 2, or 10, or 100. (33)

he temporal domain size t f is varied in different tests and will be specified in the discussions below. This problem
as the following solution

u(x, t) = 2 sech
[

3
δ0

(
−

L1

2
+ ξ

)]
, ξ = mod

(
x − x0 + ct +

L1

2
, L1

)
, L1 = b1 − a1, (34)

here mod denotes the modulo operation.
We simulate this problem using the locELM method together with the block time-marching strategy from

ection 2.2.2, by restricting the method to one spatial dimension. We divide the overall spatial–temporal domain
nto Nb uniform blocks along the temporal direction, with a time block size Γ =

t f
Nb

. The spatial–temporal domain
of each time block is then partitioned into Nx uniform sub-domains along the x direction and Nt uniform sub-
domains in time, leading to Ne = Nx Nt uniform sub-domains in each time block. C0 continuity is imposed on
the sub-domain boundaries in both the x and t directions. Within each sub-domain, let Qx denote the number of
uniform collocation points along the x direction and Qt denote the number of uniform collocation points in time,
leading to Q = Qx Qt uniform collocation points in each sub-domain.

The local neural network corresponding to each sub-domain contains an input layer of two nodes (representing
x and t), a single hidden layer with M nodes and the tanh activation function, and an output layer (representing
he solution u) of a single node. The output layer is linear and contains no bias. An additional affine mapping
ormalizing the input x and t data to the interval [−1, 1] × [−1, 1] has been incorporated into the local neural
etworks right behind the input layer for each sub-domain. The number of training parameters per sub-domain
orresponds to M , the width of the hidden layer. The weight and bias coefficients in the hidden layer are pre-set
o uniform random values generated on [−Rm, Rm], as in the previous section.

The locELM simulation parameters include the number of sub-domains (Nx , Nt , Ne), the number of collocation
points per sub-domain (Qx , Qt , Q), the number of training parameters per sub-domain (M), and the maximum

agnitude of the random coefficients (Rm). The degrees of freedom within a sub-domain are characterized by

Q, M). The degrees of freedom in each time block are characterized by (Ne Q, Ne M). We use a fixed seed value

25



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

d

n
p
fi

1
n

s
w
u
i
r

t
h
t
f
W
n
d
b
a
s

o

Fig. 10. Advection equation: Distributions of (a) the locELM solution and (b) its absolute error in the spatial–temporal plane. The temporal
omain size is t f = 10, and 10 time blocks are used in the simulation.

Fig. 11. Effect of the degrees of freedom (advection equation): the maximum and rms errors in the overall domain as a function of (a) the
umber of sub-domains, (b) the number of collocation points in each direction per sub-domain, and (c) the number of training parameters
er sub-domain. Temporal domain size is t f = 10, and 10 time blocks have been used. In (a), the degrees of freedom per sub-domain are
xed. In (b) and (c), Ne = 8 sub-domains per time block are used.

for the Tensorflow random number generators in all the tests with locELM of this sub-section, so that all the
umerical tests here are repeatable.

Fig. 10 illustrates the solution from the locELM simulation. Plotted here are the distributions of the locELM
olution and its absolute error in the spatial–temporal plane. In this test, the temporal domain size is t f = 10, and
e employ 10 uniform time blocks (Nb = 10) in this domain. Within each time block, we have employed Ne = 8
niform sub-domains (with Nx = 4 and Nt = 2), and Q = 20 × 20 uniform collocation points (Qx = Qt = 20)
n each sub-domain. We employ M = 300 training parameters per sub-domain, and Rm = 1.0 when generating the
andom weight/bias coefficients. It is evident that the current method has captured the wave solution accurately.

The effect of the degrees of freedom on the simulation accuracy is illustrated by Fig. 11. In this group of tests, the
emporal domain size is fixed at t f = 10. We have employed Nb = 10 uniform time blocks within the domain, one
idden layer in each local neural network, and Rm = 1.0 when generating the random weight/bias coefficients for
he hidden layers. Fig. 11(a) illustrates the effect of the number of sub-domains per time block, when the degrees of
reedom per sub-domain are fixed. Here the number of sub-domains within each time block is varied systematically.

e employ a fixed set of Q = 20 × 20 uniform collocation points per sub-domain (Qx = Qt = 20), and fix the
umber of training parameters per sub-domain at M = 300. This plot shows the maximum and rms errors in the
omain as a function of the number of sub-domains per time block. Here the case with Ne = 2 sub-domains/time-
lock corresponds to (Nx , Nt ) = (2, 1). The case with Ne = 4 sub-domains corresponds to (Nx , Nt ) = (2, 2),
nd the case with Ne = 8 sub-domains corresponds to (Nx , Nt ) = (4, 2). It can be observed that, with increasing
ub-domains/time-block, the rate of reduction in the errors, while not very regular, is approximately exponential.

Fig. 11(b) shows the maximum and rms errors in the entire spatial–temporal domain as a function of the number

f collocation points in each direction (with Qx = Qt maintained) in each sub-domain. Fig. 11(c) shows the

26



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

p

n

c
h
t

Fig. 12. Effect of the random coefficients (advection equation): the maximum and rms errors in the domain as a function of Rm , the
maximum magnitude of the random coefficients in hidden layer of local neural networks.

Fig. 13. Long-time simulation of the advection equation: distributions of (a) the locELM solution and (b) its absolute error in the
spatial–temporal plane for a long-time simulation. In these tests 100 time blocks in the domain and 8 sub-domains per time block are
used.

maximum and rms errors in the entire domain as a function of the number of training parameters per sub-domain.
In these tests, we have employed 8 sub-domains (Nx = 4, Nt = 2) per time block. For those tests of Fig. 11(b), the
number of training parameters/sub-domain is fixed at M = 300. For the tests of Fig. 11(c), the number of collocation

oints/sub-domains is fixed at Q = 20 × 20 (Qx = Qt = 20). With the increase of the collocation points in each
direction, or the increase of the training parameters per sub-domain, we can observe an approximately exponential
decrease in the maximum and rms errors. When the number of collocation points (or training parameters) increases
above a certain point, the errors start to stagnate, apparently because of the fixed number of training parameters (or
the fixed number of collocation points) in these tests. The sense of convergence exhibited by the current locELM
method is unmistakable.

The effect of the random coefficients in the hidden layers of the local neural networks on the simulation accuracy
is illustrated in Fig. 12. This plot shows the maximum and rms errors in the domain as a function of Rm , the
maximum magnitude of the random weight/bias coefficients. In this set of experiments, the temporal domain size
is t f = 10, and Nb = 10 time blocks are used in the domain. We have employed 8 uniform sub-domains per
time block (Nx = 4, Nt = 2), Q = 20 × 20 uniform collocation points per sub-domain (Qx = Qt = 20), and
M = 300 training parameters per sub-domain. The weight/bias coefficients in the hidden layers of the local neural
etworks are set to uniform random values generated on [−Rm, Rm], and Rm is varied systematically in these tests.

Very large or very small values of Rm have an adverse effect on the simulation accuracy. Better accuracy generally
corresponds to a range of moderate Rm values.

Thanks to its accuracy and favorable computational cost, it is feasible to perform long-time simulations of time-
dependent PDEs using the current locELM method. Figs. 13 and 14 demonstrate a long-time simulation of the
advection equation with the current method. In this simulation, the temporal domain size is set to t f = 100, which
amounts to approximately 40 periods of the wave propagation time. In the simulation we have employed 100 uniform
time blocks in the domain, 8 uniform sub-domains per time block (with Nx = 4 and Nt = 2), 20 × 20 uniform
ollocation points per sub-domain (i.e. Qx = Qt = 20), 300 training parameters per sub-domain (M = 300), a single
idden layer in each local neural network, and Rm = 1.0 when generating the random weight/bias coefficients for

he hidden layers of the local neural networks. The total network training time for this locELM computation is about

27



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

s
s
c

8
p
(
w
w
t
t
A
i
e
c

e
s
d
f
w
I

Fig. 14. Long-time simulation of the advection equation: Time histories of the locELM solution (a) and its absolute error against the exact
olution (b) at the mid-point (x = 2.5) of the spatial domain. Profiles of the locELM solution (c) and its absolute error against the exact
olution (d) at the last time instant t = 100. (e) Time histories of the maximum and rms errors in each time block. The problem settings
orrespond to those of Fig. 13.

92 seconds. Fig. 13 shows the distributions of the locELM solution and its absolute error in the spatial–temporal
lane. Figs. 14(a) and (b) are the time histories of the locELM solution and its absolute error at the mid-point
x = 2.5) of the spatial domain. The time history of the exact solution at this point is also shown in Fig. 14(a),
hich can be observed to overlap with that of the locELM solution. Figs. 14(c) and (d) show the locELM-computed
ave profile and its absolute-error profile at the last time instant t = 100. We have also computed and monitored

he maximum and rms errors of the locELM solution within each time block. Fig. 14(e) shows these errors versus
he time block index, which represents essentially the time histories of these block-wise maximum and rms errors.
ll these results show that the current method has captured the solution to the advection equation quite accurately

n the long-time simulation. Accurate simulation of the advection equation in long time integration is challenging,
ven for classical numerical methods. The results presented here demonstrate the capability and the promise of the
urrent method in tackling long-time dynamical simulations of these challenging problems.

In Fig. 15 we compare the solutions and their errors obtained using a single sub-domain per time block, which is
quivalent to that of a global extreme learning machine, and using two sub-domains per time block in the locELM
imulation. Here the temporal domain size is t f = 10, and 10 uniform time blocks have been used in the overall
omain. This figure is basically a comparison between the global ELM and locELM results. The total degrees of
reedom in the overall domain are essentially the same for these two cases. In the case of 1 sub-domain/time-block,
e have employed 1600 training parameters per sub-domain and 50× 50 uniform collocation points per sub-domain.

n the case of 2 sub-domains/time-block we have employed 800 training parameters per sub-domain and 35 × 35
28



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

a
a
c

u
t
v
s
l
c
o
q

c
t
a
s
s
e
u
l
a
F
d
a

Fig. 15. Comparison between locELM and global ELM solutions (advection equation): distributions of the solutions (a,c) and their absolute
errors (b,d) computed using the locELM method with 1 sub-domain per time block (a,b), which is equivalent to a global ELM, and 2
sub-domains per time block (c,d). Both cases have essentially the same total degrees of freedom in the domain.

Fig. 16. Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (advection equation): (a) the maximum
nd rms errors in the overall domain, and (b) the training time, as a function of the number of sub-domains per time-block. 10 time blocks
re used in the domain. For all cases, the total number of training parameters per time block is fixed at 1600, and the total number of
ollocation points per time block is approximately 2500.

niform collocation points per sub-domain. So both cases have the same total number of training parameters per
ime block, and also comparable total number of collocation points per time block (2500 for 1 sub-domain/block
ersus 2450 for 2 sub-domains/block). The local neural networks contain a single hidden layer. For the case of 1
ub-domain/block we have employed Rm = 3.0 when generating the random coefficients for the hidden layer of the
ocal neural network, and for the case of 2 sub-domains/block we have employed Rm = 2.0 when generating random
oefficients for the hidden layers of the local neural networks. These values are approximately in the optimal range
f Rm values for these cases. It is evident that both the locELM and the global ELM capture the wave solution
uite accurately, with the locELM solution on two sub-domains/time-block better.

Fig. 16 provides further comparisons between the locELM and global ELM results. The problem settings here
orrespond to those of Fig. 15. We fix the total degrees of freedom in each time block (temporal dimension
f = 10, 10 time blocks, 1600 training parameters/time-block, approximately 2500 collocation points/time-block),
nd vary the number of sub-domains per time block. Fig. 16(a) shows the maximum and rms errors in the overall
patial–temporal domain as a function of the number of sub-domains per time block. The cases of one and two
ub-domains/time-block correspond to those of Fig. 15. For the case with 4 sub-domains per time-block, we have
mployed the configuration of Nx = 4 and Nt = 1, M = 400 training parameters per sub-domain, Q = 25 × 25
niform collocation points per sub-domain, and Rm = 2.0 when generating the random coefficients in the hidden
ayers of the local neural networks. The error levels with one sub-domain and multiple sub-domains per time block
re observed to be comparable, with the results of 2 sub-domains per time block more accurate than the others.
ig. 16(b) compares the network training time corresponding to different sub-domains. The use of multiple sub-
omains is observed to significantly reduce the training time of the neural network, from around 105 seconds with

single sub-domain per time block to around 40 seconds with 4 sub-domains per time block. The results here

29



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

(
r

c
u
t
E

D
a
m

b
n
t
i
b

Fig. 17. Comparison between locELM and DGM (advection equation): distributions of the solutions (left column) and their absolute errors
right column), computed using the deep Galerkin method (DGM) [8] with the Adam optimizer (top row) and the L-BFGS optimizer (middle
ow), and computed using the current locELM method (bottom row).

onfirm what has been observed in the previous section. With the same total degrees of freedom in the domain, the
se of multiple sub-domains and local neural networks with the current locELM method can significantly reduce
he training/computation time, while producing results with comparable accuracy when compared with the global
LM method.

Finally we compare the current locELM method with the deep Galerkin method (DGM) [8], another often-used
NN-based PDE solver, for solving the advection equation. Fig. 17 shows distributions of the solutions and their

bsolute errors obtained using DGM with the Adam and the L-BFGS optimizers and using the current locELM
ethod. The temporal domain size is t f = 2.0 in these tests. With DGM, four hidden layers with a width of 40

nodes and the tanh activation function in each layer have been employed in the neural networks. When computing
the residual norms in the DGM loss function, we have partitioned the domain into 8 sub-regions (4 in x and 2 in
time) and used 30 × 30 Gaussian quadrature points in each sub-region for calculating the integrals. The periodic

oundary condition is enforced exactly using the method from [53] for DGM. With the Adam optimizer, the neural
etwork has been trained for 60,000 epochs, with the learning rate decreasing gradually from 0.001 at the beginning
o 2.5 × 10−5 at the end of training. With the L-BFGS optimizer, the neural network has been trained for 12,000
terations. In the locELM simulation, a single time block has been used in the spatial–temporal domain, i.e. without
lock time marching. We employ 16 sub-domains (with 4 sub-domains in x and time) per time block, 20 × 20

uniform collocation points in each sub-domain, 250 training parameters per sub-domain, a single hidden layer in
each local neural network, and Rm = 2.0 for generating the random weight/bias coefficients for the hidden layer
of the local neural networks. One can observe that the current method produces considerably more accurate result
than DGM for the advection equation.

Table 3 provides further comparisons between locELM and DGM. Here we list the maximum and rms errors in
the overall spatial–temporal domain, the number of epochs or iterations in the network training, and the training time

obtained using DGM (Adam/L-BFGS optimizers) and using locELM without block time marching, and additionally

30



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

W
t
(

t
d
e
a

Table 3
Advection equation: comparison between locELM and DGM. The problem settings correspond to those of Fig. 17.
The two DGM cases and the locELM case with no block time-marching correspond to those of Fig. 17. In the
locELM case with block time-marching, two time blocks in the domain and 8 sub-domains per time block are
used. The total degrees of freedom for this case are identical to those of the locELM case with no block time
marching.

Method Maximum error rms error Epochs/iterations Training time
(seconds)

DGM (Adam) 8.37e − 3 1.64e − 3 60,000 2527.8
DGM (L-BFGS) 2.59e − 3 5.37e − 4 12,000 1675.9
locELM (no block time-marching) 2.74e − 4 6.05e − 5 0 43.4
locELM (with block time-marching) 1.83e − 4 4.34e − 5 0 19.3

using locELM together with block time marching. The problem settings here correspond to those of Fig. 17, and the
DGM cases and the locELM case without block time marching correspond to those in Fig. 17. In the locELM case
with block time marching, we have employed 2 uniform time blocks in the spatial–temporal domain, 8 sub-domains
(Nx = 4, Nt = 2) per time block, 20 × 20 uniform collocation points per sub-domain, 250 training parameters
per sub-domain, a single hidden layer in the local neural networks, and Rm = 2.0 when generating the random
weight/bias coefficients. So the total degrees of freedom in this case are identical to those of the locELM case
without block time marching. The data in the table shows that the current locELM method (with and without block
time marching) is much more accurate than DGM (by an order of magnitude), and is dramatically faster to train
than DGM (by nearly two orders of magnitude). In addition, we observe that the locELM method with block time
marching and a moderate time block size can significantly reduce the training time, and simultaneously achieve the
same or better accuracy, when compared with that without block time marching.

3.3. Diffusion equation

In this subsection we the test the locELM method using the diffusion equation in one and two spatial dimensions
(plus time). Let us first study the 1D diffusion equation. We consider the spatial–temporal domain, Ω = {(x, t) | x ∈
[a1, b1], t ∈ [0, t f ]}, and the following initial/boundary-value problem,

∂u
∂t
− ν

∂2u
∂x2 = f (x, t), (35a)

u(a1, t) = g1(t), u(b1, t) = g2(t), (35b)

u(x, 0) = h(x), (35c)

where u(x, t) is the field function to be solved for, f (x, t) is a prescribed source term, the constant ν is the diffusion
coefficient, g1(t) and g2(t) are the boundary conditions, and h(x) is the initial field distribution. The values for the
constant parameters involved in the above equations and in the domain specification are,

a1 = 0, b1 = 5, ν = 0.01, t f = 10 or 1.

We choose the source term f such that the following function satisfies Eq. (35a),

u(x, t) =
[

2 cos
(
πx +

π

5

)
+

3
2

cos
(

2πx −
3π

5

)][
2 cos

(
π t +

π

5

)
+

3
2

cos
(

2π t −
3π

5

)]
. (36)

e choose the boundary conditions g1(t) and g2(t) and the initial condition h(x) according to Eq. (36), by restricting
his expression to the corresponding boundaries of the spatial–temporal domain. Therefore, the function given by
36) solves the initial/boundary value problem represented by Eqs. (35a)–(35c).

We employ the locELM method together with block time marching from Section 2.2.2 to solve this ini-
ial/boundary value problem, by restricting the method to one spatial dimension. We partition the spatial–temporal
omain Ω in time into Nb uniform blocks, and compute these time blocks individually and successively. Within
ach time block, we further partition its spatial–temporal domain into Nx uniform sub-domains along the x direction
nd N uniform sub-domains in time, leading to N = N N uniform sub-domains per time block. We impose
t e x t

31



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

C
b
d
u

l
t
a
o
r
w
n
i
[
i

t
p
p
t

t

i
t
o
t

t
d
f
o
t

p

Fig. 18. 1D diffusion equation: distributions of the solution (a) and its absolute error (b) computed using the current locELM method. 10
time blocks and 5 sub-domains per time block are employed.

1 continuity conditions on the sub-domain boundaries in the x direction and C0 continuity on the sub-domain
oundaries in the temporal direction. Within each sub-domain we use Qx uniform collocation points along the x
irection and Qt uniform collocation points in time as the input training data, leading to a total of Q = Qx Qt

niform collocation points per sub-domain.
We use one local neural network to approximate the solution on each sub-domain within the time block, thus

eading to a total of Ne local neural networks in the locELM simulation. In the majority of tests of this subsection
he local neural networks each contains a single hidden layer with M nodes and the tanh activation function. We
lso report results obtained with the local neural networks containing more than one hidden layer. The input layer
f the local neural networks consists of two nodes, representing x and t . The output layer consists of a single node,
epresenting the solution u, and has no bias coefficient and no activation function. As in previous subsections,
e incorporate an additional affine mapping operation right behind the input layer of the local neural network to
ormalize the input x and t data to the interval [−1, 1]× [−1, 1] in each sub-domain. The weight/bias coefficients
n the hidden layer of each of the local neural networks are set to uniform random values generated on the interval
−Rm, Rm]. We use a fixed seed value 22 for the Tensorflow random number generator for all the tests with locELM
n this subsection.

The locELM simulation parameters include the number of time blocks (Nb), the number of sub-domains per
ime block (Ne, Nx , Nt ), the number of training parameters per sub-domain (M), the number of collocation points
er sub-domain (Qx , Qt , Q), and the maximum magnitude of the random coefficients (Rm). In accordance with
revious subsections, we use (Q, M) to characterize the degrees of freedom within a sub-domain, and (Ne Q, Ne M)
o characterize the degrees of freedom within a time block.

Fig. 18 shows distributions of the locELM solution and its absolute error in the spatial–temporal plane. In this
est the temporal domain size is set to t f = 10. We have employed Nb = 10 uniform time blocks in the simulation,
Ne = 5 uniform sub-domains per time block (with Nx = 5 and Nt = 1), Q = 30× 30 uniform collocation points
n each sub-domain (with Qx = Qt = 30), M = 300 training parameters per sub-domain, a single hidden layer in
he local neural networks, and Rm = 1.0 when generating the random weight/bias coefficients for the hidden layers
f the local neural networks. It is evident that the locELM method has captured the solution very accurately, with
he absolute error on the order of 10−9

∼ 10−8.
The effect of the degrees of freedom on the simulation accuracy is illustrated by Fig. 19. In this group of tests, the

emporal domain size is set to t f = 10, and we have employed Nb = 10 uniform time blocks in the spatial–temporal
omain, a single hidden layer in each local neural network, and Rm = 1.0 when generating the random coefficients
or the hidden layers of the local neural networks. The number of sub-domains in each time block, or the number
f collocation points per sub-domain, or the number of training parameters per sub-domain has been varied in the
ests.

Fig. 19(a) illustrates the effect of the number of sub-domains within each time block, while the degrees of freedom
er sub-domain are fixed. Here we fix the number of uniform collocation points per sub-domain at Q = 30 × 30
32



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

p

(

t
m
f
o
b
f

s
p
s
p
t
w

g

Fig. 19. Effect of the degrees of freedom on simulation accuracy (1D diffusion equation): the maximum and rms errors in the domain as a
function of (a) the number of sub-domains in each time block, (b) the number of collocation points in each direction in each sub-domain,
and (c) the number of training parameters in each sub-domain. Temporal domain size is t f = 10 and 10 uniform time blocks are used.

Fig. 20. Results obtained with two hidden layers in local neural networks (1D diffusion equation): (a) error distribution in the spatial–temporal
lane. (b) The maximum/rms errors in the domain versus the number of collocation points in each direction per sub-domain.

Qx = Qt = 30) and the number of training parameters per sub-domain at M = 300, and then vary the number of
uniform sub-domains per time block systematically. This plot shows the maximum and rms errors of the locELM
solution in the overall spatial–temporal domain as a function of the number of sub-domains per time block in the
simulations. With increasing number of sub-domains, the numerical errors are observed to decrease dramatically,
from around 10−1 with one sub-domain/time-block to around 10−8 with 5 sub-domains/time-block.

Fig. 19(b) illustrates the effect of the number of collocation points per sub-domain on the simulation accuracy.
Here we use Ne = 5 uniform sub-domains (with Nx = 5 and Nt = 1) in each time block, fix the number of
raining parameters per sub-domain at M = 300, and vary the number of collocation points per sub-domain while

aintaining Qx = Qt . This plot shows the maximum and rms errors in the overall spatial–temporal domain as a
unction of the number of collocation points in each direction in each sub-domain. The numerical errors can be
bserved to initially decrease exponentially with increasing number of collocation points per direction when it is
elow about 20, and then stagnate at a level around 10−8

∼ 10−7 as the number of collocation points per direction
urther increases.

Fig. 19(c) illustrates the effect of the number of training parameters on the simulation accuracy. Here we use
Ne = 5 sub-domains (with Nx = 5 and Nt = 1) in each time block, fix the number of collocation points per
ub-domain at Q = 30 × 30 (Qx = Qt = 30), and vary the number of training parameters per sub-domain. The
lot shows the maximum/rms errors in the overall domain as a function of the number of training parameters per
ub-domain. One can observe that the errors initially decrease exponentially with increasing number of training
arameters/sub-domain when it is below about 250, and then the error reduction slows down as the number of
raining parameters/sub-domain further increases. These behaviors are consistent with what have been observed
ith other problems in previous subsections.
In Fig. 20 we show results obtained with local neural networks containing more than one hidden layer. In this
roup of simulations, each local neural network contains two hidden layers, with 30 and 300 nodes in these two

33



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

a

a

l

t
p
o
c
s
t
p
l
u
F
(

a
t
a
(
s
a
i
v

a

Fig. 21. Effect of the random coefficients in local neural networks (1D diffusion equation): the maximum and rms errors in the domain as
function of Rm , the maximum magnitude of the random coefficients.

Fig. 22. Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (1D diffusion equation): (a) the maximum
nd rms errors in the domain, and (b) the training time, as a function of the number of sub-domains per time block.

ayers, respectively. The activation function is tanh in both hidden layers. The temporal domain size is t f = 10, and
10 uniform time blocks have been used. We employ Ne = 5 sub-domains per time block (Nx = 5 and Nt = 1),
M = 300 training parameters per sub-domain (width of the last hidden layer), and Rm = 0.5 when generating
he random weight/bias coefficients for the hidden layers of the local neural networks. The number of collocation
oints per sub-domain (Q) is varied systematically while Qx = Qt is maintained. Fig. 20(a) shows the distribution
f the absolute error of the locELM solution in the spatial–temporal plane, obtained with Q = 30 × 30 uniform
ollocation points per sub-domain. This figure can be compared with Fig. 18(b), which corresponds to the same
imulation resolution but is obtained with local neural networks containing a single hidden layer. Fig. 20(b) shows
he maximum and rms errors in the overall domain as a function of the number of collocation points in each direction
er sub-domain. This figure can be compared with Fig. 19(b), which corresponds to a single hidden layer in the
ocal neural networks. It is evident that the solution has been captured accurately by the current locELM method
sing two hidden layers in the local neural networks. The results shown here and those results in Section 3.1 (see
igs. 4 and 5) demonstrate that the current locELM method, using local neural networks with a small number of
more than one) hidden layers, is able to produce accurate simulation results.

Fig. 21 illustrates the effect of the random weight/bias coefficients in the local neural networks on the simulation
ccuracy. It shows the maximum and rms errors of the locELM solution in the overall domain as a function of Rm ,
he maximum magnitude of the random coefficients. In this group of tests, the temporal domain size is t f = 10,
nd we have employed Nb = 10 uniform time blocks in the domain, Ne = 5 uniform sub-domains per time block
Nx = 5, Nt = 1), Q = 30 × 30 uniform collocation points per sub-domain, M = 300 training parameters per
ub-domain, and a single hidden layer in the local neural networks. The random coefficients in the hidden layers
re generated on [−Rm, Rm], and Rm is varied systematically in these tests. We observe a similar behavior to those
n previous subsections. A better accuracy can be attained with a range of moderate Rm values, while very large or
ery small Rm values tend to produce less accurate results.

Fig. 22 depicts a study of the effect of the number of sub-domains in the simulation on the simulation accuracy
nd on the network training time, while the total number of degrees of freedom in the domain is fixed. In this
34



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

t

t

a

p

c
v

c
t
c
c
o
i
c
o
t
s
t

F
A
b
a
u
o
1
d
e
t
L
t
c
l
h
m

s
l
F
a
m
l

a
n
o

group of tests, the temporal domain size is t f = 10, and we have used Nb = 10 time blocks in the overall spatial–
emporal domain. The number of uniform sub-domains per time block is varied systematically between Ne = 1 and
Ne = 5 in the simulations, implemented by fixing Nt = 1 and varying Nx between 1 and 5. We set the number of
raining parameters per sub-domain (M), and the number of uniform collocation points per sub-domain (Q, with
Qx = Qt ), in a way such that the total number of training parameters per time block is fixed at Ne M = 1500
nd the total number of collocation points per time block is approximately fixed at Ne Q ≈ 2500. Specifically,

M and Q in different cases are: M = 1500 and Q = 50 × 50 for 1 sub-domain per time block, M = 750 and
Q = 35 × 35 for 2 uniform sub-domains per time block, M = 500 and Q = 29 × 29 for 3 uniform sub-domains
er time block, M = 375 and Q = 25 × 25 for 4 uniform sub-domains per time block, and M = 300 and

Q = 22 × 22 for 5 uniform sub-domains per time block. We employ Rm = 3.0 when generating the random
oefficients for the case with one sub-domain per time block, which is approximately at the optimal range of Rm

alues for this case. We employ Rm = 1.0 when generating the random coefficients for the rest of the cases with
Ne = 2 ∼ 5 sub-domains per time block. Note that the case with one sub-domain per time block is equivalent to the
onfiguration of a global ELM in the simulation. Fig. 22(a) shows a comparison of the maximum and rms errors in
he overall spatial–temporal domain as a function of the number of sub-domains per time block in the simulations. It
an be observed that the numerical errors with 2 or more sub-domains are comparable to or smaller than the errors
orresponding to one sub-domain in the simulations. Fig. 22(b) shows the neural-network training time as a function
f the number of sub-domains per time block. One can observe that the training time decreases significantly with
ncreasing number of sub-domains. Compared with the case of one sub-domain per time block, the training time
orresponding to 2 and more sub-domains in the simulations has been considerably reduced, e.g. 277 seconds with
ne sub-domain versus 79 seconds with 2 sub-domains. These results confirm and reinforce our observations with
he other problems that, compared with global ELM, the use of domain decomposition and locELM with multiple
ub-domains can significantly reduce the network training time, and hence the computational cost, while attaining
he same or sometimes even better accuracy in the simulation results.

Let us now compare the current locELM method with DGM and PINN for solving the 1D diffusion equation.
ig. 23 compares distributions of the solutions and their absolute errors obtained using DGM and PINN with the
dam and L-BFGS optimizers and using locELM. The temporal domain size is set to t f = 1 in these tests. With
oth DGM and PINN, the neural network consists of 4 hidden layers, with a width of 40 nodes and the tanh
ctivation function in each layer. With DGM, when computing the loss function we have divided the domain into 5
niform sub-regions along the x direction, and computed the residual norm integral by the Gaussian quadrature rule
n 20 × 20 Gauss–Lobatto–Legendre quadrature points in each sub-region. With PINN, we have employed a set of
00 × 20 uniform collocation points (100 uniform points in x and 20 uniform points in t) in the spatial–temporal
omain as the input to the network. For both DGM and PINN, the neural network has been trained for 135,000
pochs with the Adam optimizer, with the learning rate coefficient decreasing gradually from 0.001 at the beginning
o 2.5×10−6 at the end of the training. With the L-BFGS optimizer, the neural network has been trained for 36,000
-BFGS iterations for both DGM and PINN. In the simulation with locELM, we employ Nb = 1 time block in

he spatial–temporal domain, Ne = 5 sub-domains (with Nx = 5, Nt = 1) per time block, Q = 30 × 30 uniform
ollocation points per sub-domain, M = 300 training parameters per sub-domain, 1 hidden layer in each of the
ocal neural networks, and Rm = 1.0 when generating the random hidden-layer coefficients. Both DGM and PINN
ave captured the solution reasonably well. But their error levels are considerably higher, by about five orders of
agnitude, than that of the locELM method (10−3 versus 10−8).
A comparison of the solution and the error profiles of locELM, DGM and PINN is provided in Fig. 24. Fig. 24(a)

hows the solution profiles at t = 1.0 obtained using DGM and PINN (Adam/L-BFGS optimizers) and using the
ocELM method, together with that of the exact solution. The settings and the parameters correspond to those of
ig. 23. The computed profiles all agree with the exact solution quite well. Fig. 24(b) compares profiles of the
bsolute error at t = 1.0 obtained with DGM, PINN and the current method. The numerical error of the current
ethod, which is at a level around 10−9, is significantly smaller than those from DGM and PINN, which are at a

evel around 10−4.
In Table 4 we provide some further comparisons between locELM, DGM, and PINN in terms of the accuracy

nd the computational cost. Here we list the maximum and rms errors in the overall spatial–temporal domain, the
umber of epochs or iterations in network training, and the training time of DGM/PINN with the Adam and L-BFGS

ptimizers and of the locELM method. The problem settings and the simulation parameters correspond to those of

35



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

a
a

o
t

Fig. 23. Comparison between locELM, DGM and PINN (1D diffusion equation): Distributions of the solutions (left column) and their
bsolute errors (right column) computed using DGM with Adam (a,b) and L-BFGS (c,d), using PINN with Adam (e,f) and L-BFGS (g,h),
nd using the current locELM method (i,j).

Fig. 24. Comparison between locELM, DGM and PINN (1D diffusion equation): Profiles of the solutions (a) and their absolute errors (b) at
t = 1.0 obtained using DGM and PINN (Adam/L-BFGS optimizers) and using locELM. The problem settings and the simulation parameters
correspond to those of Fig. 23.

Fig. 23. The error levels and the computational cost of DGM and PINN are comparable. The data demonstrate a
clear superiority of locELM to DGM and PINN, with the locELM errors five orders of magnitude smaller and the
training time over two orders of magnitude less.

Let us next compare the current locELM method with the classical finite element method for solving the 1D
diffusion equation. In Figs. 25(a) and (b) we compare profiles of the solutions and their absolute errors at t = 1.0,

btained using the current locELM method and the finite element method. The domain and problem settings in these
ests correspond to those of Figs. 23(e,f), with a temporal domain size t f = 1. The simulation parameters for the
locELM computation also correspond to those of Figs. 23(e,f). For the FEM simulation, the diffusion equation (35a)

36



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

v

i
i
s
r
t
u

fi
e
s
n
s
b
t
o
b
t
c
t
F
t
1

m
v

Table 4
1D diffusion equation: comparison between DGM/PINN (Adam/L-BFGS optimizers) and locELM.
The settings and parameters correspond to those of Fig. 23.

Method Maximum error rms error Epochs/iterations Training time
(seconds)

DGM (Adam) 2.59e − 2 3.84e − 3 135,000 4194.5
DGM (L-BFGS) 5.82e − 3 8.21e − 4 36,000 3201.4
PINN (Adam) 1.81e − 2 2.62e − 3 135,000 3739.1
PINN (L-BFGS) 7.51e − 3 9.27e − 4 36,000 3174.4
locELM 5.82e − 8 6.25e − 9 0 28.4

Fig. 25. Comparison between locELM and FEM (1D diffusion equation): Profiles of (a) the solutions and (b) their absolute errors at t = 1.0,
computed using the current locELM method and using the finite element method (FEM). (c) The FEM maximum and rms errors at t = 0.5
ersus ∆t , showing the temporal second-order convergence rate of FEM.

s discretized in time by the second-order backward differentiation formula (BDF2), and the diffusion term is treated
mplicitly. We have employed a time step size ∆t = 0.00025 and 10,000 uniform linear elements to discretize the
patial domain. It is evident from these data that both the FEM and the current method have produced accurate
esults. Fig. 25(c) shows the maximum and rms errors at t = 0.5 versus the time step size ∆t with FEM, showing
he second-order temporal convergence rate. In these tests a fixed mesh of 10,000 uniform linear elements has been
sed, which accounts for the observed error saturation in Fig. 25(c) when ∆t becomes sufficiently small.

Table 5 provides a comparison of the accuracy and the computational cost of the locELM method and the
nite element method. In these tests the temporal domain size is set to t f = 1. In the locELM simulations we
mploy a single time block in the spatial–temporal domain, 5 uniform sub-domains in the time block, and several
ets of collocation points/sub-domain and training parameters/sub-domain, a single hidden layer in the local neural
etworks, and Rm = 1.0 when generating the random coefficients. In the FEM simulations, we employ several
ets of elements and ∆t values. The maximum error and the rms error in the overall spatial–temporal domain have
een computed, and the wall time for the computation or network training have been recorded. In Table 5 we list
hese errors and the wall time numbers corresponding to the different simulation cases with locELM and FEM. We
bserve that the current method performs markedly better than FEM. The current method achieves a considerably
etter accuracy with the same computational cost as FEM, and it incurs a lower computational cost while achieving
he same accuracy as FEM. For example, the locELM case with (Q, M) = (20× 20, 250) has a computational cost
omparable to the FEM cases with 2000 elements and ∆t = 0.001 and with 5000 elements and ∆t = 0.002. But
he numerical errors of locELM are considerably smaller, by around three orders of magnitude, than those of the
EM cases. The locELM case with (Q, M) = (30× 30, 300) has a lower computational cost, by a factor of about

hree, and a considerably better accuracy, by a factor of nearly three orders of magnitude, than the FEM case with
0,000 elements and ∆t = 0.0005.

All the above results are for the 1D diffusion equation. In Fig. 26 we show some results of the current locELM
ethod for the two-dimensional (2D) diffusion equation plus time. This test concerns the following initial/boundary

alue problem, on the spatial–temporal domain Ω = {(x, y, t) | x ∈ [a1, b1], y ∈ [a2, b2], t ∈ [0, t f ]},

∂u
− ν

(
∂2u

2 +
∂2u

2

)
= f (x, y, t), (37a)
∂t ∂x ∂y
37



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

w
b
t
f

T
m
g

Table 5
1D diffusion equation: comparison between FEM and the current locELM method, in terms of the maximum/rms errors in the overall domain
and the training/computation time. The temporal domain size is t f = 1. Rm = 1.0 in locELM simulations.

Method ∆t Elements Sub-domains Q M Maximum error rms error Wall time
(seconds)

locELM – – 5 20 × 20 200 2.48e − 6 2.23e − 7 7.9
– – 5 20 × 20 250 8.97e − 8 2.25e − 8 11.3
– – 5 30 × 30 300 5.82e − 8 6.25e − 9 28.4

FEM 0.002 2000 – – – 2.42e − 4 4.40e − 5 5.9
0.001 2000 – – – 9.82e − 5 2.01e − 5 12.0
0.0005 2000 – – – 1.54e − 4 2.61e − 5 24.0
0.00025 2000 – – – 1.72e − 4 2.85e − 5 48.3

0.002 5000 – – – 3.63e − 4 5.98e − 5 12.3
0.001 5000 – – – 6.99e − 5 1.22e − 5 24.6
0.0005 5000 – – – 1.69e − 5 3.43e − 6 48.8
0.00025 5000 – – – 2.26e − 5 3.91e − 6 97.9

0.002 10000 – – – 3.85e − 4 6.32e − 5 22.2
0.001 10000 – – – 9.11e − 5 1.49e − 5 43.9
0.0005 10000 – – – 1.75e − 5 3.05e − 6 86.9
0.00025 10000 – – – 4.24e − 6 8.58e − 7 179.0

Fig. 26. 2D diffusion equation: distributions of (a) the solution and (b) its absolute error computed using the current locELM method. 40
uniform time blocks are used in the simulation.

u(a1, y, t) = g1(y, t), u(b1, y, t) = g2(y, t), u(x, a2, t) = g3(x, t), u(x, b2, t) = g4(x, t), (37b)

u(x, y, 0) = h(x, y), (37c)

here u(x, y, t) is the field function to be solved for, f (x, y, t) is a prescribed source term, gi (1 ⩽ i ⩽ 4) are the
oundary distributions, and h is the initial distribution. The constant parameters are a1 = a2 = 0, b1 = b2 = 0.5,
f = 10, and ν = 0.01. We have chosen f (x, y, t), g1(y, t), g2(y, t), g3(x, t), g4(x, t) and h(x, y) such that the
ollowing function satisfies Eqs. (37a)–(37c),

u(x, y, t) =
[

3
2

cos
(

πx +
2π

5

)
+ 2 cos

(
2πx −

π

5

)] [3
2

cos
(

πy +
2π

5

)
+ 2 cos

(
2πy −

π

5

)]
[

3
2

cos
(

π t +
2π

5

)
+ 2 cos

(
2π t −

π

5

)]
.

(38)

he problem consisting of (37a)–(37c) has been solved using the current locELM method together block time
arching. Fig. 26 shows the distributions of the locELM solution and its absolute error against the exact solution

iven by (38). In the simulation, we have used 40 time blocks in the spatial–temporal domain, 4 sub-domains per
38



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

u
f
a
T
s
d
c

3

3

H
t

E

t
C

s
r

time block (with 2 uniform sub-domains along the x and y directions and one sub-domain in time), 15 × 15 × 15
niform collocation points per sub-domain, a single hidden layer with a width of 400 nodes and the tanh activation
unction in the local neural networks for each sub-domain, and the weight/bias coefficients for the hidden layer
re set to uniform random values generated on the interval [−0.2, 0.2]. A seed value 12 has been used for the
ensorflow random number generator for this test. It can be observed that the current method has captured the
olution accurately, with the maximum absolute error and the rms absolute error in the overall spatial–temporal
omain being 1.04e − 6 and 7.19e − 8, respectively. The neural-network training time is 564 seconds for this
omputation.

.4. Nonlinear examples

.4.1. Nonlinear Helmholtz equation
As the first nonlinear example, we test the locELM method using the boundary value problem with the nonlinear

elmholtz equation in one dimension. Consider the domain [a, b] and the following boundary value problem on
his domain,

d2u
dx2 − λu + β sin(u) = f (x), (39a)

u(a) = h1, u(b) = h2, (39b)

where u(x) is the function to be solved for, f (x) is a prescribed source term, λ and β are constant parameters, and
h1 and h2 are the boundary values. We assume the following values for the constant parameters involved in these
equations and domain specification,

a = 0, b = 8, λ = 50, β = 10.

We choose the source term f (x) and the boundary values h1 and h2 such that the following function satisfies
qs. (39a)–(39b),

u(x) = sin
(

3πx +
3π

20

)
cos

(
4πx −

2π

5

)
+

3
2
+

x
10

. (40)

We employ the locELM method discussed in Section 2.3.1 for solving this problem, by restricting the method
o one dimension. We partition the domain [a, b] into Ne uniform sub-domains (sub-intervals), and impose the

1 continuity conditions across the sub-domain boundaries. We employ Q uniform collocation points within each
sub-interval.

The local neural network for each sub-domain consists of an input layer with one node (representing x), a single
hidden layer with M nodes and the tanh activation function, and an output layer with one node (representing the
solution u) and no activation function and no bias. An additional affine mapping operation normalizing the input
x data to the interval [−1, 1] is incorporated into the local neural networks right behind the input layer for each
ub-domain. The weight and bias coefficients in the hidden layer of the local neural networks are set to uniform
andom values generated on the interval [−Rm, Rm]. We employ a fixed seed value 12 for the Tensorflow random

number generator for all the tests reported in this sub-section with locELM.
We employ the nonlinear least squared method with perturbations (NLSQ-perturb) and the combined New-

ton/linear least squared method (Newton-LLSQ) from Section 2.3.1 for computing the resultant nonlinear problem.
The initial guess to the solution is set to zero in all the tests of this subsection. In the NLSQ-perturb method (see
Algorithm 1), we have employed δ = 0.2, and ξ2 = 1 as discussed in Remark 2.8, for generating the random
perturbations in the following tests.

The locELM simulation parameters include the number of sub-domains (Ne), the number of collocation points
per sub-domain (Q), the number of training parameters per sub-domain (M), and the maximum magnitude of the
random coefficients of the local neural networks (Rm).

Fig. 27 illustrates the profiles of the locELM solutions and their absolute errors computed using the NLSQ-perturb
and Newton-LLSQ methods. In these simulations, we have employed Ne = 4 uniform sub-domains, Q = 100
uniform collocation points per sub-domain, M = 200 training parameters per sub-domain, and Rm = 5.0 for

generating the random weight/bias coefficients. The profile of the exact solution given by (40) is also included in

39



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

t
a

t
T
e

p

c
t

Fig. 27. Nonlinear Helmholtz equation: profiles of the locELM solutions (a,c) and their absolute errors (b,d), computed using NLSQ-perturb
(a,b) and Newton-LLSQ (c,d).

Fig. 28. Effect of collocation points (nonlinear Helmholtz equation): (a) the maximum and rms errors in the domain, and (b) the network
raining time, as a function of the number of collocation points per sub-domain, computed using the locELM method with NLSQ-perturb
nd Newton-LLSQ.

hese plots. The solution profiles obtained with the current method exactly overlap with that of the exact solution.
he error profiles indicate that the NLSQ-perturb method results in more accurate results than Newton-LLSQ, with
rror levels on the order 10−12

∼ 10−9 for NLSQ-perturb versus 10−9
∼ 10−5 for Newton-LLSQ.

Fig. 28 demonstrates the effect of the number of collocation points per sub-domain on the simulation accuracy and
the computational cost. In this group of tests, we have employed Ne = 4 sub-domains, M = 200 training parameters
per sub-domain, and Rm = 5.0 when generating the random coefficients. The number of uniform collocation points

er sub-domain is varied systematically between Q = 25 and Q = 200. Fig. 28(a) shows the maximum and rms
errors in the domain as a function of the number of collocation points per sub-domain, obtained with NLSQ-perturb
and Newton-LLSQ. Fig. 28(b) shows the corresponding training time of the overall neural network versus the
number of collocation points per sub-domain. With the Newton-LLSQ method, the errors are observed to decrease
gradually with increasing number of collocation points, and appear to stagnate at a level around 10−6 when the
number of collocation points/sub-domain is beyond 150. With the NLSQ-perturb method, the errors initially decrease
exponentially with increasing number of collocation points (when below 125), and then stagnate at a level around
10−11 when the number of collocation points/sub-domain increases to 150 and beyond. The NLSQ-perturb results
are in general considerably more accurate than those obtained with Newton-LLSQ. In terms of the training time, the
Newton-LLSQ method is consistently faster than NLSQ-perturb, and the difference becomes larger as the number of
collocation points increases. With the Newton-LLSQ method, the training time appears not sensitive to the number
of collocation points, and remains nearly the same with increasing number of collocation points (Fig. 28(b)). With
the NLSQ-perturb method, the training time increases approximately linearly with increasing number of collocation
points per sub-domain, and it becomes substantially slower than Newton-LLSQ when the number of collocation
points becomes large.

Fig. 29 demonstrates the effect of the number of training parameters per sub-domain on the simulation accuracy
and the computational cost. In this group of tests, we have employed Ne = 4 sub-domains, Q = 100 uniform
ollocation points per sub-domain, and Rm = 5.0 when generating the random coefficients in the hidden layers of

he local neural networks. The number of training parameters per sub-domain is varied systematically between 50

40



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

p
s

a
p
e
1
d
t
d
a
n
p
B
m
t

i
d
e

Fig. 29. Effect of the number of training parameters (nonlinear Helmholtz equation): (a) the maximum and rms errors in the domain, and (b)
the network training time, versus the number of training parameters per sub-domain, computed using the locELM method with NLSQ-perturb
and Newton-LLSQ.

Fig. 30. Results obtained with 2 hidden layers in local neural networks (nonlinear Helmholtz equation): profiles of (a) the locELM (NLSQ-
erturb) solution and (b) its absolute error. (c) The maximum/rms errors in the domain versus the number of collocation points per
ub-domain.

nd 350. Fig. 29(a) shows the maximum and rms errors of the solutions as a function of the number of training
arameters per sub-domain obtained with NLSQ-perturb and Newton-LLSQ. With NLSQ-perturb, the numerical
rrors decrease substantially as the number of training parameters per sub-domain increases, reaching a level around
0−10 when the number of training parameters increases beyond 200. With Newton-LLSQ, one can also observe a
ecrease in the errors as the number of training parameters increases. But the error reduction is much slower. When
he number of training parameters per sub-domain exceeds 200, the errors with Newton-LLSQ no longer seem to
ecrease further and remain at a level around 10−5. It is evident that the results from the Newton-LLSQ method
re generally much less accurate than those from the NLSQ-perturb method. Fig. 29(b) shows the corresponding
etwork training time as a function of the number of training parameters per sub-domain. In the range of training
arameters tested here, the training time with both of these two methods appear to fluctuate around a certain level.
ut the training time with the Newton-LLSQ method is generally notably smaller than that with the NLSQ-perturb
ethod, except for the outlier point corresponding to 100 training parameters per sub-domain. These data suggest

hat Newton-LLSQ is generally faster than NLSQ-perturb.
With the current locELM method, the local neural network can contain more than one hidden layer. As shown

n previous sub-sections, local neural networks with a small number (more than one) of hidden layers can also
eliver accurate results using the current method. Fig. 30 demonstrates again this point with the nonlinear Helmholtz
quation. In this group of tests, we employ Ne = 4 uniform sub-domains, M = 250 training parameters per sub-

domain, 2 hidden layers (with widths 25 and 250, respectively, and the tanh activation function) in each local neural
network, and Rm = 2.0 when generating the random weight/bias coefficients for these hidden layers. The number
of uniform collocation points per sub-domain is varied systematically in these tests. Figs. 30(a) and (b) show the
locELM solution and error profiles obtained with Q = 175 uniform collocation points per sub-domain using the

NLSQ-perturb method. Fig. 30(c) shows the maximum and rms errors in the domain as a function of the number of

41



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

m
w

u
w

t
t
w
o
i

p
t
t
g
s
o
w
d
O

Fig. 31. Effect of the random coefficients in local neural networks (nonlinear Helmholtz equation): the maximum error in the domain versus
Rm , obtained with the NLSQ-perturb and Newton-LLSQ methods.

Fig. 32. Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (nonlinear Helmholtz equation): (a) the
aximum and rms errors in the domain, and (b) the training time, as a function of the number of sub-domains in the locELM simulation
ith NLSQ-perturb.

niform collocation points per sub-domain. We observe an essentially exponential decrease in the numerical errors
ith increasing number of collocation points per sub-domain.
Fig. 31 illustrates the effect of the random coefficients in the hidden layers of the local neural networks. In

his group of tests we employ Ne = 4 sub-domains, Q = 100 uniform collocation points per sub-domain, 200
raining parameters per sub-domain, and a single hidden layer in the local neural networks. As discussed before, the
eight/bias coefficients in the hidden layer of each local neural network are set to uniform random values generated
n [−Rm, Rm]. In these tests, we vary Rm systematically and study its effect. Fig. 31 shows the maximum error
n the overall domain as a function of Rm , obtained with the NLSQ-perturb and the Newton-LLSQ methods. The

error exhibits a behavior similar to what has been observed with the linear problems. The methods have a better
accuracy with a range of moderate Rm values, and the results are less accurate with very large or very small Rm

values. We again observe that the NLSQ-perturb result is significantly more accurate than that of Newton-LLSQ,
except for a range of small Rm values.

In Fig. 32 we study the effect of the number of sub-domains on the simulation accuracy and the computational
cost, while the total degrees of freedom in the domain are fixed. In these tests we vary the number of uniform sub-
domains (Ne). We choose the number of uniform collocation points per sub-domain (Q) and the training parameters

er sub-domain (M) such that the total number of collocation points in the domain is fixed at Ne Q = 400 and the
otal number of training parameters in the domain is fixed at Ne M = 800. We have tested three cases, corresponding
o Ne = 1, 2 and 4. As in the previous sections, the case with one sub-domain (Ne = 1) corresponds to use of a
lobal ELM. Fig. 32(a) shows the maximum and rms errors in the overall domain as a function of the number of
ub-domains. Fig. 32(b) shows the corresponding training time versus the number of sub-domains. These results are
btained with the NLSQ-perturb method. We have employed Rm = 20.0 when generating the random coefficients
ith one sub-domain (Ne = 1), Rm = 10.0 with two sub-domains (Ne = 10.0) and Rm = 4.5 with four sub-
omains (Ne = 4.5). These Rm values approximately reside in the optimal range of Rm values for these cases.

ne can observe that the numerical errors obtained with different number of sub-domains are comparable, with the

42



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

t

e
g
W
a

Fig. 33. Nonlinear Helmholtz equation: Distributions of the solutions (a,c) and their absolute errors (b,d) computed using PINN [9] with
he Adam optimizer (a,b) and the L-BFGS optimizer (c,d). These can be compared with those in Fig. 27 computed using locELM.

Table 6
Nonlinear Helmholtz equation: comparison between locELM and PINN in terms of the maxi-
mum/rms errors in the domain, the number of epochs or nonlinear iterations, and the network
training time. The problem settings and simulation parameters correspond to those of Figs. 27 and
33.

Method Maximum error rms error Epochs/iterations Training time
(seconds)

PINN (Adam) 4.56e − 3 5.04e − 4 45,000 578.2
PINN (L-BFGS) 1.69e − 3 1.69e − 4 22,000 806.4
locELM (NLSQ-perturb) 1.45e − 9 2.34e − 10 71 7.7
locELM (Newton-LLSQ) 1.28e − 5 1.75e − 6 5 2.7

errors obtained on four sub-domains a little worse than those of the other cases. On the other hand, the network
training time decreases significantly with increasing number of sub-domains.

We next compare the current locELM method with the PINN method [9] for solving the nonlinear Helmholtz
quation. Fig. 33 shows distributions of the PINN solutions and their absolute errors against the exact solution
iven in Eq. (40), computed using the Adam optimizer (Figs. 33(a,b)) and the L-BFGS optimizer (Figs. 33(c,d)).
ith the Adam optimizer, the neural network consists of 7 hidden layers, with a width of 50 nodes in each layer

nd the tanh activation function, in addition to the input layer of one node (representing x) and the output layer of
one node (representing the solution u). The network has been trained on the input data of 400 uniform collocation
points for 45,000 epochs, with the learning rate gradually decreasing from 0.001 at the beginning to 5 × 10−6 at
the end of the training. With the L-BFGS optimizer, the neural network consists of 4 hidden layers, with a width of
50 nodes in each layer and the tanh activation function, apart from the input layer of one node and the output layer
of one node. The network has been trained on the input data of 400 uniform collocation points in the domain for
22,000 L-BFGS iterations. The results indicate that the PINN method has captured the solution quite accurately,
with the errors on the order 10−5

∼ 10−3 with the Adam optimizer and on the order 10−5
∼ 10−4 with the L-BFGS

optimizer. Comparing the PINN results in this figure and the locELM results in Fig. 27, we can observe that the
locELM method is considerably more accurate than PINN.

Table 6 provides further comparisons between locELM and PINN in terms of the accuracy and the computational
cost. Here we have listed the maximum and rms errors in the domain, the number of epochs or nonlinear iterations in
the training, and the network training time, associated with the PINN (with Adam/L-BFGS optimizers) simulations
and the current locELM simulations. The problem settings and the simulation parameters here correspond to those
in Fig. 27 with locELM and those in Fig. 33 with PINN. It is evident that the current locELM method is much
more accurate than PINN. For example, the errors obtained using locELM/NLSQ-perturb are about six orders of
magnitude smaller than those obtained by PINN/L-BFGS. The errors obtained by locELM/Newton-LLSQ are about
two orders of magnitude smaller than those of PINN/L-BFGS. Furthermore, the current method is computationally
much cheaper than PINN, with the training time approximately two orders of magnitude smaller (e.g. about 8
seconds with locELM/NLSQ-perturb versus around 806 seconds with PINN/L-BFGS).

Let us now compare the current locELM method with the finite element method for solving the nonlinear
Helmholtz equation. Fig. 34 shows the profiles of the finite element solution and its absolute error against the analytic
solution, computed on a mesh of 200,000 uniform elements. The finite element method is again implemented

using the FEniCS library in Python, and the nonlinear algebraic equation is solved using a Newton iteration. The

43



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

m
m
a
l
(
l

Fig. 34. Nonlinear Helmholtz equation: profiles of the solution (a) and its absolute error (b) computed using the finite element method
(FEM) with 200,000 uniform elements.

Table 7
Nonlinear Helmholtz equation: comparison between locELM and FEM, in terms of the maximum/rms errors in the domain and the
training/computation time. The problem settings correspond to those of Figs. 27(a,b) and 34.

Method Elements Sub-domains Q M Maximum error rms error Wall-time
(seconds)

locELM (NLSQ-perturb) – 4 100 200 1.45e − 9 2.34e − 10 7.7
– 4 125 200 3.96e − 11 7.02e − 12 10.6

FEM 200,000 – – – 5.26e − 9 1.37e − 9 4.7
400,000 – – – 1.31e − 9 3.43e − 10 8.8
800,000 – – – 3.29e − 10 8.57e − 11 18.1

FEM result is observed to be accurate, with an error level on the order 10−9. In Table 7 we compare the locELM
ethod and the finite element method with regard to the accuracy and the computational cost. The table lists the
aximum and rms errors in the domain and the wall time of the training or computation, obtained using locELM

nd FEM on several sets of parameters corresponding to different simulation resolutions. One can observe that
ocELM exhibits a comparable, and generally superior, performance to FEM. For example, the locELM case with
Q, M) = (100, 200) has a computational cost comparable to the FEM case with 400,000 elements, and their error
evels are also comparable. The locELM case with (Q, M) = (125, 200) has a lower cost (∼ 10 seconds) than

the FEM case with 800,000 elements (∼ 18 seconds), and also has considerably smaller errors, by an order of
magnitude, than the latter.

3.4.2. Nonlinear spring equation
In the next example we test the locELM method using an initial value problem, the nonlinear spring. The goal

here is to assess the performance of the locELM method together with the block time marching scheme, especially
for long-time dynamic simulations.

Consider the temporal domain, Ω = [0, t f ], and the following initial value problem on this domain,

d2u
dt2 + ω2u + α sin(u) = f (t), (41a)

u(0) = u0,
du
dt

⏐⏐⏐⏐
t=0
= v0, (41b)

where u(t) is the displacement, f (t) is an imposed external force, ω and α are constant parameters, u0 is the initial
displacement, and v0 is the initial velocity. The parameters in the above domain and problem specifications assume
the following values in this subsection,

ω = 2, α = 0.5, t f = 100, or 15, or 2.5.

We choose the external force f (t) such that the following function satisfies Eq. (41a),

u(t) = t sin(t). (42)
44



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

t

v
o
s
d
w
l
f
(
r
b
i
t
g
(

t
o

l
c
t

e
a

t
t
e
e
n
b
a
h
m
I

Fig. 35. Nonlinear spring: time histories of (a) the locELM solution and (b) its absolute error against the exact solution. 40 uniform time
blocks are used.

We set the initial displacement and the initial velocity both to zero, i.e. u0 = 0 and v0 = 0. Under these settings,
he initial value problem consisting of Eqs. (41a)–(41b) has the solution given by (42).

We employ the locELM method and the block time marching scheme from Section 2.3.2 to solve this initial
alue problem. We partition the domain [0, t f ] into Nb uniform time blocks, and solve this initial value problem
n each time block individually and successively. For the computation within each time block, we use a single
ub-domain in the simulation, as the amount of data involved in is quite small because the function does not
epend on space. We enforce the equations on Q uniform collocation points within each time block. Accordingly,
e employ a single neural network within each time block for this problem. The neural network consists of an input

ayer of one node (representing the time t), a single hidden layer with a width of M nodes and the tanh activation
unction, and an output layer of one node (representing the solution u). The output layer is assumed to be linear
no activation function) and contains no bias. As in previous sections, we incorporate an affine mapping operation
ight behind the input layer to normalize the input t data to the interval [−1, 1] for each time block. The weight and
ias coefficients in the hidden layer of the neural network are pre-set to uniform random values generated on the
nterval [−Rm, Rm]. A fixed seed value 1234 is used with locELM for the random number generator. We employ
he NLSQ-perturb method from Section 2.3.1 for computing the resultant nonlinear algebraic problem. The initial
uess of the solution is set to zero. In the event the random perturbation is triggered, we employ δ = 1.0 and ξ2 = 1
see Algorithm 1 and Remark 2.8) for generating the random perturbations in the tests of this subsection.

The locELM simulation parameters include the number of time blocks Nb, the number of collocation points per
ime block Q, the number of training parameters per time block M (i.e. the number of nodes in the hidden layer
f the neural network), and the maximum magnitude of the random coefficients Rm .

Fig. 35 shows the time histories of the displacement and its absolute error obtained using locELM in a fairly
ong-time simulation. The time history of the exact solution given by (42) has also been shown in Fig. 35(a) for
omparison. In this test the domain size is set to t f = 100. We have employed Nb = 40 uniform time blocks within
he domain, Q = 60 uniform collocation points per time block, M = 100 training parameters per time block, and
Rm = 5.0 when generating the random weight/bias coefficients for the hidden layer of the neural network. It is
vident that the current locELM method has captured the solution very accurately, with the maximum level of the
bsolute error on the order 10−8 over the entire domain.

Fig. 36 illustrates the effect of the number of degrees of freedom (collocation points, training parameters) on
he simulation accuracy. In this group of tests the temporal domain size is set to t f = 15, and we employ Nb = 6
ime blocks within the domain. Fig. 36(a) shows the absolute-error histories of the locELM solution against the
xact solution, obtained using 20 and 40 collocation points per time block. Fig. 36(b) shows the maximum and rms
rrors in the overall domain obtained with different numbers of collocation points in the locELM simulation. The
umber of training parameters per time block is fixed at M = 100 with the tests in these two plots. The errors can
e observed to decrease exponentially as the number of collocation points per time block increases (when below
round 60), and then become stagnant as the number of collocation points increases further. Fig. 36(c) shows time
istories of the absolute errors corresponding to 20 and 40 training parameters per time block. Fig. 36(d) shows the
aximum/rms errors in the overall domain, obtained with different numbers of training parameters per time block.

n the tests of these two plots, the number of collocation points per time block has been fixed at Q = 60. The
45



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

c

c
o
(

a
i
b
i
t
a

s
A

Fig. 36. Nonlinear spring: (a) Error histories obtained with 20 and 40 collocation points per time block. (b) The maximum/rms errors in the
domain versus the number of collocation points per time block. In (a) and (b), the number of training parameters per time block is fixed
at 100. (c) Error histories obtained with 20 and 30 training parameters per time block. (d) The maximum/rms errors versus the number of
training parameters per time block. In (c) and (d) the number of the collocation points per time block is fixed at 60.

Fig. 37. Nonlinear spring: The maximum and rms errors in the overall domain as a function of Rm , the maximum magnitude of the random
oefficients.

Fig. 38. Comparison between locELM and PINN (nonlinear spring): Time histories of (a) the solutions and (b) their absolute errors, computed
using PINN [9] with the Adam optimizer and using locELM with the NLSQ-perturb method. The temporal domain size is t f = 2.5.

onvergence with respect to the training parameters is not as regular as that for the collocation points. Nonetheless,
ne can see that the errors approximately decrease exponentially with increasing number of training parameters
when below 50), and then they essentially stagnate as the number of training parameters increases further.

Fig. 37 demonstrates the effect of Rm , the maximum magnitude of the random coefficients, on the simulation
ccuracy. In this set of tests, the temporal domain size is t f = 15. We have employed Nb = 6 uniform time blocks
n the domain, Q = 60 uniform collocation points in each time block, and M = 100 training parameters per time
lock. The value of Rm is varied systematically in the tests. In this figure we plot the maximum and rms errors
n the overall domain corresponding to different Rm values. The characteristics observed here are consistent with
hose from previous subsections. The locELM method has a better accuracy with Rm in a range of moderate values,
nd in this case approximately Rm = 1 ∼ 9. The results are less accurate if Rm is very large or very small.

Let us next compare the current locELM method with PINN [9] for solving the nonlinear spring equation. Fig. 38
hows a comparison of the time histories of the solutions and their absolute errors obtained using PINN with the
dam optimizer and using the current locELM method with NLSQ-perturb. In this group of tests, the temporal
46



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

(
o

l

W

s

m
e
s
d

Table 8
Nonlinear spring: Comparison between locELM and PINN in terms of the maximum/rms errors in the
domain, the number of epochs or nonlinear iterations in the training, and the network training time. The
problem settings and the simulation parameters correspond to those of Fig. 38.

Method Maximum error rms error Epochs/iterations Training time
(seconds)

PINN (Adam) 1.21e − 4 6.71e − 5 20,000 26.3
locELM (NLSQ-perturb) 2.82e − 11 1.12e − 11 48 0.34

domain size is set to t f = 2.5. In the PINN simulation, the neural network consists of an input layer of one node
representing t), three hidden layers with a width of 10 nodes and the tanh activation function in each layer, and an
utput layer of one node (representing the solution u). The input data consists of 500 uniform collocation points

from the domain [0, t f ]. The neural network has been trained using the Adam optimizer for 20,000 epochs, with the
earning rate decreasing from 0.01 at the beginning to 1e− 5 at the end of the training. In the locELM simulation,

we employ a single time block (Nb = 1) in the domain, Q = 60 uniform collocation points within the time block,
M = 100 training parameters in the time block, a single hidden layer in the neural network, and Rm = 5.0 for
generating the random weight/bias coefficients. Fig. 38 demonstrates that both PINN and locELM have captured
the solution accurately, but the error of the locELM result is considerably smaller than that of PINN.

Table 8 provides a further comparison between locELM and PINN in terms of their accuracy and computational
cost. The problem settings and the simulation parameters here correspond to those of Fig. 38. We have listed the
maximum and rms errors of the PINN and locELM results in the overall domain, the number of epochs or nonlinear
iterations in the training, and the network training time. The data demonstrate that the current locELM method is
much more accurate, by six orders of magnitude, than PINN, and the network training time of locELM is much
smaller, by nearly two orders of magnitude, than that of PINN.

3.4.3. Viscous Burger’s equation
In this subsection we further test the locELM method using the viscous Burger’s equation. Consider the spatial–

temporal domain Ω = {(x, t) | x ∈ [a, b], t ∈ [0, t f ]}, and the following initial/boundary value problem with the
Burger’s equation,

∂u
∂t
+ u

∂u
∂x
= ν

∂2u
∂x2 + f (x, t), (43a)

u(a, t) = g1(t), u(b, t) = g2(t), (43b)

u(x, 0) = h(x), (43c)

where u(x, t) is the solution to be solved for, the constant ν denotes the viscosity, f (x, t) is a prescribed source
term, g1(t) and g2(t) denote the boundary distributions, and h(x) is the initial distribution. We employ the following
values for the constant parameters,

ν = 0.01, a = 0, b = 5, t f = 10, or 2.5, or 0.25.

e choose the source term f and the boundary/initial distributions (g1, g2 and h) such that the function

u(x, t) =
(

1+
x
10

)(
1+

t
10

)[
2 cos

(
πx +

2π

5

)
+

3
2

cos
(

2πx −
3π

5

)][
2 cos

(
π t +

2π

5

)
+

3
2

cos
(

2π t −
3π

5

)] (44)

atisfies this initial/boundary value problem.
We employ the method from Section 2.3.2 with block time marching to solve this problem, by restricting the

ethod to one spatial dimension. The spatial–temporal domain Ω is partitioned into Nb uniform time blocks. Within
ach time block, we further partition its spatial–temporal domain into Nx uniform sub-domains in x and Nt uniform
ub-domains in time, resulting in Ne = Nx Nt sub-domains per time block. C1 continuity is imposed on the sub-
omain boundaries in the x direction, and C0 continuity is imposed on the sub-domain boundaries in time. Within
47



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

c

e

s
h
r
m
t
n
t
l

i
i
a

t
p

t
u
s
s
r
1

p
p
s
e
s
s
o

t
s

Fig. 39. Burgers equation: distributions of (a) the solution, and (b) its absolute error in the spatial–temporal plane, computed using the
urrent locELM (NLSQ-perturb) method.

ach sub-domain we employ a total of Q = Qx Qt uniform collocation points, with Qx uniform collocation points
in x and Qt uniform collocation points in time.

We employ a local neural network for each sub-domain, leading to a total of Ne local neural networks in the
imulations. Each local neural network consists of an input layer of two nodes, representing the x and t , a single
idden layer with a width of M nodes and the tanh activation function, and an output layer of a single node,
epresenting the field solution u. The output layer has no bias and no activation function. Additionally, an affine
apping operation is incorporated into the network right behind the input layer to normalize the input x and t data

o the interval [−1, 1]× [−1, 1] for each sub-domain. The weight/bias coefficients in the hidden layer of the local
eural networks are pre-set to uniform random values generated on the interval [−Rm, Rm], and are fixed during
he simulation. A fixed seed value 22 is used for the Tensorflow random number generator for all the tests with
ocELM in this sub-section.

We employ the NLSQ-perturb method from Section 2.3.1 for computing the resultant nonlinear algebraic problem
n the majority of tests presented below. The results computed using Newton-LLSQ are also provided for comparison
n some cases. The initial guess of the solution is set to zero. With the NLSQ-perturb method, we employ δ = 0.5
nd ξ2 = 0 (see Algorithm 1 and Remark 2.8) for generating the random perturbations in the following tests.

The locELM simulation parameters include the number of time blocks (Nb), the number of sub-domains per
ime block (Ne, Nx , Nt ), the number of collocation points per sub-domain (Q, Qx , Qt ), the number of training
arameters per sub-domain (M), and the maximum magnitude of the random coefficients (Rm).

Fig. 39 shows distributions of the solution and its absolute error in the spatial–temporal plane, computed using
he current locELM method (with NLSQ-perturb). Here the temporal domain size is set to be t f = 10, and 40
niform time blocks (Nb = 40) are used in the spatial–temporal domain. We have employed Ne = 5 uniform
ub-domains with Nx = 5 and Nt = 1 within each time block, Q = 20 × 20 uniform collocation points per
ub-domain (Qx = Qt = 20), M = 200 training parameters per sub-domain, and Rm = 0.75 when generating the
andom coefficients. The current method has captured the solution accurately, with the absolute error on the order
0−8
∼ 10−7 in the overall domain.

Fig. 40 further examines the accuracy of the locELM solution. The problem settings and the simulation
arameters here correspond to those of Fig. 39. Figs. 40(a) and (b) depict the profiles of the locELM (NLSQ-
erturb) solution and its absolute error at the time t = 8.75. The exact solution profile at this time instant is also
hown in Fig. 40(a). The locELM solution profile exactly overlaps with that of the exact solution, and the absolute
rror is around the level 10−10

∼ 10−7. Figs. 40(c) and (d) show the time histories of the locELM (NLSQ-perturb)
olution and its absolute error at the point x = 2.75. The time history of the exact solution at this point is also
hown in Fig. 40(c). The simulated signal overlaps with that of the exact signal, and the absolute error can be
bserved to fluctuate around the level 10−10

∼ 10−8.
Fig. 41 demonstrates the effect of the degrees of freedom on the simulation accuracy. In this group of tests

he temporal domain size is set to t f = 2.5. We have employed Nb = 10 uniform time blocks in the overall
patial–temporal domain, N = 5 uniform sub-domains per time block (with N = 5 and N = 1), and R = 0.5
e x t m

48



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

l
t

p
o
s

d
a
d
n
b
a
c
t
s

w
d
h

Fig. 40. Burger’s equation: Profiles of the locELM (NLSQ-perturb) solution (a) and its absolute error (b) at t = 8.75. Time histories of the
ocELM (NLSQ-perturb) solution (c) and its absolute error (d) at the point x = 2.75. The settings and simulation parameters correspond to
hose of Fig. 39.

Fig. 41. Effect of the degrees of freedom on the accuracy (Burger’s equation): the maximum and rms errors in the domain as a function
of (a) the number of collocation points in each direction per sub-domain, and (b) the number of training parameters per sub-domain.

when generating random coefficients for the hidden layers of the local neural networks. First, we fix the number
of training parameters per sub-domain to M = 200, and vary the number of (uniform) collocation points per sub-
domain systematically while maintaining Qx = Qt . Fig. 41(a) shows the maximum and rms errors in the overall
domain versus the number of collocation points in each direction per sub-domain. It is observed that the errors
decrease essentially exponentially with increasing number of collocation points per direction (when below around
Qx = Qt = 15). Then the errors stagnate as the number of collocation points per direction increases beyond
15, due to the saturation associated with the fixed number of training parameters in the test. Then, we fix the
number of uniform collocation points to Q = 20× 20 per sub-domain, and vary the number of training parameters

er sub-domain systematically in a range of values. Fig. 41(b) shows the resultant maximum/rms errors in the
verall domain versus the number of training parameters per sub-domain. As the number of training parameters per
ub-domain increases, the locELM errors can be observed to decrease substantially.

Fig. 42 demonstrates the effect of the number of sub-domains, with the total number of degrees of freedom in the
omain (approximately) fixed. In this group of tests, the temporal domain size is set to t f = 0.25, and we employ
single time block in the spatial–temporal domain. We employ uniform sub-domains, and vary the number of sub-
omains within the time block systematically between Ne = 1 and Ne = 5 (with fixed Nt = 1 and various Nx ). The
umber of (uniform) collocation points per sub-domain and the number of training parameters per sub-domain are
oth varied, but the total number of collocation points and the total number of training parameters in the time block
re fixed approximately at Ne Q ≈ 2000 and Ne M ≈ 1000, respectively. More specifically, we employ Q = 45×45
ollocation points/sub-domain and M = 1000 training parameters/sub-domain with Ne = 1 sub-domain within the
ime block, Q = 32×32 collocation points/sub-domain and M = 500 training parameters/sub-domain with Ne = 2
ub-domains, Q = 26 × 26 collocation points/sub-domain and M = 333 training parameters/sub-domain with

Ne = 3 sub-domains, Q = 22 × 22 collocation points/sub-domain and M = 250 training parameters/sub-domain
ith Ne = 4 sub-domains, and Q = 20× 20 collocation points/sub-domain and M = 200 training parameters/sub-
omain with Ne = 5 sub-domains within the time block. When generating the random weight/bias coefficients, we
ave employed Rm = 2.0 with Ne = 1 sub-domain in the time block, Rm = 1.0 with Ne = 2 and 3 sub-domains, and
Rm = 0.75 with Ne = 4 and 5 sub-domains within the time block. These values are approximately in the optimal

49



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

(
(

r

Fig. 42. Effect of the number of sub-domains, with fixed total degrees of freedom in the domain (Burger’s equation): (a) the maximum and
rms errors in the domain, and (b) the training time, as a function of the number of uniform sub-domains per time block. Temporal domain
size is t f = 0.25, and a single time block is used in the spatial–temporal domain.

Fig. 43. Comparison between locELM and DGM (Burger’s equation): distributions of the solutions (left column) and their absolute errors
right column) computed using DGM with the Adam optimizer (a,b) and L-BFGS optimizer (c,d), and using locELM with NLSQ-perturb
e,f) and with Newton-LLSQ (g,h).

ange of Rm values for these cases. Fig. 42(a) shows the maximum and rms errors of the locELM (NLSQ-perturb)
solution in the domain as a function of the number of sub-domains within the time block. We observe that the
errors decrease quite significantly, by nearly two orders of magnitude, as the number of sub-domains increases
from Ne = 1 to Ne = 3. The errors remain approximately at the same level with three and more sub-domains.
Note that the case with one sub-domain corresponds to the global ELM computation. These results indicate that
the local ELM simulation with multiple sub-domains appears to achieve a better accuracy than the global ELM
simulation for this problem. Fig. 42(b) shows the training time of the neural network as a function of the number of
sub-domains. The training time has been reduced substantially as the number of sub-domains increases from one to
three sub-domains (from around 110 seconds to about 40 seconds), and it remains approximately the same with three
and more sub-domains. These results show that, compared with the global ELM, the use of domain decomposition
and multiple sub-domains in locELM can significantly reduce the computational cost for the Burger’s equation.
This is consistent with the observations with the other problems in previous sections.

We next compare the current locELM method with the deep Galerkin method (DGM) for the Burger’s equation.
Fig. 43 is a comparison of distributions of the solutions (left column) and their absolute errors (right column)
in the spatial–temporal plane, obtained using DGM with the Adam and L-BFGS optimizers (top two rows) and

using the current locELM method with NLSQ-perturb and Newton-LLSQ (bottom two rows). In these tests the

50



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

s

Fig. 44. Burger’s equation: Profiles of (a) the solutions and (b) their absolute errors at t = 0.2 computed using DGM and locELM. The
ettings and simulation parameters correspond to those of Fig. 43.

Table 9
Burger’s equation: comparison between locELM and DGM in terms of the maximum/rms errors in the
domain, the number of epochs or nonlinear iterations, and the network training time. The problem settings
and simulation parameters correspond to those of Fig. 43.

Method Maximum error rms error Epochs/iterations Training time
(seconds)

DGM (Adam) 4.57e − 2 5.76e − 3 128,000 1797.8
DGM (L-BFGS) 7.50e − 3 1.55e − 3 28,000 1813.5
locELM (NLSQ-perturb) 1.85e − 8 4.44e − 9 27 27.6
locELM (Newton-LLSQ) 1.62e − 5 3.11e − 6 15 9.1

temporal domain size is set to t f = 0.25. For DGM, the neural network consists of an input layer of two nodes
(representing x and t), 5 hidden layers with a width of 40 nodes in each layer and the tanh activation function, and
an output layer of a single node (representing u) with no bias and no activation function. When computing the loss
function, the spatial–temporal domain has been divided into 10 uniform sub-domains along the x direction, and
we have used 10 × 10 Gauss–Lobatto–Legendre quadrature points in each sub-domain for computing the residual
norms. With the Adam optimizer, the neural network has been trained for 128,000 epochs, with the learning rate
gradually decreasing from 0.001 at the beginning to 10−5 at the end of the training. With the L-BFGS optimizer,
the neural network has been trained for 28,000 iterations. For the current locELM method, we have employed a
single time block in the spatial–temporal domain and Ne = 5 uniform sub-domains along the x direction within
this time block. With NLSQ-perturb, we have employed Q = 20× 20 uniform collocation points per sub-domain,
M = 200 training parameters per sub-domain, and Rm = 0.75 when generating the random coefficients. With
Newton-LLSQ, we have employed Q = 20 × 20 uniform collocation points per sub-domain, M = 150 training
parameters per sub-domain, and Rm = 1.0 when generating the random coefficients. The results in Fig. 43 indicate
that the current locELM method is considerably more accurate than DGM for the Burger’s equation. The errors of
the current method is generally several orders of magnitude smaller than those of DGM. The locELM method with
NLSQ-perturb provides the best accuracy, with the errors on the order 10−9

∼ 10−8. Then it is the locELM method
with Newton-LLSQ, with the errors on the level 10−6

∼ 10−5. In contrast, the errors of the DGM with Adam and
L-BFGS are generally on the levels 10−3

∼ 10−2 and 10−3, respectively.
Fig. 44 compares the profiles of the DGM and locELM solutions (plot (a)) and their errors (plot (b)) at the

time instant t = 0.2. The profile of the exact solution at this instant is also included in Fig. 44(a) for comparison.
The problem settings and the simulation parameters here correspond to those of Fig. 43. The solution profiles from
DGM and locELM simulations are in good agreement with that of the exact solution. The error profiles, on the other
hand, reveal disparate accuracies in the results obtained using these methods. They confirm the ordering of these
methods, from the most to the least accurate, to be locELM/NLSQ-perturb, locELM/Newton-LLSQ, DGM/L-BFGS,
and DGM/Adam.

Table 9 provides a further comparison between locELM and DGM for the Burger’s equation, in terms of their

accuracy and computational cost. We have listed the maximum and rms errors in the overall spatial–temporal

51



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

c
F

T
B
t

B
l

e
W
s
i
c
a
t
o
d
s
F
t

f

Fig. 45. Comparison between locELM and FEM (Burger’s equation): Profiles of (a) the solutions and (b) their absolute errors at t = 0.2,
omputed using locELM (with NLSQ-perturb) and using FEM. (c) The maximum and rms errors at t = 0.25 versus ∆t computed using
EM (with a mesh of 10,000 uniform elements), showing its second-order convergence rate in time.

able 10
urger’s equation: comparison between locELM and FEM in terms of the maximum/rms errors in the domain and the training/computation

ime. Q and M denote the number of collocation points per sub-domain and the number of training parameters per sub-domain, respectively.

Method Elements ∆t Sub-domains Q M Maximum error rms error Wall-time
(seconds)

locELM – – 5 15 × 15 150 2.10e − 6 4.35e − 7 14.7
(NLSQ-perturb) – – 5 20 × 20 200 1.85e − 8 4.44e − 9 27.6

locELM – – 5 15 × 15 150 1.25e − 5 2.71e − 6 6.8
(Newton-LLSQ) – – 5 20 × 20 150 1.62e − 5 3.11e − 6 9.1

FEM 2000 0.00025 – – – 2.64e − 5 5.15e − 6 12.5
2000 0.000125 – – – 3.07e − 5 5.76e − 6 25.4

5000 0.00025 – – – 1.89e − 5 1.74e − 6 26.0
5000 0.000125 – – – 4.13e − 6 7.90e − 7 50.8

10000 0.00025 – – – 2.22e − 5 1.99e − 6 47.7
10000 0.000125 – – – 4.74e − 6 4.36e − 7 92.6

domain, the number of epochs or nonlinear iterations in the training, and the training time of the neural network
corresponding to DGM with the Adam/L-BFGS optimizers and the current locELM method with NLSQ-perturb
and Newton-LLSQ. The observations here are consistent with those of previous sections. The locELM method is
orders of magnitude more accurate than DGM (e.g. 10−8 with locELM/NLSQ-perturb versus 10−3 with DGM/L-

FGS), and its training time is orders of magnitude smaller than that of DGM (e.g. around 28 seconds with
ocELM/NLSQ-perturb versus around 1800 seconds with DGM/L-BFGS).

Finally, we compare the current locELM method with the classical finite element method for solving the Burger’s
quation. In the FEM simulation, we discretize the Burger’s equation (43a) in time using a semi-implicit scheme.
e treat the nonlinear term explicitly and the viscous term implicitly, and discretize the time derivative by the

econd-order backward differentiation formula (BDF2). The method is again implemented using the FEniCS library
n Python. Figs. 45(a) and (b) show a comparison of the solution and error profiles at t = 0.2 obtained using the
urrent locELM (NLSQ-perturb) method and using the finite element method. Fig. 45(c) shows the numerical errors
t t = 0.25 as a function of the time step size ∆t computed using the finite element method. In these simulations
he temporal domain size is t f = 0.25. In Figs. 45(a,b), the FEM simulation is conducted with ∆t = 1.25e − 4
n a mesh of 10,000 uniform elements, and the locELM simulation is conducted with a single time block in the
omain and Ne = 5 sub-domains in the time block, with (Q, M) = (20×20, 200) and Rm = 0.75. In Fig. 45(c), the
imulations are performed with a fixed mesh of 10,000 uniform elements. It can be observed that both locELM and
EM have produced accurate solutions, and that the FEM exhibits a second-order convergence rate in time before

he error saturation when ∆t becomes very small.
Table 10 provides a comparison between locELM and FEM in terms of their accuracy and computational cost
or the Burger’s equation. The temporal domain size is t f = 0.25 in these tests. We solve the problem using

52



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

f

p
o
s
t
p

w
t
t
d
m
o
t

P

locELM and FEM on several sets of simulation parameters with different numerical resolutions. The maximum
and rms errors in the spatial–temporal domain are computed, and we also record the training time of locELM and
the computation time of FEM in these simulations. We list in this table the maximum and rms errors, as well
as the training/computation time, corresponding to different simulation parameters for the locELM method with
NLSQ-perturb and Newton-LLSQ and for the finite element method. A single time block has been used in the
spatial–temporal domain for the locELM simulations, and we employ Rm = 0.75 with locELM/NLSQ-perturb and
Rm = 1.0 with locELM/Newton-LLSQ for generating the random coefficients. It is observed that the current locELM
method with both NLSQ-perturb and Newton-LLSQ shows a superior performance to the FEM. For example, the
two cases with locELM/Newton-LLSQ have numerical errors comparable to the FEM cases with 2000 elements
(for both ∆t), 5000 elements (∆t = 0.00025) and 10000 elements (∆t = 0.00025), but the computational cost of
locELM/Newton-LLSQ is notably smaller than the cost of these FEM cases. The locELM/NLSQ-perturb case with
(Q, M) = (15× 15, 150) has numerical errors comparable to the FEM cases with 5000 elements (∆t = 0.000125)
and 10000 elements (∆t = 0.000125), but the computational cost of this locELM/NLSQ-perturb case is only a
raction of those of these two FEM cases. The locELM/NLSQ-perturb case with (Q, M) = (20 × 20, 200) has

a computational cost comparable to the FEM cases with 2000 elements (∆t = 0.000125) and 5000 elements
(∆t = 0.00025), but the errors of this locELM/NLSQ-perturb case are nearly three orders of magnitude smaller
than those of these two FEM cases.

4. Concluding remarks

In this paper we have developed an efficient method based on domain decomposition and local extreme learning
machines (termed locELM) for solving linear/nonlinear partial differential equations. The problem domain is
partitioned into sub-domains, and the field solution on each sub-domain is represented by a local shallow feed-
forward neural network, consisting of a small number (one or more) of hidden layers. Ck continuity conditions,
with k related to the PDE order, are imposed on the sub-domain boundaries. The hidden-layer coefficients of all
the local neural networks are pre-set to random values, and are fixed in the computation. The training parameters
consist of the output-layer coefficients of the local neural networks.

We employ a set of collocation points within each sub-domain, which constitute the input data to the neural
network. The PDE, the boundary/initial conditions, and the Ck continuity conditions are enforced on the collocation

oints in the sub-domains, on the overall domain boundaries, and on the sub-domain boundaries, respectively. These
perations result in a system of linear or nonlinear algebraic equations about the training parameters. We seek a least
quares solution to this system, and compute the solution by a linear or nonlinear least squares method. Training
he overall network consists of the linear or nonlinear least squares computations. This is different from the back
ropagation-type algorithms.

For longer-time simulations of time-dependent PDEs, we have developed a block time-marching scheme together
ith the locELM method. The spatial–temporal domain is first divided into a number of windows in time, referred

o as time blocks, and we solve the PDE on each time block separately and successively. We observe that when the
emporal dimension of the domain is large, if without block time marching, the neural network can become very
ifficult to train. On the other hand, with block time marching and using a moderate time block size, the problem is
ore manageable and much easier to solve. Block time marching requires re-training of the overall neural network

n different time blocks, and so all network trainings are online operations. This is feasible with locELM thanks
o its high accuracy and low computational cost.

We have performed extensive numerical experiments to test the locELM method, and compared it with DGM,
INN, global ELM, and the finite element method (FEM). We have the following observations:

• The locELM method exhibits a clear sense of convergence with increasing number of degrees of freedom. Its
errors typically decrease exponentially or nearly exponentially as the number of sub-domains, or the number
of collocation points/sub-domain, or the number of training parameters/sub-domain increases.
• The random hidden-layer coefficients of the local neural networks influence the simulation accuracy. In this

work these coefficients are set to uniform random values generated on [−Rm, Rm]. The simulation accuracy
tends to decrease with very large or very small Rm . Higher accuracy is generally associated with a range
of moderate Rm values. This range of optimal Rm values tends to expand when the number of collocation
points/sub-domain or training parameters/sub-domain increases.
53



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129
• The locELM training time generally increases linearly (or super-linearly for some problems) with respect to
the number of sub-domains. It also tends to increase with respect to the number of collocation points and to
the number of training parameters, but the relation is not quite regular.
• When the total degrees of freedom (total collocation points, total training parameters) in the system are fixed,

increasing the number of sub-domains, hence with the number of collocation points/training parameters per
sub-domain accordingly reduced, generally leads to simulation results with comparable accuracy, but it can
dramatically reduce the network training time. Compared with global ELM, which corresponds to the locELM
with a single sub-domain, the use of multiple sub-domains in locELM can significantly reduce the network
training time, and produce results with comparable accuracy.
• The current locELM method shows a clear superiority to DGM and PINN, which are some of the commonly-

used DNN-based PDE solvers, in terms of both accuracy and computational cost. The numerical errors and
the network training time of locELM are considerably smaller, typically by orders of magnitude, than those
of DGM and PINN.
• The locELM method exhibits a computational performance that is comparable, and oftentimes superior, to the

classical FEM. With the same computational cost, the locELM errors are comparable to, and oftentimes much
smaller than, the FEM errors. To achieve the same accuracy, the locELM training time is comparable to, and
oftentimes markedly smaller than, the FEM computation time.

We would like to make some further comments with regard to Rm , the maximum magnitude of the random
hidden-layer coefficients of the local neural networks. As discussed above, the simulation results have a better
accuracy if Rm falls into a range of moderate values for a given problem. Let us consider the following question:
given a new problem (e.g. a new PDE), how do we know what this range is and how do we find this range of
optimal Rm values in practice? The approximate range of these optimal Rm values can be estimated readily by
preliminary numerical experiments. Here is the basic idea. Given a new problem, one can always add some source
terms to the PDE or to the boundary/initial conditions, and then manufacture a solution to the given problem,
with the augmented source terms. Then one can use the manufactured solution to evaluate the accuracy of a set
of preliminary simulations by varying the Rm systematically. This will provide a reasonable estimate for the range
of optimal Rm values. After that, one can conduct actual simulations of the given problem, without the added
source term, by using an Rm value from the estimated range. It is observed that the optimal range for Rm is not
sensitive to the manufactured solution used for its estimate when a reasonably good resolution is employed. If a
very complicated manufactured solution is being used, one will want to employ a large enough resolution when
estimating Rm .

Some further comments are also in order concerning the numerical tests with fixed total degrees of freedom in
the domain, while the number of sub-domains is varied. Because the total degrees of freedom in the domain is fixed,
the degrees of freedom per sub-domain decrease as the number of sub-domains increases. One can anticipate that,
when the number of sub-domains becomes sufficiently large, the number of degrees of freedom per sub-domain
can become very small. This will be bound to adversely affect the simulation accuracy, because the solution is
represented locally by these degrees of freedom on each sub-domain. Therefore, if the total degrees of freedom in
the domain are fixed, when the number of sub-domains increases beyond a certain point, the simulation accuracy
will start to deteriorate. The aforementioned observation about comparable accuracy with increasing number of
sub-domains, with fixed total degrees of freedom in the domain, is for the cases where the number of sub-domains
is below that point.

As demonstrated by ample examples in this paper, the computational performance of the current locELM method
is on par with, and oftentimes exceeds, that of the classical finite element method. The importance of this point
cannot be overstated. To the best of the authors’ knowledge, this seems to be the first time when a neural network-
based method delivers the same performance as, or a better performance than, a traditional numerical method for
the commonly-encountered computational problems in low dimensions. The current method demonstrates the great
potential, and perhaps points toward a path forward, for neural network-based methods to be truly competitive, and
excel, in computational science and engineering simulations.

Some characteristics exhibited by the current locELM method, e.g. the exponential convergence with respect
to the number of collocation points and training parameters, are reminiscent of those of the traditional high-order
numerical methods. Compared with the finite element method employing higher-order elements (see Appendix B),

the current locELM method is also competitive to a certain degree. But overall the locELM seems not as efficient

54



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

h

A

A

c
l

fi

as the higher-order finite elements at this point. How to further improve this method is an interesting problem, and
will be explored in a future endeavor.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

cknowledgment

This work was partially supported by NSF, USA (DMS-2012415, DMS-1522537).

ppendix A. The Newton-Linear Least Squares (Newton-LLSQ) method

In this Appendix we elaborate on the Newton-LLSQ method from Section 2.3.1 for solving the nonlinear system
onsisting of (22a)–(22b) in some detail. This method combines the Newton iteration on the top level with a linear
east squares approach for computing the increment field within each Newton step.

Let u(k)(x, y) denote the approximation of the solution u at the Newton step k, and v(x, y) denote the increment
eld to be computed at this step. Then

u(k+1)
= u(k)

+ v. (45)

The increment v is described by the linearized version of Eq. (22a),

Lv + J
(
u(k), u(k)

x , u(k)
y

)
v = f (x, y)−

[
Lu(k)

+ F
(
u(k), u(k)

x , u(k)
y

)]
, (46)

where u(k)
x and u(k)

y denote the partial derivatives of u(k), and J
(
u(k), u(k)

x , u(k)
y

)
is the Jacobian (operator) of the

nonlinear term F(u, ux , u y). We impose the boundary condition (22b) on u(k+1), which gives rise to following
boundary condition for the increment v in light of (45),

v = g(x, y)− u(k)(x, y), on ∂Ω . (47)

Eqs. (46) and (47) are linear equations about the increment field v(x, y). Given the approximation u(k) at Newton
step k, these equations can be solved using the locELM method for linear differential equations as discussed in
Section 2.2.1, which employs a linear least squares approach. Then the approximation to the solution u at Newton
step (k + 1) is given by Eq. (45).

Note that in Section 2.3.1 we assume that L is a second-order linear differential operator with respect to both x
and y. When solving the Eqs. (46)–(47) with locELM, we therefore impose the C1 continuity conditions for u(k+1)

on the sub-domain boundaries. These will give rise to the continuity conditions about the increment field v on
the sub-domain boundaries. Let the vectors [X0, X1, . . . , X Nx ] and [Y0, Y1, . . . , YNy ] again denote the coordinates
of the sub-domain boundaries in the x and y directions, and emn denote the sub-domain that occupies the region
[Xm, Xm+1] × [Yn, Yn+1] for 0 ⩽ m ⩽ Nx − 1 and 0 ⩽ n ⩽ Ny − 1, where Nx and Ny denote the number of
sub-domains along the x and y directions. Then the continuity conditions for the increment field v(x, y) on the
sub-domain boundaries are given by,

vemn (Xm+1, y)− vem+1,n (Xm+1, y) = −u(k),emn (Xm+1, y)+ u(k),em+1,n (Xm+1, y), (48a)
∂vemn

∂x

⏐⏐⏐⏐
(Xm+1,y)

−
∂vem+1,n

∂x

⏐⏐⏐⏐
(Xm+1,y)

= −
∂u(k),emn

∂x

⏐⏐⏐⏐
(Xm+1,y)

+
∂u(k),em+1,n

∂x

⏐⏐⏐⏐
(Xm+1,y)

, (48b)

for 0 ⩽ m ⩽ Nx − 2, 0 ⩽ n ⩽ Ny − 1,

and

vemn (x, Yn+1)− vemn+1 (x, Yn+1) = −u(k),emn (x, Yn+1)+ u(k),emn+1 (x, Yn+1), (49a)
∂vemn

∂y

⏐⏐⏐⏐
(x,Yn+1)

−
∂vemn+1

∂y

⏐⏐⏐⏐
(x,Yn+1)

= −
∂u(k),emn

∂y

⏐⏐⏐⏐
(x,Yn+1)

+
∂u(k),emn+1

∂y

⏐⏐⏐⏐
(x,Yn+1)

, (49b)

for 0 ⩽ m ⩽ Nx − 1, 0 ⩽ n ⩽ Ny − 2,

where vemn and u(k),emn denote the fields v and u(k) on the sub-domain emn , respectively.
55



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

w
d

T
(

o
t
l
n
i

Remark A.1. In the Newton-LLSQ method, both the increment field v(x, y) and the converged solution u(x, y)
from the Newton iterations can be represented in terms of the output-layer coefficients (training parameters) of
the local neural networks. The increment v can be so represented, because it is computed in this way by the
linear least squares method. Here is the basic idea on how to represent the approximation u(k+1) and the converged
solution u(x, y) in terms of the output-layer coefficients of the local neural networks. We start with a zero initial
guess, u(0)

= 0, for the Newton iteration. Accordingly, we initialize a vector (or matrix) with the same shape as
the vector (or matrix) of output-layer coefficients of the local neural networks, which will be referred to as the
accumulation vector, to all zeros. At Newton step k (k ⩾ 0), after the increment field v is computed by the linear
least squares method, we update the accumulation vector by adding in the output-layer coefficients corresponding to
the increment v. At this point, the updated accumulation vector contains the weight coefficients that correspond to
the approximation u(k+1). Upon convergence of the Newton iteration, the accumulation vector contains the weight
coefficients that correspond to the converged solution. We can then update the output-layer coefficients of the local
neural networks by the content of the accumulation vector, and the local neural networks now fully represent the
converged solution to the boundary value problem with the nonlinear differential equation.

Remark A.2. The formulation presented above for the Newton-LLSQ method also applies to the time-dependent
nonlinear differential Eqs. (25a)–(25c). Note that the time-derivative operator is linear and can be incorporated
into the operator L in the above formulation. By imposing the initial condition (25c) on u(k+1)(x, y, t = 0), one
can attain a corresponding initial condition for the increment field v(x, y, t = 0) using Eq. (45). Additionally,
one will need to impose the C0 continuity condition for u(k+1)(x, y, t) on the sub-domain boundaries along the
temporal direction. This will give rise to an associated continuity condition for the increment field v(x, y, t) on the
sub-domain boundaries along the temporal direction, which is analogous to Eqs. (48a) and (49a). The linear system
consisting of the linearized differential equation about the increment v, the corresponding boundary and initial
conditions for v, and the associated continuity conditions for v on the sub-domain boundaries along the spatial and
temporal directions, can be solved using the locELM method (the basic method) as discussed in Section 2.2.2 with
the linear least squares approach.

Appendix B. Numerical tests with the Poisson equation

In this Appendix we consider the classical Poisson equation in two dimensions (2D) and provide further
comparisons between the locELM method and the FEM. Here we compare locELM not only with the classical
second-order finite elements (linear elements), but also with higher-order Lagrange elements, which are available
from the FEniCS library.

We consider the 2D domain Ω = {(x, y) | x ∈ [0, 1], y ∈ [0, 1]}, and the Poisson equation on this domain with
Dirichlet boundary conditions,

∂2u
∂x2 +

∂2u
∂y2 = f (x, y), (50a)

u(0, y) = g1(y), u(1, y) = g2(y), u(x, 0) = h1(x), u(x, 1) = h2(x), (50b)

here u(x, y) is the field to be solved for, f (x, y) is a prescribed source term, g1, g2, h1 and h2 denote the boundary
istributions. We consider the following manufactured solution to the system (50),

u(x, y) = −
[

3
2

cos
(

πx +
2π

5

)
+ 2 cos

(
2πx −

π

5

)] [3
2

cos
(

πy +
2π

5

)
+ 2 cos

(
2πy −

π

5

)]
. (51)

he source term f and the boundary distributions (g1, g2, h1 and h2) are chosen accordingly such that the expression
51) satisfies (50). Fig. 46 shows the distribution of this solution in the x-y plane.

We employ the locELM method from Section 2.2.1 to solve this problem. Each local neural network consists
f an input layer of two nodes, representing x and y, a hidden layer with M nodes (M to be specified below) and
he tanh activation function, and a linear output layer with one node, representing the field solution u. The output
ayer has zero bias. Additionally, an affine mapping is incorporated into the network right behind the input layer to
ormalize the input x and y data to the interval [−1, 1]×[−1, 1] for each sub-domain. The hidden-layer coefficients
n the local neural networks are pre-set to uniform random values generated on [−R , R ]. A fixed seed value 1 is
m m

56



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

i

b
t
o
(
o
I
e
n
i

p
d
F

Fig. 46. Poisson equation: distribution of the exact solution.

Fig. 47. Poisson equation (locELM 4 sub-domains): (a) Distribution of the absolute error of locELM solution. The maximum/rms errors of
the locELM solution versus (b) the number of collocation points in each direction per sub-domain, and (c) the number of training parameters
per sub-domain.

used for the Tensorflow random number generator for all the tests in this Appendix. C1 continuity conditions are
mposed on the sub-domain boundaries in both x and y directions.

The notations below are the same as those in the main text. (Nx , Ny, Ne) denote the number of uniform sub-
domains in the x direction, in the y direction, and the total number of sub-domains, respectively, with Ne = Nx Ny .
(Qx , Q y, Q) denote the number of uniform collocation points in the x direction, in the y direction, and the total
number of collocation points per sub-domain, respectively, with Q = Qx Q y . M denotes the number of training
parameters per sub-domain. Rm denotes the maximum magnitude of the random hidden-layer coefficients.

Fig. 47 provides an overview of the solution error and convergence characteristics of the locELM method for the
Poisson equation. Here we have employed Ne = 2× 2 uniform sub-domains, and Q = Q1× Q1 (Qx = Q y = Q1)
uniform collocation points in each sub-domain, where Q1 is either fixed at Q1 = 20 or varied between Q1 = 5 and
Q1 = 25. The number of training parameters per sub-domain is either fixed at M = 300 or varied systematically
etween M = 25 and M = 600. The random coefficients are generated with Rm = 1, which approximately lies in
he range of optimal values for Rm for this problem. Fig. 47(a) shows the error distribution of the locELM solution
btained with Q = 20 × 20 collocation points and M = 300 training parameters per sub-domain. Figs. 47(b) and
c) show the maximum and rms errors in the overall domain of the locELM solution as a function of the number
f collocation points in each direction (Q1) and the number of training parameters per sub-domain, respectively.
n plot (b) M is fixed at M = 300 and Q1 is varied. In plot (c) Q1 is fixed at Q1 = 20 and M is varied. It is
vident that the locELM method has produced highly accurate results with the Poisson equation. The exponential or
early exponential convergence behavior (before saturation), as evidenced by Figs. 47(b,c), of the locELM method
s consistent with what has been observed with the other test problems studied in this paper.

Fig. 48 illustrates the locELM solution obtained on Ne = 2 × 1 uniform sub-domains with M = 350 training
arameters per sub-domain. The random coefficients are again generated with Rm = 1. Fig. 48(a) shows the error
istribution of the locELM solution computed with Q = 20 × 20 uniform collocation points per sub-domain.

ig. 48(b) shows the maximum and rms errors of the loELM solution in the overall domain as a function of the

57



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

e

t
(

l

F
S

Fig. 48. Poisson equation (locELM 2 sub-domains): (a) Distribution of the absolute error of locELM solution. (b) The maximum/rms errors
of the locELM solution, and (c) the training time, versus the number of collocation points in each direction per sub-domain.

Fig. 49. Poisson equation (FEM, linear elements): (a) FEM error distribution computed on a 1000 × 1000 mesh. (b) The FEM maximum/rms
rrors in the domain, and (c) the FEM computation time, as a function of the number of elements in each direction. An N × N mesh

contains 2N 2 triangular linear elements.

Fig. 50. Poisson equation: The maximum error of the locELM/FEM solutions versus the training/computation time. The locELM data
correspond to those of Figs. 48(b,c) with 2 sub-domains, where the number of collocation points is varied. The FEM data correspond to
those of Figs. 49(b,c), where the number of elements in the mesh is varied.

number of uniform collocation points in each direction Q1 (with Qx = Q y = Q1) per sub-domain. Fig. 48(c) shows
he corresponding network training time as a function of Q1. We can observe the exponential decrease of the errors
before saturation), and the near-linear growth of the training time, with increasing number of collocation points.

We next compare these locELM simulation results with those of the classical finite element method (2nd-order,
inear elements) with Figs. 49 and 50 and Table 11. The setting for the FEM simulations is as follows. We employ a
N1×N2 uniform rectangular mesh in the FEM simulation, where N1 and N2 are specified below. As stipulated by the
EniCS library, each rectangle in the mesh is further divided along its diagonal into two triangular linear elements.

o an N1 × N2 rectangular mesh contains a total of 2N1 N2 triangular linear elements for the FEM simulations.

58



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

d
s
a
w
T
q

t
o
o
o
c
i
d
o
t
u
t
o
a
T
a
o
w

Table 11
Poisson equation: Comparison between locELM and the classical FEM (linear elements) in terms of the maximum/rms errors in the domain
and the training or computation time. The FEM results correspond to those of Fig. 49. The locELM results correspond to those of Fig. 48
for 2 sub-domains and those of Fig. 47 for 4 sub-domains. Q and M denote the number of uniform collocation points and the number of
training parameters per sub-domain, respectively.

Method Mesh Sub-domains Q M Max-error rms-error Wall-time
(seconds)

FEM 250 × 250 – – – 4.41e − 4 1.24e − 4 0.70
400 × 400 – – – 1.72e − 4 4.83e − 5 1.87
500 × 500 – – – 1.10e − 4 3.09e − 5 3.09
600 × 600 – – – 7.66e − 5 2.15e − 5 4.76
700 × 700 – – – 5.63e − 5 1.58e − 5 6.83
800 × 800 – – – 4.31e − 5 1.21e − 5 9.01
900 × 900 – – – 3.41e − 5 9.54e − 6 12.3
1000 × 1000 – – – 2.76e − 5 7.73e − 6 16.2

locELM – 2 5 × 5 350 1.73e − 1 3.69e − 2 5.2
– 2 8 × 8 350 3.26e − 3 5.02e − 4 5.6
– 2 10 × 10 350 2.16e − 4 4.78e − 5 5.7
– 2 12 × 12 350 6.72e − 5 1.52e − 5 6.4
– 2 15 × 15 350 1.03e − 6 2.34e − 7 7.1
– 2 20 × 20 350 1.45e − 8 1.35e − 9 8.6
– 2 25 × 25 350 2.81e − 8 1.98e − 9 10.4

– 4 5 × 5 300 1.41e − 1 3.01e − 2 9.8
– 4 8 × 8 300 7.56e − 4 1.45e − 4 10.1
– 4 10 × 10 300 1.90e − 4 4.21e − 5 11.1
– 4 12 × 12 300 1.37e − 5 3.29e − 6 12.2
– 4 15 × 15 300 1.20e − 7 2.80e − 8 13.6
– 4 20 × 20 300 6.57e − 9 4.49e − 10 17.9
– 4 25 × 25 300 6.72e − 9 5.21e − 10 20.8

Fig. 49 provides an overview of the FEM simulation results of the Poisson equation. Fig. 49(a) shows the
istribution of the absolute error of the FEM solution obtained on a 1000 × 1000 mesh, indicating that the FEM
olution is quite accurate. Figs. 49(b) and (c) show the maximum/rms errors of the FEM solution in the domain,
nd the FEM computation time, as a function of the number of elements in each direction of the mesh (N1). Here
e have varied N1 systematically between N1 = 25 and N1 = 1000, while maintaining N1 = N2 in the mesh.
he second-order convergence rate can be clearly observed from Fig. 49(b). The computation time approximately
uadruples as the number of elements in each direction (N1) doubles.

In Fig. 50 we plot the maximum error in the domain of the locELM solution (and the FEM solution) versus
he network-training time (respectively the FEM computation time). Here the locELM data correspond to those
f Fig. 48(b,c), with Ne = 2 × 1 sub-domains, M = 350 training parameters per sub-domain, and the number
f collocation points per sub-domain varied between 5 × 5 and 25 × 25. The FEM data correspond to those
f Figs. 49(b,c), with the mesh size varied between 25 × 25 and 1000 × 1000. We observe that the accuracy-
ost relation for the current locELM method and the classical FEM is qualitatively different. With FEM, the error
nitially decreases rapidly with increasing computation time (smaller mesh), and then the error reduction slows down
ramatically with respect to the computation time (larger mesh). When the mesh size becomes moderate or large,
nly slight improvement in the accuracy can be gained with increasing computation time for the classical FEM. On
he other hand, with locELM the error decreases approximately exponentially with increasing computation time,
ntil it saturates at a certain level and no longer decreases as the computation time further increases. Fig. 50 shows
hat there is a crossover point, below which the FEM outperforms the locELM and beyond which the locELM
utperforms the FEM. By saying one method outperforming the other, we mean that the first method can achieve
better accuracy with the same computation time, or can achieve the same accuracy with less computation time.
his suggests that with a smaller FEM mesh (or a smaller number of training data points for locELM) the FEM can
chieve a better accuracy than locELM with the same computation time. On the other hand, with a larger number
f training data points (or a larger mesh for FEM) the locELM can achieve a better accuracy than the classical FEM

ith the same computation time.

59



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129
Fig. 51. Poisson equation (comparing locELM with higher-order FEM): The FEM maximum/rms errors (a) and the computation time (b)
as a function of the number of elements in each direction, obtained with Lagrange elements of degree 3. The locELM maximum/rms errors
(c) and the network training time (d) as a function of the number of collocation points in each direction per sub-domain, obtained with
Ne = 2× 2 = 4 uniform sub-domains (M = 325 and Rm = 1).

Table 11 provides more concrete error and computation time data for comparison between locELM and the
classical FEM for the Poisson equation. Here we list the maximum and rms errors of the locELM and FEM solutions,
as well as the locELM training time and FEM computation time, corresponding to a set of FEM meshes and locELM
resolutions. The locELM data include those obtained on both two and four sub-domains. One can observe that the
FEM errors and computation time on the 700 × 700 mesh are comparable to those of the locELM method with 2
sub-domains and 12 × 12 collocation points per sub-domain. With simulation resolutions below these values the
classical FEM outperforms locELM, and with resolutions above these values the locELM outperforms the classical
FEM. It can also be observed that the FEM errors and computation time on the 900 × 900 mesh are comparable
to those of the locELM method with 4 sub-domains and 12 × 12 collocation points per sub-domain. The classical
FEM outperforms the locELM with resolutions below these values, and the locELM method outperforms the FEM
with resolutions beyond these values.

In all the foregoing comparisons we have used the classical finite element method, i.e. second-order with linear
elements. We next provide some comparisons between the locELM method and the FEM with higher-order elements,
specifically with higher-order Lagrange elements [54], which are available from the FEniCS library. The simulation
results and the comparison are summarized in Figs. 51 and 52.

Figs. 51(a) and (b) show the maximum/rms errors of the FEM solution obtained with Lagrange elements of
degree 3 (4th-order), as well as the computation time, as a function of the number of elements in each direction.
Here the size of the rectangular mesh is varied systematically between 10 × 10 and 350 × 350. One can clearly
observe the 4th-order convergence rate and the rapid growth in the computation time as the number of elements
in the mesh increases. Figs. 51(c) and (d) show the maximum/rms errors of the locELM solution, and the network
training time, as a function of the number of collocation points in each direction per sub-domain. Here we have
employed Ne = 2× 2 uniform sub-domains, M = 325 training parameters per sub-domain, Rm = 1 for generating
the random coefficients, and Q = Q1 × Q1 collocation points per sub-domain with Q1 varied systematically. We
can observe the exponential decrease in the locELM errors (before saturation) and the near-linear growth in the
network training time.
60



S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129

s
o

a

F
r
L
c
L
l
t
a
d

c
fi
F
A
p
t
a
i

R

Fig. 52. Poisson equation (comparing locELM with higher-order FEM): The maximum error in the domain versus the training/computation
time for locELM and higher-order FEM. The FEM results are obtained with Lagrange elements of degrees 3 and 4, with the degree-3
FEM results corresponding to those of Figs. 51(a,b). The locELM results are obtained with Ne = 2 (M = 350) and Ne = 4 (M = 325)
ub-domains, with the two-subdomain results corresponding to those of Figs. 48(b,c) and the four-subdomain results corresponding to those
f Figs. 51(c,d).

In Fig. 52 we plot the maximum error in the domain of the locELM solution and the higher-order FEM solution,
s a function of the training/computation time. The locELM data include those with 2 sub-domains (M = 350,

Q varied) corresponding to Figs. 48(b,c) and those with 4 sub-domains (M = 325, Q varied) corresponding to
igs. 51(c,d). The FEM data include those obtained with Lagrange elements of degree 3 and degree 4. The FEM
esults with degree-three Lagrange elements correspond to those of Figs. 51(a,b). The FEM results with degree-four
agrange elements are obtained with the mesh size varied between 10 × 10 and 160 × 160. Due to the limited
omputer memory, the 160 × 160 mesh is the largest one we can perform the FEM simulations on using the
agrange elements of degree 4. Fig. 52 shows that the FEM with degree-three Lagrange elements outperforms the

ocELM using two sub-domains as tested here. There is a crossover point between the degree-three FEM curve and
he locELM curve with four sub-domains. With lower resolutions the degree-three FEM outperforms the locELM,
nd with higher resolutions the locELM with four sub-domains outperforms the degree-three FEM. The FEM with
egree-four Lagrange elements appear to outperform the locELM in all the cases tested here.

To summarize, as the number of training data points (respectively the number of elements) increases, the
onvergence behavior of the locELM method is fundamentally different from that of the classical (second-order)
nite element method. When the number of elements (or the number of training data points) is small, the classical
EM outperforms locELM, in the sense it can achieve a better accuracy with the same computation/training time.
s the number of elements (or number of training data points) increases, there is a crossover point. Beyond this
oint the locELM outperforms the classical FEM, and achieves a better accuracy with the same training/computation
ime. Compared with the finite element method employing higher-order elements, the current locELM method is
lso competitive to a certain degree. But overall it appears not as efficient as the latter in its current state (or perhaps
mplementation).

eferences

[1] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.
[2] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359–366.
[3] K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward

networks, Neural Netw. 3 (1990) 551–560.
[4] N.E. Cotter, The Stone-Weierstrass theorem and its application to neural networks, IEEE Trans. Neural Netw. 4 (1990) 290–295.
[5] X. Li, Simultaneous approximations of mulvariate functions and their derivatives by neural networks with one hidden layer,

Neurocomputiing 12 (1996) 327–343.
[6] P.J. Werbos, Beyond Regression: New Tools for Prediction and Alaysis in the Behavioral Sciences (Ph.D. thesis), Cambridge, MA,

1974,
[7] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.
[8] J. Sirignano, K. Spoliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018)

1339–1364.
61

http://refhub.elsevier.com/S0045-7825(21)00460-6/sb1
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb2
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb3
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb3
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb3
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb4
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb5
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb5
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb5
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb6
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb6
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb6
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb7
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb8
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb8
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb8


S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129
[9] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[10] I.E. Lagaris, A.C. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans.
Neural Netw. 9 (1998) 987–1000.

[11] I.E. Lagaris, A.C. Likas, D.G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE
Trans. Neural Netw. 11 (2000) 1041–1049.

[12] K. Rudd, S. Ferrari, A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks,
Neurocomputing 155 (2015) 277–285.

[13] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math.
Stat. 6 (2018) 1–12.

[14] N. Winovich, K. Ramani, G. Lin, ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic
partial differential equations on varied domains, J. Comput. Phys. 394 (2019) 263–279.

[15] J. He, J. Xu, Mgnet: A unified framework for multigrid and convolutional neural network, Sci. China Math. 62 (2019) 1331–1354.
[16] W. Xing, R.M. Kirby, S. Zhe, Deep corgionalization for the emulation of spatial-temporal fields, 2019, ArXiv:1910.07577.
[17] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411

(2020) 109409.
[18] Y. Wang G. Lin, Efficient deep learning techniques for multiphase flow simulation in heterogeneous porous media, J. Comput. Phys.

401 (2020) 108968.
[19] E. Samanaiego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the

solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications,
Comput. Methods Appl. Mech. Engrg. 362 (2020) 112790.

[20] J. Xu, The finite neuron method and convergence analysis, 2020, ArXiv:2010.01458.
[21] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey, J. Mach. Learn.

Res. 18 (2018) 1–43.
[22] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws:

applications to forward and inverse problems, Comput. Methods Appl. Mech. Engrg. 365 (2020) 113028.
[23] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (2006) 489–501.
[24] G.-B. Huang, D.H. Wang, Y. Lan, Extreme learning machines: a survey, Int. J. Mach. Learn. Cybern. 2 (2011) 107–122.
[25] G.H. Golub, C.F.V. Loan, Matrix Computations, third ed., Johns Hopkins Press, MD, 1996.
[26] Y.H. Pao, G.H. Park, D.J. Sobajic, Learning and generalization characteristics of the random vector functional-link net, Neurocomputing

6 (1994) 163–180.
[27] B. Igelnik, Y.H. Pao, Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans.

Neural Netw. 6 (1995) 1320–1329.
[28] W. Maass, H. Markram, On the computational power of recurrent circuits of spiking neurons, J. Comput. System Sci. 69 (2004)

593–616.
[29] H. Jaeger, M. Lukosevicius, D. Popovici, U. Siewert, Optimization and applications of echo state networks with leaky integrator

neurons, Neural Netw. 20 (2007) 335–352.
[30] L. Zhang, P.N. Suganthan, A comprehensive evaluation of random vector functional link networks, Inform. Sci. 367–368 (2016)

1094–1105.
[31] C.S. Webster, Alan Turing’s unorganized machines and artificial neural networks: his remarkable early work and future possibilities,

Evol. Intel. 5 (2012) 35–43.
[32] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. 65 (1958)

386–408.
[33] S. Balasundaram, Kapil, Application of error minimized extreme learning machine for simultaneous learning of a function and its

derivativs, Neurocomputing 74 (2011) 2511–2519.
[34] Y. Yang, M. Hou, J. Luo, A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre

neural network methods, Adv. Differential Equations 469 (2018) 1–24.
[35] H. Sun, M. Hou, Y. Yang, T. Zhang, F. Weng, F. Han, Solving partial differential equations based on Bernsteirn neural network and

extreme learning machine algorithm, Neural Process. Lett. 50 (2019) 1153–1172.
[36] S. Panghal, M. Kumar, Optimization free neural network approach for solving ordinary and partial differential equations, Eng. Comput.

(2020) Early Access.
[37] H. Liu, B. Xing, Z. Wang, L. Li, Legendre neural network method for several classes of singularly perturbed differential equations

based on mapping and piecewise optimization technology, Neural Process. Lett. 51 (2020) 2891–2913.
[38] V. Dwivedi, B. Srinivasan, Physics informed extreme learning machine (PIELM) − a rapid method for the numerical solution of partial

differential equations, Neurocomputing 391 (2020) 96–118.
[39] Barry F. Smith, Petter E. Bjø rstad, William D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial

Differential Equations, Cambridge University Press, 1996.
[40] A. Toselli, O. Widlund, Domain Decomposition Methods − Algorithms and Theory, Springer, 2005.
[41] S. Dong, BDF-like methods for nonlinear dynamic analysis, J. Comput. Phys. 229 (2010) 3019–3045.
[42] S. Dong, J. Shen, A pressure correction scheme for generalized form of energy-stable open boundary conditions for incompressible

flows, J. Comput. Phys. 291 (2015) 254–278.
[43] S. Dong, Multiphase flows of N immiscible incompressible fluids: a reduction-consistent and thermodynamically-consistent formulation
and associated algorithm, J. Comput. Phys. 361 (2018) 1–49.

62

http://refhub.elsevier.com/S0045-7825(21)00460-6/sb9
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb9
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb9
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb10
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb10
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb10
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb11
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb11
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb11
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb12
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb12
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb12
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb13
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb13
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb13
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb14
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb14
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb14
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb15
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://arxiv.org/abs/1910.07577
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb17
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb17
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb17
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb18
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb18
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb18
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb19
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb19
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb19
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb19
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb19
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://arxiv.org/abs/2010.01458
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb21
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb21
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb21
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb22
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb22
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb22
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb23
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb24
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb25
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb26
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb26
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb26
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb27
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb27
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb27
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb28
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb28
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb28
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb29
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb29
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb29
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb30
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb30
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb30
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb31
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb31
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb31
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb32
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb32
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb32
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb33
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb33
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb33
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb34
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb34
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb34
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb35
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb35
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb35
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb36
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb36
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb36
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb37
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb37
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb37
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb38
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb38
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb38
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb39
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb39
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb39
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb40
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb41
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb42
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb42
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb42
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb43
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb43
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb43


S. Dong and Z. Li Computer Methods in Applied Mechanics and Engineering 387 (2021) 114129
[44] K. Li, K. Tang, T. Wu, Q. Liao, D3M: A deep domain decomposition method for partial differential equations, IEEE Access 8 (2020)
5283–5294.

[45] G.E. Karniadakis, S.J. Sherwin, Spectral/Hp Element Methods for Computational Fluid Dynamics, second ed., Oxford University Press,
2005.

[46] Y. Yu, R.M. Kirby, G.E. Karniadakis, Spectral element and hp methods, Encycl. Comput. Mech. 1 (2017) 1–43.
[47] X. Zheng, S. Dong, An eigen-based high-order expansion basis for structured spectral elements, J. Comput. Phys. 230 (2011) 8573–8602.
[48] S. Dong, Z. Yosibash, A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems, Comput. Struct.

87 (2009) 59–72.
[49] S. Dong, J. Shen, A time-stepping scheme involving constant coefficient matrices for phase field simulations of two-phase incompressible

flows with large density ratios, J. Comput. Phys. 231 (2012) 5788–5804.
[50] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, 2014, ArXiv:1412.6980.
[51] J. Nocedal, S.J. Wright, Numerical Optimization, second ed., Springer, 2006.
[52] H.P. Langtangen, A. Logg, Solving PDEs in Python, the FEniCS Tutorial I, SpringerOpen, 2016.
[53] S. Dong, N. Ni, A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural

networks, J. Comput. Phys. 435 (2021) 110242.
[54] R.L. Courant, Variational methods for the solution of problems of equilibrium and vibration, Bull. Amer. Math. Soc. 49 (1943) 1–23.
63

http://refhub.elsevier.com/S0045-7825(21)00460-6/sb44
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb44
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb44
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb45
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb45
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb45
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb46
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb47
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb48
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb48
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb48
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb49
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb49
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb49
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb51
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb52
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb53
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb53
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb53
http://refhub.elsevier.com/S0045-7825(21)00460-6/sb54

	Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations
	Introduction
	Domain decomposition and local extreme learning machines
	Local extreme learning machines (locELM) for representing functions 
	Linear differential equations
	Time-independent linear differential equations
	Time-dependent linear differential equations

	Nonlinear differential equations
	Time-independent nonlinear differential equations
	Time-dependent nonlinear differential equations


	Numerical examples
	Helmholtz equation
	Advection equation
	Diffusion equation
	Nonlinear examples
	Nonlinear Helmholtz equation
	Nonlinear spring equation
	Viscous Burger's equation


	Concluding remarks
	Declaration of competing interest
	Acknowledgment
	Appendix A. The Newton-Linear Least Squares (Newton-LLSQ) Method
	Appendix B. Numerical Tests with the Poisson Equation
	References


