
Journal of Computational Physics 445 (2021) 110585
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A modified batch intrinsic plasticity method for pre-training 

the random coefficients of extreme learning machines

Suchuan Dong a,∗, Zongwei Li b

a Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University, West Lafayette, IN, USA
b Department of Mathematics, Purdue University, Fort Wayne, IN, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 March 2021
Received in revised form 18 June 2021
Accepted 18 July 2021
Available online 28 July 2021

Keywords:
Batch intrinsic plasticity
Extreme learning machine
Neural network
Scientific machine learning
Least squares
Differential equation

In extreme learning machines (ELM) the hidden-layer coefficients are randomly set and 
fixed, while the output-layer coefficients of the neural network are computed by a least 
squares method. The randomly-assigned coefficients in ELM are known to influence its 
performance and accuracy significantly. In this paper we present a modified batch intrinsic 
plasticity (modBIP) method for pre-training the random coefficients in the ELM neural 
networks. The current method is devised based on the same principle as the batch intrinsic 
plasticity (BIP) method, namely, by enhancing the information transmission in every node 
of the neural network. It differs from BIP in two prominent aspects. First, modBIP does not 
involve the activation function in its algorithm, and it can be applied with any activation 
function in the neural network. In contrast, BIP employs the inverse of the activation 
function in its construction, and requires the activation function to be invertible (or 
monotonic). The modBIP method can work with the often-used non-monotonic activation 
functions (e.g. Gaussian, swish, Gaussian error linear unit, and radial-basis type functions), 
with which BIP breaks down. Second, modBIP generates target samples on random intervals 
with a minimum size, which leads to highly accurate computation results when combined 
with ELM. The combined ELM/modBIP method is markedly more accurate than ELM/BIP 
in numerical simulations. Ample numerical experiments are presented with shallow and 
deep neural networks for function approximation and boundary/initial value problems with 
partial differential equations. They demonstrate that the combined ELM/modBIP method 
produces highly accurate simulation results, and that its accuracy is insensitive to the 
random-coefficient initializations in the neural network. This is in sharp contrast with the 
ELM results without pre-training of the random coefficients.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

This work concerns the use of extreme learning machines (ELM) for scientific computing, chiefly for solving ordinary and 
partial differential equations (ODE/PDE). ELM is proposed in [20] for single hidden-layer feed-forward networks (SLFN), and 
consists of two main ideas: (i) the weights/biases in the hidden layer are randomly set and fixed, and (ii) the weights of the 
linear output layer are computed/trained by a linear least squares method or by using the pseudo-inverse (Moore-Penrose 
inverse) of the coefficient matrix. In the context of the current paper we will broadly refer to neural network-based methods 

* Corresponding author.
E-mail address: sdong@purdue.edu (S. Dong).
https://doi.org/10.1016/j.jcp.2021.110585
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110585
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110585&domain=pdf
mailto:sdong@purdue.edu
https://doi.org/10.1016/j.jcp.2021.110585


S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 1. Illustration of the random-coefficient effect on ELM accuracy: the maximum/rms errors of the ELM solution versus Rm (maximum magnitude of the 
random coefficients), for solving 1D Helmholtz equation.

adopting these strategies as ELM methods, including those that employ multiple hidden layers in the neural network and 
those that train the output-layer coefficients by nonlinear least squares computations (see e.g. [6]).

ELM is one type of random-weight neural networks [40,13], which randomly assign and fix a subset of the network’s 
weights so that the resultant optimization task of training the neural network can be simpler, and often linear, for example, 
formulated as a linear least squares problem. Randomization can be applied to both feed-forward and recurrent networks, 
leading to methodologies such as the random vector functional link (RVFL) networks [35,24], the extreme learning ma-
chine [20,19], the no-propagation network [48], the echo-state network [25,30], and the liquid state machine [31]. The uni-
versal approximation capability of the random-weight feed-forward neural networks has been investigated in e.g. [24,28,23]. 
It is shown in [23,21,22] that any continuous function can be approximated to any desired degree of accuracy with a single 
hidden-layer feed-forward neural network having random but fixed (not trained) hidden nodes, provided that the number 
of hidden units is sufficiently large. Randomized neural networks can be traced to the un-organized machines by Turing [46]
and the perceptron by Rosenblatt [37] in the 1950s. After a hiatus of several decades, contributions started to appear in the 
1990s, and in recent years such methods have witnessed a strong revival. We refer to e.g. [40] for a historical overview of 
randomized neural networks.

With ELM one employs the least squares method, either linear or nonlinear least squares [6], to compute/train the 
training parameters, which consist of only the weights in the linear output layer of the neural network. This training method 
is different from the back propagation (or gradient descent) type algorithms [47,16], which have been widely used in the 
deep neural network (DNN) based PDE solvers in recent years (see e.g. [41,36] and related approaches [27,38,11,49,17,29,
50,53,45,26,39,51,7]). This is the primary factor that accounts for ELM’s lower computational cost observed in numerical 
simulations [6].

The randomly-assigned coefficients in the neural network are crucial to the performance of ELM, and strongly influence 
its accuracy. As an illustration, Fig. 1 shows a typical plot of the L∞ (maximum) and L2 (root-mean-squares or rms) norms 
of the absolute error of the ELM solution as a function of Rm , which denotes the maximum magnitude of the random 
coefficients, for solving the one-dimensional (1D) Helmholtz equation with Dirichlet boundary conditions. Here the hidden-
layer coefficients of the network are assigned to uniform random values generated on the interval [−Rm, Rm]. It is evident 
that the random coefficients are critical to the ELM performance. We refer to [6] for a recent fairly detailed study of the 
random-coefficient effects on the ELM simulation results in solving linear and nonlinear partial differential equations. The 
effects of the random coefficients on the performance of ELM and other random-weight neural networks have also been 
recognized in regression and classification problems other than scientific computing (see e.g. [33,32,52,44,9,13], among 
others).

How to choose, or perhaps pre-train, the random coefficients in the ELM (or related random-weight) neural networks 
are an important issue, and this issue is the focus of the current work. Several studies in this regard are available from the 
literature in the past few years. In [33] the batch intrinsic plasticity (BIP) method is proposed to pre-train and adapt the 
activation function of the hidden-layer neurons by a pseudo-inverse technique to achieve a desired output distribution, so 
that the information transmission of the neural network can be improved. BIP is inspired by the biological intrinsic-plasticity 
mechanism [43], which, when applied to recurrent networks, can enhance the encoding and improve the information trans-
mission of the network [42]. In [32] the authors employ the ELM method in handwritten digit classification, and investigate 
ways to set the input weights as a function of the input data by aiming to e.g. increase the inner product between the 
weights and the training data samples, constrain the input weights to a set of difference vectors, or make the input weights 
sparse. A combination of such ideas is also studied therein. In [52] the authors present an algorithm to grow the single 
hidden-layer feed-forward network incrementally, by adding a macro node each time, which consists of several hidden 
nodes and is called a subnetwork hidden node. The method calculates the subnetwork hidden nodes by pulling back the 
network error into the hidden layer for invertible activation functions, and by aiming to reduce the norms of the weights. 
In [44] the authors present a technique to constructively build single hidden-layer feed-forward networks by stochastic 
configuration algorithms (called stochastic configuration networks or SCN). The constructive process starts with a small net-
2



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
work, and the hidden nodes are added incrementally until an acceptable tolerance is achieved. The added weights/biases 
are assigned by a supervisory mechanism to satisfy certain inequality constraints guided by the universal approximation 
property. In addition to the above works, other researchers have aimed to utilize the relationship between the input-data 
rank and the performance of randomized neural networks, or to pick the weights/biases based on the input data range and 
the activation function type, or to consider the numerical stabilities (see e.g. [1,9,13], among others).

In the current paper we present a modified batch intrinsic plasticity (modBIP) method for pre-training the random 
coefficients of the ELM neural networks, which can be shallow (single hidden layer) or deep (multiple hidden layers). 
By random coefficient pre-training we mean that, after the weight/bias coefficients of the hidden layers are initialized to 
random values, we update these coefficients systematically by a well-defined procedure. The updated coefficients are then 
fixed, and employed in ELM for computing/training the weights in the output layer (i.e. the training parameters) by the 
least squares method.

The current modBIP method is devised based on the same principle as the batch intrinsic plasticity (BIP) method [33], 
namely, by enhancing the information transmission in every node of the neural network. The current method differs from 
BIP [33] in two key aspects. First, modBIP does not involve the activation function in its algorithm, and it can work with 
any activation function in the ELM neural network. In contrast, BIP [33] employs the inverse of the activation function in 
its algorithm, and requires the activation function to be invertible (i.e. monotonic). BIP can only work with those activa-
tion functions that are monotonic. This excludes many often-used activation functions that are non-invertible, such as the 
Gaussian function, the swish function [12], the Gaussian error linear unit (GELU) [18], and other radial-basis type activation 
functions. Second, the modBIP method generates the target samples on random intervals with some minimum size, which 
leads to highly accurate simulation results when combined with ELM. The combined ELM/modBIP method is observed to be 
markedly more accurate than the combined ELM/BIP method in numerical simulations.

We present a number of numerical examples of boundary-value and boundary/initial-value problems with partial dif-
ferential equations to evaluate the performance of modBIP and the combined ELM/modBIP method. We compare their 
performance with those of the combined ELM/BIP method and the ELM method without pre-training of the random coef-
ficients. These numerical experiments show that the combined ELM/modBIP method produces highly accurate simulation 
results with both shallow and deep neural networks, and that the accuracy of the ELM/modBIP solution is insensitive to the 
initial random coefficients in the neural network. More precisely, with the hidden-layer coefficients initialized as uniform 
random values generated on [−Rm, Rm], for an arbitrary Rm , the combined ELM/modBIP method results in very accurate 
results. This is in sharp contrast with the ELM method without pre-training of the random coefficients (see e.g. Fig. 1). The 
numerical results demonstrate that the combined ELM/modBIP method, with non-invertible activation functions such as the 
Gaussian/swish/GELU functions in the neural network, exhibits the same properties of high accuracy and insensitivity to 
the random coefficient initialization. This is in sharp contrast with the ELM/BIP method, which breaks down with the class 
of non-invertible activation functions. The simulation results also signify the exponential decrease in the numerical errors 
of the ELM/modBIP method as the number of degrees of freedom (e.g. number of training collocation points, number of 
training parameters) in the system increases, analogous to the observations of [6].

We have also looked into the computational cost of the modBIP pre-training of the random coefficients, as compared to 
that of the ELM training of the neural networks. For every hidden-layer node, the primary operations with modBIP consist 
of (i) the computation of the total input to the current node induced by the input samples to the network, and (ii) the 
solution of a small linear system consisting of two unknown variables by the linear least squares method. The modBIP 
pre-training cost increases linearly or nearly linearly with increasing number of training parameters and collocation points. 
The pre-training cost is insignificant, and it is only a fraction of the ELM training cost for the neural network. In typical 
numerical simulations, the modBIP pre-training cost is within 10% of the ELM network training cost.

The contribution of this paper lies in the development of the modBIP algorithm for pre-training the random coefficients 
of shallow and deep ELM neural networks. The algorithm has been shown to be effective, efficient, and highly accurate. The 
combined ELM/modBIP method is observed to be a promising technique for scientific computing.

The rest of this paper is structured as follows. In Section 2 we present the modBIP algorithm for pre-training the random 
coefficients of ELM neural networks, and outline how to employ the combined ELM/modBIP method to solve partial dif-
ferential equations. In Section 3 we test the performance of the modBIP algorithm and the combined ELM/modBIP method 
with function approximation and several PDEs commonly encountered in computational science/engineering [8,3,4]. We 
compare the performance of the current modBIP algorithm, the BIP algorithm, and the case with no pre-training of the ran-
dom coefficients. The effectiveness of modBIP for shallow and deep neural networks, and with invertible and non-invertible 
activation functions is demonstrated. Section 4 then concludes the discussions with some closing remarks.

2. Pre-training random coefficients of extreme learning machines

2.1. Extreme learning machine and random coefficients

We consider a feed-forward neural network [15] with one or multiple hidden layers, and the function representation 
using this network. We assume the following in its configuration and settings:
3



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
• The weight/bias coefficients in all the hidden layers are pre-set to random values, and are fixed throughout the com-
putation once they are set. In this work we follow [6] and set the hidden-layer coefficients to uniform random values 
generated on [−Rm, Rm], where Rm > 0 is a user-provided parameter.

• The last hidden layer, i.e. the layer before the output layer, can be wide. It may contain a large number of nodes.
• The output layer is linear (i.e. no activation function applied) and has zero bias. The training parameters consist of the 

weights of the output layer, and will be adjusted by the training computation.
• The network is to be trained, and the training parameters are to be determined by a least squares computation.

In the current work we concentrate on function approximation and linear partial differential equations, and so the network 
training is via a linear least squares computation. We refer to [6] for the network training by a nonlinear least squares 
method for solving nonlinear partial differential equations.

A feed-forward neural network with the above settings, when containing a single hidden layer, is known as an extreme 
learning machine (ELM) [20,19]. In the current work we consider neural networks with both a single and multiple hidden 
layers, and we follow this terminology and will refer to them as shallow and deep extreme learning machines, respectively.

The random coefficients in the hidden layers of the neural network are crucial to the performance and accuracy of 
ELM [33,32,13,6]. It has been observed from the numerical experiments in [6] that the ELM accuracy can be influenced 
strongly by the maximum magnitude of the random coefficients (i.e. Rm), where uniform random coefficients generated 
on [−Rm, Rm] are employed. When Rm is very large or very small, ELM tends to produce results with poor accuracy. 
More accurate results tend to be attained with Rm in a range of moderate values. This “optimal” range for Rm is problem 
dependent and is also affected by the simulation resolution (e.g. the number of training parameters, number of training 
data points) [6]. For many problems the optimal range for Rm appears to reside somewhere between 1 and 15. As discussed 
in the Introduction section, Fig. 1 is an illustration of the effect of Rm on the ELM accuracy.

Our goal here is to devise a method for pre-training the random coefficients once they are initialized, so that accurate 
ELM results can be obtained with random coefficients initialized by essentially an arbitrary Rm . Once the hidden-layer 
coefficients in the neural network are initialized to uniform random values from [−Rm, Rm], for some given Rm , our method 
can be applied to update or adjust these random coefficients. The updated hidden-layer coefficients are then fixed, and the 
usual ELM method and the least squares procedure can be employed to determine the training parameters (i.e. the output-
layer coefficients).

2.2. Modified batch intrinsic plasticity (modBIP) algorithm

Consider a feed-forward neural network [15] with (L + 1) layers, and let Ml denote the number of nodes in layer l for 
0 � l � L. The layer zero represents the input to the neural network, and let the matrix X of dimension Ns × M0 denote the 
input data, where Ns is the number of samples in the input data. The layer L represents the output of the neural network, 
denoted by the matrix U of dimension Ns × ML . The layers in between are the hidden layers. Let the matrix �l , with 
dimension Ns × Ml , denote the output data of layer l for 0 � l � L, with �0 = X and �L = U. Then the logic of the hidden 
layer l (1 � l � L − 1) is given by,

�l = σ
(
�l−1Wl + bl

)
, 1 � l � L − 1, (1)

where σ(·) denotes the activation function, the Ml−1 × Ml matrix Wl denotes the weights of layer l, and the row vector 
bl (with dimension 1 × Ml) denotes the biases of this layer. Note that here we have adopted the convention (as in the 
computer language Python) that when computing (�l−1Wl + bl), the data in the vector bl will first be propagated along 
the first dimension to form a Ns × Ml matrix. In equation (1) we have also assumed for simplicity that the same activation 
function is employed for different hidden layers. The logic of the output layer is given by

U = �L−1WL (2)

where the ML−1 × ML matrix WL denotes the weights of the output layer, and they are the training parameters of the 
neural network. As discussed before, the output layer is assumed to contain no bias and no activation function. The weight 
and bias coefficients of the hidden layers, Wl and bl (1 � l � L − 1), are initialized to uniform random values generated 
on the interval [−Rm, Rm] for some prescribed Rm . Once the specific problem is given, the training parameters WL can 
be determined by a least squares computation based on the ELM procedure [6]. The parameter value Rm , and hence the 
random coefficients Wl and bl , strongly influence the ELM accuracy, as discussed in the previous subsection.

Given the input data X and the initial random coefficients Wl and bl (1 � l � L − 1), we will compute a set of new 
coefficients W′

l and b′
l for 1 � l � L − 1 based on a procedure presented below, and replace Wl and bl by the newly 

computed values, so that the resultant neural network will give rise to results that are more accurate and less sensitive or 
insensitive to Rm . We refer to this process as the pre-training of the random coefficients. Once the random hidden-layer 
coefficients are pre-trained, they will be fixed throughout the rest of the computation, when the training parameters are 
determined by the least squares method in the usual ELM algorithm.

To pre-train the random hidden-layer coefficients, we follow the philosophy as advocated in [33]. In other words, these 
coefficients should assume values that will facilitate the information transmission within each neuron. Consider a particular 
4



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
node (or neuron) in a particular hidden layer of the neural network. Let s denote the total input (synaptic input) to this 
neuron from the previous layer, and φ denote the output signal of this neuron. Then φ = σ(s), where σ is the activation 
function of this neuron. For commonly used activation functions (e.g. tanh, sigmoid, Gaussian), if the magnitude of the 
input s is very large, the output φ of the neuron will reach the level of saturation, which is unfavorable for the information 
transmission in this neuron. Therefore, the magnitude of the synaptic input to the neuron should not be too large, in order to 
facilitate the information transfer. Let us further suppose that the synaptic input to this neuron consists of Ns independent 
samples si (1 � i � Ns), and let smax and smin denote the maximum and the minimum of these input samples. If smax and 
smin are very close to each other, then this neuron will output essentially a constant value under these Ns input samples, 
which is unfavorable for the information transmission. Therefore, the samples of the synaptic input to a neuron should 
maintain a reasonable spread in their values, in order to facilitate the information transfer. In light of these considerations, 
in order to facilitate the information transmission, we will impose the following requirements on the synaptic input to any 
neuron:

• The synaptic input to the neuron should fall within a range [−Sb, Sb], where Sb > 0 is a user-provided hyper-parameter. 
The larger the Sb parameter, the more likely the input will cause a saturation in the neuron response.

• The samples of the synaptic input to the neuron should be such that smax − smin > Sc , where Sc (with 0 � Sc < 2Sb) is 
a user-provided hyper-parameter. A non-zero Sc ensures that the input samples to the neuron have a spread of at least 
Sc in their values.

These requirements provide the basis for the algorithm described below for pre-training the random hidden-layer coeffi-
cients in the neural network.

Given Sb and Sc , we pre-train the random coefficients as follows. We start with the first hidden layer, and pre-train 
the random coefficients in each layer individually and successively, until the last hidden layer is pre-trained. It should be 
noted that pre-training a later hidden layer depends on the updated weight/bias coefficients in previous layers that are 
already pre-trained. Within each hidden layer, we pre-train the random coefficients associated with each node individually 
and independently. We start with the first node and proceed until all the nodes in the layer are pre-trained.

The general idea for pre-training a node is as follows. For any particular node in a layer, we first compute the total input 
to this node corresponding to all the Ns input data samples to the neural network. This produces the input samples si (1 �
i � Ns) to this node. We generate a random sub-interval [tmin, tmax] ⊂ [−Sb, Sb], satisfying the condition tmax − tmin > Sc . 
Then we generate Ns random numbers ti (1 � i � Ns) on the interval [tmin, tmax], which will be referred to as the target 
samples. We sort the input samples si and the target samples ti in the ascending order, respectively. Then we compute an 
affine mapping between si and ti by a linear least squares method. The weight/bias coefficients associated with this node 
are then updated by the computed affine mapping coefficients to complete the pre-training for this node.

Let us now expand on the general idea to provide more details for pre-training a node. We consider pre-training the 
random coefficients associated with node k in the hidden layer l, for 1 � l � L − 1 and 1 � k � Ml . At this point, all the 
previous hidden layers have been pre-trained and their weight/bias coefficients have been updated. We evaluate the neural 
network against the input data X to attain the output of the layer l − 1, which is denoted by the matrix �l−1 of dimension 
Ns × Ml−1. Note that �l−1 = X if this is the first hidden layer (i.e. l = 1). The current weights for layer l are given by 
the Ml−1 × Ml matrix Wl , and the current biases for this layer are given by the row vector bl with dimension Ml . Let w
denote the k-th column of Wl , and bk denote the k-th component of bl . Then the synaptic input, s, to the current node in 
consideration is given by

(s1, s2, . . . , sNs )
T = s = �l−1w + 1bk, (3)

where si (1 � i � Ns) are the components of s, and 1 denotes the vector of all ones. The values of w and bk will be updated 
when this node is pre-trained.

Next we generate two uniform random numbers tmin and tmax on [−Sb, Sb] that satisfy the condition tmax − tmin > Sc . 
Then we generate Ns random numbers ti (1 � i � Ns) on the interval [tmin, tmax] as the target samples. In the current 
implementation we have considered two distributions when generating the target samples:

• ti (1 � i � Ns) are generated on [tmin, tmax] from a normal distribution with a mean 1
2 (tmin + tmax) and a standard 

deviation 1
4 (tmax − tmin). When drawing from the normal distribution, if the generated random number is out of the 

range [tmin, tmax], a simple sub-iteration can produce a random number on [tmin, tmax].
• ti (1 � i � Ns) are uniform random numbers on [tmin, tmax].

We sort the input samples si (1 � i � Ns) in the ascending order, and also sort the target samples ti (1 � i � Ns) in the 
ascending order. Then we solve for two scalar numbers ξ and η from the following linear system by the linear least squares 
method,

siξ + η = ti, 1 � i � Ns. (4)
5



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Algorithm 1: modBIP algorithm.
input : input data X; initial random weight coefficients Wl and initial random bias coefficients bl , for 1 � l � L − 1; constant Sb > 0; constant Sc , 

with 0 � Sc < 2Sb .
output : updated weight coefficients Wl and updated bias coefficients bl , for 1 � l � L − 1.

1 for l ← 1 to L − 1 do
2 if l equals 1 then
3 set �l−1 = X
4 else
5 compute �l−1 by evaluating the neural network (first l − 1 layers) on the input data X
6 end

7 for k ← 1 to Ml do
8 set w to point to the column k of Wl

9 set bk to point to the k-th component of bl

10 compute the input samples si (1 � i � Ns) by equation (3)
11 sort si (1 � i � Ns)

12 generate uniform random numbers tmin and tmax on [−Sb, Sb] satisfying tmax − tmin > Sc

13 generate random numbers ti (1 � i � Ns) on [tmin, tmax] by a normal distribution (mean: (tmin + tmax)/2, stddev: (tmax − tmin)/4) or a 
uniform distribution

14 sort ti (1 � i � Ns)

15 solve equation (4) for ξ and η by the linear least squares method
16 update w and bk by equation (5)
17 end
18 end

Fig. 2. Profiles of several commonly-used activation functions.

Finally, we update the column k of the weight-coefficient matrix Wl and the k-th component of the bias vector bl by the 
following relations:

w ←− ξw, bk ←− ξbk + η. (5)

This completes the pre-training of the node.
The overall pre-training procedure by the modBIP method is summarized in Algorithm 1. A key construction in the 

algorithm that enables high accuracy of this method is the adoption of random sub-intervals [tmin, tmax] with a minimum 
size Sc when generating the target samples. If this interval is taken to be [−Sb, Sb] or some fixed sub-interval of [−Sb, Sb], 
numerical experiments show that the method will be much less accurate. Target samples generated on [tmin, tmax] from 
a uniform distribution and from a normal distribution seem to produce results with comparable accuracy. For different 
problems one type of distribution may lead to results with slightly better accuracy than the other, but their error levels are 
largely the same. In the numerical tests of Section 3, we employ the normal distribution when generating random target 
samples on [tmin, tmax].

Remark 2.1. The parameter Sc controls the minimum size of the random sub-interval [tmin, tmax]. As Sc → 0, random inter-
vals with a near-zero size may be generated. This will cause the mapped synaptic input (and also the neuron response) to 
cluster around a constant level, which will affect the accuracy adversely. On the other hand, as Sc → 2Sb , all the random 
sub-intervals [tmin, tmax] → [−Sb, Sb]. So the randomness in the sub-interval will be lost, and the accuracy will deteriorate 
as mentioned before. We observe from numerical experiments that a value around Sc = Sb/2 produces results with very 
6



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
good (and oftentimes the best) accuracy. So in the current paper we will employ Sc = Sb/2 with modBIP in the numerical 
simulations.

Remark 2.2. The parameter Sb controls which regime the pre-training algorithm generally maps the synaptic input data 
into. If Sb is very small, the mapped synaptic input will be close to zero, and many activation functions are close to a 
linear function in this regime. Since a linear function reduces the approximation capability of a neuron, the accuracy in this 
case will be limited. If Sb is very large, the magnitude of the mapped synaptic input to the neuron can be large. It is thus 
more likely to cause saturation in the neuron response, which is unfavorable for the information transmission and can have 
an adverse effect on the accuracy. Fig. 2 shows the profiles of several commonly-used activation functions, including the 
tanh, Gaussian (σ(x) = e−x2

), softplus (σ(x) = log(1 + ex)), and swish (σ(x) = x/(1 + e−x)) functions. They suggest that a 
reasonable range for the input to the activation function seems to be somewhere around [−3, 3], and perhaps even a little 
larger with the swish and softplus functions. We observe from numerical experiments that, with the tanh (and Gaussian) 
activation function and a single hidden layer in the neural network, a value around Sb = 2 ∼ 3 will produce results with 
good accuracy. For certain problems, the method achieves even better accuracy if Sb is adjusted from this base value. When 
the neural network contains more hidden layers, it is observed that Sb should typically be decreased from this reference 
range to achieve a better accuracy.

While the above reference range for Sb is useful, for a given problem can we estimate the Sb value that provides the 
best or close to the best accuracy? The answer is positive, and we next outline a procedure for estimating the optimal Sb

using simple numerical experiments. Let us use the problem of solving linear PDEs for illustration. When training the ELM 
neural network, suppose the linear system resulting from the PDE that one needs to solve using the least squares method 
is given by the following (see Section 2.3),

Ax = b (6)

where A, x, and b denote the coefficient matrix (non-square), the vector of unknowns, and the right-hand-side vector, 
respectively. Let r denote the residual vector associated with the least squares solution,

r = b − Ax+, (7)

where x+ denotes the least squares solution to equation (6) (with minimum norm if rank-deficient). We use the residual 
norm ‖r‖ as an indicator to the accuracy of the least squares solution. Since ‖r‖ can be readily evaluated, we will use 
preliminary simulations to compute ‖r‖ and estimate the best Sb . The main steps are as follows:

• Consider a set of points from a range for Sb (e.g. Sb ∈ [0.5, 5]).
• For each Sb value, set Sc = Sb/2 and pre-train the random coefficients of the network using modBIP.
• Perform a preliminary ELM simulation using the pre-trained neural network, and compute ‖r‖.
• Collect ‖r‖ for the set of Sb values. Find the Sb corresponding to the smallest (or close to the smallest) ‖r‖. Use this 

value as an estimate for the best Sb .

With the estimate for Sb available, we can then use it in modBIP and perform actual simulations for the given problem 
with ELM. It should be noted that in the simulations for estimating Sb , the number of training data points should be larger 
than the number of training parameters in the neural network to avoid the regime of rank deficiency in the least squares 
solution.

Remark 2.3. In the current work we have considered a symmetric interval [−Sb, Sb] in the modBIP algorithm. For activation 
functions that are not symmetric or anti-symmetric (e.g. swish, softplus), one can imagine that the use of a non-symmetric 
interval such as [Sb1, Sb2] in the algorithm might be more favorable. This aspect is not considered here, and we employ a 
symmetric interval in the current work.

Remark 2.4. We observe that the ELM method, with the random coefficients pre-trained by the current modBIP algorithm, 
produces highly accurate simulation results, and that the accuracy of the combined ELM/modBIP method is insensitive 
to the random coefficient initializations. More specifically, with the hidden-layer coefficients initialized as random values 
generated on [−Rm, Rm], for an arbitrary Rm , the combined ELM/modBIP method produces accurate results and the accuracy 
is insensitive to Rm . This is very different from the behavior of ELM without pre-training of the random coefficients (see 
e.g. Fig. 1). We will demonstrate this point with numerical experiments in Section 3.

Remark 2.5. It is evident that the modBIP algorithm does not involve the activation function in its construction. Therefore, 
essentially any activation function can be used in the neural network together with the current method. This is in sharp 
contrast with the BIP algorithm [33], which employs the inverse of the activation function in its construction. BIP requires 
the activation functions in the neural network to be invertible (i.e. monotonic). This precludes many often-used activation 
functions such as the Sigmoid weighted linear unit (SiLU or swish) [12], Gaussian error linear unit (GELU) [18], Gaussian, 
and other radial basis-type functions.
7



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Remark 2.6. We briefly mention another method for generating target samples from a normal distribution, which is different 
from what has been discussed above. In Algorithm 1 we replace the constant Sc by two constants Sc1 and Sc2 , with 
0 < Sc1 � Sc2 . So now there are three constant parameters in the input, Sb , Sc1 and Sc2 . We replace the lines 12 and 13 of 
Algorithm 1 by the following steps for generating the random target samples ti (1 � i � Ns):

generate a uniform random number μ on [−Sb, Sb];
generate a uniform random number δ on [Sc1 , Sc2 ];
generate random numbers ti (1 � i � Ns) from a normal distribution with mean = μ, stddev = δ.

Here we use a random mean μ from [−Sb, Sb] and a random standard deviation δ from [Sc1 , Sc2 ] for generating the target 
samples ti . We observe that a value around Sb = 2 ∼ 2.5, Sc1 = 0.2 and Sc2 = Sb/2 generally produce results with good 
accuracy.

2.3. Solving partial differential equations with combined ELM/modBIP

We will test the modBIP pre-training algorithm by combining it with ELM for solving partial differential equations 
(PDE). We first initialize the hidden-layer coefficients in the neural network by uniform random values from [−Rm, Rm], 
for some prescribed Rm . Then we pre-train these random coefficients by modBIP, and afterwards fix the updated hidden-
layer coefficients. At this point, we can use the ELM method and the pre-trained neural network in the usual fashion. We 
concentrate on linear partial differential equations in this subsection, and we can compute the training parameters (output-
layer coefficients) by a linear least squares method for solving linear PDEs. The use of ELM/modBIP for solving nonlinear 
partial differential equations can be carried out analogously, and will be discussed toward the end of this subsection.

The use of ELM for solving linear partial differential equations has been discussed in a number of previous works; see 
e.g. [34,10,6] and the references therein. For the sake of completeness, we summarize the main procedure below, and we 
refer the reader to e.g. [6] for more detailed discussions of related aspects. Here we assume that the hidden-layer coefficients 
of the neural network have been pre-trained by modBIP as discussed above. So the weight/bias coefficients in the hidden 
layers are fixed throughout the computations to be discussed below.

For illustration we consider a rectangular domain in two dimensions (2D), � = {(x, y) | x ∈ [a1, a2], y ∈ [b1, b2]}. If the 
problem is time-dependent, we will treat the time t in the same way as the spatial variables, and use the last independent 
variable to denote the time t . In the case with two independent variables, for time-dependent problems, the last indepen-
dent variable (i.e. y) denotes the time t . With this notation, we can treat time-dependent and time-independent problems 
in a unified fashion. So the following discussions also apply to time-dependent problems.

Consider a generic linear partial differential equation on �,

Lu = f (x, y), (8a)

Bu = g(x, y), on ∂�, (8b)

where u(x, y) is the field function to be solved for, L is a linear differential operator, B is a linear operator, f (x, y) is 
a prescribed source term on the domain, and g(x, y) is a prescribed source term defined on the domain boundary ∂�. 
We assume that the system as given by (8a)–(8b) is well-posed. Note that, depending on the order of L, the boundary 
condition (8b) may be imposed only on a part of the domain boundary, and that it should include the initial condition(s) if 
this is a time-dependent problem.

To solve equations (8a)–(8b), we use an extreme learning machine (feed-forward neural network), with its random 
hidden-layer coefficients pre-trained by modBIP, to represent the solution field u(x, y). The input layer of the neural network 
consists of two nodes, representing x and y, respectively. The output layer of the neural network consists of one node, 
representing the solution u. The neural network contains one or multiple hidden layers in between. Let M denote the 
number of nodes in the last hidden layer of the neural network, and let V j(x, y) (1 � j � M) denote the output fields of 
the last hidden layer. Then the logic of the output layer is given by

u(x, y) =
M∑

j=1

β j V j(x, y), (9)

where β j (1 � j � M) denote the weight coefficients in the output layer, which are the training parameters of the neural 
network.

We employ (Q x + 1) and (Q y + 1) uniform grid points in the x and y directions, respectively, with their coordinates 
given by

xp = a1 + a2 − a1

Q
p, yq = b1 + b2 − b1

Q
q, 0 � p � Q x, 0 � q � Q y . (10)
x y

8



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
We enforce the equation (8a) on all the grid points (xp, yq), which will be referred to as the collocation points, and arrive 
at

M∑
j=1

[
LV j(xp, yq)

]
β j = f (xp, yq), 0 � p � Q x, 0 � q � Q y, (11)

where equation (9) has been employed. Let Xb denote the set of collocation points, among (xp, yq), that reside on the 
domain boundary ∂� where the boundary condition (8b) is imposed on. Let Q b denote the number of points in Xb . We 
enforce the boundary condition (8b) on each (x′

m, y′
m) ∈ Xb , and arrive at

M∑
j=1

[BV j(x′
m, y′

m)]β j = g(x′
m, y′

m), 0 � m � Q b − 1. (12)

Equations (11) and (12) form a linear algebraic system about the training parameters β j (1 � j � M). This system consists 
of [(Q x + 1)(Q y + 1) + Q b] equations and M unknowns. The terms involved in the coefficient matrix, such as V j(xp, yq), 
LV j(xp, yq), V j(x′

m, y′
m) and BV j(x′

m, y′
m), can be computed by a forward evaluation of the neural network or by auto-

differentiation. We seek a least squares solution (with minimum norm if the problem is rank deficient) to this system, and 
solve it by the linear least squares method [14]. In the current implementation, we have employed the linear least squares 
routine from LAPACK, available through the wrapper function in the scipy package in Python (function scipy.linalg.lstsq).

In the current paper, we implement the neural network in Python employing the Tensorflow and Keras libraries. The 
neural-network layers are implemented as the “Dense” layers in Keras. The input (training) data to the neural network 
consist of the coordinates of all the collocation points (xp, yq) (0 � p � Q x and 0 � q � Q y) in the domain. In our imple-
mentation, we have incorporated an affine mapping between the input layer and the first hidden layer to normalize the 
input (x, y) data from � = [a1, a2] × [b1, b2] to the domain [−1, 1] × [−1, 1]. This mapping is implemented by a “lambda” 
layer in Keras, which contains no weight/bias coefficients. This lambda layer does not need to be pre-trained by modBIP. 
With this lambda layer incorporated, in line 3 of Algorithm 1, �l−1 should be the output of the lambda layer, i.e. the 
normalized data, instead of the original input data X.

After the linear system consisting of (11) and (12) is solved by the linear least squares method, the weight coefficients 
of the output layer will be set to the computed solution. Then the neural network is evaluated on a set of finer grid 
points, which is different from the training data points, to attain the field solution data u(x, y). The solution data is then 
compared with e.g. the exact solution to compute the errors and other useful quantities. These steps have been followed in 
the numerical experiments of Section 3.

Remark 2.7. For longer-time simulations of time-dependent partial differential equations, we employ the block time-
marching scheme developed in [6]. The spatial-temporal domain is first divided into a number of windows along the time 
(time blocks). The equations (11) and (12) are solved on each time block, individually and successively, using the method 
discussed in this sub-section. After one time block is computed, the solution at the last time instant will be evaluated, and 
used as the initial condition for the computation of the time block that follows. We refer to [6] for more detailed discussions 
of this scheme. Block time marching has been employed for simulations of time-dependent problems in Section 3.

Remark 2.8. While the above discussions concern linear PDEs, the combined ELM/modBIP method can also be applied to 
solving nonlinear partial differential equations, with the same general procedure. One can use modBIP to pre-train the 
random hidden-layer coefficients first, and then fix the updated random coefficients. The neural network can then be used 
in ELM in the usual fashion for solving the nonlinear partial differential equation. The ELM solution algorithm for nonlinear 
PDEs has been discussed in detail in [6]. It involves a nonlinear least squares method with perturbations (NLLSQ-perturb) [6]
for solving the nonlinear algebraic system that results from enforcing the PDE and the boundary/initial conditions on the 
collocation points of the domain and boundaries. Block time marching can be applied with ELM for solving time-dependent 
nonlinear PDEs. We refer the reader to [6] for details of related discussions.

The procedure given in Remark 2.2 for estimating the best Sb in modBIP can be modified accordingly for nonlinear PDEs. 
Let

F(x) = 0 (13)

denote the system of nonlinear algebraic equations resulting from the nonlinear PDE and boundary/initial conditions on the 
collocation points. Let

r = F(x+) (14)

denote the residual vector of this system associated with the least squares solution. In other words, x+ here denotes the 
solution to (13) from the nonlinear least squares method. When using ELM/modBIP for solving nonlinear PDEs, we use the 
residual norm ‖r‖, where r is given by (14), as the indicator for estimating the best Sb in the procedure as outlined in 
Remark 2.2.
9



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 3. Function approximation: (a) Distribution of the exact function. (b) Residual norm of the linear least squares (LLSQ) problem versus Sb , for estimating 
the best Sb in modBIP. (c) The maximum error of the ELM/modBIP solution as a function of Rm , corresponding to several Sb in modBIP.

3. Representative numerical examples

In this section we evaluate the performance of the modBIP algorithm using function approximation and partial differ-
ential equations in one or two dimensions (1D/2D) in space, and plus time if the problem is time-dependent. We solve 
these equations numerically by the combined ELM/modBIP method as discussed in Section 2.3. The random hidden-layer 
coefficients in the neural network are pre-trained by modBIP first, and then they are fixed and used in ELM for finding the 
solutions to the differential equations. In the numerical experiments reported below, with modBIP we employ Sc = Sb/2, 
and estimate Sb using the procedure outlined in Remark 2.2 by computing the residual norm of the linear least squares 
(LLSQ) problem in ELM. When generating the target samples on the random interval [tmin, tmax], we have employed the 
normal distribution with a mean (tmin + tmax)/2 and a standard deviation (tmax − tmin)/4 (see line 13 of Algorithm 1) in all 
the numerical tests. The numerical experiments are conducted on a MAC computer (3.2 GHz Quad-Core Intel Core i5 CPU, 
24GB memory) in the authors’ institution. The wall clock time is collected by using the “timeit” module in Python.

In the current implementation, the initial random coefficients in the hidden layers are generated using the random 
number generator from the Tensorflow library (invoked by the initialization routines in the Keras library), while the random 
values in the modBIP algorithm are generated by the random number generator in the numpy package in Python. In order 
to make all the simulation results reported here fully and exactly repeatable and reproducible, we have employed the 
same seed value for the random number generators in both Tensorflow and numpy, and the seed value is fixed for all the 
numerical experiments reported within a subsection. More specifically, the seed value is 1 for the numerical experiments 
presented in Sections 3.1 and 3.2, 12 for those in Section 3.3, and 22 for those in Sections 3.4 and 3.5, respectively.

Hereafter we employ the vector [M0, M1, . . . , ML] (L � 2) to represent the architecture of the feed-forward neural net-
work in ELM, where the vector length (L + 1) denotes the number of layers in the network and Mi is the number of nodes 
in layer i for 0 � i � L. Note that M0 and ML are the numbers of nodes in the input and output layers, respectively. The 
number of training parameters in ELM is ML−1, i.e. the number of nodes in the last hidden layer, as discussed in Section 2.

3.1. Function approximation

We approximate the following function u(x) by the combined ELM/modBIP method,

u = esin(2πx) + x cos(πx), x ∈ [0,2.5] . (15)

Fig. 3(a) shows the distribution of this function on the domain. Note that the function approximation problem is equivalent 
to solving the linear PDE (8a), with no boundary condition, in which L is given by the identity operator and f is given by 
the function to be approximated.

Let us first consider a single hidden layer in the neural network, with the network architecture given by [1, 100, 1] and 
tanh as the activation function in the hidden layer (the output layer is linear). The input node represents x, and the output 
node represents the function u(x). The input data to the neural network consists of Q = 121 uniform grid (collocation) 
points on [0, 2.5]; see equation (10) when restricted to 1D. The function values on these collocation points are provided 
in equation (8a) as the data for the source term. The hidden-layer coefficients are initialized by uniform random values 
generated on [−Rm, Rm], with Rm specified below.

We first estimate the Sb in modBIP using the procedure from Remark 2.2. Fig. 3(b) shows the residual norm of the linear 
least squares (LLSQ) problem as a function of Sb in a set of preliminary simulations. Here the initial random coefficients in 
the neural network are generated with Rm = 50. They are pre-trained by modBIP, with Sc = Sb/2 and Sb from a range of 
values. The residual norm of the LLSQ problem in ELM is collected corresponding to these Sb values and plotted in Fig. 3(b). 
This plot indicates that, while the residual norm at times fluctuates with respect to Sb , it achieves a relatively low level 
for a range of Sb ≈ 10 ∼ 20 for this problem. We employ Sb = 10 in modBIP in the majority of subsequent tests for this 
problem.
10



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 4. Function approximation: Distributions of the absolute error of the ELM approximant obtained with (a) no pre-training, (b) BIP pre-training, and (c) 
modBIP pre-training of the random coefficients.

Fig. 5. Function approximation: The maximum and rms errors in the domain of the ELM approximant as a function of Rm , attained with (a) no pre-training, 
(b) BIP pre-training, and (c) modBIP pre-training of the random coefficients.

Fig. 3(c) illustrates the general behavior of the ELM approximation error, with the random coefficients pre-trained by 
modBIP. It shows the maximum error in the domain of the ELM approximant as a function of Rm , the maximum magnitude 
of the initial random coefficients, corresponding to several Sb values around Sb = 10 in the modBIP algorithm. Here for 
a given Sb value, we vary Rm systematically in the range 0.1 � Rm � 100, and for each Rm we initialize the hidden-
layer coefficients by uniform random values generated on [−Rm, Rm] and pre-train the random coefficients by modBIP 
with the given Sb and Sc = Sb/2. The pre-trained random coefficients are then used in ELM to compute the training 
parameters (i.e. the output-layer coefficients) by the linear least squares method for approximating the function (15). So 
the approximation function is now represented by the fully trained neural network. We then evaluate the trained neural 
network on a set of 401 (finer) uniform grid points to compute the approximant values, which are then compared with the 
exact function (15) to attain the errors. We can observe from Fig. 3(c) that, with the modBIP pre-training of the random 
coefficients, the ELM error is essentially independent of Rm , although some fluctuations with respect to Rm can be observed 
in certain cases. This insensitivity to Rm is a common characteristic of the combined ELM/modBIP method, which will be 
observed repeatedly in subsequent numerical experiments.

Figs. 4 and 5 are comparisons of the ELM errors of the function approximation problem obtained with three configura-
tions: no pre-training of the random coefficients, and with pre-training of the random coefficients by the BIP algorithm [33]
and by the current modBIP algorithm. As mentioned before, the network architecture is characterized by [1, 100, 1], with 
the tanh activation function and Q = 121 uniform collocation points as the training data points. In this set of tests the 
initial random coefficients are generated with Rm either fixed at Rm = 50 or varied systematically. In the case without 
pre-training, the initial random coefficients are directly used in ELM for computing the training parameters and the approx-
imation function. In the cases with pre-training, the initial random coefficients are pre-trained by BIP or modBIP first, and 
the pre-trained hidden-layer coefficients are then used in ELM for computing the approximation function. With BIP, we em-
ploy a normal distribution for generating the target samples for each hidden-layer node, with a random mean from [−1, 1]
and a standard deviation 0.5, as described in [33]. The inverse of tanh is then applied to the target samples, which are 
then used to compute the mapping coefficients in BIP [33]. With modBIP pre-training, we employ Sc = Sb/2 and Sb = 10 in 
Algorithm 1.

Fig. 4 compares profiles of the absolute error of the ELM approximant obtained without pre-training, with BIP pre-
training, and with modBIP pre-training of the random coefficients. The initial random coefficients are generated with 
Rm = 50 in this set of tests. The error levels of the ELM result with BIP pre-training and without pre-training are largely 
11



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 6. Function approximation (non-monotonic activation functions): (a) Residual norm of the LLSQ problem versus Sb , for estimating the best Sb in 
modBIP. The maximum and rms errors of the ELM solution as a function of Rm obtained using (b) the Gaussian and (c) the swish activation functions, with 
the random coefficients pre-trained by modBIP.

comparable, both on the order of 10−3. In contrast, the error level of the ELM result with the modBIP pre-training is consid-
erably lower, on the order of 10−9. This indicates that the combined ELM/modBIP method is markedly more accurate than 
the ELM methods without pre-training and with the BIP pre-training of the random coefficients.

Fig. 5 shows the maximum and root-mean-squares (rms) errors in the domain of the ELM approximants obtained without 
pre-training and with BIP and modBIP pre-training of the random coefficients. In this set of tests, Rm is varied systematically 
between 0.1 and 100, and the maximum/rms errors of the ELM solution corresponding to the initial random coefficients 
generated on [−Rm, Rm], with and without pre-training, are computed and collected. Without pre-training of the random 
coefficients, the ELM accuracy exhibits a strong dependence on Rm . It produces quite accurate results in a range of moderate 
Rm values, while outside this range the accuracy can be quite poor; see Fig. 5(a). With BIP and modBIP pre-training of 
the random coefficients, the error of the ELM result is observed to be largely independent of Rm . The ELM error level 
corresponding to the modBIP pre-training is considerably smaller than that of the BIP pre-training (see Figs. 5(b,c)).

A prominent advantage of modBIP over BIP lies in that modBIP does not place any constraint on the activation func-
tion, while BIP requires the activation function to be invertible. So modBIP can be applied with many activation functions 
with which BIP breaks down. Two such examples are provided in Fig. 6, with the Gaussian and the swish [12] activation 
functions. Neither of these two functions has an inverse. Here the neural network has the same architecture as before, but 
the activation function for the hidden layer has been changed to the Gaussian function (σ(x) = e−x2

) or the swish function 
(σ(x) = x/(1 + e−x)). The initial random coefficients are generated with a fixed Rm = 50 (plot (a)) or a varying Rm (plots 
(b,c)), and pre-trained by modBIP. We employ the same training data points as before (Q = 121), and Sc = Sb/2 in modBIP. 
Fig. 6(a) shows the LLSQ residual norms for estimating the best Sb , suggesting a value around Sb ≈ 20 with the Gaussian 
function and around Sb ≈ 24 with the swish function. Figs. 6(b,c) show the maximum and rms errors in the domain of the 
ELM/modBIP approximant as a function of Rm , corresponding to the Gaussian activation function (with Sb = 20) and to the 
swish activation function (with Sb = 24). The ELM/modBIP results exhibit a high accuracy (error level around 10−10 ∼ 10−7), 
which is insensitive to Rm (or the initial random coefficients). It should be noted that the BIP algorithm breaks down when 
used with these activation functions, because they do not have an inverse.

The results presented so far are obtained with a single hidden layer in the neural network. Let us next investigate the 
performance of the ELM/modBIP method with neural networks containing multiple hidden layers. Figs. 7 and 8 display 
ELM/modBIP results obtained with 3 and 7 hidden layers in the neural network, respectively. The network architecture is 
characterized by the vectors [1, 40, 40, M, 1] and [1, 40, 40, 40, 40, 40, 40, M, 1] in these two cases, respectively, where M
denotes the number of training parameters and is either fixed at M = 100 or varied between M = 20 and M = 200. The 
activation function is tanh in all hidden layers, and the output layer is linear. We employ Q uniform grid (collocation) points 
in the domain as the training data points, with Q either fixed at Q = 150 or varied between Q = 10 and Q = 300. The 
initial hidden-layer coefficients are set to uniform random values generated on [−Rm, Rm], with Rm either fixed at Rm = 50
or varied between Rm = 0.1 and Rm = 100. These initial random coefficients are pre-trained by modBIP with Sc = Sb/2.

Fig. 7 illustrates the ELM/modBIP results with three hidden layers in the neural network. The plot (a) shows the LLSQ 
residual norms for estimating the best Sb in modBIP, suggesting a value around Sb ≈ 3.5. The plot (b) depicts the error 
distribution of the ELM/modBIP approximant against the actual function (15). The plots (c,d,e) show the maximum and rms 
errors in the domain of the ELM/modBIP approximant as a function of Rm , the number of training collocation points Q , and 
the number of training parameters M . The specific parameter values employed for each plot are provided in the caption of 
Fig. 7.

Fig. 8 shows the corresponding ELM/modBIP results obtained with seven hidden layers in the neural network. The LLSQ 
residual norms in plot (a) suggest a value around Sb ≈ 1.7 for modBIP, which has been employed to attain the error 
distribution and the maximum/rms errors of the ELM/modBIP in the plots (b) to (e). The specific parameter values for each 
case are provided in the caption of this figure.

The results in Figs. 7 and 8 indicate that the combined ELM/modBIP method produces highly accurate results with mul-
tiple hidden layers in the neural network. The best Sb for modBIP (with Sc = Sb/2) appears to decrease with increasing 
12



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 7. Function approximation (3 hidden layers in neural network): (a) The LLSQ residual norm versus Sb , for estimating the best Sb in modBIP. (b) 
Distribution of the absolute error of the ELM/modBIP approximant. The maximum/rms errors of the ELM/modBIP approximant as a function of (c) Rm , (d) 
the number of collocation points Q , and (e) the number of training parameters M . Q is fixed at Q = 150 in (a,b,c,e) and varied in (d). M is fixed at 
M = 100 in (a,b,c,d) and varied in (e). Rm is fixed at Rm = 50 in (a,b,d,e) and varied in (c). Sb is varied in (a) and fixed at Sb = 3.5 in (b,c,d,e).

Fig. 8. Function approximation (7 hidden layers in neural network): (a) The LLSQ residual norm versus Sb , for estimating the best Sb in modBIP. (b) 
Distribution of the absolute error of the ELM/modBIP approximant. The maximum/rms errors of the ELM/modBIP approximant as a function of (c) Rm , (d) 
the number of collocation points Q , and (e) the number of training parameters M . Q is fixed at Q = 150 in (a,b,c,e) and varied in (d). M is fixed at 
M = 100 in (a,b,c,d) and varied in (e). Rm is fixed at Rm = 50 in (a,b,d,e) and varied in (c). Sb is varied in (a) and fixed at Sb = 1.7 in (b,c,d,e).

number of hidden layers in the neural network. The ELM/modBIP errors are not sensitive to the initial random coefficients, 
similar to what has been observed with a single hidden layer in the network. These errors decrease approximately expo-
nentially as the number of collocation points or the number of training parameters increases, until they essentially saturate 
when the number of collocation points or training parameters becomes sufficiently large.
13



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 9. Poisson equation: (a) Distribution of the exact solution. (b) LLSQ residual norm as a function of Sb , for estimating the best Sb in modBIP. (c) The 
maximum error of the ELM/modBIP solution as a function of Rm . Rm = 10 in (b) and is varied in (c). Q = 25 × 25 in (c), and takes several values in (b). Sb

takes several values in (c), and is varied in (b). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.2. Poisson equation

We next consider the two-dimensional (2D) domain � = {(x, y) | x ∈ [0, 2], y ∈ [0, 2]}, and test the combined ELM/mod-
BIP method using the boundary value problem with the Poisson equation on �:

∂2u

∂x2
+ ∂2u

∂ y2
= f (x, y), (16a)

u(0, y) = g1(y), (16b)

u(2, y) = g2(y), (16c)

u(x,0) = h1(x), (16d)

u(x,2) = h2(x), (16e)

where u(x, y) is the field function to be solved for, f (x, y) is a prescribed source term, and g1, g2, h1 and h2 are the 
Dirichlet boundary distributions. We consider the following manufactured solution to this problem,

u(x, y) = −
[

3

2
cos

(
πx + 7π

20

)
+ 2 cos

(
2πx − π

4

)][
3

2
cos

(
π y + 7π

20

)
+ 2 cos

(
2π y − π

4

)]
. (17)

Accordingly, the source term f and the boundary distributions are chosen such that the expression (17) satisfies the system 
(16). Fig. 9(a) illustrates the distribution of this analytic solution.

We employ the combined ELM/modBIP method to solve the system (16); see Section 2.3. We first consider a single 
hidden layer in the neural network, with an architecture given by [2, 500, 1], the tanh activation function for the hidden 
layer, and a linear output layer. The input layer (2 nodes) represents the coordinates x and y, and the output layer (1 node) 
represents the field solution u(x, y). We employ a set of Q = 25 × 25 uniform grid (collocation) points as the training 
data points, i.e. with 25 points in both x and y directions (see equation (10)), which constitute the input data into the 
neural network. The hidden-layer coefficients in the neural network are initialized to uniform random values generated on 
[−Rm, Rm], with Rm either fixed at Rm = 10 or varied between Rm = 0.1 and Rm = 100 in the following tests. The initial 
random coefficients are pre-trained by modBIP with Sc = Sb/2 and Sb determined by the procedure given in Remark 2.2.

Fig. 9(b) shows the residual norm of the linear least squares (LLSQ) problem as a function of Sb in modBIP, where the 
initial random coefficients are generated with Rm = 10. The results corresponding to Q = 25 × 25 and several other sets of 
collocation points are included, which all suggest a value around Sb ≈ 3 for modBIP. Fig. 9(c) shows the maximum and rms 
errors in the domain of the ELM/modBIP solution as a function of Rm , corresponding to several Sb values around Sb = 3
in modBIP (with Sc = Sb/2), where Q = 25 × 25 collocation points have been employed. The errors of the ELM/modBIP 
method can be observed to be insensitive to Rm (or the initial random coefficients).

Fig. 10 compares distributions of the absolute error of the ELM solution obtained with no pre-training and with the 
BIP and the modBIP pre-training of the random coefficients in the neural network. Here we have employed a network 
architecture given by [2, 500, 1], the tanh activation function for the hidden layer, Q = 25 × 25 uniform collocation points, 
and Rm = 10 for generating the initial random coefficients. With BIP, we employ a normal distribution for the target samples, 
with a random mean generated on [−1, 1] from a uniform distribution and a standard deviation 0.5 [33]. With modBIP we 
employ Sb = 3 and Sc = Sb/2 in the algorithm. One can observe that the ELM result is inaccurate without pre-training 
of the random coefficients. With both BIP and modBIP pre-training of the random coefficients, the ELM method produces 
accurate solutions to the Poisson equation. The ELM/modBIP solution is markedly more accurate than that of ELM/BIP.

Fig. 11 is a further comparison of the cases with no pre-training and with BIP and modBIP pre-training of the random 
coefficients. Here we vary Rm systematically, and for each Rm we initialize the hidden-layer coefficients to uniform random 
14



Fig. 10. Poisson equation: Distributions of the absolute error of the ELM solution computed with (a) no pre-training, (b) BIP pre-training, and (c) modBIP 
pre-training of the random coefficients.

Fig. 11. Poisson equation: the maximum and rms errors in the domain as a function of Rm , obtained with (a) no pre-training, (b) BIP pre-training, and (c) 
modBIP pre-training of the random coefficients.

values from [−Rm, Rm], which are then pre-trained by BIP or modBIP and used in the ELM computations. The other pa-
rameter values are identical to those for Fig. 10. The three plots show the maximum and rms errors in the domain of the 
ELM solution as a function of Rm , obtained with no pre-training and with the BIP and modBIP pre-training of the random 
coefficients. With no pre-training, Rm is observed to strongly influence the accuracy of the ELM solution. With both BIP and 
modBIP pre-training of the random coefficients, the accuracy of the ELM solution becomes essentially independent of Rm . 
The error level of the ELM/modBIP solution is markedly lower than that of the ELM/BIP solution.

Fig. 12 illustrates the ELM/modBIP results attained with the Gaussian and the swish activation functions for the hidden 
layers. It should be noted that the BIP algorithm [33] breaks down with these activation functions because they do not have 
an inverse. In these tests, we have employed a network architecture [2, 500, 1], Q = 25 × 25 uniform collocation points, 
either a fixed Rm = 10 or a varying Rm for generating the initial random coefficients, and Sc = Sb/2 in modBIP. Fig. 12(a) 
shows the LLSQ residual norms for estimating the Sb parameter in modBIP, which suggest a value around Sb ≈ 5 with 
the Gaussian function and a value around Sb ≈ 7 with the swish function. Figs. 12(b) and (d) show the error distribution 
of the ELM/modBIP solution with Rm = 10, and its maximum/rms errors corresponding to the initial random coefficients 
generated with different Rm , computed using the Gaussian activation function with Sb = 5 in modBIP. Figs. 12(c) and (e) 
show the corresponding ELM/modBIP results computed using the swish activation function with Sb = 7 in modBIP. These 
data indicate that the combined ELM/modBIP method produces highly accurate results with these activation functions, and 
that its accuracy is insensitive to the initial random coefficients.

Fig. 13 compares the accuracy of the combined ELM/modBIP method and the ELM method with no pre-training of the 
random coefficients, and also examines the computational cost of the modBIP pre-training of the random coefficients. In this 
set of tests, we employ a neural network architecture [2, M, 1], where the number of training parameters M is either fixed 
at M = 500 or varied between M = 50 and M = 600. We employ the tanh activation function for the hidden layer, and Q =
Q 1 × Q 1 uniform collocation points in the domain, where Q 1 denotes the number of collocation points in x/y directions 
and is either fixed at Q 1 = 35 or varied between Q 1 = 5 and Q 1 = 50. The initial random coefficients are generated with 
Rm = 10, and we employ Sb = 3 and Sc = Sb/2 in modBIP. Fig. 13(a) shows the maximum and rms errors of the ELM 
solutions as a function of Q 1, obtained without pre-training and with modBIP pre-training of the random coefficients and 
with a fixed M = 500. Fig. 13(b) shows the maximum/rms ELM errors as a function of M , obtained with no pre-training 
and with modBIP pre-training and with a fixed Q 1 = 35 for the collocation points. The ELM solution obtained without pre-
training the random coefficients generated with Rm = 10 is not accurate, and increasing the number of collocation points 
or the training parameters results in little or no improvement in the accuracy. In contrast, the errors of the combined 
ELM/modBIP method decrease exponentially as the number of collocation points per direction Q 1 or the number of training 
S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
15



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585

Fig. 12. Poisson equation (non-monotonic activation functions): (a) LLSQ residual norms versus Sb , for estimating the best Sb in modBIP with the Gaussian 
and swish activation functions. Error distributions of the ELM/modBIP solution obtained with (b) Gaussian and (c) swish activation functions. Maximum/rms 
errors of the ELM/modBIP solution versus Rm , obtained with (d) Gaussian and (e) swish activation functions. Rm = 10 in (a,b,c) and is varied in (d,e). Sb = 5
in (b,d) and Sb = 7 in (c,e).

Fig. 13. Poisson equation: The maximum/rms errors of the ELM/modBIP solution as a function of (a) the number of collocation points in each direction and 
(b) the number of training parameters, attained with no pre-training and with modBIP pre-training of the random coefficients. The modBIP pre-training 
time of the random coefficients, and the ELM training time of the neural network, as a function of (c) the number of collocation points in each direction 
and (d) the number of training parameters.
16



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 14. Poisson equation (3 hidden layers in neural network): (a) LLSQ residual norms versus Sb , for estimating the best Sb in modBIP. (b) Error distribution 
of the ELM/modBIP solution. Maximum/rms errors of the ELM/modBIP solution as a function of (c) Rm , and (d) the number of collocation points in each 
direction. Sb = 1 in (b,c,d) and is varied in (a). Rm = 10 in (a,b,d) and is varied in (c). Q = 25 × 25 in (a,b,c) and is varied in (d). M = 500 in (a,b,c,d).

Fig. 15. Poisson equation (5 hidden layers in neural network): (a) LLSQ residual norm for estimating the best Sb in modBIP. (b) Error distribution of the 
ELM/modBIP solution. The maximum/rms errors of ELM/modBIP solution as a function of (c) Rm , and (d) the number of collocation points in each direction. 
Sb = 0.8 in (b,c,d) and is varied in (a). Rm = 10 in (a,b,d) and is varied in (c). Q = 25 × 25 in (a,b,c) and is varied in (d). M = 500 in (a,b,c,d).

parameters M increases. The errors are observed to saturate at a level around 10−8 ∼ 10−6 as Q 1 increase beyond 25 for 
this case.

Figs. 13(c) and (d) show the corresponding computational cost, i.e. the modBIP pre-training time of the random coeffi-
cients and the ELM training time of the neural network, as a function of the number of collocation points in each direction 
(Q 1) and the number of training parameters (M), respectively. Both the modBIP pre-training time and the ELM network 
training time increase with increasing number of collocation points in the domain and increasing number of training pa-
rameters in the neural network. But the modBIP pre-training cost increases much more slowly than the latter. The modBIP 
pre-training cost of the random coefficients is only a fraction of the ELM network training cost. For example, in the range 
of collocation points tested here, the modBIP pre-training time is about 2 ∼ 10% of the ELM network training time. These 
results suggest that the modBIP pre-training of the random coefficients is not significant in terms of the overhead it induces. 
It should be noted that the modBIP pre-training cost can be further reduced, because logically pre-training the random coef-
ficients only need to be performed once (the first time) for a given a network architecture and the input collocation points. 
The pre-trained hidden-layer random coefficients can be saved and used directly for subsequent ELM computations.

We next test the combined ELM/modBIP method for solving the Poisson equation with multiple hidden layers in the 
neural network. Figs. 14 and 15 illustrate the ELM/modBIP simulation results obtained using neural networks containing 
3 hidden layers, with an architecture [2, 50, 50, 500, 1], and 5 hidden layers, with an architecture [2, 50, 50, 50, 50, 500, 1], 
respectively. The activation function is tanh in the hidden layers. In these tests the initial random coefficients are generated 
on [−Rm, Rm] with Rm either fixed at Rm = 10 or varied between Rm = 0.1 and Rm = 100. We employ Q = Q 1 × Q 1
uniform collocation points, where Q 1 is fixed at Q 1 = 25 or varied between Q 1 = 5 and Q 1 = 50. In modBIP we employ 
Sc = Sb/2 and determine Sb based on the procedure from Remark 2.2.

Fig. 14(a) shows the LLSQ residual norms for estimating Sb , suggesting a value around Sb ≈ 1 for modBIP with three hid-
den layers in the neural network. Figs. 14(b) to (d) show the error distribution, and the maximum/rms errors in the domain 
of the ELM/modBIP solution as a function of Rm and Q 1, obtained with Sb = 1 in modBIP. The specific parameter values 
for each plot are provided in the caption of this figure. Fig. 15(a) shows the LLSQ residual norms computed with 5 hidden 
layers in the neural network, suggesting a value around Sb ≈ 0.8 in this case. Figs. 15(b,c,d) show the ELM/modBIP results 
obtained with 5 hidden layers in the neural network and Sb = 0.8 in modBIP, which correspond to those of Figs. 14(b,c,d). 
These results confirm that the combined ELM/modBIP method produces accurate simulation results with multiple hidden 
layers in the neural network. The characteristics of exponential convergence and insensitivity to Rm are similar to what has 
been observed with single-hidden-layer neural networks.

Fig. 16 is a study of the computational cost of the modBIP pre-training of the random coefficients and the ELM training 
of the neural network with multiple hidden layers in the neural network. It shows the modBIP pre-training time and the 
ELM network training time as a function of the number of collocation points in each direction, corresponding to 3 and 5
hidden layers in the neural network. The network architecture and the parameter values in Figs. 16(a) and (b) are identical 
to those of Fig. 14(d) and Fig. 15(d), respectively. In the range of collocation points tested here, the modBIP pre-training 
cost is approximately 2 ∼ 8% of the ELM network training cost with 3 hidden layers, and approximately 2 ∼ 7% of the ELM 
network training cost with 5 hidden layers in the neural network.
17



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 16. Poisson equation: The modBIP pre-training time of the random coefficients and the ELM training time of the neural network as a function of the 
number of collocation points in each direction, obtained with 3 hidden layers (a) and 5 hidden layers (b) in the neural network. The network architecture 
of (a) is [2, 50, 50, 500, 1] and the parameter values correspond to those of Fig. 14(d). The network architecture of (b) is [2, 50, 50, 50, 50, 500, 1] and the 
parameter values correspond to those of Fig. 15(d).

Fig. 17. Wave equation: (a) Distribution of the exact solution in the spatial-temporal plane. (b) The maximum residual norm of the LLSQ problem versus 
Sb , for estimating the best Sb in modBIP. (c) The maximum error in the overall domain as a function of Rm , corresponding to several Sb values in modBIP 
for pre-training the random coefficients.

3.3. Wave equation

We next test the ELM/modBIP method using the one-dimensional second-order wave equation (plus time). Consider the 
spatial-temporal domain, � = {(x, t) | x ∈ [0, 5], t ∈ [0, 10]}, and the initial/boundary-value problem with the wave equation 
on this domain,

∂2u

∂t2
− c2 ∂2u

∂x2
= 0, (18a)

u(0, t) = u(5, t), (18b)

∂

∂x
u(0, t) = ∂

∂x
u(5, t), (18c)

u(x,0) = 2 sech3
[

3

δ0
(x − x0)

]
, (18d)

∂u

∂t

∣∣∣∣
(x,0)

= 0, (18e)

where u(x, t) is the field solution to be solved for, periodic boundary conditions are imposed on x = 0 and 5, c is the wave 
speed, x0 is the initial peak location of the wave, and the constant δ0 controls the width of the wave profile. The constant 
parameters assume the following values for this problem:

c = 2, δ0 = 2, x0 = 3.

This problem has the following solution,
18



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 18. Wave equation: Distributions of the absolute error of the locELM solution obtained with (a) no pre-training, (b) BIP pre-training, and (c) modBIP 
pre-training of the random coefficients.

⎧⎪⎪⎨
⎪⎪⎩

u(x, t) = sech3
[

3

δ0

(
−5

2
+ ξ

)]
+ sech3

[
3

δ0

(
−5

2
+ η

)]
,

ξ = mod

(
x − x0 + ct + 5

2
,5

)
, η = mod

(
x − x0 − ct + 5

2
,5

)
,

(19)

where mod refers to the modulo operation. The two terms in this solution represent the leftward- and rightward-traveling 
waves, respectively. Fig. 17(a) shows the distribution of this solution in the spatial-temporal plane.

To simulate this problem, we employ the block time-marching scheme and the local extreme learning machines (lo-
cELM) developed in [6]. We first divide the spatial-temporal domain � along the temporal direction into 20 uniform time 
blocks, and the system (18) is computed on each time block individually and successively (see Remark 2.7). We partition 
the spatial-temporal domain of each time block into 4 uniform sub-domains along the x direction, and represent the field 
solution u(x, t) on each sub-domain by a local feed-forward neural network [6]. C1 continuity conditions are imposed on 
the sub-domain boundaries. The configuration of the local neural networks follows that of the ELM. The weight/bias coeffi-
cients in the hidden layers of the local neural networks are initialized as uniform random values generated on [−Rm, Rm], 
which are pre-trained by modBIP and then fixed afterwards. The output layers of the local neural networks are linear 
(with zero bias), and the weight coefficients therein are the training parameters and can be determined by a least squares 
computation. The local neural networks are coupled with one another due to the C1 continuity conditions [6], and need 
to be trained together as a whole system. By enforcing the system of equations, boundary/initial conditions, and the C1

continuity conditions on a set of collocation points inside each sub-domain and on the domain and sub-domain bound-
aries, we arrive at a system of linear algebraic equations about the training parameters, which can be solved by the linear 
least squares method. We refer to [6] for more detailed discussions of the locELM method and the block time marching 
scheme.

After the random coefficients in the local neural networks are initialized, we use modBIP to pre-train the random coef-
ficients in each local neural network (see Algorithm 1), and then employ the pre-trained random coefficients in the locELM 
computation for the training parameters based on the linear least squares method. We refer to the overall method as the 
combined locELM/modBIP method.

We first consider a single hidden layer in the local neural networks, whose architecture each is characterized by 
[2, 250, 1] and with tanh as the activation function for the hidden layers. The two nodes in the input layer represent 
the spatial-temporal coordinates x and t , and the single node in the output layer represents the field function u(x, t) on the 
corresponding sub-domain. We employ Q = 25 × 25 uniform collocation points on each sub-domain, and Sc = Sb/2 in the 
modBIP algorithm. Sb in modBIP is determined by the procedure from Remark 2.2.

Fig. 17(b) shows the maximum residual norms, among the 20 time blocks, of the linear least squares (LLSQ) problem 
as a function of Sb , for estimating the best Sb in modBIP. In this set of tests, the initial random coefficients are generated 
with Rm = 50. The data suggest a value around Sb ≈ 2 for modBIP. Fig. 17(c) shows the maximum error in the entire 
spatial-temporal domain of the locELM/modBIP solution as a function of Rm , obtained with several Sb values in modBIP. We 
observe the familiar insensitivity of the locELM/modBIP error with respect to Rm (or the initial random coefficients) in the 
neural network.

Fig. 18 compares distributions in the spatial-temporal plane of the absolute error of the locELM solution obtained with 
no pre-training, and with BIP and modBIP pre-training of the random coefficients in the local neural networks. In this 
set of tests, we employ local neural networks with an architecture [2, 250, 1], the tanh activation function for the hidden 
layers, and Q = 31 × 31 uniform collocation points on each sub-domain. The initial random coefficients in the local neural 
networks are generated with Rm = 50. With BIP, we generate target samples by a normal distribution with a random 
19



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 19. Wave equation: Maximum and rms errors of the locELM solution in the domain as a function of Rm , obtained with (a) no pre-training, (b) BIP 
pre-training, and (c) modBIP pre-training of the random coefficients.

Fig. 20. Wave equation (non-monotonic activation functions): (a) The LLSQ maximum residual norm for estimating Sb in modBIP, with the Gaussian and 
GELU [18] activation functions. Error distributions of the locELM/modBIP solution obtained with (b) the Gaussian, and (c) the GELU activation functions. 
The maximum/rms errors of the locELM/modBIP solution as a function of Rm obtained using (d) the Gaussian, and (e) the GELU activation functions. Sb = 3
in (b,d) with the Gaussian function, and Sb = 4 in (c,e) with GELU, and Sb is varied in (a). Rm = 50 in (a,b,c) and is varied in (d,e).

mean from [−1, 1] and a standard deviation 0.5 [33]. With modBIP we employ Sb = 2 and Sc = Sb/2 in Algorithm 1. The 
locELM solution obtained without pre-training of the random coefficients generated by Rm = 50 exhibits no accuracy for this 
problem (Fig. 18(a)). On the other hand, the locELM solutions obtained with BIP and modBIP pre-training are quite accurate, 
and the combined locELM/modBIP solution is observed to be notably more accurate than the locELM/BIP one (with error 
levels 10−5 versus 10−4).

Fig. 19 is a further comparison of the locELM methods with no pre-training and with BIP and modBIP pre-training 
of the random coefficients. Plotted here are the maximum and rms errors in the overall domain of the locELM solution 
obtained with these three cases as a function of Rm for generating the initial random coefficients. The local neural-network 
architecture and related parameters, the collocation points, and the parameters for the BIP and modBIP algorithms are the 
same as those for Fig. 18, except that here the Rm is varied systematically between Rm = 0.1 and Rm = 100 in this set 
of computations. Without pre-training of the initial random coefficients, one can observe a strong influence of Rm on the 
locELM solution accuracy (Fig. 19(a)). On the other hand, the pre-training of the random coefficients by either modBIP or 
BIP essentially eliminates the dependence of the solution error on Rm (i.e. the initial random coefficients). The combined 
locELM/modBIP method is again observed to be more accurate than locELM/BIP.

Fig. 20 demonstrates the ability of the current modBIP algorithm to work with non-invertible activation functions. By 
contrast, the BIP algorithm breaks down if such activation functions are present in the neural network. Specifically, this 
figure examines the locELM/modBIP simulation results obtained using the Gaussian function and the Gaussian error linear 
20



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 21. Wave equation (3 hidden layers in neural network): (a) The LLSQ maximum residual norm for estimating the best Sb in modBIP. The maximum and 
rms errors of the locELM/modBIP solution as a function of (b) Rm , and (c) the number of training parameters per sub-domain. (d) The modBIP pre-training 
time and the ELM network training time as a function of the number of training parameters per sub-domain. Sb = 0.8 in (b,c,d), and is varied in (a). 
Rm = 50 in (a,c,d), and is varied in (b). Local neural network architecture is [2, 50, 50, M, 1], with M = 250 in (a,b) and varied in (c,d). Q = 31 × 31 in 
(a,b,c,d).

unit (GELU) [18] as the activation functions in the hidden layers of the local neural networks. Here each local neural network 
has an architecture [2, 250, 1], with Gaussian or GELU as the activation function for the hidden layer, and we employ 
Q = 31 × 31 uniform collocation points on each sub-domain. The initial random coefficients in the local neural networks 
are generated with either a fixed Rm = 50 or with Rm varied between Rm = 0.1 and Rm = 100, and are pre-trained using 
modBIP with Sc = Sb/2. Fig. 20(a) shows the LLSQ maximum residual norms (among the 20 time blocks) for estimating the 
Sb in modBIP, which suggest a value around Sb ≈ 3 with the Gaussian activation function and a value around Sb ≈ 4 with 
the GELU activation function. Figs. 20(b) and (c) show the error distributions the locELM/modBIP solution obtained using 
the Gaussian and GELU activation functions, respectively, with a fixed Rm = 50 for generating the initial random coefficients. 
Figs. 20(d) and (e) are the maximum and rms errors of the locELM/modBIP solution in the overall domain as a function of 
Rm , obtained with the Gaussian and GELU activation functions, respectively. In the plots (b)-(d), we employ Sb = 3 with the 
Gaussian function and Sb = 4 with GELU in the modBIP algorithm. It is evident that the combined locELM/modBIP produces 
accurate simulation results with the Gaussian and GELU activation functions, and that its errors are insensitive to the initial 
random coefficients.

Finally, Fig. 21 is an illustration of the locELM/modBIP results with 3 hidden layers in the local neural networks. In this 
group of tests, we employ an architecture [2, 50, 50, M, 1] in all the local neural networks with the tanh activation function 
for the hidden layers, where M is either fixed at M = 250 or varied between M = 50 and M = 400. We again employ 20
uniform time blocks, 4 uniform sub-domains within each time block, and a set of Q = 31 × 31 uniform collocation points 
on each sub-domain. The initial random coefficients are generated with Rm either fixed at Rm = 50 or varied between 
Rm = 0.1 and Rm = 100. Fig. 21(a) shows the LLSQ maximum residual norm for estimating Sb , suggesting a value around 
Sb ≈ 0.8 in modBIP. Figs. 21(b) and (c) show the maximum and rms errors in the overall domain of the locELM/modBIP 
solution as a function of Rm and the number of training parameters per sub-domain M , respectively. The results signify the 
insensitivity of the locELM/modBIP errors with respect to the initial random coefficients, and the exponential decrease in 
the errors with increasing training parameters in the neural network. Fig. 21(d) shows the modBIP pre-training time of the 
random coefficients and the ELM training time of the neural network as a function of the number of training parameters per 
sub-domain. While both the modBIP pre-training time and the ELM training time grows with increasing number of training 
parameters, the growth rate of the modBIP pre-training time is much slower than the ELM training time. For example, 
as the number of training parameters per sub-domain increases from 50 to 400, the modBIP pre-training time increases 
from around 1.4 seconds to about 4.2 seconds, while the ELM training time increases from about 4.8 seconds to about 87
seconds.
21



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 22. Diffusion equation: (a) Distribution of the exact solution in the spatial-temporal plane. (b) The maximum residual norm of the linear least squares 
(LLSQ) problem as a function of Sb , for estimating the best Sb in modBIP. (c) The maximum error in the domain of the ELM/BIP solution as a function of 
Rm , corresponding to several Sb values in modBIP. Rm = 100 in (b) and is varied in (c).

3.4. Diffusion equation

As another example we test the combined ELM/modBIP method using the unsteady diffusion equation. Consider the 
spatial-temporal domain, � = { (x, t) | x ∈ [0, 1], t ∈ [0, 10]}, and the following initial/boundary value problem,

∂u

∂t
− ν

∂2u

∂x2
= f (x, t), (20a)

u(0, t) = g1(t), (20b)

u(1, t) = g2(t), (20c)

u(x,0) = h(x), (20d)

where u(x, t) is the field solution to be solved for, the constant ν = 0.01 denotes the diffusion coefficient, f (x, t) is a 
prescribed source term, g1 and g2 are the Dirichlet boundary distributions at x = 0 and x = 1, and h(x) is the initial 
distribution. We employ the following manufactured solution to this problem,

u(x, t) =
[

2 cos
(
πx + π

5

)
+ 3

2
cos

(
2πx − 3π

5

)][
2 cos

(
πt + π

5

)
+ 3

2
cos

(
2πt − 3π

5

)]
. (21)

Accordingly, the source term f (x, t), the boundary/initial distributions g1, g2 and h are chosen such that the expression (21)
satisfies the system (20). Fig. 22(a) shows the distribution of the analytic solution (21) in the spatial-temporal (x, t) plane.

We employ the block time-marching scheme and the combined ELM/modBIP method to solve the system (20). We di-
vide the spatial-temporal domain � along the temporal direction into 10 uniform time blocks, and solve the system (20)
on each time block individually and successively (see Remark 2.7) using the combined ELM/modBIP method (see Sec-
tion 2.3).

Let us first consider the neural network containing a single hidden layer, with the architecture characterized by 
[2, 300, 1], the tanh activation function for the hidden layer and a linear output layer. The input layer (2 nodes) denotes the 
spatial/temporal coordinates (x and t), and the output layer (1 node) represents the field solution u(x, t). We employ a set 
of Q = 25 × 25 uniform grid (collocation) points on each time block (25 points in both x and t directions) as the training 
data points, which constitute the input data into the neural network. The hidden-layer coefficients in the neural network 
are initialized to uniform random values generated on [−Rm, Rm], with Rm either fixed at Rm = 100 or varied between 
Rm = 0.1 and Rm = 100 in the subsequent tests. The initial random coefficients are pre-trained by modBIP with Sc = Sb/2
and Sb determined by the procedure discussed in Remark 2.2.

Fig. 22(b) shows the LLSQ maximum residual norm among the 10 time blocks for estimating the best Sb in modBIP, 
which suggests a value around Sb ≈ 2.5. This set of tests is performed with a fixed Rm = 100 when generating the random 
coefficients in the neural network. Fig. 22(c) plots the maximum error in the overall domain of the ELM/modBIP solution as 
a function of Rm , with several Sb values around Sb = 2.5 and Sc = Sb/2 in the modBIP algorithm. The ELM/modBIP solution 
errors in this and the subsequent figures are computed as follows. After the neural network has been trained, we evaluate 
the neural network on a set of 101 ×101 uniform grid points on each time block to obtain the numerical solution. The exact 
solution (21) is evaluated on the same set of grid points in the overall domain. Then the maximum and the rms errors of 
the numerical solution against the analytic solution can be computed based on these data. The error of the ELM/modBIP 
22



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 23. Diffusion equation: Distributions of the absolute error of the ELM solution obtained with (a) no pre-training, (b) BIP pre-training, and (c) modBIP 
pre-training of the random coefficients.

Fig. 24. Diffusion equation: The maximum and rms errors of the ELM solution as a function of Rm obtained with (a) no pre-training, (b) BIP pre-training, 
and (c) modBIP pre-training of the random coefficients.

solution can be observed to be insensitive to the initial random coefficients in the neural network, irrespective of the Sb
parameter in modBIP.

In Figs. 23 and 24 we compare the ELM method with no pre-training and with the BIP and modBIP pre-training of 
the random coefficients in the neural network. In the case with no pre-training, the initial random coefficients generated 
on [−Rm, Rm] are directly used in the ELM computation. In the case with BIP or modBIP pre-training, the initial random 
coefficients are pre-trained first, and the updated random coefficients are then used in the ELM computation. With BIP, 
a normal distribution for the target samples has been employed with a random mean on [−1, 1] and a standard devi-
ation 0.5 [33]. With modBIP we employ Sc = Sb/2 and Sb = 2.5 in the Algorithm 1. Fig. 23 shows distributions in the 
spatial-temporal plane of the absolute error of the ELM solution obtained with no pre-training and with BIP/modBIP pre-
training of the random coefficients. The initial random coefficients are generated with Rm = 100 in this set of tests. The 
ELM solution obtained without pre-training of the random coefficients is totally off and inaccurate. On the other hand, the 
ELM solutions with the initial random coefficients pre-trained by BIP and modBIP are observed to be very accurate. The 
ELM/modBIP solution is observed to be considerably more accurate (by two or three orders of magnitude) than the ELM/BIP 
solution.

Fig. 24 shows the maximum and rms errors of the ELM solutions, obtained with no pre-training and with BIP or modBIP 
pre-training of the random coefficients, as a function of Rm for generating the initial random coefficients. The accuracy of 
the ELM solution without pre-training of the random coefficients strongly depends on Rm , as is evident from Fig. 24(a). 
In contrast, with the random coefficients pre-trained by BIP or modBIP, the ELM solution accuracy becomes essentially 
independent of Rm (Figs. 24(b,c)). The data again signify that the ELM/modBIP solution is much more accurate than the 
ELM/BIP one.

Fig. 25 demonstrates the capability of the combined ELM/modBIP method to work with activation functions that do 
not have an inverse. Here we have considered the Gaussian and swish activation functions in the neural network. We 
again employ a network architecture [2, 300, 1], with Q = 25 × 25 uniform collocation points on each time block. The 
23



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 25. Diffusion equation (non-monotonic activation functions): (a) The LLSQ maximum residual norm versus Sb , for estimating the best Sb in modBIP, 
with the Gaussian and swish activation functions. Distributions of the absolute error of the ELM/modBIP solution obtained with (b) the Gaussian, and 
(c) swish activation functions. The maximum/rms errors in the domain as a function of Rm corresponding to (d) the Gaussian, and (e) swish activation 
functions. Rm = 100 in (a,b,c) and is varied in (d,e). Sb = 3 in (b,d) for the Gaussian function, and Sb = 5 in (c,e) for the swish function, and Sb is varied 
in (a).

initial random coefficients are generated with Rm fixed at Rm = 100 or varied between Rm = 0.1 and Rm = 100. Fig. 25(a) 
shows the LLSQ maximum residual norms for estimating the Sb in modBIP, which suggest a value around Sb ≈ 3 with the 
Gaussian activation function and Sb ≈ 5 with the swish activation function. Figs. 25(b) and (c) depict the error distributions 
in the spatial-temporal plane of the ELM/modBIP solution corresponding to the Gaussian activation function (with Sb = 3
in modBIP) and the swish activation function (with Sb = 5 in modBIP). One can observe that the combined ELM/modBIP 
method, especially with the Gaussian activation function, has produced very accurate results. The initial random coefficients 
are generated with Rm = 100 in the plots (a,b,c). Figs. 25(d) and (e) show the maximum/rms errors in the overall domain 
of the ELM/modBIP solution as a function of Rm , corresponding to the Gaussian and swish activation functions, respectively. 
The solution errors are not sensitive to the initial random coefficients in the neural network. It should be noted that the BIP 
algorithm breaks down with the type of activation functions tested here.

Finally, Fig. 26 illustrates the ELM/modBIP simulation results using multiple hidden layers in the neural network. Here 10
uniform time blocks are used in the domain for block time marching. The neural network architecture is characterized by 
[2, 50, 50, M, 1], where the number of training parameters M is fixed at M = 300 or varied between M = 50 and M = 600. 
The tanh activation function is used for all the hidden layers. We employ Q = Q 1 × Q 1 uniform collocation points within 
each time block, where Q 1 is either fixed at Q 1 = 25 or varied between Q 1 = 5 and Q 1 = 50. The initial random coefficients 
are generated with a fixed Rm = 100 or with Rm varied between Rm = 0.1 and Rm = 100. These random coefficients are pre-
trained by modBIP with Sc = Sb/2 and Sb estimated by the procedure in Remark 2.2. The specific parameter values for each 
plot are provided in the caption of the figure. Fig. 26(a) shows the LLSQ residual norms versus Sb for estimating the best 
Sb in modBIP, which suggests a value around Sb ≈ 0.8 in the algorithm. Fig. 26(b) illustrates the error distribution of the 
ELM/modBIP solution in the spatial-temporal plane, demonstrating that the method produces accurate simulation results. 
Fig. 26(c) depicts the maximum and rms errors in the overall domain of the ELM/modBIP solution as a function of Rm for 
generating the initial random coefficients, indicating that the accuracy of the ELM/modBIP method is not sensitive to the 
initial random coefficients with multiple hidden layers in the neural network. Fig. 26(d) shows the maximum/rms errors of 
the ELM/modBIP solution as a function of the number of training parameters (M), indicating an exponential decrease in the 
errors (before saturation) with this method. Fig. 26(e) shows the modBIP pre-training time and the ELM network training 
time as a function of the number of training parameters in the neural network. The modBIP pre-training time grows very 
slowly as the number of training parameters increases. Its growth rate is much smaller compared with that of the ELM 
training time.
24



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 26. Diffusion equation (3 hidden layers in neural network): (a) The maximum residual norm of the LLSQ problem for estimating the Sb in modBIP. (b) 
Distribution of the absolute error of the ELM/modBIP solution. The maximum and rms errors in the domain as a function of (c) Rm , and (d) the number 
of training parameters M . (e) The modBIP pre-training time and the ELM network training time as a function of the number of training parameters M . 
Sb = 0.8 in (b,c,d,e) and is varied in (a). Rm = 100 in (a,b,d,e) and is varied in (c). M = 300 in (a,b,c) and is varied in (d,e). Q = 25 × 25 in (a,b,c,d,e).

Fig. 27. Burgers’ equation: (a) Distribution of the exact solution. (b) The residual norm of the nonlinear least squares (NLLSQ) problem as a function of Sb , 
for estimating the best Sb in modBIP. (c) The maximum error of the locELM/modBIP solution in the domain � as a function of Rm , corresponding to several 
Sb values in modBIP. Rm = 50 in (b) and is varied in (c).

3.5. Burgers’ equation

In the last example we test the ELM/modBIP method using a nonlinear PDE, the viscous Burgers’ equation. Consider 
the spatial-temporal domain � = {(x, t) | x ∈ [0, 2], t ∈ [0, 5]} and the following initial/boundary value problem with the 
Burgers’ equation on �,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f (x, t), (22a)

u(0, t) = g1(t), (22b)

u(2, t) = g2(t), (22c)
25



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 28. Burgers’ equation: Distributions of the absolute error of the locELM solution obtained with (a) no pre-training, (b) BIP pre-training, and (c) modBIP 
pre-training of the random coefficients.

u(x,0) = h(x), (22d)

where u(x, t) is the field to be solved for, ν = 0.01, f (x, t) is a prescribed source term, and g1(t), g2(t) and h(x) are the 
boundary and initial conditions. We choose the source term f (x, t) and the boundary/initial conditions g1, g2 and h such 
that the following expression satisfies the system (22),

u =
(

1 + x

20

)(
1 + t

20

)[
3

2
cos

(
2πx − 3

5
π

)
− 2 sin (πx)

][
3

2
cos

(
2πt − 3

5
π

)
− 2 sin (πt)

]
. (23)

Fig. 27(a) shows the distribution of this solution in the spatial-temporal domain �. We use this analytic solution to test the 
performance of the ELM/modBIP method in this subsection.

We employ the block time-marching scheme and the local extreme learning machine (locELM) method from [6] to 
solve this nonlinear problem (see Remark 2.8). We divide the domain � along the temporal direction into 20 uniform 
time blocks (with a block size 0.25 in time), and solve the system (22) on each time block individually and successively 
(see Remark 2.7). On each time block, we partition the spatial-temporal domain into 2 uniform sub-domains along the 
x direction. The field solution u(x, t) on each sub-domain is represented by a local feed-forward neural network, and C1

continuity conditions (along x) are imposed on the common boundary of the two sub-domains. The hidden-layer coefficients 
in each local neural network are initialized to uniform random values generated on [−Rm, Rm], which are then pre-trained 
by modBIP and fixed afterwards. The output layers of the local neural networks are assumed to be linear with zero bias, 
whose weight coefficients constitute the training parameters of the overall neural network. By enforcing the system (22)
and the C1 continuity conditions on a set of collocation points in each sub-domain and on the domain and sub-domain 
boundaries, we arrive at a system of nonlinear algebraic equations about the training parameters. This nonlinear algebraic 
system is solved by the nonlinear least squares method with perturbations (NLLSQ-perturb); see Remark 2.8 and [6].

Let us first consider local neural networks with a single hidden layer. We use an architecture [2, 200, 1] for each local 
neural network, with the tanh activation function for the hidden layer. The two nodes in the input layer represent the 
spatial/temporal coordinates x and t of the sub-domain. The single output node represents the solution u(x, t) on the 
corresponding sub-domain. We employ a uniform set of Q = 20 × 20 collocation points on each sub-domain, and Sc =
Sb/2 in the modBIP algorithm. The Sb parameter in modBIP is determined by the procedure outlined in Remark 2.2, with 
modifications as given in Remark 2.8 for nonlinear problems.

Fig. 27(b) shows the residual norm of the nonlinear algebraic system associated with the nonlinear least squares (NLLSQ) 
solution, as a function of Sb , for estimating the best Sb in modBIP. In these tests for estimating Sb , we have employed a 
single time block in the computation, i.e. a smaller temporal domain (t ∈ [0, 0.25]) with its temporal dimension the same 
as a single time block. The initial random coefficients in the hidden layers are generated with Rm = 50. The data suggest a 
value around Sb ≈ 1.25 for modBIP.

We then use modBIP (with Sc = Sb/2) and locELM to solve the problem on the entire spatial-temporal domain �

(t ∈ [0, 5]) with 20 time blocks. Fig. 27(c) shows the maximum error of the locELM/modBIP solution in the overall domain 
� versus Rm , obtained with several Sb values (around Sb = 1.25) in modBIP. The curves suggest a general insensitivity of 
the locELM/modBIP error with respect to Rm or the initial random coefficients in the neural network, consistent with the 
observations in previous subsections for linear PDEs. In Fig. 27(c) we do observe two “spikes” in the error curve corre-
sponding to Sb = 1.5. An examination of the computation details reveals that in these two cases the nonlinear least squares 
iteration terminates a little earlier than in the other cases, because the gradient norm falls below a tolerance. This leads 
to a somewhat larger residual norm of the nonlinear least squares problem, and a slightly larger error for the computed 
locELM/modBIP solution corresponding to these cases. In spite of the spikes, the general insensitivity of the locELM/modBIP 
solution with respect to the random initialization of the hidden-layer coefficients is evident.
26



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 29. Burgers’ equation: The maximum and rms errors of the locELM solution as a function of Rm , obtained with (a) no pre-training, (b) BIP pre-training, 
and (c) modBIP pre-training of the random coefficients.

Fig. 28 compares the error distributions of the locELM solution in the spatial-temporal plane obtained with no pre-
training, BIP pre-training, and modBIP pre-training of the random hidden-layer coefficients in the local neural networks. 
In these tests the local neural networks have an architecture [2, 200, 1] and the tanh activation function. We employ Q =
20 × 20 uniform collocation points on each sub-domain, and the initial random hidden-layer coefficients are generated with 
Rm = 50. With BIP, the target samples are generated by a normal distribution with a random mean on [−1, 1] and a standard 
deviation 0.5 [33]. With modBIP we employ Sb = 1.25 and Sc = Sb/2 in Algorithm 1. The locELM solution obtained without 
pre-training of the random coefficients generated by Rm = 50 is not accurate (Fig. 28(a)). The locELM solutions attained with 
BIP and modBIP pre-training of the random coefficients are quite accurate (Figs. 28(b,c)). But the locELM/modBIP solution is 
considerably more accurate than that from locELM/BIP, with error levels 10−8 versus 10−5.

Fig. 29 is a further comparison of the locELM solution without pre-training, with BIP pre-training and with modBIP 
pre-training of the random coefficients. It shows the maximum and rms errors in the domain � of the locELM solutions 
corresponding to these three cases as a function of Rm , which is used for generating the initial random coefficients. The 
simulation parameters (local neural network architecture, activation function, collocation points, parameters for BIP and 
modBIP) correspond to those for Fig. 28, except that here Rm is varied systematically between Rm = 0.1 and Rm = 100. 
The errors of the locELM solution without pre-training of the random coefficients exhibit a large variation as Rm changes, 
showing a strong influence of Rm on the accuracy (Fig. 29(a)). On the other hand, the BIP and the modBIP pre-training of 
the random coefficients largely eliminates the dependence of the locELM error on Rm . The accuracy of the locELM/BIP and 
the locELM/modBIP solutions is essentially independent of Rm . The locELM/modBIP solution is again observed to be much 
more accurate than the locELM/BIP one, by around three orders of magnitude for this problem.

Fig. 30 illustrates the performance of the modBIP algorithm for working with non-invertible activation functions for 
the nonlinear Burgers’ equation. It should be noted that, in contrast, the BIP algorithm breaks down if the neural network 
contains any of such activation functions. In this figure we have specifically tested the locELM/modBIP method with the 
Gaussian and the swish activation functions in the hidden layers of the local neural networks. In these tests, 20 time blocks 
are used to divide � in time, and two uniform sub-domains along the x direction are used within each time block. The 
local neural networks have an architecture [2, 200, 1], with Gaussian or swish as the activation function in the hidden layer. 
We employ Q = 20 × 20 uniform collocation points on each sub-domain. The initial random hidden-layer coefficients of the 
local neural networks are generated with either a fixed Rm = 50 or with Rm varied between Rm = 0.1 and Rm = 100, and 
are pre-trained using modBIP with Sc = Sb/2. Fig. 30(a) shows the NLLSQ residual norm for estimating the Sb in modBIP, 
suggesting a value around Sb ≈ 1.5 with the Gaussian activation function and a value around Sb ≈ 2.75 with the swish 
function. In these tests for estimating Sb , we have used one time block (t ∈ [0, 0.25]), i.e. a smaller domain in time with 
its temporal dimension the same as a time block size. Figs. 30(b) and (c) are the error distributions of the locELM/modBIP 
solution in the overall domain � (20 time blocks) obtained using Gaussian and swish activation functions, respectively, 
with Rm = 50 for generating the initial random coefficients. Figs. 30(d) and (e) show the maximum/rms errors of the 
locELM/modBIP solution in the overall domain � as a function of Rm , obtained with the Gaussian and swish activation 
functions, respectively. We have employed Sb = 1.5 with the Gaussian activation function and Sb = 2.75 with the swish 
activation function in the modBIP algorithm for the Figs. 30(b-e). It is observed that the combined locELM/modBIP method 
produces accurate results with the Gaussian and swish activation functions and that the errors are generally insensitive to 
the initial random coefficients.

Finally we look into the performance of the locELM/modBIP method with multiple hidden layers in the local neural net-
works for solving the Burgers’ equation. Fig. 31 illustrates the locELM/modBIP results obtained using local neural networks 
with 4 hidden layers. The architecture of the local neural networks is given by [2, 50, 50, 50, M, 1] with the tanh activation 
function for all hidden layers, where M is either fixed at M = 200 or varied between M = 50 and M = 400. We again 
employ 20 uniform time blocks in �, 2 uniform sub-domains along x within each time block, and Q = 20 × 20 uniform 
collocation points on each sub-domain. The initial random coefficients are generated with Rm either fixed at Rm = 50 or 
varied between Rm = 0.1 and Rm = 100, and they are pre-trained using modBIP with Sc = Sb/2. Fig. 31(a) shows the NLLSQ 
residual norm for estimating Sb , suggesting a value around Sb ≈ 0.4 in modBIP. In the tests for estimating Sb we have again 
27



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 30. Burgers’ equation (non-monotonic activation functions): (a) The NLLSQ residual norm for estimating the best Sb in modBIP, with the Gaussian and 
swish activation functions. Distributions of the absolute error of the locELM/modBIP solution obtained with (b) the Gaussian and (c) the swish activation 
functions. The maximum/rms errors in the domain as a function of Rm corresponding to (d) the Gaussian and (e) the swish activation functions. Rm = 50
in (a,b,c) and is varied in (d,e). Sb = 1.5 in (b,d) for the Gaussian function, and Sb = 2.75 in (c,e) for the swish function, and Sb is varied in (a).

used a single time block, corresponding to a smaller temporal domain t ∈ [0, 0.25]. Fig. 31(b) shows the error distribution of 
the locELM/modBIP solution in the overall spatial-temporal domain � (20 time blocks), obtained with Sb = 0.4 in modBIP 
and M = 200 in the local neural networks. The result signifies a high accuracy (error level∼ 10−8) of the locELM/modBIP 
method for solving this nonlinear equation. Fig. 31(c) shows the maximum and rms errors of the locELM/modBIP solution 
in the overall domain � as a function of Rm . The result indicates that, with multiple hidden layers in the neural network, 
the locELM/modBIP accuracy is similarly independent of the initial random coefficients. Figs. 31(d) and (e) show the max-
imum/rms errors in the overall domain �, and the corresponding training time (locELM network training time, modBIP 
pre-training time), as a function of the number of training parameters per sub-domain M . We have employed 20 time 
blocks in �, 2 sub-domains per time block, and Q = 20 × 20 collocation points in this set of tests, while the number of 
training parameters per sub-domain is varied systematically. One can observe a near-exponential decrease in the numerical 
errors with increasing M (before saturation). The modBIP pre-training time grows slightly, from approximately 0.4 seconds 
to 1 second, as the number of training parameters per sub-domain M increases from 50 to 400. The relation between the 
locELM network training time and M is not very regular. The data suggest an overall trend that the locELM training time 
tends to increase with a larger M . In the range of M values tested here, the modBIP pre-training time is less than 2% of 
the locELM network training time, indicating that the computational cost associated with the modBIP pre-training of the 
random coefficients is insignificant.

4. Concluding remarks

We have presented an effective algorithm (termed modBIP) for pre-training the random hidden-layer coefficients of 
extreme learning machines (ELM), and applied the combined ELM/modBIP method to function approximations and solving 
partial differential equations. The initial random coefficients in the neural network are first pre-trained by modBIP, and the 
updated hidden-layer coefficients are then fixed and employed in the least squares computation with the ELM method. 
The modBIP algorithm is devised based on the same principle as the batch intrinsic plasticity (BIP) method, namely, by 
enhancing the information transmission in every node of the neural network.

Suppose the neural network architecture is chosen, which may be shallow or deep, the hidden-layer coefficients are 
initialized to random values, and that the input data to the neural network are given. The modBIP algorithm pre-trains 
the random hidden-layer coefficients as follows. For each node in each hidden layer of the neural network, this algorithm 
first computes the total (synaptic) input to this node for all input data samples to the neural network. The synaptic input 
28



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
Fig. 31. Burgers’ equation (4 hidden layers in local neural network): (a) The NLLSQ residual norm for estimating the Sb in modBIP. (b) Distribution of 
the absolute error of the locELM/modBIP solution. The maximum and rms errors in the domain as a function of (c) Rm , and (d) the number of training 
parameters per sub-domain M . (e) The modBIP pre-training time and the locELM network training time as a function of the number of training parameters 
per sub-domain M . Sb = 0.4 in (b,c,d,e) and is varied in (a). Rm = 50 in (a,b,d,e) and is varied in (c). M = 200 in (a,b,c) and is varied in (d,e). The collocation 
points per sub-domain are Q = 20 × 20 in (a,b,c,d,e). The local neural network architecture is [2, 50, 50, 50, M, 1].

samples are then mapped, by an affine mapping, to a set of random target samples on a random sub-interval of [−Sb , Sb]
with a minimum size, where Sb is a user-provided hyper-parameter. The coefficients in the affine mapping are determined 
by solving a linear least squares problem, and are used to update the random weight and bias coefficients associated with 
this node. These operations are performed on each hidden layer, individually and successively, and within each hidden layer 
node by node. For a given particular problem, the Sb parameter in modBIP can be estimated with preliminary simulations 
by computing the residual norm of the least squares problem associated with the least squares solution in ELM; see the 
procedure outlined in Remark 2.2 and also Remark 2.8 for nonlinear PDEs.

The modBIP method differs from BIP [33] in one prominent aspect: modBIP does not involve the activation function in 
its algorithm. In contrast, the BIP method employs the inverse of the activation function in its construction, and requires 
the activation function to be invertible (or monotonic). This limits the applicability of BIP to neural networks with only 
monotonic activation functions. On the other hand, the modBIP method can be applied with essentially any activation 
function, including those often-used non-monotonic activation functions such as the Gaussian function, swish function, 
Gaussian error linear unit (GELU), and the class of radial basis activation functions.

Another crucial construction in modBIP is the random sub-interval of [−Sb, Sb] with a minimum size Sc , on which the 
random target samples are generated. This is the key that accounts for the high accuracy of the modBIP (combined with 
ELM) results. If this sub-interval is fixed, instead of being random, much of the high accuracy will be lost. As demonstrated 
by ample numerical experiments, when combined with ELM, the modBIP method typically produces much more accurate 
simulation results than BIP.

In the current paper we have used partial differential equations to test the combined ELM/modBIP method, and presented 
extensive numerical experiments to evaluate its computational performance. We have the following observations:

• The combined ELM/modBIP method produces highly accurate simulation results, and its accuracy is insensitive to the 
initial random coefficients of the neural network. More precisely, its accuracy is insensitive to the Rm for generating the 
initial random coefficients. In contrast, without pre-training the random coefficients, the accuracy of the ELM solution 
is strongly dependent on Rm , where the initial random coefficients are generated on [−Rm, Rm].

• The combined ELM/modBIP method works well with non-monotonic activation functions, and produces highly accurate 
results. With the Gaussian activation function, the combined ELM/modBIP method appears to produce generally the 
29



S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
most accurate results among the activation functions tested herein. In contrast, the BIP method [33] breaks down with 
non-monotonic activation functions.

• Irrespective of the initial random coefficients, the errors of the combined ELM/modBIP solution decrease exponentially 
or nearly exponentially, as the number of training data points in the domain or the number of training parameters in 
the neural network increases.

• The combined ELM/modBIP method works well with both shallow and deep neural networks. The favorable numerical 
properties, such as the error insensitivity to initial random coefficients and the exponential convergence with respect to 
the collocation points and the training parameters, are observed with both shallow and deep neural networks.

• The computational cost of the modBIP pre-training of the random coefficients is low, and it is only a fraction of the 
ELM training cost of the neural network. In typical simulations the modBIP pre-training cost is within 10% of the 
ELM training cost for the neural network. Furthermore, the modBIP pre-training of the random coefficients logically 
only needs to be performed once for a given network architecture and the input data, and the pre-trained random 
coefficients can be saved and used later directly by ELM.

The numerical results demonstrate unequivocally that modBIP provides an efficient and effective technique for pre-
training the random coefficients to achieve high accuracy with ELM. It significantly boosts the computational performance 
of ELM. The combined ELM/modBIP method can produce accurate simulation results, regardless of the initial random coef-
ficients in the neural network. This method is promising in terms of both the accuracy and the computational cost.

The computational performance (accuracy, computational cost) of ELM is competitive when compared with traditional 
numerical methods. In [6] the locELM method, which stands for local extreme learning machine and combines the ideas of 
ELM, domain decomposition and local neural networks, has been compared in detail with the classical finite element method 
(FEM) and two DNN-based PDE solvers, the deep Galerkin method (DGM) [41] and the physics-informed neural network 
(PINN) method [36], in terms of their accuracy and computational cost for solving a number of linear and nonlinear PDEs. 
It is observed that ELM far outperforms DGM and PINN, typically by orders of magnitude in terms of the accuracy and the 
computational cost [6]. ELM exhibits a computational performance comparable to FEM [6]. There is a cross-over point in 
performance with respect to the problem size. The FEM typically outperforms ELM for smaller problem sizes, and for larger 
problem sizes ELM outperforms FEM [6]. By “outperform” we mean that one method achieves a better accuracy under the 
same computational cost, or induces a smaller computational cost to achieve the same accuracy.

The modBIP method developed in the current paper can work with both global and local extreme learning machines. It 
enhances the accuracy of ELM, especially when the neural network becomes deep, with an essentially negligible overhead. 
We anticipate that the ELM/modBIP method will be useful to and instrumental in neural network-based scientific computing 
and the computational understanding of important physical processes and phenomena [5,2].

CRediT authorship contribution statement

Suchuan Dong: Conceptualization, Methodology, Software, Data acquisition, Visualization, Writing of paper, Paper revi-
sion, Funding acquisition. Zongwei Li: Software, Data acquisition, Data curation, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgement

This work was partially supported by NSF (DMS-2012415, DMS-1522537).

References

[1] W. Cao, L. Hu, J. Gao, X. Wang, Z. Ming, A study on the relationship between the rank of input data and the performance of random weight neural 
network, Neural Comput. Appl. 32 (2020) 12685–12696.

[2] S. Dong, An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach, J. Comput. Phys. 266 (2014) 
47–73.

[3] S. Dong, A convective-like energy-stable open boundary condition for simulations of incompressible flows, J. Comput. Phys. 302 (2015) 300–328.
[4] S. Dong, Wall-bounded multiphase flows of N immiscible incompressible fluids: consistency and contact-angle boundary condition, J. Comput. Phys. 

338 (2017) 21–67.
[5] S. Dong, Multiphase flows of N immiscible incompressible fluids: a reduction-consistent and thermodynamically-consistent formulation and associated 

algorithm, J. Comput. Phys. 361 (2018) 1–49.
[6] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations, arXiv:

2012 .02895, 2020.
[7] S. Dong, N. Ni, A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural networks, J. Comput. 

Phys. 435 (2021) 110242.
[8] S. Dong, J. Shen, A pressure correction scheme for generalized form of energy-stable open boundary conditions for incompressible flows, J. Comput. 

Phys. 291 (2015) 254–278.
30

http://refhub.elsevier.com/S0021-9991(21)00480-0/bib029ADB9EA8E985C11073231676DCAFBDs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib029ADB9EA8E985C11073231676DCAFBDs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib2EFF98F34C16B3151882CE0EF4A72AC3s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib2EFF98F34C16B3151882CE0EF4A72AC3s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib8946B5E78C99DF1D9D506D65A476C77Bs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib8C9D4ED1E884A6CD7A3E4852135B8812s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib8C9D4ED1E884A6CD7A3E4852135B8812s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibA3E72B7C4EF67F11040B14DE5EA4BB2Es1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibA3E72B7C4EF67F11040B14DE5EA4BB2Es1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib6052086184DC57437221BE7803763ACDs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib6052086184DC57437221BE7803763ACDs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibD745D4F1A7617C62FE35F0BE1944D59Cs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibD745D4F1A7617C62FE35F0BE1944D59Cs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib82464B64AFA569A74293FABBE218CE88s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib82464B64AFA569A74293FABBE218CE88s1


S. Dong and Z. Li Journal of Computational Physics 445 (2021) 110585
[9] G. Dudek, Generating random weights and biases in feedforward neural networks with random hidden nodes, Inf. Sci. 481 (2019) 33–56.
[10] V. Dwivedi, B. Srinivasan, Physics informed extreme learning machine (pielm) – a rapid method for the numerical solution of partial differential 

equations, Neurocomputing 391 (2020) 96–118.
[11] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.
[12] S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neural network function approximation in reinforcement learning, Neural Netw. 107 

(2018) 3–11.
[13] A.L. Freire, A.R. Rocha-Neto, G.A. Barreto, On robust randomized neural networks for regression: a comprehensive review and evaluation, Neural 

Comput. Appl. 32 (2020) 16931–16950.
[14] G.H. Golub, C.F.V. Loan, Matrix Computations, 3rd ed., Johns Hopkins Press, MD, 1996.
[15] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.
[16] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.
[17] J. He, J.Xu. MgNet, A unified framework for multigrid and convolutional neural network, Sci. China Math. 62 (2019) 1331–1354.
[18] D. Hendrycks, K. Gimpel, Gaussian error linear units (GELU), arXiv:1606 .08415, 2016.
[19] G. Huang, G.B. Huang, S. Song, K. You, Trends in extreme learning machines: a review, Neural Netw. 61 (2015) 32–48.
[20] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (2006) 489–501.
[21] G.B. Huang, L. Chen, Convex incremental extreme learning machine, Neurocomputing 70 (2007) 3056–3062.
[22] G.B. Huang, L. Chen, Enhanced random search based incremental extreme learning machine, Neurocomputing 71 (2008) 3460–3468.
[23] G.B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans. 

Neural Netw. 17 (2006) 879–892.
[24] B. Igelnik, Y.H. Pao, Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans. Neural Netw. 6 

(1995) 1320–1329.
[25] H. Jaeger, M. Lukosevicius, D. Popovici, U. Siewert, Optimization and applications of echo state networks with leaky integrator neurons, Neural Netw. 

20 (2007) 335–352.
[26] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to 

forward and inverse problems, Comput. Methods Appl. Mech. Eng. 365 (2020) 113028.
[27] I.E. Lagaris, A.C. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (1998) 

987–1000.
[28] J.-Y. Li, W. Chow, B. Igelnik, Y.-H. Pao, Comments on “Stochastic choice of basis functions in adaptive function approximation and the functional-link 

net”, IEEE Trans. Neural Netw. 8 (1997) 452–454.
[29] L. Lu, P. Jin, G.E. Karniadakis, DeepONet: learning nonlinear operators for identifying differential equations based on the universal approximation 

theorem of operators, arXiv:1910 .03193, 2019.
[30] M. Lukosevicius, H. Kaeger, Reservoir computing approaches to recurrent neural network training, Comput. Sci. Rev. 3 (2009) 127–149.
[31] W. Maas, H. Markram, On the computational power of recurrent circuits of spiking neurons, J. Comput. Syst. Sci. 69 (2004) 593–616.
[32] M.D. McDonnell, M.D. Tissera, T. Vladusich, A. van Schaik, J. Tapson, Fast, simple and accurate handwritten digit classification by training shallow neural 

network classifiers with the extreme learning algorithm, PLoS ONE 10 (8) (2015) e0134254.
[33] K. Neumann, J.J. Steil, Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity, Neurocomputing 102 (2013) 23–30.
[34] S. Panghal, M. Kumar, Optimization free neural network approach for solving ordinary and partial differential equations, in: Engineering with Comput-

ers, Early Access, February 2020.
[35] Y.H. Pao, G.H. Park, D.J. Sobajic, Learning and generalization characteristics of the random vector functional-link net, Neurocomputing 6 (1994) 163–180.
[36] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems 

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[37] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev. 65 (1958) 386–408.
[38] K. Rudd, S. Ferrari, A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks, Neurocomputing 

155 (2015) 277–285.
[39] E. Samanaiego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the solution of partial 

differential equations in computational mechanics via machine learning: concepts, implementation and applications, Comput. Methods Appl. Mech. 
Eng. 362 (2020) 112790.

[40] S. Scardapane, D. Wang, Randomness in neural networks: an overview, WIREs Data Min. Knowl. Discov. 7 (2017) e1200.
[41] J. Sirignano, K. Spoliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[42] J.J. Steil, Online reservoir adaption by intrinsic plasticity for backpropagation decorrelation and echo state learning, in: Special Issue on Echo State and 

Liquid State Networks, Neural Netw. (2007) 353–364.
[43] J. Triesch, A gradient rule for the plasticity of a neuron’s intrinsic excitability, in: Proceedings of the ICANN, 2005, pp. 65–79.
[44] D. Wang, M. Li, Stochastic configuration networks: fundamentals and algorithms, IEEE Trans. Cybern. 47 (2017) 3466–3479.
[45] Y. Wang, G. Lin, Efficient deep learning techniques for multiphase flow simulation in heterogeneous porous media, J. Comput. Phys. 401 (2020) 108968.
[46] C.S. Webster Alan, Turing’s unorganized machines and artificial neural networks: his remarkable early work and future possibilities, Evol. Int. 5 (2012) 

35–43.
[47] P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, PhD Thesis, Harvard University, Cambridge, MA, 1974.
[48] B. Widrow, A. Greenblatt, Y. Kim, D. Park, The no-prop algorithm: a new learning algorithm for multilayer neural networks, Neural Netw. 37 (2013) 

182–188.
[49] N. Winovich, K. Ramani, G. Lin ConvPDE-UQ, Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential 

equations on varied domains, J. Comput. Phys. 394 (2019) 263–279.
[50] W. Xing, R.M. Kirby, S. Zhe, Deep corgionalization for the emulation of spatial-temporal fields, arXiv:1910 .07577, 2019.
[51] J. Xu, The finite neuron method and convergence analysis, arXiv:2010 .01458, 2020.
[52] Y. Yang, Q.M.J. Wu, Extreme learning machine with subnetwork hidden nodes for regression and classification, IEEE Trans. Cybern. 46 (2016) 

2885–2898.
[53] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411 (2020) 109409.
31

http://refhub.elsevier.com/S0021-9991(21)00480-0/bibE2DFA3F4EF11E7774C5612CCAAF4F2B5s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib32FA656D8D6D82705B35555D485F10F9s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib32FA656D8D6D82705B35555D485F10F9s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib6803099AB56151B697399F27AA7FA61Bs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib5BCAD9C5A425473AAA560CBD8DFF56DBs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib5BCAD9C5A425473AAA560CBD8DFF56DBs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibB9A681E8DF8F28F59E7D5064EE67AB06s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibB9A681E8DF8F28F59E7D5064EE67AB06s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib733C660F0AFFBC96BB30D538B141AA41s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibF1D1D2222563CE940F8FAA364B1F9E4Ds1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibDF10F1B6FC47CF2D4879E3588938144Es1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibD593559529AC27243F9554C5BEBA979Cs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib5A349952353D688E4AAC8BC2925F27FAs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib448F9685CF765C1CA28E292CB20B1A49s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib9790E92EEEE40A4ADF8D5F9BE3BDCC18s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibA0B0180A4B2833B07AD93E15C4DB141As1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibF9FC9098BBD8EADDA9F0C3414865AB3Fs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib3DC387D12E316604700F2F69B72D4B56s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib3DC387D12E316604700F2F69B72D4B56s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib619AC2FCFE54DACE1C8F734CB4709538s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib619AC2FCFE54DACE1C8F734CB4709538s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibE24958BF4F4030B35206EEC9E48A70E9s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibE24958BF4F4030B35206EEC9E48A70E9s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibE9D3D92A6F7813D4489CCC1B87834B6As1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibE9D3D92A6F7813D4489CCC1B87834B6As1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibBCAD6A11F63F0AE6D96BF7F2C0B543D2s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibBCAD6A11F63F0AE6D96BF7F2C0B543D2s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib4B2CDDA13BA253B24F2C5A8792F81BB6s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib4B2CDDA13BA253B24F2C5A8792F81BB6s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibCA2B22EC558F4DEB4A028484824C39E7s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibCA2B22EC558F4DEB4A028484824C39E7s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib457D92B9CE845780F3CD86CDC147F271s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib66A347DBD54811AAAC8C8532E2908C66s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibB590DD57AFDE829A3BB06633DA1DE1C3s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibB590DD57AFDE829A3BB06633DA1DE1C3s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib790E7583A72765C74FB17875BA439CB9s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib6BC99952A542D836AD295E6FE2AC1EB5s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib6BC99952A542D836AD295E6FE2AC1EB5s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib90ED62DD363645DAF87ABB4AA3C8C684s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib95D2ABC295020CAF8E28E8A7DF8F6687s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib95D2ABC295020CAF8E28E8A7DF8F6687s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibDFCED79F8AD838DD73EE0A45EA981111s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib56B80EA0B59D6CD792B67DAB3E45F1D9s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib56B80EA0B59D6CD792B67DAB3E45F1D9s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib88C387C5D6625E722D6D989004E53C6Ds1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibB3419308C55F96D39B47A4BEA4F30FE8s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib42B836C288A0B549BE6070E1B605BB69s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibEBE7DF1C1BDF8F68AE7B8A9149051473s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibEBE7DF1C1BDF8F68AE7B8A9149051473s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib3861E3DCF8B27B795F42492D71679D02s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib9EF97F8A5EE54EB1360981720EE15FF8s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib07511CF696DF1EB070CFFE1E244CA1BFs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib3F062A56CF6527F8192DC807A0523C55s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib3F062A56CF6527F8192DC807A0523C55s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib2B0CC345B7412B3CCCE380C8D018DF86s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib8649EE488C92A26E67A1AE31369A4D0As1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib8649EE488C92A26E67A1AE31369A4D0As1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib12299DCD6D2B9474B94D8A5085117ECAs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib12299DCD6D2B9474B94D8A5085117ECAs1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib8765BB54B6723C1D88A3EF1BC8CF3CF8s1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bibAD585FD76D67EB7BC8B45DD5F2E1DB0As1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib526604F74375E1B6606C50E1E7AD8C1Ds1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib526604F74375E1B6606C50E1E7AD8C1Ds1
http://refhub.elsevier.com/S0021-9991(21)00480-0/bib0B5525B76F95ACEC50C58A7548874B04s1

	A modified batch intrinsic plasticity method for pre-training the random coefficients of extreme learning machines
	1 Introduction
	2 Pre-training random coefficients of extreme learning machines
	2.1 Extreme learning machine and random coefficients
	2.2 Modified batch intrinsic plasticity (modBIP) algorithm
	2.3 Solving partial differential equations with combined ELM/modBIP

	3 Representative numerical examples
	3.1 Function approximation
	3.2 Poisson equation
	3.3 Wave equation
	3.4 Diffusion equation
	3.5 Burgers’ equation

	4 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


