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We present an effective outflow boundary condition, and an associated numerical
algorithm, within the phase-field framework for dealing with two-phase outflows or open
boundaries. The set of two-phase outflow boundary conditions for the phase-field and
flow variables are designed to prevent the un-controlled growth in the total energy of
the two-phase system, even in situations where strong backflows or vortices may be
present at the outflow boundaries. We also present an additional boundary condition
for the phase field function, which together with the usual Dirichlet condition can work
effectively as the phase-field inflow conditions. The numerical algorithm for dealing
with these boundary conditions is developed on top of a strategy for de-coupling the
computations of all flow variables and for overcoming the performance bottleneck caused
by variable coefficient matrices associated with variable density/viscosity. The algorithm
contains special constructions, for treating the variable dynamic viscosity in the outflow
boundary condition, and for preventing a numerical locking at the outflow boundaries
for time-dependent problems. Extensive numerical tests with incompressible two-phase
flows involving inflow and outflow boundaries demonstrate that, the two-phase outflow
boundary conditions and the numerical algorithm developed herein allow for the fluid
interface and the two-phase flow to pass through the outflow or open boundaries in a
smooth and seamless fashion, and that our method produces stable simulations when
large density ratios and large viscosity ratios are involved and when strong backflows are
present at the outflow boundaries.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The present work concerns two-phase outflows, where the interface between two immiscible incompressible fluids passes
through open portions of the domain boundary and where the field variables are unknown and need to be computed. Two-
phase outflows are widely encountered in two-phase jets, wakes, shear layers, and other spatially-developing flows involving
un-bounded physical domains. To numerically simulate such flows, it is necessary to artificially truncate the domain to a
finite size. Therefore, an outflow or open boundary condition will be required for the two-phase artificial boundary. Many
desirable properties for single-phase outflow boundary conditions [23] can carry over to two-phase outflows. It is desired
that an ideal two-phase outflow boundary condition would allow the information carried with the two-phase flow to exit
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the domain smoothly without adverse upstream effects, and that it should allow for stable computations of the two-phase
flow.

The design of effective techniques for treating two-phase outflows presents new challenges beyond those encountered for
single-phase outflows. Two-phase outflows involve density contrast, viscosity contrast, fluid interface, and surface tension
on the open boundaries, and the density ratio and viscosity ratio of the two fluids may be large. While a large volume of
work on outflow conditions for single-phase flows exist in the literature (see e.g. [12,23,29,6,11] for related reviews and the
references therein), a survey of literature indicates that the work on two-phase outflows is very scarce. Some recent efforts
employ a convective boundary condition for the lattice-Boltzmann equations [19] or level set method [2]. Other previous
work involves only a single type of fluid on the outflow boundary, even though the flow inside the domain involves two
fluid phases, and therefore a usual single-phase outflow condition would suffice; see e.g. [28].

The two-phase outflow boundary conditions and numerical algorithm in the current work are developed within the
phase field framework. In the phase field approach the sharp interface between two immiscible incompressible fluids is
replaced by a thin smooth transition layer (i.e. diffuse interface), and the two-phase system is characterized by a phase field
function, which varies continuously over the transition layer and is mostly uniform in the bulk phases; see e.g. [3,20,14,
18] for reviews and more detailed discussions of related concepts. The governing equations consist of the variable-density
Navier–Stokes equations and the Cahn–Hilliard equation (or Allen–Cahn equation) which describes the evolution of the
phase field function [20,15,18,26,25]. The surface tension effect is naturally and implicitly accounted for in the phase field
formulation.

One faces several challenges when designing boundary conditions and numerical algorithms for dealing with two-phase
outflows, and also inflows, with the phase field approach. First, because the phase field formulation implicitly incorporates
the surface tension effect, at the outflow boundary one must also take into account the surface tension in the boundary
conditions. How to achieve this is not immediately clear. Second, strong vortices or backflows may occur on portions of
the two-phase outflow boundaries, especially with large density ratios or at high Reynolds numbers. The outflow boundary
conditions should facilitate stable computations in such situations. Third, the variable mixture properties, and in particular
the variable viscosity, pose a significant issue to the algorithmic treatment of the outflow boundary conditions. Large vis-
cosity ratios have been observed to lead to a numerical instability at the two-phase outflow boundaries. Fourth, it is desired
that the outflow conditions should not induce significant artificial distortions of the fluid interface when it passes through
the outflow boundaries. Finally, the fourth spatial order of the Cahn–Hilliard equation requires two independent boundary
conditions for the phase field function on each boundary, which creates additional difficulties on the inflow boundaries
where Dirichlet type conditions are desired.

In the current work, we present a set of effective two-phase outflow boundary conditions for the phase-field and flow
variables, a boundary condition for the phase field function (in addition to the usual Dirichlet condition) for the inflow
boundaries, and an efficient numerical algorithm for treating these outflow and inflow boundary conditions. These boundary
conditions are developed based on considerations of the energy relation of the two-phase system. They are designed to
prevent the un-controlled growth in the total energy of the domain, even when energy influx or backflows into the domain
may exist at the outflow boundaries. The numerical algorithm for dealing with these boundary conditions are developed on
top of a scheme for the coupled Navier–Stokes and Cahn–Hilliard equations we developed previously in [10]. The algorithm
contains special treatments for the variable dynamic viscosity at the outflow boundaries, and a special construction for
preventing the numerical locking on the two-phase outflow boundaries.

The method developed herein is effective for dealing with two-phase outflows where the fluid interface may pass through
the outflow boundaries and when large density ratios and large viscosity ratios may be involved. It is also effective when
there are strong backflows or vortices at the two-phase outflow boundaries. The method retains several crucial features
inherited from [10], which makes the current method computationally very efficient. For example, the method de-couples
the computations for all flow variables, and involves only constant and time-independent coefficient matrices for the linear
algebraic systems for each flow variable after discretization. Therefore, these coefficient matrices can be pre-computed,
which effectively overcomes the performance bottleneck caused by variable coefficient matrices associated with variable
mixture properties.

The novelties of the presented method lie in three aspects: the outflow boundary condition for the velocity, the ad-
ditional phase-field boundary condition for inflows (beyond the usual phase-field Dirichlet condition), and the numerical
algorithm for treating the outflow and inflow boundary conditions. The outflow boundary condition for the phase field
function presented here is also new in the context of phase field approach. On the other hand, the contact-angle boundary
conditions for solid walls discussed here are largely based on techniques we developed previously in [7].

The algorithm developed herein has been implemented using the spectral elements [27,16,17,33] for spatial discretiza-
tions, because of the high-order numerical accuracy and geometric flexibility. While the algorithm is formulated for C 0

spectral elements, it can also apply to low-order C0 finite elements without any change. We would like to point out that
the outflow and inflow boundary conditions and the numerical algorithm presented herein are general. They are indepen-
dent of the particular spatial discretization schemes. The implementation with finite difference type methods is also briefly
discussed in the paper.
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2. Two-phase outflow boundary conditions and algorithm

2.1. Phase field formulation and two-phase outflow boundary conditions

Let Ω denote an open bounded domain in two or three dimensions, and ∂Ω denote its boundary. Consider a mixture of
two immiscible incompressible fluids contained in Ω . Let ρ1 and ρ2 respectively denote the densities of the two fluids, and
μ1 and μ2 denote their dynamic viscosities. This two-phase system can be described by the following coupled system of
equations [1]:

ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = −∇p + ∇ · [μD(u)

] − ∇ · (λ∇φ∇φ) + f(x, t), (1a)

∇ · u = 0, (1b)
∂φ

∂t
+ u · ∇φ = −λγ1∇2[∇2φ − h(φ)

] + g(x, t). (1c)

In the above equations, u(x, t) is velocity, p(x, t) is pressure, D(u) = ∇u+∇uT , and f(x, t) is a body force, where t is time
and x is the spatial coordinate and (·)T denotes the transpose of (·). φ(x, t) denotes the phase field function, −1 � φ � 1.
The flow regions with φ = 1 and φ = −1 respectively represent the first and the second fluids. The iso-surface φ(x, t) = 0
marks the interface between the two fluids at time t . h(φ) is given by

h(φ) = 1

η2
φ
(
φ2 − 1

)
(2)

where η is a characteristic length scale of the interface thickness. λ is the mixing energy density coefficient, and is related
to the surface tension σ by [30]

λ = 3

2
√

2
ση, (3)

where σ is assumed to be constant. γ1 is the mobility of the interface, and is assumed to be constant in this paper. In
Eq. (1a) J̃ is given by,

J̃ = 1

2
(ρ1 − ρ2)λγ1∇

[∇2φ − h(φ)
]
, (4)

and the term J̃ · ∇u results from the requirement for Galilean invariance of the formulation [1]. The density, ρ , and the
dynamic viscosity, μ, are related to the phase field function by,

ρ(φ) = ρ1 + ρ2

2
+ ρ1 − ρ2

2
φ, μ(φ) = μ1 + μ2

2
+ μ1 − μ2

2
φ. (5)

Consequently, both the density and the dynamic viscosity in Eq. (1a) are time-dependent field variables. g(x, t) in Eq. (1c)
is a prescribed scalar source term for the purpose of numerical testing only, and it will be set to zero in actual simulations.
One can note that Eq. (1c) with g = 0 is the Cahn–Hilliard equation.

We assume that ∂Ω = ∂Ωu
d ∪ ∂Ωo = ∂Ω

φ

d ∪ ∂Ω
φ
w ∪ ∂Ωo , where ∂Ωu

d = ∂Ω
φ

d ∪ ∂Ω
φ
w is the Dirichlet boundary for the

velocity and u is prescribed on ∂Ωu
d . ∂Ω

φ

d is the Dirichlet boundary for the phase field function and φ is prescribed on ∂Ω
φ

d .

∂Ω
φ
w is the boundary of solid walls with certain wettability properties, and the parameters related to the contact angles are

known on ∂Ω
φ
w . Basically, we assume here that the velocity Dirichlet boundaries consist of two types of boundaries with

respect to the phase field function:

• Dirichlet boundaries for the phase field function, such as the inflow boundaries, and
• solid walls, where contact-angle boundary conditions will be imposed for the phase field function.

We refer to ∂Ωo as the outflow boundary, where none of the flow variables (u, p, or φ) is known. It should be noted that,
because the Cahn–Hilliard equation (1c) has a fourth spatial order, two boundary conditions for the phase field function
will be needed on each boundary of the domain.

Specifically, Eqs. (1a)–(1c) are supplemented by the following boundary conditions. For the velocity, we impose

u = w(x, t), on ∂Ωu
d , (6)

where w is the prescribed boundary velocity on ∂Ωu
d . For the phase field function, on the wall boundary ∂Ω

φ
w we impose

the dynamic contact-angle boundary conditions from [15,7],
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n · ∇[∇2φ − h(φ)
] = gw(x, t), on ∂Ω

φ
w , (7a)

−D w

(
∂φ

∂t
+ u · ∇φ

)
= n · ∇φ + 1

λ
f ′

w(φ) + ge(x, t), on ∂Ω
φ
w , (7b)

where n is the outward-pointing unit vector normal to ∂Ω
φ
w . gw and ge are prescribed scalar functions on ∂Ω

φ
w for numer-

ical testing purpose, and will be set to gw = 0 and ge = 0 in actual simulations. The constant D w � 0 is called the dynamic
wall mobility [7]. f w(φ) is the fluid–solid interfacial tension function given by [32,7],

f w(φ) = σ cos θs
φ(φ2 − 3)

4
+ 1

2
(σw1 + σw2), (8)

where σ is the surface tension between the two fluids, θs is the static (equilibrium) contact angle between the fluid interface
and the wall measured on the side of the first fluid, the constant σw1 is the interfacial tension between the solid wall and
the first fluid, and the constant σw2 is the interfacial tension between the solid wall and the second fluid. f ′

w(φ) denotes
the derivative of f w with respect to φ. Note that the unknown constants σw1 and σw2 do not appear in the boundary
condition (7b).

We propose the following boundary conditions for the phase-field Dirichlet boundary ∂Ω
φ

d :

−λ
[∇2φ − h(φ)

] + 1

4
(ρ1 − ρ2)|u|2 = gd(x, t), on ∂Ω

φ

d (9a)

φ = φb(x, t), on ∂Ω
φ

d , (9b)

where φb is the prescribed phase field function on ∂Ω
φ

d , and |u| is magnitude of the velocity u. gd(x, t) is a prescribed

scalar function on ∂Ω
φ

d for numerical testing purpose only, and will be set to gd = 0 in actual simulations.
We propose the following boundary conditions for the outflow boundary ∂Ωo:

for the velocity:

−pn + μn · D(u) −
[

λ

2
∇φ · ∇φ + λF (φ)

]
n −

[
1

2
ρ|u|2Θ0(n · u)

]
n = fb(x, t), on ∂Ωo; (10)

for the phase field function:

n · ∇[∇2φ − h(φ)
] = go(x, t), on ∂Ωo, (11a)

n · ∇φ = −D0
∂φ

∂t
+ ga(x, t), on ∂Ωo. (11b)

In the above Eqs. (10)–(11b), n is the outward-pointing unit vector normal to ∂Ωo , μ and ρ are respectively the mixture
dynamic viscosity and density given in Eq. (5), and F (φ) = 1

4η2 (φ2 − 1)2. One can recognize that ( λ
2 ∇φ · ∇φ + λF (φ)) is the

free energy of the two-phase system [18]. One also notes the relation h(φ) = F ′(φ). Θ0(n · u) represents a smoothed step
function about n · u, and is given by

Θ0(n · u) = 1

2

(
1 − tanh

n · u

U0δ

)
, (12)

where U0 is a characteristic velocity scale, and δ > 0 is a chosen non-dimensional constant that is sufficiently small. As
δ → 0, Θ0 approaches a step function about n · u, taking unit value in regions where n · u < 0 and vanishing elsewhere.
fb(x, t) is a prescribed vector function on ∂Ωo for the purpose of numerical testing, and will be set to fb = 0 in actual
simulations. go(x, t) and ga(x, t) are prescribed scalar functions on ∂Ωo for numerical testing, and will be set to go = 0
and ga = 0 in actual simulations. D0 � 0 is a chosen non-negative constant, and will be referred to as the outflow dynamic
mobility. 1

D0
plays the role of a characteristic convection velocity at ∂Ωo . When D0 = 0, (11b) becomes the Neumann

boundary condition

n · ∇φ = ga(x, t), on ∂Ωo. (13)

The boundary condition (10) has a well-defined physical meaning when fb = 0. The term [ λ
2 ∇φ · ∇φ + λF (φ)]n repre-

sents an effective stress exerting on ∂Ωo induced by the flux of free energy of the two-phase system through the outflow
boundary. The term 1

2 ρ|u|2n (when n · u < 0) represents an effective stress exerting on ∂Ωo induced by the influx of ki-
netic energy into the domain through the outflow boundary. The particular form for the kinetic-energy term in (10) is
inspired by an outflow boundary condition we have developed recently for single-phase incompressible flows [8]. The terms
[−pn+μn ·D(u)] represent the stress on the outflow boundary. Therefore, the boundary condition (10) with fb = 0 imposes
the requirement that, if anywhere on the outflow boundary ∂Ωo there is a kinetic energy influx into the domain through
∂Ωo , then the stress on the outflow boundary ∂Ωo shall locally balance the total effective stress induced by the total flux of
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the free energy and the kinetic energy through ∂Ωo , otherwise the stress shall locally balance the effective stress induced
by the flux of free energy through ∂Ωo only.

To elucidate the rationale for these boundary conditions, we briefly look into the energy balance for the two-phase
system described by (1a)–(1c). We assume g(x, t) = 0 in (1c) in the following discussion. Let C(φ) = −λ[∇2φ − h(φ)] (i.e.
chemical potential). We re-write (1a) into an equivalent but more compact form,

ρ

(
∂u

∂t
+ u · ∇u

)
+ J̃ · ∇u = ∇ · T + C∇φ + f, (14)

where T = −[p + λ
2 ∇φ · ∇φ + λF (φ)]I +μD(u) and I denotes the identity tensor. We have used the relation h(φ) = F ′(φ) in

the above reformulation. We also re-write (1c) into a more compact form

∂φ

∂t
+ u · ∇φ = γ1∇2C . (15)

By taking the L2 inner product between Eq. (14) and u and the L2 inner product between Eq. (15) and C(φ), and
summing up the two equations, one can obtain the following energy balance equation for the system,

∂

∂t

∫
Ω

[
1

2
ρ|u|2 + λ

2
∇φ · ∇φ + λF (φ)

]

=
∫
Ω

f · u −
∫
Ω

μ

2

∥∥D(u)
∥∥2 − γ1

∫
Ω

‖∇C‖2

+
∫

∂Ωu
d

(
n · T − 1

2
ρ|u|2n

)
· u +

∫
∂Ωo

(
n · T − 1

2
ρ|u|2n

)
· u

+ γ1

∫
∂Ω

φ

d

(n · ∇C)

[
C + 1

4
(ρ1 − ρ2)|u|2

]
+ γ1

∫
∂Ω

φ
w∪∂Ωo

(n · ∇C)

[
C + 1

4
(ρ1 − ρ2)|u|2

]

+ λ

∫
∂Ω

φ

d ∪∂Ω
φ
w

(n · ∇φ)
∂φ

∂t
+ λ

∫
∂Ωo

(n · ∇φ)
∂φ

∂t
, (16)

where we have used Eqs. (1b) and (5) and the following relations

J̃ = −1

2
(ρ1 − ρ2)γ1∇C,

∂ρ

∂t
+ u · ∇ρ = −∇ · J̃,

∂φ

∂t
C = ∂

∂t

[
λ

2
∇φ · ∇φ + λF (φ)

]
− ∇ ·

[
λ∇φ

∂φ

∂t

]
.

In light of this energy balance equation for the two-phase system, we have the following observations:

• By imposing the condition (11a) with go = 0 on ∂Ωo , the condition (9a) with gd = 0, and the condition (7a) with
gw = 0 on ∂Ω

φ
w , the surface integrals involving the term n · ∇C will vanish from the right hand side (RHS) of Eq. (16).

• By imposing the condition (11b) with ga = 0 on ∂Ωo , the last surface integral on the RHS of (16) will always be
non-positive and therefore conducive to stability.

• The surface integral term over the outflow boundary,
∫
∂Ωo

(n · T − 1
2 ρ|u|2n) · u on the RHS of (16), can potentially cause

un-controlled growth in the total energy of the domain, and thus numerical instability, if n · u < 0 anywhere on the
outflow boundary ∂Ωo , because of the influx of kinetic energy − 1

2 ρ|u|2(n · u) into the domain through ∂Ωo . Requiring
that n · T − 1

2 ρ|u|2n = 0 in regions of ∂Ωo with kinetic energy influx and that n · T = 0 elsewhere on ∂Ωo , which
give rise to the condition (10), will eliminate this numerical instability. On the other hand, for the Dirichlet boundary
∂Ωu

d because the velocity u is prescribed, the kinetic energy influx through ∂Ωu
d (if any) will not cause the numerical

instability issue with the surface integral
∫
∂Ωu

d
(n · T − 1

2 ρ|u|2n) · u.

We would like to point out that the outflow boundary conditions, (10)–(11b), and the Dirichlet boundary condition for
the phase field function (9a), proposed here can also be applied to other phase-field models in which the term J̃ · ∇u is
absent from the Navier–Stokes equation (1a), see e.g. [14,4,18,30,10]. The only slight change that is necessary will be for the
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phase-field Dirichlet condition (9a). For those phase field models in which J̃ · ∇u term is absent, we employ the following
modified boundary condition on ∂Ω

φ

d to replace (9a),

−λ
[∇2φ − h(φ)

] = gd(x, t), on ∂Ω
φ

d , (17)

where gd is a prescribed function and will be set to gd = 0 in actual simulations. We will show simulation results of the
proposed boundary conditions for both types of phase field models in Section 3.

For the phase-field Dirichlet boundary ∂Ω
φ

d , it is tempting to employ the zero-flux condition for the chemical potential,
n ·∇C = 0, to replace the current condition (9a). However, we observe that the zero-flux condition for the chemical potential,
together with the usual Dirichlet condition (9b), fails to work for the phase-field Dirichlet boundary in actual simulations
when the density ratio becomes large. This combination induces a numerical instability at the inflow boundary in such
situations.

We would also like to mention a variant form for the outflow boundary condition. An alternative form to the boundary
condition (10) is the following

−pn + μn · D(u) −
[

λ

2
∇φ · ∇φ + λF (φ)

]
n −

[
1

2
ρ(n · u)u

]
Θ0(n · u) = fb(x, t), on ∂Ωo. (18)

The alternative form, 1
2 ρ(n · u)u, results from a reformulation of the kinetic-energy flux term in (16) as follows,

(n · T − 1
2 ρ|u|2n) · u = [n · T − 1

2 ρ(n · u)u] · u. This form has a connection with the boundary condition developed in [5]
for single-phase incompressible Navier–Stokes equations.

In addition to the boundary conditions discussed above, the coupled system of equations, (1a)–(1c), should also be
supplemented by appropriate initial conditions for the velocity u and the phase field function φ.

2.2. Algorithm formulation

Eqs. (1a)–(1c), the boundary conditions (6)–(7b) and (9a)–(11b), and the appropriate initial conditions for the velocity u
and phase field function φ, together constitute the system that need to be solved in two-phase flow simulations. We next
present an algorithm for solving this system. The main idea for discretizing Eqs. (1a)–(1c) is based on the splitting scheme
we developed in [10]. Our emphasis in the following discussions is on how to numerically treat the outflow boundary
conditions (10) and (11a)–(11b), as well as the Dirichlet boundary conditions for the phase field function (9a)–(9b).

We reformulate Eq. (1a) into an equivalent form,

∂u

∂t
+ u · ∇u + Λ

1

ρ
J̃ · ∇u = − 1

ρ
∇ P + μ

ρ
∇2u + 1

ρ
∇μ · D(u) − λ

ρ
∇2φ∇φ + 1

ρ
f(x, t), (19)

where

P = p + λ

2
∇φ · ∇φ

is an auxiliary pressure, and will also be loosely referred to as the pressure where no confusion arises. We have included
a constant Λ in the J̃ · ∇u term so that Eq. (19) can apply to both types of phase field models where the J̃ · ∇u term is
present, such as in the system (1a)–(1c), or is absent, such as in those of [14,4,18,30,10]. Specifically,

Λ =
{

1, for phase-field models in which J̃ · ∇u term is present,

0, for phase-field models in which J̃ · ∇u term is absent.
(20)

Accordingly, the boundary condition (10) is reformulated into

−P n + μn · D(u) − λF (φ)n −
[

1

2
ρ|u|2Θ0(n · u)

]
n = fb(x, t), on ∂Ωo. (21)

We use the constant Λ introduced above to consolidate the boundary conditions (9a) and (17) into a single form applicable
to both types of phase field models,

−λ
[∇2φ − h(φ)

] + Λ
1

4
(ρ1 − ρ2)|u|2 = gd(x, t), on ∂Ω

φ

d . (22)

We also combine the boundary conditions (7a) and (11a) into a compact single equation

n · ∇[∇2φ − h(φ)
] = gc(x, t), on ∂Ω

φ
w ∪ ∂Ωo, (23)

where
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gc(x, t) =
{

gw(x, t), on ∂Ω
φ
w ,

go(x, t), on ∂Ωo,
(24)

and in actual simulations gc will be set to zero.
We next present an algorithm for solving the system consisting of Eqs. (19), (1b)–(1c), and boundary conditions (6),

(21), (22), (9b), (23), (7b), and (11b). Let (un, Pn, φn) denote the velocity, pressure, and phase field function at time step n,
respectively. To compute these variables at time step (n + 1), we successively solve for the phase field function, pressure and
velocity in a de-coupled fashion as follows:

For phase field function φn+1

γ0φ
n+1 − φ̂

�t
+ u∗,n+1 · ∇φ∗,n+1 = −λγ1∇2

[
∇2φn+1 − S

η2

(
φn+1 − φ∗,n+1) − h

(
φ∗,n+1)] + gn+1, (25a)

−λ
[∇2φn+1 − h

(
φn+1)] + Λ

1

2
(ρ1 − ρ2)

∣∣un+1
∣∣2 = gn+1

d , on ∂Ω
φ

d , (25b)

φn+1 = φn+1
b , on ∂Ω

φ

d , (25c)

n · ∇
[
∇2φn+1 − S

η2

(
φn+1 − φ∗,n+1) − h

(
φ∗,n+1)] = gn+1

c , on ∂Ω
φ
w ∪ ∂Ωo, (25d)

−D w

(
∂φ

∂t

∣∣∣∣
∗,n+1

+ u∗,n+1 · ∇φ∗,n+1
)

= n · ∇φn+1 + 1

λ
f ′

w

(
φ∗,n+1) + gn+1

e , on ∂Ω
φ
w , (25e)

−D w

(
γ0φ

n+1 − φ̂

�t
+ u∗,n+1 · ∇φ∗,n+1

)
= n · ∇φn+1 + 1

λ
f ′

w

(
φ∗,n+1) + gn+1

e , on ∂Ω
φ
w , (25f)

n · ∇φn+1 = −D0
∂φ

∂t

∣∣∣∣
∗,n+1

+ gn+1
a , on ∂Ωo, (25g)

n · ∇φn+1 = −D0
γ0φ

n+1 − φ̂

�t
+ gn+1

a , on ∂Ωo. (25h)

For pressure Pn+1

γ0ũn+1 − û

�t
+ 1

ρ0
∇ Pn+1 = −N

(
un) − Λ

1

ρn+1
J̃n+1 · ∇un +

(
1

ρ0
− 1

ρn+1

)
∇ Pn − μn+1

ρn+1
∇ × ∇ × un

+ 1

ρn+1
∇μn+1 · D

(
un) − λ

ρn+1
∇2φn+1∇φn+1 + 1

ρn+1
fn+1, (26a)

∇ · ũn+1 = 0, (26b)

n · ũn+1 = n · wn+1, on ∂Ωu
d , (26c)

Pn+1 = μn+1n · D
(
u∗,n+1) · n − λF

(
φn+1) − 1

2
ρn+1

∣∣u∗,n+1
∣∣2

Θ
∗,n+1
0 − fn+1

b · n, on ∂Ωo. (26d)

For velocity un+1

γ0un+1 − γ0ũn+1

�t
− νm∇2un+1 = −N

(
u∗,n+1) + N

(
un) + νm∇ × ∇ × u∗,n+1

− Λ
1

ρn+1
J̃n+1 · (∇u∗,n+1 − ∇un)

+
(

1

ρ0
− 1

ρn+1

)
∇(

Pn+1 − Pn) − μn+1

ρn+1
∇ × ∇ × (

u∗,n+1 − un)

+ 1

ρn+1
∇μn+1 · [D

(
u∗,n+1) − D

(
un)], (27a)

un+1 = wn+1, on ∂Ωu, (27b)
d



54 S. Dong / Journal of Computational Physics 266 (2014) 47–73
n · D
(
un+1) =

(
1 − μn+1

μ0

)
n · D

(
u∗,n+1) + 1

μ0

[
Pn+1n + λF

(
φn+1)n + fn+1

b

+
(

1

2
ρn+1

∣∣u∗,n+1
∣∣2

Θ
∗,n+1
0

)
n − μ0

(∇ · u∗,n+1)n
]
, on ∂Ωo, (27c)

n · ∇un+1 = n · D
(
un+1) − n · (∇u∗,n+1)T

, on ∂Ωo. (27d)

The meanings of the symbols involved in the above equations are as follows. Let χ denote a generic variable. Then
χn denotes χ at time step n. χ∗,n+1 denotes a J -th order explicit approximation, where J = 1 or 2 denotes the order of
temporal accuracy of scheme, of χ at time step (n + 1) as follows,

χ∗,n+1 =
{

χn, if J = 1
2χn − χn−1, if J = 2.

(28)

In (25a), (25f), (25h), and (26a) the expression 1
�t (γ0χ

n+1 − χ̂ ) represents an approximation of the time derivative ∂χ
∂t at

time step (n + 1) using the J -th order backward differentiation formula, where �t is the time step size and γ0 and χ̂ are
given by

χ̂ =
{

χn, if J = 1
2χn − 1

2χn−1, if J = 2,
γ0 =

{
1, if J = 1
3
2 , if J = 2.

(29)

In (25e) and (25g) the expression ∂χ
∂t |∗,n+1 denotes a J -th order explicit approximation of ∂χ

∂t at time step (n+1) as follows,

∂χ

∂t

∣∣∣∣
∗,n+1

=
{

1
�t (χ

n − χn−1), if J = 1
1
�t (

5
2χn − 4χn−1 + 3

2χn−2), if J = 2.
(30)

n is the outward-pointing unit vector normal to the domain boundary ∂Ω . N(u) = u · ∇u denotes the nonlinear convection
term. Θ

∗,n+1
0 = Θ0(n · u∗,n+1), where the function Θ0 is defined in (12). The auxiliary velocity, ũn+1, is an approximation of

un+1.
In (25a) S is a chosen constant that satisfies the condition

S � η2

√
4γ0

λγ1�t
. (31)

ρ0 is a chosen constant that satisfies the condition

0 < ρ0 � min(ρ1,ρ2). (32)

νm is a chosen constant that satisfies the condition

νm � 1

2

(
μ1

ρ1
+ μ2

ρ2

)
. (33)

The derivation of the condition (31) and the importance of the conditions (32) and (33) have been discussed in detail in
[10] and [7]. In (26a) and (27a),

J̃n+1 = 1

2
(ρ1 − ρ2)λγ1∇

[
∇2φn+1 − S

η2

(
φn+1 − φ∗,n+1) − h

(
φ∗,n+1)] (34)

is an approximation of J̃ at time step (n + 1).
μ0 in Eq. (27c) is a chosen constant that satisfies

μ0 > min(μ1,μ2) if μ1 	= μ2, and μ0 = μ1 = μ2 if μ1 = μ2. (35)

From numerical simulations it is observed that the scheme is unstable if μ0 � min(μ1,μ2) when μ1 	= μ2.
The density ρn+1 and viscosity μn+1 involved in Eqs. (26a), (26d), (27a) and (27c) are computed from Eq. (5), once φn+1

is known, with an exception for very large (or conversely very small) density ratios (ρ2/ρ1 or ρ1/ρ2). For very large (or
conversely very small) density ratios (typically beyond ∼102 or below ∼10−2), we follow a strategy from [10] for computing
ρn+1 and μn+1 as follows,

ρ = 1

2
(ρ1 + ρ2) + 1

2
(ρ1 − ρ2)φ̃, μ = 1

2
(μ1 + μ2) + 1

2
(μ1 − μ2)φ̃, φ̃ =

{
φ, if |φ|� 1
sign(φ), if |φ| > 1.

(36)

The need for using (36) to compute ρn+1 and μn+1 at large density ratios has been discussed in [10]. Basically, the interplay
between the mass conservation and the energy minimization inherent in the dynamics of the Cahn–Hilliard equation (1c)
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tends to induce a slight shift of the phase field function in the bulk phases [31], which may cause the numerically-computed
phase field function to go slightly out of range (i.e. [−1,1]) at certain points in the domain. This at very large (or conversely
very small) density ratios can produce un-physical negative density/viscosity values at those points and cause numerical
difficulties.

Let us first comment on the numerical treatment of the outflow boundary condition (21) in the above algorithm. In the
pressure step, we impose a Dirichlet condition (26d) for the pressure Pn+1 on the outflow boundary ∂Ωo . This pressure
Dirichlet condition is obtained by taking the inner product between n and the outflow boundary condition (21) and by
treating the velocity u explicitly. In the velocity step, we impose a discrete Neumann-type condition (27d) for un+1 on the
outflow boundary ∂Ωo . In this velocity Neumann condition, the term n · D(un+1) is approximated using Eq. (27c), which
largely stems from the outflow boundary condition (21) but contains two key constructions:

• The particular forms of (27c) for those terms involving the constant μ0. The introduction of the constant μ0 for treating
the variable dynamic viscosity μn+1 in the outflow boundary condition, and these particular algorithmic forms, are
critical to the stability of the scheme. We observe that, owing to the variable viscosity μn+1, the following alternative
and straightforward treatment of the boundary condition (21)

n · D
(
un+1) = 1

μn+1

[
Pn+1n + λF

(
φn+1)n + fn+1

b

+
(

1

2
ρn+1

∣∣u∗,n+1
∣∣2

Θ
∗,n+1
0

)
n − μn+1(∇ · u∗,n+1)n

]
(37)

is unstable when the viscosity ratio of the two fluids (μ2/μ1 or μ1/μ2) is large or conversely small (beyond ∼20 or
below ∼ 1

20 ).
• The extra term (∇ · u)n in (27c), which prevents a numerical locking on the outflow boundary ∂Ωo for time-dependent

problems. If this term is absent and fb = 0, and further if the two fluids have matched dynamic viscosities, then by
combining Eqs. (26d) and (27c) one can show that n · D(un+1) = n · D(un) = · · · = n · D(u1) = [n · D(u0) · n]n, leading to
a numerical locking on the outflow boundary ∂Ωo for time-dependent problems.

We would also like to point out that the approximation form (27d) for n · ∇un+1 on ∂Ωo is important. An alternative
approximation, n ·∇un+1 = 1

2 n ·D(un+1)+ 1
2 ω∗,n+1 ×n, where ω = ∇ ×u is the vorticity, is observed to lead to an instability

in flow simulations.
We next comment on the numerical treatments of the outflow boundary conditions for the phase field function, (11a)

(or equivalently (23)) and (11b). The main issue lies in the treatment of the term ∂φ
∂t in (11b). Our goal is two-fold: (1) the

treatment should allow for the re-formulation of the 4th-order Cahn–Hilliard equation into two de-coupled Helmholtz type
equations after discretization (see Section 2.3), and (2) it should be stable when D0 becomes large. A straightforward
treatment of this term (implicit or explicit) leads to two difficulties. It will either result in, when solving the 4th-order
Cahn–Hilliard equation, two Helmholtz type equations that are coupled with each other through the outflow boundary,
or it will be unstable unless D0 is extremely small. The dilemma here is similar in nature to that encountered in [7] for
discretization of the dynamic contact-angle boundary conditions. The numerical treatments here for the phase-field outflow
boundary conditions, Eqs. (25g) and (25h), employ an idea similar to that in [7] for treating the dynamic contact-angle
boundary conditions. The explicit treatment of ∂φ

∂t in (25g), and the implicit treatment of this term in (25h), will be em-
ployed at different stages of the implementation (see Section 2.3). This allows for the re-formulation of the semi-discretized
4th-order Cahn–Hilliard equation into two Helmholtz-type equations that are completely de-coupled from each other, and
simultaneously it can deal with large D0 values.

Another issue related to the phase-field outflow boundary condition is the numerical treatment of the condition (23) on
the outflow boundary (or on solid walls). A key point lies in the incorporation of the extra term, S

η2 (φn+1 − φ∗,n+1), in the

discrete form (25d). Absence of this extra term in the discrete form results in a catastrophic loss of mass for one of the fluid
phases in simulations.

The numerical treatment of the additional boundary condition, (9a), for the phase-field Dirichlet boundary ∂Ω
φ

d is quite

straightforward. In the current discretization of this condition, (25b), note that both un+1 and φn+1 are known on ∂Ω
φ

d ,
due to Eqs. (25c) and (27b). The discrete form (25b) will give rise to a Dirichlet type condition for an auxiliary phase field
variable; see Section 2.3.

We would like to mention that the numerical treatments of the dynamic contact-angle boundary conditions on ∂Ω
φ
w ,

(25e) and (25f), have followed the ideas developed in [7]; see [7] for details.
Let us next briefly comment on the discretization of the system of governing equations consisting of (19), (1b) and (1c).

The discrete formulations for these equations ((25a), (26a) and (27a)) employ a strategy that we developed in [10]. Over-
all, the computation for the phase field function φn+1 is de-coupled from those for the pressure and the velocity due to
the explicit treatment of the convection terms in the phase field equation (1c) and in the dynamic contact-angle bound-
ary condition (7b). The computations for the pressure Pn+1 and the velocity un+1 are further de-coupled by a rotational
velocity-correction type strategy [13,9]. There are three key constructions in these discrete formulations:
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• The reformulation of the pressure term
1

ρ
∇ P ≈ 1

ρ0
∇ P +

(
1

ρ
− 1

ρ0

)
∇ P∗, (38)

where ρ0 is a constant satisfying condition (32) and P∗ is an explicit approximation of P . By treating the term 1
ρ0

∇ P
implicitly and the ∇ P∗ term explicitly, this reformulation leads to a constant and time-independent coefficient matrix for
the linear algebraic system for the pressure Pn+1. The condition (32) on ρ0 is critical for the stability of the scheme [7].

• The reformulation of the viscous term
μ

ρ
∇2u ≈ νm∇2u −

(
μ

ρ
− νm

)
∇ × ∇ × u∗, (39)

where νm is a constant satisfying condition (33) and u∗ is an explicit approximation of u. This reformulation leads to a
constant and time-independent coefficient matrix for the linear algebraic system for the velocity un+1. See [4,24] for the
use of similar strategies by other researchers.

• The additional term S
η2 (φn+1 − φ∗,n+1) in (25a), where S is a constant satisfying the condition (31). This term enables

a reformulation of the 4th-order phase field equation (1c) into two nominally-decoupled Helmholtz-type equations. Fur-
thermore, if the boundary conditions are numerically treated appropriately, the two nominally-decoupled Helmholtz-type
equations can be completely decoupled [7]. This strategy allows for a successful treatment of the large spatial order of
the phase field equation using C0 spectral elements or finite elements. See [30,26] for the use of this strategy by other
researchers.

2.3. Implementation

We employ C0 spectral elements [16,33] for spatial discretizations in the current paper. In this subsection we concentrate
on the implementation of the algorithm, (25a)–(27d), using C0 spectral elements or finite elements. We will also briefly
discuss the implementation using finite difference-type methods.

We will reformulate the algorithm in order to facilitate the implementation using C0 spectral elements or finite elements.
The reformulation will eliminate the auxiliary velocity ũn+1, and appropriately treat the terms involving derivatives of order
two or higher (e.g. ∇ × ∇ × u, ∇2φ∇φ, ∇2(∇2φ), ∇(∇2φ)), which cannot be computed directly using C0 elements.

Let us first consider the solution for the phase field function φn+1. We re-write (25a) into

∇2
[
∇2φn+1 − S

η2
φn+1

]
+ γ0

λγ1�t
φn+1 = Q = Q 1 + ∇2 Q 2, (40)

where⎧⎪⎪⎨
⎪⎪⎩

Q 1 = 1

λγ1

[
gn+1 − u∗,n+1 · ∇φ∗,n+1 + φ̂

�t

]

Q 2 = h(φ∗,n+1) − S

η2
φ∗,n+1.

(41)

Eq. (40) can be reformulated into (see [30,10]):

∇2ψn+1 −
(
α + S

η2

)
ψn+1 = Q , (42a)

∇2φn+1 + αφn+1 = ψn+1, (42b)

where ψn+1 is an auxiliary variable and α is a constant given by

α = − S

2η2

[
1 −

√
1 − 4γ0

λγ1�t

(
η2

S

)2]
. (43)

Note that α < 0 and α + S
η2 > 0 under the condition (31). One can also note that (42a) and (42b) are nominally decoupled. If

appropriate boundary conditions for ψn+1 and φn+1 are available, to compute φn+1 from (25a) one can successively solve
(42a) for ψn+1, and then solve (42b) for φn+1.

Let H1
φ0(Ω) = {v ∈ H1(Ω): v|

∂Ω
φ

d
= 0}, and � ∈ H1

φ0(Ω) denote the test function. Taking the L2 inner product between

(42a) and � , we have the weak form about ψn+1,∫
Ω

∇ψn+1 · ∇� +
(
α + S

η2

)∫
Ω

ψn+1�

= −
∫
Ω

Q 1� +
∫
Ω

∇ Q 2 · ∇� +
∫

∂Ω
φ
w ∪∂Ωo

(−n · ∇ Q 2 + n · ∇ψn+1)� ∀� ∈ H1
φ0(Ω), (44)

where we have used integration by part, and the fact that
∫

φ (−n · ∇ Q 2 + n · ∇ψn+1)� = 0, because � ∈ H1
φ0(Ω).
∂Ωd
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Let ϑ ∈ H1
φ0(Ω) denote the test function. Taking the L2 inner product between (42b) and ϑ , we have the weak form

about φn+1,∫
Ω

∇φn+1 · ∇ϑ − α

∫
Ω

φn+1ϑ = −
∫
Ω

ψn+1ϑ +
∫

∂Ω
φ
w

n · ∇φn+1ϑ +
∫

∂Ωo

n · ∇φn+1ϑ, ∀ϑ ∈ H1
φ0(Ω), (45)

where we have used integration by part and the fact that
∫
∂Ω

φ

d
n · ∇φn+1ϑ = 0 because ϑ ∈ H1

φ0(Ω).

The discrete boundary condition (25d) can be written as

n · ∇ψn+1 − n · ∇ Q 2 =
(
α + S

η2

)
n · ∇φn+1 + gn+1

c , on ∂Ω
φ
w ∪ ∂Ωo, (46)

where we have used Eq. (41), and the relation ∇2φn+1 = ψn+1 −αφn+1 due to (42b). In light of (46), we can transform (44)
into ∫

Ω

∇ψn+1 · ∇� +
(
α + S

η2

)∫
Ω

ψn+1�

= −
∫
Ω

Q 1� +
∫
Ω

∇ Q 2 · ∇� +
∫

∂Ω
φ
w ∪∂Ωo

gn+1
c � +

(
α + S

η2

)[ ∫
∂Ω

φ
w

n · ∇φn+1� +
∫

∂Ωo

n · ∇φn+1�

]
,

∀� ∈ H1
φ0(Ω). (47)

One can note that the weak form for ψn+1, (47), and the weak form for φn+1, (45), are now coupled with each other due
to the surface integral terms on ∂Ω

φ
w and ∂Ωo involving n · ∇φn+1.

We now employ an idea developed in [7]. On wall boundary ∂Ω
φ
w , we approximate the n · ∇φn+1 term in Eq. (47)

using the discrete dynamic contact-angle condition (25e), and approximate the n · ∇φn+1 term in Eq. (45) using a different
discrete dynamic contact-angle condition (25f). Similarly, on the outflow boundary ∂Ωo , we approximate the n ·∇φn+1 term
in Eq. (47) using the discrete outflow condition (25g), and approximate the n · ∇φn+1 term in Eq. (45) using a different
discrete outflow condition (25h). This will de-couple the computations for ψn+1 and φn+1, and simultaneously can deal
with large values for D w and Do . Therefore we obtain the final weak form for the ψn+1 equation,∫

Ω

∇ψn+1 · ∇� +
(
α + S

η2

)∫
Ω

ψn+1�

= −
∫
Ω

Q 1� +
∫
Ω

∇ Q 2 ·∇� +
(
α + S

η2

) ∫
∂Ω

φ
w

[
−D w

(
∂φ

∂t

∣∣∣∣
∗,n+1

+u∗,n+1 · ∇φ∗,n+1
)

− 1

λ
f ′

w

(
φ∗,n+1)− gn+1

e

]
�

+
(
α + S

η2

) ∫
∂Ωo

(
−D0

∂φ

∂t

∣∣∣∣
∗,n+1

+ gn+1
a

)
� +

∫
∂Ω

φ
w

gn+1
w � +

∫
∂Ωo

gn+1
o �, ∀� ∈ H1

φ0(Ω), (48)

where ∂φ
∂t |∗,n+1 is given by (30), and we have used expression (24). We also obtain the final weak form for the φn+1

equation,∫
Ω

∇φn+1 · ∇ϑ − α

∫
Ω

φn+1ϑ + γ0 D w

�t

∫
∂Ω

φ
w

φn+1ϑ + γ0 D0

�t

∫
∂Ωo

φn+1ϑ

= −
∫
Ω

ψn+1ϑ +
∫

∂Ω
φ
w

[
−D w

(
− φ̂

�t
+ u∗,n+1 · ∇φ∗,n+1

)
− 1

λ
f ′

w

(
φ∗,n+1) − gn+1

e

]
ϑ

+
∫

∂Ωo

(
D0

�t
φ̂ + gn+1

a

)
ϑ, ∀ϑ ∈ H1

φ0(Ω). (49)

One can observe that the two equations, (48) and (49), are both Helmholtz-type equations in weak forms, and that they are
completely decoupled from each other.

Finally, the boundary condition (25b) can be transformed into, in light of Eq. (42b),
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ψn+1 = αφn+1
b + h

(
φn+1

b

) + Λ
1

4λ
(ρ1 − ρ2)

∣∣wn+1
∣∣2 − 1

λ
gn+1

d , on ∂Ω
φ

d , (50)

where we have used (25c) and (27b), and the assumption ∂Ωu
d = ∂Ω

φ

d ∪ ∂Ω
φ
w . This is a Dirichlet type condition for ψn+1.

Therefore, in order to compute φn+1, we first solve Eq. (48) for ψn+1, together with the Dirichlet condition (50) on ∂Ω
φ

d .

Then we solve Eq. (49) for φn+1, together with the Dirichlet condition (25c) on ∂Ω
φ

d .
Let us now consider how to compute Pn+1 and un+1, assuming that φn+1 and ψn+1 are known. Re-write (26a) as

γ0

�t
ũn+1 + 1

ρ0
∇ Pn+1 = Gn+1 − μn+1

ρn+1
∇ × ωn (51)

where ω = ∇ × u is the vorticity, and

Gn+1 = 1

ρn+1
fn+1 + û

�t
− N

(
un) − Λ

1

ρn+1
J̃n+1 · ∇un +

(
1

ρ0
− 1

ρn+1

)
∇ Pn

+ 1

ρn+1
∇μn+1 · D

(
un) − λ

ρn+1

(
ψn+1 − αφn+1)∇φn+1, (52)

J̃n+1 = 1

2
(ρ1 − ρ2)λγ1∇

[
ψn+1 −

(
α + S

η2

)
φn+1 − Q 2

]
. (53)

Note that in deriving the expressions (52) and (53) we have used Eq. (42b), and that Q 2 is given by (41).
Let H1

p0(Ω) = {v ∈ H1(Ω): v|∂Ωo = 0}, and q ∈ H1
p0(Ω) denote the test function. Taking the L2 inner product between

(51) and ∇q, we have the weak form about the pressure Pn+1

∫
Ω

∇ Pn+1 · ∇q = ρ0

∫
Ω

[
Gn+1 + ∇

(
μn+1

ρn+1

)
× ωn

]
· ∇q − ρ0

∫
∂Ωo

μn+1

ρn+1
n × ωn · ∇q

− ρ0

∫
∂Ωu

d

μn+1

ρn+1
n × ωn · ∇q − γ0ρ0

�t

∫
∂Ωu

d

n · wn+1q, ∀q ∈ H1
p0(Ω), (54)

where we have used integration by part, Eqs. (26b) and (26c), the identity

μ

ρ
∇ × ω · ∇q = ∇ ·

(
μ

ρ
ω × ∇q

)
− ∇

(
μ

ρ

)
× ω · ∇q, (55)

and the fact that
∫
∂Ωo

n · ũn+1q = 0 because q ∈ H1
p0(Ω). Eq. (54) is a Poisson type equation in weak form, whose RHS can

be explicitly computed. This equation can be used for computing Pn+1.
Summing up Eqs. (27a) and (26a) and collecting the explicit terms to the RHS, one can get the following equation for

un+1

γ0

νm�t
un+1 − ∇2un+1 = 1

νm
Rn+1 − 1

νm

(
μn+1

ρn+1
− νm

)
∇ × ω∗,n+1, (56)

where

Rn+1 = 1

ρn+1
fn+1 + û

�t
− u∗,n+1 · ∇u∗,n+1 − Λ

1

ρn+1
J̃n+1 · ∇u∗,n+1 − 1

ρn+1
∇ Pn+1

+ 1

ρn+1
∇μn+1 · D

(
u∗,n+1) − λ

ρn+1

(
ψn+1 − αφn+1)∇φn+1. (57)

Let H1
u0(Ω) = {v ∈ H1(Ω): v|∂Ωu

d
= 0} and ϕ ∈ H1

u0(Ω) denote the test function. Taking the L2 inner product between

(56) and ϕ , we obtain the weak form about un+1∫
Ω

∇ϕ · ∇un+1 + γ0

νm�t

∫
Ω

ϕun+1

= 1

νm

∫
Ω

[
Rn+1 + ∇

(
μn+1

ρn+1

)
× ω∗,n+1

]
ϕ

− 1

νm

∫ (
μn+1

ρn+1
− νm

)
ω∗,n+1 × ∇ϕ − 1

νm

∫ (
μn+1

ρn+1
− νm

)
n × ω∗,n+1ϕ
Ω ∂Ωo
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+
∫

∂Ωo

{(
1 − μn+1

μ0

)
n · D

(
u∗,n+1) + 1

μ0

[(
Pn+1 + λF

(
φn+1))n + 1

2
ρn+1

∣∣u∗,n+1
∣∣2

Θ
∗,n+1
0 n

+ fn+1
b − μ0

(∇ · u∗,n+1)n
]

− n · (∇u∗,n+1)T
}
ϕ, ∀ϕ ∈ H1

u0(Ω), (58)

where we have used integration by part, Eqs. (27d) and (27c), the identities (B denoting a scalar field function)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

B∇ × ωϕ =
∫

∂Ω

Bn × ωϕ −
∫
Ω

∇B × ωϕ +
∫
Ω

Bω × ∇ϕ;
∫

∂Ω

Bn × ωϕ =
∫

∂Ωo

Bn × ωϕ, ∀ϕ ∈ H1
u0(Ω)

(59)

and the fact that
∫
∂Ωu

d
n · ∇un+1ϕ = 0 because ϕ ∈ H1

u0(Ω). Eq. (58) is a Helmholtz-type equation in weak form, and can be

solved for un+1.
One can note that Eqs. (48), (49), (54) and (58) involve no derivatives of order two or higher, and that they are already

in weak forms. These equations can be directly discretized in space using C0 spectral elements or finite elements.
The re-formulated algorithm therefore consists of the following procedure. Given (un, Pn, φn), we successively compute

φn+1, Pn+1, un+1 as follows:

1. Solve Eq. (48), together with the Dirichlet condition (50) on ∂Ω
φ

d , for ψn+1;

2. Solve Eq. (49), together with the phase-field Dirichlet condition (25c) on ∂Ω
φ

d , for φn+1;
3. Compute ρn+1 and μn+1 based on (5), or based on (36) in the case of large density ratios;
4. Compute J̃n+1 based on Eq. (53);
5. Solve Eq. (54), together with the pressure Dirichlet condition (26d) on ∂Ωo , for Pn+1;
6. Solve Eq. (58), together with the velocity Dirichlet condition (27b) on ∂Ωu

d , for un+1.

This algorithm has the following characteristics:

• The auxiliary velocity ũn+1 is eliminated.
• The computations for different flow variables (ψn+1, φn+1, Pn+1, un+1) are completely decoupled.
• The computations for different components of the velocity un+1 from Eq. (58) are completely decoupled.
• The linear algebraic systems for all flow variables (ψn+1, φn+1, Pn+1, un+1) involve only constant and time-independent

coefficient matrices after spatial discretization. These coefficient matrices can be pre-computed during pre-processing.
• Only Helmholtz (including Poisson) type equations need to be solved within each time step.

We now briefly comment on imposing the pressure Dirichlet condition (26d) on the outflow boundary ∂Ωo in step (5)
of the reformulated algorithm. The pressure expression (26d) involves velocity derivatives due to the term containing D(u).
Consequently, with C0 spectral elements or finite elements, the pressure data computed directly from (26d) may not be
continuous across the element boundaries on ∂Ωo . Therefore, we need to project the pressure data computed based on
(26d) to the H1(∂Ωo) space, and use the projected pressure data as the pressure Dirichlet condition. This projection amounts
to the solution of a small linear algebraic system on the outflow boundary ∂Ωo , with the coefficient matrix being the mass
matrix on ∂Ωo .

So far we have concentrated on the implementation of the algorithm using C0 spectral elements (or finite elements),
which have been used for spatial discretizations in the current paper. We next briefly discuss the implementation of the
algorithm using finite difference-type methods.

Using finite-difference schemes, one can successively solve the Helmholtz equations (42a) and (42b) for ψn+1 and φn+1,
with the following boundary conditions. For the field function ψn+1, we impose the Dirichlet condition (50) on ∂Ω

φ

d , and
the following conditions according to Eq. (46),

n · ∇ψn+1 =
(
α + S

η2

)[
−D w

(
∂φ

∂t

∣∣∣∣
∗,n+1

+ u∗,n+1 · ∇φ∗,n+1
)

− 1

λ
f ′

w

(
φ∗,n+1) − gn+1

e

]
+ n · ∇ Q 2 + gn+1

w , on ∂Ω
φ
w , (60a)

n · ∇ψn+1 =
(
α + S

η2

)(
−D0

∂φ

∂t

∣∣∣∣
∗,n+1

+ gn+1
a

)
+ n · ∇ Q 2 + gn+1

o , on ∂Ωo, (60b)

where we have used Eqs. (25e) and (25g). For the field function φn+1, we impose the conditions (25c), (25f) and (25h) to
supplement Eq. (42b).

For pressure Pn+1, we take the divergence of Eq. (51) and obtain the Poisson equation

∇2 Pn+1 = ρ0∇ · Gn+1 − ρ0∇
(

μn+1

n+1

)
· ∇ × ωn, (61)
ρ
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Table 1
Non-dimensional physical parameters resulting from normalization of governing equations and
boundary conditions.

ρ∗ = ρ2
ρ1

(density ratio) Pe = U0ηL
σγ1

(Peclet number)

μ∗ = μ2
μ1

(viscosity ratio) We = ρ1 U 2
0 L

σ (Weber number)

Cn = η
L (Cahn number) D∗

w = D w U0 (dynamic wall mobility)

Re = ρ1 U0 L
μ1

(Reynolds number) D∗
0 = D0U0 (dynamic outflow mobility)

θs (static contact angle)

where we have used Eq. (26b). Take the inner product between Eq. (51) and the directional vector n of ∂Ωu
d , and we get

the following condition

∂ Pn+1

∂n
= ρ0n · Gn+1 − ρ0

μn+1

ρn+1
n · ∇ × ωn − γ0ρ0

�t
n · wn+1, on ∂Ωu

d , (62)

where we have used condition (26c). Therefore, the pressure Pn+1 can be computed using finite-difference type methods by
solving the Poisson equation (61), together with the pressure Neumann condition (62) on ∂Ωu

d and the pressure Dirichlet
condition (26d) on ∂Ωo .

Finally, for velocity un+1 one can solve the Helmholtz equation (56) using finite-difference type methods, together with
the velocity Dirichlet condition (27b) on ∂Ωu

d and the velocity Neumann condition (27d) on ∂Ωo , in which n · D(un+1) is
given by (27c).

3. Representative numerical tests

In this section we consider several two-phase flow problems in two dimensions to demonstrate the capabilities of the
boundary conditions and the numerical algorithm developed in Section 2. These problems involve two-phase outflow bound-
aries, inflow boundaries, as well as large viscosity ratios and large density ratios. We first demonstrate the spatial and
temporal convergence rates of our algorithm using an analytic solution to the system. Then we consider the instability of an
oil jet in water, which involves a large viscosity ratio. We will also consider an air jet in water, and the bubble motion across
the open domain boundaries, which involves a large density ratio. Our phase field model and methods have previously been
verified and validated by comparing with theory, physically exact solutions, as well as experimental data; see [10] and [7]
for details.

3.1. Convergence rates

The goal of the first test is to demonstrate the temporal and spatial convergence rates of our algorithm from Section 2
for problems involving two-phase outflow boundaries.

Let us first briefly discuss the non-dimensionalization of the flow variables, the governing equations, and the boundary
conditions. For a more detailed dimensional analysis, we refer to [7] (Section 3.1). We choose a characteristic length scale L
and a characteristic velocity scale U0. Then we normalize all velocity variables by U0, all length variables by L, the time by
L/U0, pressure by ρ1U 2

0 , ψ introduced in (42a) and (42b) by 1/L2, the density variables by ρ1, and the dynamic viscosity
variables by μ1. The normalization procedure leads to the set of non-dimensional physical parameters listed in Table 1.
In addition, we normalize the numerical parameters νm as ν∗

m = νm
μ1/ρ1

1
Re , ρ0 as ρ∗

0 = ρ0
ρ1

, and μ0 introduced in (27c) as

μ∗
0 = μ0

μ1
. Note that δ in (12) and S in (25a) are non-dimensional. Note also that the mixing energy density coefficient

λ is normalized by λ∗ = λ

ρ1U 2
0 L

= 3
2
√

2
Cn
We in light of Eq. (3). When gravity is considered in subsequent test problems, the

non-dimensional Froude number will also be involved, Fr = U0√
gr L

, where gr is the gravitational acceleration. By default, the

variables are all given in non-dimensional forms subsequently.
We consider the flow domain ABC D shown in Fig. 1(a), which is defined by Ω = {(x, y): 0 � x � 2, −1 � y � 1}, and

the following analytic solution to the two-phase governing equations on Ω ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = A cosπ y sin ax sin βt

v = − Aa

π
sinπ y cos ax sin βt

P = A sinπ y sin ax cosβt

φ = A1 cos a1x cos b1 y cos β1t.

(63)

In the above expressions, (u, v) are the velocity components, and A, A1, a, a1, b1, β and β1 are all prescribed constants.
The problem configuration is shown in Fig. 1(a). The flow domain is discretized using two quadrilateral spectral elements

of equal size (AE F D and E BC F ). On the sides AD , AB and BC we impose a Dirichlet boundary condition for the velocity,
chosen according to the analytic expressions in (63). For the phase field function, we impose the wall contact-angle bound-
ary conditions (7a) and (7b) on AD and BC , and impose the Dirichlet conditions (9a) and (9b) on AB . On the side DC we
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Fig. 1. Convergence rates (analytic solution): (a) Mesh and boundary conditions; (b) numerical errors (fixed �t = 0.001) versus element order showing
spatial exponential convergence rate and error saturation at large element orders due to temporal truncation error; (c) numerical errors (fixed element
order 18) versus time step size showing temporal second-order convergence rate.

impose the outflow boundary conditions, (10)–(11b), for the velocity and the phase field function. The initial conditions for
the velocity u and the phase field function φ are chosen by setting t = 0 to the analytic solutions (63).

The external body force and source terms in the governing equations and boundary conditions, including f in (19), g in
(1c), w in (6), fb in (21), gc (gw and go) in (23), gd in (22), φb in (9b), ge in (7b), ga in (11b), are chosen such that the
analytic expressions in (63) satisfy the governing equations (19), (1b) and (1c), as well as the boundary conditions (6), (21),
(23), (22), (9b), (7b), and (11b).

We employ the following parameter values for this problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = 2.0, A1 = 1.0, a = a1 = b1 = π, β = β1 = 1.0,
ρ2

ρ1
= 3.0,

μ2

μ1
= 5.0, Re = 100, Cn = 0.1, We = 10.607, Pe = 106.07

(contact angle) θs = 90◦, (wall mobility) D∗
w = 0, (outflow mobility) D∗

0 = 0.2,

ρ∗
0 = ρ0

ρ1
= 1

ρ1
min(ρ1,ρ2) = 1, μ∗

0 = μ0

μ1
= max(μ1,μ2)

μ1
= 5.0,

ν∗
m = νm

μ1/ρ1

1

Re
= 1

2

(
μ1

ρ1
+ μ2

ρ2

)
1

μ1/ρ1

1

Re
= 1.333 × 10−2,

δ = 1

20
, S = 77.46,

Λ = 1 (phase field model with J̃ · ∇u term)

(integration order) J = 2.

(64)
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Fig. 2. Oil jet in water: (a) Problem configuration; (b) time histories of maximum and average velocity magnitudes showing that the flow has reached a
statistically stationary state. Results obtained using the phase field model with Λ = 1 (i.e. with the J̃ · ∇u term).

We integrate the system of governing equations from t = 0 to t = t f using the algorithm developed in Section 2, and
compute the errors of the numerical solutions at t = t f against the analytic solutions (63). In the first set of tests, we
use a fixed t f = 0.1, and fix the time step size at �t = 0.001 (i.e. 100 time steps). Then we vary the element order
systematically between 2 and 20. Fig. 1(b) shows the L∞ and L2 errors of all the flow variables at t = t f as a function
of the element order. It is evident that the numerical errors decrease exponentially with increasing element order when
it is below order 10. As the element order increases beyond 10 or 12, the numerical errors saturate due to the temporal
truncation error. These results demonstrate the spatial exponential convergence rate of our scheme for two-phase problems
involving outflow boundaries.

In the second set of tests, we use a fixed t f = 0.2 and a fixed large element order 18. Then we vary the time step size
systematically between �t = 0.0015625 and �t = 0.1. In Fig. 1(c) we show the L∞ and L2 errors of the flow variables at
t = t f as a function of �t , both in logarithmic scales. The results show a temporal second-order convergence rate of our
scheme for two-phase flows with outflow boundaries. We also observe that the L∞ errors for the velocity and the pressure
show a non-monotonic behavior around the intermediate time step size �t = 0.0125–0.025, producing a “bump” in their
respective error curves.

3.2. Instability of an oil jet in water

For the second test problem we simulate the instability of an oil jet in water. The goal is to demonstrate the effectiveness
of our method for two-phase outflows involving large viscosity ratios.

We consider the flow domain shown in Fig. 2(a), − L
2 � x � L

2 and 0 � y � 2L, where L = 6 cm. The bottom side of the
domain (y = 0) is a solid wall, while the other three sides (left x = − L

2 , right x = L
2 , and top y = 2L) are all open where

the flow can enter or leave the domain freely. The domain initially contains water inside. The bottom wall has an orifice of
diameter L

5 in its center, and a jet of oil enters the domain through the orifice. The setup of this problem therefore models
an oil jet in an infinite expanse of water. At the orifice, the oil jet has a parabolic profile for its y velocity component with
a centerline velocity U0 = 24.495 cm/s, and it has no x velocity component. The gravity is along the vertical (y) direction,
pointing downward. The contact angle between the oil–water interface and the bottom wall, if they intersect, is assumed to
be 90◦ . The oil jet develops an instability in the water, and oil drops break up from the jet. The purpose is to the simulate
the long-time behavior of the oil jet in water.

The values for the physical parameters involved in this problem, including the oil/water densities and dynamic viscosities,
and their surface tension, are obtained from the literature, and they are provided in Table 2.

In the simulations, we consider the oil as the first fluid and water as the second fluid. The boundary conditions are set
up as follows:

• At the bottom wall (excluding the orifice), we impose the Dirichlet condition (6) for the velocity with w = 0, and the
contact-angle boundary conditions (7a) and (7b) for the phase field function, with gw = ge = 0, D w = 0 and θs = π .
2
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Table 2
Physical parameter values concerning air, water and oil employed in the current paper.

Air density 1.204 kg/m3 Air dynamic viscosity 1.78 × 10−5 kg/(m s)
Water density 998.207 kg/m3 Water dynamic viscosity 1.002 × 10−3 kg/(m s)
Oil density 870 kg/m3 Oil dynamic viscosity 9.15 × 10−2 kg/(m s)
Air–water surface tension 7.28 × 10−2 kg/s2 Oil–water surface tension 2.356 × 10−2 kg/s2

Gravitational acceleration gr = 9.8 m/s2

• At the orifice, we impose the Dirichlet condition (6) for the velocity, where w has a parabolic profile for the y com-
ponent and is zero for the x component; On the other hand, we impose the Dirichlet conditions (9a) and (9b) for the
phase field function, with gd = 0 and

φb = − tanh
x − R0√

2η

[
H(x) − H(x − R0)

] + tanh
x + R0√

2η

[
H(x + R0) − H(x)

]
, (at orifice) (65)

where R0 = L
10 is the radius of the orifice, and H(x) is the heaviside step function (taking unit value for x � 0 and zero

otherwise).
• On the left, right and top sides of the domain, we impose the outflow boundary condition (10) for the velocity with

fb = 0, and for the phase field function we impose the outflow conditions (11a) and (11b) with go = 0, ga = 0, and
D0 = 0.

In the simulations, we apply an external pressure gradient (−�P
L ) in the y direction to the entire domain,

−�P

L
= ρw gr, (66)

where ρw is the water density, in order to balance the gravity of the water. Therefore, the region occupied by water
experiences no net external body force.

We employ L as the characteristic length scale, U0 as the characteristic velocity scale, and normalize the problem based
on the procedure outlined in Section 3.1. This results in the following non-dimensional physical parameter values⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ2

ρ1
= 1.147,

μ2

μ1
= 1.095 × 10−2,

Re = 1.397 × 102,

We = 1.329 × 102, Pe = 2.652 × 102, Cn = 5 × 10−3,

(Froude number) Fr = 0.319,

D∗
w = 0, θs = π

2
, D∗

0 = 0.

(67)

To simulate the problem, we discretize the flow domain using 800 quadrilateral spectral elements, with 20 elements
along the x direction and 40 elements along the y direction. The element order is 14 for all elements in the simulations.
The algorithm developed in Section 2 is employed for marching in time. We use ρ0 = min(ρ1,ρ2), νm = 1

2 (
μ1
ρ1

+ μ2
ρ2

),

μ0 = max(μ1,μ2), and S = η2
√

4γ0
λγ1�t in the algorithm. In addition, the non-dimensional constant δ in the smoothed step

function (12) is δ = 1
20 in the simulations. As shown in [8], the simulation result is not sensitive to δ when it is sufficiently

small. The non-dimensional time step size is �t = 2 × 10−5 in the simulations.
We have performed a long-time simulation of the problem, and the oil–water two-phase flow has reached a statistically

stationary state. We compute the following maximum magnitudes (Umax, V max) and average magnitudes (Uave, V ave) of the
x and y velocity components at each time step,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Umax(t) = max
x∈Ω

∣∣u(x, t)
∣∣,

V max(t) = max
x∈Ω

∣∣v(x, t)
∣∣,

Uave(t) =
(

1

VΩ

∫
Ω

|u|2 dΩ

) 1
2

,

V ave(t) =
(

1

VΩ

∫
Ω

|v|2 dΩ

) 1
2

,

(68)

where (u, v) are the x and y velocity components, and VΩ = ∫
Ω

dΩ is the volume of the flow domain. We have monitored
these quantities over time. Fig. 2(b) shows a window of the time histories of these velocity magnitudes. The result is
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Fig. 3. Oil jet in water: temporal sequence of snapshots of oil–water interface (contour level φ = 0) at (a) t = 69.212, (b) t = 69.312, (c) t = 69.412,
(d) t = 69.512, (e) t = 69.612, (f) t = 69.732, (g) t = 69.812, (h) t = 69.912, (i) t = 70.012. Results obtained using the phase field model with Λ = 1.

obtained using the phase field model in which the J̃ · ∇u term is present (i.e. Λ = 1 in (19)). One can observe that these
velocities fluctuate over time, but always about some constant mean values. The fluctuations in the maximum velocities are
more significant. These velocity histories indicate that the oil–water two-phase flow has reached a statistically stationary
state.

Let us next consider the dynamical characteristics of the two-phase oil jet in water. In Fig. 3 we show a temporal
sequence of snapshots of the oil-jet configurations, where the oil–water interface is represented by the contour level φ = 0.
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These results are obtained using the phase field model with Λ = 1. The oil jet exhibits distinct characteristics in different
regions, depending on the distance from the oil inlet. In the region near the orifice (y/L � 1 in this case) the oil jet
maintains a stable configuration. The jet tapers off in this stable region along the vertical direction, due to the velocity
increase caused by buoyancy. Beyond this stable region, a Plateau–Rayleigh [21,22] type instability develops. The jet exhibits
a wavy pattern in its profile, and the jet diameter modulates along the vertical direction (Figs. 3(a)–(e)), forming bulges as a
result. As the oil moves downstream, the bulges deform significantly, and the thin oil bridge connecting subsequent bulges
can sometimes be observed to pinch off (Fig. 3(f)). Further downstream, the dramatic deformation of the oil bulge leads to
configurations with branches forming from the oil jet (Figs. 3(g)–(i)). The branches may break off from the main jet to form
oil drops; see e.g. Figs. 3(a)–(b). The process of forming oil bulges, branches and drops repeats itself.

Fig. 4 shows a temporal sequence of snapshots of the velocity fields of the oil–water flow, at the same time instants
as those of the phase field plots in Fig. 3. These results are obtained using the phase field model with Λ = 1. One can
observe several characteristics. First, the region occupied by the jet, as shown by the velocity patterns, is wider than the
actual region the material oil occupies (see Fig. 3), especially in the upper half of domain where the material oil jet becomes
unstable. This indicates that the water in the immediate regions surrounding the material oil jet has been accelerated to
form a wider high-speed region. The jet region shows a lateral spread along the streamwise direction, as can be observed
from the velocity patterns. Pairs of vortices can be observed to form along the jet, in regions where the oil jet becomes
unstable. These vortices reside behind the oil bulges, at the same vertical locations as the thin oil bridges that connect
consecutive bulges (see Fig. 3). These vortices form periodically as new oil bulges form, and travel downstream along with
the bulges. Finally, one can note that on the side boundaries the velocity generally points into the domain, indicating that
the water has in general been sucked into the domain from both sides. Note that in the simulations we have used the
outflow boundary conditions on both the upper and the side boundaries.

We have also performed simulations using the phase field model in which the J̃ · ∇u term is absent, that is, Λ = 0 in
(19). Our results indicate that for the oil–water problem the phase field models with or without the J̃ · ∇u term in the
variable-density Navier–Stokes equation produce quite similar results in terms of the dynamic characteristics of the oil jet
and the velocity distributions. Indeed, one can observe that when the mobility γ1 is sufficiently small (or Peclet number is
large), the contribution from the term J̃ · ∇u will tend to be insignificant.

3.3. Air jet in water and bubble motion through open boundaries

In the next test we consider a continuous stream of air injected into the water, the formation of a train of air bubbles,
and the bubble motion across open domain boundaries. The goal of this test is to demonstrate the performance of our
method for two-phase outflows when large density ratios are involved. This problem is significantly more challenging than
the problem of the previous section, because of the large density contrast between the air and water.

The configuration of this problem has some similarity to the oil-jet problem of Section 3.2. We consider the flow domain
shown in Fig. 5, − L

2 � x � L
2 and 0 � y � 3

2 L, where L is to be specified later. The bottom of the domain is a solid wall, while
the other three sides (left, right, top) of the domain are open boundaries. The domain is filled with water. The bottom wall
has an orifice of diameter L

5 in its center. A stream of air is continuously injected into the domain through the orifice. At
the orifice, the incoming air velocity has a parabolic profile, with a centerline velocity U0. We assume that, if the air–water
interface intersects the bottom wall the static contact angle would be 90◦ , and that D w = 0. The gravity is assumed to be
along the vertical direction (downward). The air stream feeds a train of bubbles, which rise through the water and move
out of the domain due to buoyancy. The objective of this test is to simulate the long-time behavior of this air–water flow.

The physical parameters involved in this problem, such as the air/water densities, dynamic viscosities and surface tension,
are provided in Table 2. Similar to that for the oil–water problem of Section 3.2, in simulations we impose a pressure
gradient in the vertical direction to balance the water gravity, such that no net external body force is experienced in the
region occupied by water.

We treat air as the first fluid and water as the second fluid in the simulations. The boundary conditions are set up in a
way similar to that for the oil-jet–water problem of Section 3.2. Specifically,

• On the bottom wall we impose a zero-velocity condition, and a contact-angle boundary condition for the phase field
function with θs = π

2 and D w = 0. gw and ge in (7a), (7b) have been set to zero.
• At the inlet orifice, a parabolic profile has been set for the y velocity, and the x velocity is set to zero. The Dirichlet

conditions, (9a) and (9b), have been imposed on the phase field function, where φb is given by (65) and gd is set to
zero.

• On the left, right and top sides of the domain, the outflow boundary conditions, (10)–(11b), have been imposed for the
velocity and the phase field function. We set fb , go and ga to zeros in these boundary conditions. The outflow dynamic
mobility D0 in (11b) is determined from preliminary simulations. Preliminary simulations (using D0 = 0) indicate that
the non-dimensional convection velocity of the air bubble at the upper domain boundary is about 2.0–3.0. So we have
used an outflow dynamic mobility D∗

0 = D0U0 = 1
2.5 = 0.4 in the simulations.

The problem normalization follows the discussions in Section 3.1, using L as the characteristic length scale and U0 as
the velocity scale.
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Fig. 4. Oil jet in water: temporal sequence of snapshots of velocity fields at (a) t = 69.212, (b) t = 69.312, (c) t = 69.412, (d) t = 69.512, (e) t = 69.612,
(f) t = 69.732, (g) t = 69.812, (h) t = 69.912, (i) t = 70.012. Results obtained using the phase field model with Λ = 1. Velocity vectors are plotted on every
ninth quadrature point in each direction within each element.
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Fig. 5. Air jet in water: problem configurations.

To simulate this problem we discretize the domain with 600 quadrilateral spectral elements, with 20 elements in the x
direction and 30 elements in the y direction. The element order is 14 for all elements in the simulations. We employ the
algorithm from Section 2 for time integration, with the parameters⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0 = min(ρ1,ρ2)

νm = 2 max

(
μ1

ρ1
,
μ2

ρ2

)

μ0 = 1

4
max(μ1,μ2) + 3

4
min(μ1,μ2)

S = η2

√
4γ0

λγ1�t

(69)

in the algorithm. We use δ = 1
20 in the smoothed step function (12) for the outflow boundary condition (10). The non-

dimensional time step size is �t = 2 × 10−6 in the simulations. We employ the phase field model without the J̃ · ∇u term
for the simulations of this section, i.e. Λ = 0.

We have considered two values for the characteristic length: L = 3 cm and L = 4 cm. These lead to two different sizes
for the flow domain and the inlet orifice. The first domain has a dimension 3 cm×4.5 cm, with an orifice of diameter 6 mm
at the bottom wall. The second domain has a dimension 4 cm × 6 cm, with an orifice of diameter 8 mm at the bottom wall.
The air velocities at the centerline of the orifice are respectively U0 = 17.32 cm/s and U0 = 20 cm/s for these two cases.
After normalization, for the smaller domain we have the following non-dimensional parameter values:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ2

ρ1
= 829,

μ2

μ1
= 56.29,

Re = 3.515 × 102,

We = 1.489 × 10−2, Pe = 1.061 × 103, Cn = 0.01,

(Froude number) Fr = 0.319,

D∗
w = 0, θs = π

2
.

(70)

For the larger domain, we have the parameter values{
Re = 5.412 × 102,

We = 2.646 × 10−2,
(71)

while the rest of the non-dimensional parameters have the same values as those for the smaller domain. We will look into
the characteristics of the air–water flow for these two cases individually in the following.

Smaller domain Let us first consider the smaller domain of 3 cm × 4.5 cm with an orifice of diameter 6 mm. We have
performed a long-time simulation of the problem, and have monitored the evolution of the maximum and average mag-
nitudes of the x and y velocities of the domain as defined by (68). Fig. 6 shows a window of the maximum and average
velocity histories of the two velocity components. One can observe that both the maximum and the average velocity mag-
nitudes fluctuate quasi-periodically over time, but approximately around some constant mean levels. They indicate that the
air–water flow has reached a statistically stationary state.
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Fig. 6. Air jet in water (smaller domain): Time histories of the maximum and averaged magnitudes of x and y velocities.

The time histories of the maximum velocities seem to suggest the presence of two distinct states in the flow, which
alternate in time with each other. At one flow state, the maximum velocities exhibit relatively low values, e.g. at the instant
marked by the arrow “B” in Fig. 6. At the other state, the maximum velocities exhibit generally higher values, and in
particular the maximum velocity peaks at certain time instants; see e.g. the time interval marked by “snapshot sequence”
in Fig. 6.

We first look into the characteristics of the flow at a state with relatively higher maximum velocities. Fig. 7 provides a
temporal sequence of snapshots of the air–water interface, in the time interval marked by “snapshot sequence” in Fig. 6.
Fig. 7(a) shows a free air bubble rising through water, and that a second bubble is forming at the orifice but still attached
to the bottom wall. Figs. 7(b)–(c) show the process when the second bubble breaks away from the wall to form a distinct
free bubble. As the second bubble grows owing to the incoming air stream through the orifice, its lower portion shrinks to
form a thin channel (throat), which connects the bulk of the air bubble and the orifice. The connecting thin channel then
pinches off, and a distinct free bubble forms and breaks away from the bottom wall (Fig. 7(c)). Subsequently, the feeding
air stream gradually inflates another bubble at the orifice attached to the wall, and the process of bubble formation repeats
itself. Once breaking free from the wall, the second air bubble rises through water in the wake of the first bubble. It can
be observed that the second bubble rises notably faster than, and nearly catches up with the first bubble (Figs. 7(e)–(h)).
At the same time, the second bubble is dramatically distorted, see Figs. 7(e)–(j), by the presence of a pair of vortices in the
wake of the first bubble, which will become clear from Fig. 8 subsequently. Figs. 7(g)–(j) show the passing of the first air
bubble through the upper open boundary of the domain. Fig. 7(l) shows that the dramatically deformed second bubble is
crossing the upper boundary, and that it is about to pinch off in the middle and break into two.

Fig. 8 shows the corresponding temporal sequence of snapshots of the velocity fields at the same time instants as those
of Fig. 7. Comparison between Fig. 8(b) and Fig. 7(b) indicates that, as the channel between the bulk of air bubble and the
orifice shrinks, a strong jet of air with large velocity magnitudes forms in the thin channel. This strong jet of air correspond
to some of the peaks observed in the maximum-velocity histories in Fig. 6. This air jet also produces violent velocity fields
and strong vortices inside the air bubble shortly before and after the bubble breaks away from the wall; see Figs. 8(a)–(d).
Figs. 8(a)–(f) clearly show the pair of vortices in the wake of the first air bubble. The interaction between the second bubble
and the wake of the first bubble is responsible for the significant deformations of the second bubble; see Figs. 8(e)–(j) and
also Fig. 7. Figs. 8(g)–(j) show the velocity distributions as the first air bubble passes through the upper open boundary. It
is also observed that on the side boundaries the flow is generally into the domain (backflow).

Subsequently, as the second bubble moves out of the domain, while another bubble is still forming at the orifice, the
flow domain is essentially depleted of free air bubbles. This is shown by Fig. 9(a) with a snapshot of the air–water interface
at a time instant marked by the arrow “A” in Fig. 6.

Figs. 9(b) and (c) show the air bubble configurations at two time instants that are marked by the arrows “B” and “C”
respectively in Fig. 6. They correspond to the flow state with relatively low values of maximum velocities in the history
plot. The free air bubble in these two plots corresponds to the bubble in Fig. 9(a) that is about to break away from the wall.
The rising speed of this free bubble is relatively low, because the flow field in the upper part of the domain has gradually
died down due to the depletion of free bubbles in the domain. The low rising speed of this free bubble in turn allows
enough time for a second bubble to form and subsequently break away from the wall. After that, the scenario shown by
Figs. 7(a)–(b) and subsequent scenarios will repeat.
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Fig. 7. Air jet in water: temporal sequence of snapshots of air–water interface: (a) t = 5.054, (b) t = 5.093, (c) t = 5.150, (d) t = 5.183, (e) t = 5.243,
(f) t = 5.303, (g) t = 5.351, (h) t = 5.372, (i) t = 5.402, (j) t = 5.432, (k) t = 5.456, (l) t = 5.483.

The results suggest that the alternation of the two flow states, with relatively lower and higher maximum velocities,
observed from the velocity time histories is owing to the different rising speeds of the free air bubbles. When two or more
free bubbles are present in the domain, the interaction between these bubbles and their synergistic effect will markedly
accelerate the flow and the bubble motion, causing the free bubbles to move out of the domain in a relatively short period
of time. Because the interval at which a new free bubble breaks away from the wall is relatively regular, the rapid bubble
motion out of the domain may periodically deplete the domain (or at least the near-wall region of domain) of free bubbles.
As the flow field caused by the bubble passage dies down upon depletion of free bubbles, the free bubble generated at the
wall at that point will rise at a relatively low speed. This in turn allows enough time for the formation and accumulation
of new free bubbles in the domain, thus accelerating the flow and bubble rising. The above cycle repeats itself, resulting in
the alternation of the two states observed from the velocity histories.

Larger domain We next consider the larger flow domain of dimension 4 cm × 6 cm with an 8 mm-diameter orifice on
the bottom wall. A long-time simulation has been performed for this case to ensure that the air–water flow has reached a
statistically stationary state. This is demonstrated by the time histories of the maximum and average magnitudes of the x
and y velocities in Fig. 10. The basic characteristics in the time histories are similar to those on the smaller domain. For
example, the large fluctuations in time of the maximum velocities, and the alternation in time between two flow states
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Fig. 8. Air jet in water: temporal sequence of snapshots of velocity fields: (a) t = 5.054, (b) t = 5.093, (c) t = 5.150, (d) t = 5.183, (e) t = 5.243, (f) t = 5.303,
(g) t = 5.351, (h) t = 5.372, (i) t = 5.402, (j) t = 5.432, (k) t = 5.456, (l) t = 5.483. Velocity vectors are plotted on every ninth quadrature point in each
direction on each element.

with generally lower or higher maximum velocities, can also be observed with the larger domain here. A difference is that
the alternation period between the two states appears noticeably shorter for this case in non-dimensional time.

Fig. 11 shows a temporal sequence of snapshots of configurations of the air–water interface over the time interval marked
by “snapshot sequence” in Fig. 10. The figure shows the formation of free air bubbles near the orifice, and the motion of
a cluster of air bubbles across and out of the flow domain. Figs. 11(a)–(c) show a free bubble rising in the domain and
the formation of a second free bubble near the bottom wall. Once formed, the second bubble rises rapidly in the domain,
and catches up with the first bubble (Figs. 11(d)–(e)). The two free bubbles then appear to rise through the water together
as a cluster (Figs. 11(e)–(f)). The second bubble experiences severe deformations in the process. Subsequently, the second
bubble breaks up into two daughter bubbles (Fig. 11(g)). The cluster of these bubbles rises along the vertical direction and
eventually moves out of the domain (Figs. 11(g)–(l)). In the process it can be observed that one of the daughter bubbles
merges with the first bubble (Figs. 11(i)). One can also observe that a third bubble forms at the orifice and breaks free from
the bottom wall (Figs. 11(j)–(l)).

The above results indicate that the overall scenario about the bubble motions observed on the smaller domain manifests
in a similar way for the larger domain. The presence of a free bubble inside the domain (not far from the bottom wall)
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Fig. 9. Snapshots of air–water interface at time instants marked in Fig. 6 by (a) arrow A, (b) arrow B, (c) arrow C.

Fig. 10. Air jet in water (larger domain): Time histories of the maximum and average magnitudes of x and y velocities.

will accelerate the rising of the free bubble subsequently generated at the wall. Their rapid movement across the domain
ultimately depletes the near-wall region or even the entire flow domain of free bubbles. This in turn slows down the motion
of the free bubble that is subsequently generated at the wall. The main difference with the larger domain appears to lie in
that the free bubbles in the domain have formed a cluster in this case and rise together through the water. The cluster of
bubbles also exhibits more complicated dynamics, such as bubble breakup and coalescence.

The results of this section demonstrate that the outflow boundary conditions we developed in Section 2 can effectively
deal with two-phase outflows where large density ratios and viscosity ratios are involved. They also show that the Dirichlet
conditions we developed in Section 2 for the phase field function can effectively deal with two-phase inflows. Our method
allows the bubbles and the air–water interface to move freely and seamlessly through the outflow and open boundaries.

Because of the large density ratio between the air and water, the simulation of the air–water flow involving outflow
boundaries is very challenging. Besides the usual factors that affect the stability (such as spatial resolution and time step
size), we observe that the constant νm in the algorithm also has an effect on the stability of computation. A larger νm makes
the computation more stable, while with a small νm one may encounter numerical instability. For example, we observe that
the computation with a value νm = 1

2 (
μ1
ρ1

+ μ2
ρ2

) is unstable for this problem. We also observe an effect of the constant
μ0 on the stability of computation, and a smaller μ0 tends to improve the stability. In addition, we observe that, if the
[ 1

2 ρ|u|2Θ0]n term is absent from the outflow boundary condition (10), the simulation for this air–water flow is unstable.

4. Concluding remarks

In this paper we have presented a set of outflow boundary conditions, and an associated numerical algorithm, within the
phase field framework for simulating incompressible two-phase flows involving outflow or open boundaries. The two-phase
outflow boundary conditions for the velocity and for the phase field function are designed in a fashion such that they will
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Fig. 11. Air jet in water (larger domain): temporal sequence of snapshots of the air–water interface at (a) t = 6.927, (b) t = 7.007, (c) t = 7.047, (d)
t = 7.087, (e) t = 7.167, (f) t = 7.223, (g) t = 7.303, (h) t = 7.383, (i) t = 7.423, (j) t = 7.463, (k) t = 7.515, (l) t = 7.575.

not cause un-controlled growth in the total energy of the two-phase system, even in situations where energy influx or
backflows into the domain through the outflow boundaries may be present.

In addition, we have also presented an extra boundary condition, together with the usual Dirichlet condition, for the
phase field function on inflow boundaries. We observe that the often-used zero-flux condition on the chemical potential fails
to work for phase-field Dirichlet boundaries. A combination of the zero-flux condition on the chemical potential, together
with the usual Dirichlet condition for the phase field function, has been observed to cause a numerical instability at the
inflow boundaries, when the density ratio of the two fluids becomes large (e.g. the air–water problem).

Our numerical algorithm for dealing with these boundary conditions is developed on top of a strategy we developed pre-
viously in [10] for de-coupling the computations of all flow variables and for overcoming the performance bottleneck caused
by variable coefficient matrices associated with variable mixture properties. The algorithm contains special constructions for
treating the variable viscosity at the outflow boundaries and for preventing a numerical locking on the outflow boundaries
for time-dependent problems. We observe that the current algorithmic treatment of the variable dynamic viscosity in the
outflow boundary condition is extremely important. Without this treatment, the computation is unstable when the fluid
interface touches the outflow boundaries for high and moderate viscosity ratios. The numerical treatment of the outflow
boundary condition for the phase field function also warrants special care, due to the inertial term ∂φ

∂t . A straightforward
treatment of this term on the outflow boundaries will cause a numerical instability unless D0 is extremely small, or will
couple up the computations for the auxiliary phase-field variable ψ and the phase field function φ, which are naturally
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de-coupled if no outflow boundary is present. In our algorithm, we have treated this term on the outflow boundaries by
borrowing an idea from [7] for dealing with the dynamic contact-angle boundary conditions on solid walls. This allows for
stable computations in the case of large D0 values, and simultaneously de-couples the computations for ψ and φ.

Extensive numerical experiments have been presented for incompressible two-phase flows involving inflow and outflow
boundaries. These results demonstrate that the two-phase outflow boundary conditions and the numerical algorithm devel-
oped herein allow the fluid interface and the two-phase flow to pass through the outflow or open boundaries in a smooth
and seamless fashion. Our method achieves stable computations when large density ratios and large viscosity ratios are
involved and when strong backflows are present at the outflow boundaries.

The method developed herein provides an effective and efficient technique for simulating a large class of crucial two-
phase flows, for example, two-phase jets, wakes, shear layers, and other spatially-developing two-phase flows involving
inflow/outflow boundaries. It can facilitate and potentially enable new investigations into the statistical features of two-
phase flows, since the technique allows for long-time simulations such that statistically stationary flow states can be
examined. It is observed that numerical studies of the statistical aspect of two-phase flows (involving inflows/outflows)
seem still severely lacking, at least for the phase field community. The presented method can facilitate new applications in
this direction.
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