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Direct numerical simulation of spiral turbulence
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In this paper, we present results of three-dimensional direct numerical simulations
of the spiral turbulence phenomenon in a range of moderate Reynolds numbers,
in which alternating intertwined helical bands of turbulent and laminar fluids co-
exist and propagate between two counter-rotating concentric cylinders. We show
that the turbulent spiral is comprised of numerous small-scale azimuthally elongated
vortices, which align into and collectively form the barber-pole-like pattern. The
domain occupied by such vortices in a plane normal to the cylinder axis resembles
a ‘crescent moon’, a shape made well known by Van Atta with his experiments in
the 1960s. The time-averaged mean velocity of spiral turbulence is characterized in
the radial–axial plane by two layers of axial flows of opposite directions. We also
observe that, as the Reynolds number increases, the transition from spiral turbulence
to featureless turbulence does not occur simultaneously in the whole domain, but
progresses in succession from the inner cylinder towards the outer cylinder. Certain
aspects pertaining to the dynamics and statistics of spiral turbulence and issues
pertaining to the simulation are discussed.
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1. Introduction
The present study concerns the so-called spiral turbulence, a phenomenon observed

at moderate Reynolds numbers in the flow between two concentric cylinders
(i.e. Taylor–Couette geometry) rotating in opposite directions. Spiral turbulence
is prominently characterized by the stable co-existence of laminar and turbulent
domains, spatiotemporal intermittency and amazing pattern formations. Alternating
intertwined helical stripes, i.e. barber-pole-like patterns, of turbulent and laminar fluids
propagate around the cylinder gap and also along the axial direction. Figure 1 shows
such a pattern obtained from our simulations; see table 1 for an explanation of the
parameters. The fundamental importance of spiral turbulence to the understanding of
transition, pattern formation and spatiotemporal intermittency, and its visual appeal,
have attracted researchers for the past few decades (Coles 1965; Van Atta 1966;
Andereck, Liu & Swinney 1986; Hegseth et al. 1989; Colovas & Andereck 1997;
Goharzadeh & Mutabazi 2001; Prigent et al. 2002; Meseguer et al. 2009; Dong
2009b).

The spatiotemporal intermittency exhibited by spiral turbulence has also been
observed in other types of flows, most notably in the plane- and torsional-Couette
flows (Bottin et al. 1998; Cros & Gal 2002; Prigent et al. 2002; Barkley & Tuckerman
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Symbol Definition Symbol Definition

Ri Radius of inner cylinder Ωi Angular velocity of inner cylinder
Ro Radius of outer cylinder Ωo Angular velocity of outer cylinder
Lz Axial dimension of domain Ui Rotation velocity of inner cylinder, Ui = ΩiRi

η Radius ratio, η = Ri/Ro Uo Rotation velocity of outer cylinder, Uo = ΩoRo

d Gap width, d = Ro − Ri Rei Inner-cylinder Reynolds number, Rei = Uid/ν
Γ Aspect ratio, Γ = Lz/d Reo Outer-cylinder Reynolds number, Reo = Uod/ν
ν Kinematic viscosity of fluid

Table 1. Definitions of geometric and dynamical parameters.
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Figure 1. Contours of instantaneous azimuthal velocity in a cylindrical grid surface showing
barber-pole-like patterns formed by turbulent and laminar regions. (Rei = 611, Reo = −1375,
Γ = 50.2.) See table 1 for definitions of the parameters.

2005; Lepiller et al. 2007). The co-existence of two distinct dynamical states at the
same values of the control parameters has also been found in other kinds of dynamical
systems; see Cross & Hohenberg (1993) and Berge, Pomeau & Vidal (1984) for a
review of related aspects.



152 S. Dong and X. Zheng

Source η Γ Rei Reo

Coles (1965) 0.874, 0.889 13.95, 15 0–15 000 −10 000 to −80 000
Van Atta (1966) 0.889 8.5–13.75 −10 000 to 20 000 −10 000 to −170 000
Coles & Van Atta (1966) 0.889 ? −5600 50 000
Coles & Van Atta (1967) 0.889 ? −5600 (?) 50 000 (?)
Andereck et al. (1986) 0.883 20–48 500–1800 −800 to −4000
Hegseth et al. (1989) 0.882 � 73 770, 950 < −4000
Litschke & Roesner (1998) 0.789, 0.895 68.5 (?) 450–1400 (?) −600 to −3100 (?)
Goharzadeh & Mutabazi (2001) 0.88 46 520–700 −1260 to −1683
Prigent et al. (2002) 0.983 430 450–810 (?) −600 to −1200 (?)
Prigent et al. (2003) 0.983 442 450–800 (?) −600 to −1200 (?)
Goharzadeh & Mutabazi (2008) 0.88 46 680 −1380
Meseguer et al. (2009) 0.883 29.9 540–640, 575–900 −1200, −3000
Dong (2009b) 0.89 6–25 530–900 −1375

Table 2. Global parameters in existing studies of spiral turbulence. The values followed by a
question mark (?) may not be exact because they are not available from the text and are read
from the figures.

It is appropriate to first define several parameters before proceeding further. The
problem focused on is the incompressible flow between two long concentric cylinders
which revolve around their common axis in opposite directions. Table 1 summarizes
several geometric and dynamical parameters involved in the problem. There are two
main geometric parameters, the radius ratio η and the aspect ratio Γ . The rotations
of the two cylinders are assumed to be independent, with constant angular velocities
Ωi and Ωo. The inner- and outer-cylinder Reynolds numbers (Rei and Reo) are,
respectively, defined based on the two rotation velocities.

The existing experimental and computational studies of spiral turbulence are listed
in table 2, in which we summarize the global parameters including the radius ratio,
aspect ratio and the inner-/outer-cylinder Reynolds numbers. We next summarize the
main results from these studies.

The earliest observations of spiral turbulence are documented in the works of
Coles and Van Atta (Coles 1965; Van Atta 1966; Coles & Van Atta 1966, 1967).
These early experiments were conducted with an outer-cylinder Reynolds number
Reo of the order −10 000 to −80 000, considerably larger than those of subsequent
investigations. Major observations from these studies include: (i) the spiral pattern
rotates at nearly the mean angular velocity of the two cylinders (Coles 1965; Van Atta
1966); (ii) spiral turbulence can be observed in situations when the cylinders rotate in
opposite directions (counter-rotating), or when the inner one is at rest, or even when
the two rotate in the same direction (co-rotating), provided that sufficiently strong
disturbances are present (Coles 1965); (iii) the mean shape of the interface between
the turbulent and laminar regions in a horizontal plane (normal to the cylinder
axis) resembles a ‘crescent moon’, with its leading and trailing interfaces, respectively,
located near the outer and inner cylinder walls (Van Atta 1966). This shape in the
horizontal plane has been reproduced in numerical simulations recently by Dong
(2009b) using conditionally averaged statistics, in which the three-dimensional mean
interface between turbulent and laminar spirals has also been characterized.

The experiment of Andereck et al. (1986) provides a comprehensive overview of
various regimes of the counter-rotating Taylor–Couette flow as well as the co-rotating
flow at radius ratio 0.883. The range of parameters in the (Rei, Reo) plane that
lead to different regimes has been determined. Pertaining to spiral turbulence, it is
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observed that the angular frequency of the spiral pattern can be best described by
CΩo (where C < 1 is a constant and possibly Reo dependent) under the experimental
conditions, and has essentially no dependence on Ωi . Hysteresis has been documented.
It is also observed that, at sufficiently high Reo values and when the inner-cylinder
rotation is accelerated rapidly, the left- and right-handed turbulent spirals can exist
simultaneously, joining near the mid-height of cylinder and forming a V-shaped
pattern. Andereck et al. (1986) have also provided several stunning experimental
visualizations of spiral turbulence.

Certain properties of the turbulent spirals have been investigated by several
subsequent studies. For example, a variation in the spiral pitch angle along the
axial direction is observed when the experimental boundary conditions at the two
ends of the cylinders are changed (rigid or free endwalls) (Hegseth et al. 1989), and is
modelled using a kinematic phase equation. Several parameters involved in the phase
equation, such as the diffusion coefficient, have been recently measured experimentally
(Goharzadeh & Mutabazi 2008). Measurements of the turbulent fraction and related
parameters in the spiral turbulence regime are reported in Goharzadeh & Mutabazi
(2001). Spiral turbulence has also been used as a benchmark problem for testing
experimental techniques (Litschke & Roesner 1998), in which among other points
significant influence of the end plates on the local flow field has been noted.

Prigent et al. (2002, 2003) have described a unique set of experiments on the
Taylor–Couette flow (and also plane-Couette flow). The uniqueness lies in large
aspect ratios, which are considerably larger compared to previous experiments; see
table 2. The radius ratio used in this experiment is also notably higher compared to
other experiments. Starting from the fully turbulent state, as the Reynolds number is
decreased a long-wavelength modulation to the turbulent intensity is observed from
these experiments, which leads to a striped pattern in the flow. Spiral turbulence is
suggested to be the ultimate stage of this modulation as the Reynolds number is
decreased. Prigent et al. also observe that the turbulent intensity modulation can be
modelled using the coupled Ginzburg–Landau equations with noise.

The above studies are all experimental investigations. Computations of spiral
turbulence have appeared only very recently. Two independent simulations of spiral
turbulence, one from a group in Europe (Meseguer et al. 2009) and one from our
group (Dong 2009b), appeared last year. These two studies were presented at the
16th International Couette–Taylor Workshop (Marques et al. 2009; Dong 2009a).
Meseguer et al. (2009) have explored the parameter space at two outer-cylinder
Reynolds numbers, and observed axial vortex filaments in the annular domain that
are generated near the inner cylinder and gradually spread out downstream towards
the outer cylinder. On the other hand, Dong (2009b) has employed conditional
averaging techniques in the simulations and concentrated on the conditionally
averaged statistics of spiral turbulence. Dong (2009b) has made three observations:
(i) a significant azimuthal gradient of the conditional mean velocity persists across
turbulent and laminar spiral regions; (ii) the cores of turbulent and laminar spirals
are demarcations of axially opposite flows in the mean sense; (iii) spiral turbulence
exhibits distinct distribution characteristics in turbulent intensity compared to fully
developed turbulence.

Employing detailed three-dimensional direct numerical simulations (DNS), this
paper presents a comprehensive study of the flow structures and dynamical features,
together with the ordinarily time-averaged statistical features, of spiral turbulence. By
‘ordinary’ time averaging, we refer to the direct averaging of the flow field in time,
which is different from the conditional averaging employed by Dong (2009b). The
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problem setting is the counter-rotating configuration of the Taylor–Couette geometry
at a radius ratio η = 0.89, chosen in accordance with Dong (2009b). The majority
of results are for an aspect ratio Γ = 25.1. A larger aspect ratio Γ = 50.2 has
also been simulated. For spiral turbulence, we have concentrated on two moderate
Reynolds numbers, Rei = 611 and 700 (with a fixed Reo = −1375), which lead to
regular turbulent and laminar spiral patterns. The present study has revealed several
characteristics of spiral turbulence that were unknown before. In particular, the
turbulent spiral is shown to be comprised of a large number of small-scale azimuthal
vortices, which align themselves and collectively form the spiral pattern. The laminar
spiral region is found not to be void of vortices, but teems with pairs of azimuthal
vortices that are confined to the linearly unstable layer near the inner cylinder wall.
We also observe that the left-handed and right-handed spiral patterns leave quite
different statistical footprints, despite the common features they share. We will also
compare and relate aspects of the ordinarily time-averaged flow statistics studied here
to the conditionally averaged statistics in Dong (2009b).

2. Numerical issues: convergence, consistency and validation
We consider the incompressible flow between two counter-rotating concentric

cylinders. The cylinders have an axial dimension Lz, and the flow is assumed to
be periodic at both ends of the cylinders. This setting can be used to approximate the
situation with two infinitely long cylinders. The cylinder axis is assumed to coincide
with the z-axis, and the two cylinder ends are located at z = 0 and Lz, respectively.
The inner and outer cylinders revolve around their common axis at constant angular
velocities, denoted by Ωi (Ωi > 0) and Ωo (Ωo < 0), respectively, with the convention
that a positive (negative) angular velocity represents counter-clockwise (clockwise)
rotations when viewing towards the –z direction.

The problem is described by the three-dimensional incompressible Navier–
Stokes equations. Our numerical scheme for solving these equations employs a
hybrid spectral/spectral-element approach, as detailed in previous works (Dong &
Karniadakis 2005; Dong et al. 2006; Dong 2007, 2008). In brief, the flow variables
are discretized with a Fourier spectral expansion in the axial (z)-direction and a
high-order spectral element expansion in the annular domain of the x–y plane.
Therefore, we will subsequently refer to Fourier planes or spectral elements from
time to time. Temporal discretization of the Navier–Stokes equations is through a
velocity-correction-type scheme with second-order accuracy (Karniadakis, Israeli &
Orszag 1991). The algorithms for parallel processing in our solver have been described
in Dong & Karniadakis (2004) and Dong, Karniadakis & Karonis (2005). No-slip
boundary conditions are imposed on the two cylinder walls to realize their rotation
velocity conditions. In the simulations, the length is normalized by the inner cylinder
radius Ri; the velocity is normalized by a unit velocity Ud , and the pressure is
normalized by ρU 2

d , where ρ is the fluid density.
The radius ratio considered in this paper is fixed at η = 0.89 (with Ri = 1.0 and

Ro = 1.125). Throughout the simulation, the outer-cylinder Reynolds number is fixed
at Reo = −1375. Several inner-cylinder Reynolds numbers have been simulated, which
as identified in Dong (2009b) accommodate regular turbulent/laminar spiral patterns
for the range 611 � Rei � 700. The main results on spiral turbulence presented here
are for Rei = 611 and 700. Two other Rei values outside the spiral turbulence regime
have also been considered (Rei = 530 and 800). The majority of results are with an
aspect ratio Γ = 25.1, where a single period of the spiral pattern along the axial
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Case Γ Nz Element order

A 12.6 384 6
B 18.9 384 6
C 25.1 512 6
D 25.1 512 7
E 25.1 512 8
F 25.1 512 9

Table 3. Grid resolution parameters for the convergence tests in figure 2. Nz denotes the
number of Fourier grid points in the z-direction. A total of 640 quadrilateral spectral elements
are used in each annular x–y plane.
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Figure 2. Convergence test (Rei = 700, Reo = −1375): profiles of time-averaged mean
azimuthal velocity (a) and r.m.s. azimuthal fluctuation velocity (b) for different resolutions. r
is the radial coordinate.

direction has been obtained (see § 3). Results with a larger aspect ratio, Γ = 50.2,
have also been obtained for Rei = 611, where two periods of the spiral pattern have
been realized along the axial direction (figure 1). With Γ = 25.1, we have obtained a
left-handed spiral at Rei = 611 and a right-handed spiral at Rei = 700; on the other
hand, at Rei = 611 with Γ = 50.2 we obtain a right-handed spiral, which is different
from that with Γ = 25.1.

To ensure that our simulation results have converged, we have conducted extensive
grid-resolution tests. Figure 2 shows results of the grid-resolution study at Rei = 700.
The plots (a) and (b) in the figure, respectively, compare profiles of the time-averaged
mean azimuthal velocity and the root-mean-square (r.m.s.) azimuthal fluctuation
velocity across the cylinder gap under different grid resolutions (with increasing
resolution from case A to case F). The grid resolution parameters for cases A to F
are summarized in table 3. In these tests, along the axial direction 512 Fourier planes
(i.e. 256 Fourier modes) have been employed in most cases, and 384 Fourier planes
have been used for cases A and B. A 3/2-dealiasing has been performed. Within each
plane (annular domain), we employ a spectral element mesh with 640 quadrilateral
elements, and the element order is varied between 6 and 9, with over-integration
(Dong 2007). Figure 2(a,b) shows that the profiles essentially collapse into a single
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Figure 3. Angular velocity current balance (Rei = 700). Note that Reo is fixed at −1375
throughout this study.

curve as the resolution increases, demonstrating the convergence of the simulation
results. For simulations at other Reynolds numbers, we have mostly employed an
element order of 8 or 9, and 512 Fourier planes have been used along the axial
direction. For the simulation with a larger aspect ratio Γ = 50.2 at Rei = 611, we
have employed 1024 Fourier planes in the axial direction.

To check the internal consistency of our simulation results, we consider the angular
velocity current balance relation. It has been shown in Eckhardt, Grossmann & Lohse
(2007) that the quantity

J ω = r3

(
〈urω〉 − ν

∂ 〈ω〉
∂r

)
, (2.1)

the so-called angular velocity current, is a constant across the cylinder gap for flows
in the Taylor–Couette geometry. In (2.1), r is the radial coordinate, and ur and ω are,
respectively, the radial velocity and the angular velocity; 〈·〉 denotes the averaging in
time and also in the axial and azimuthal directions. Since the terms on the right-hand
side can be computed independently, this equation can be used as a consistency check
of the results. In figure 3, we plot profiles of the two terms on the right-hand side
of (2.1), together with their sum J ω across the cylinder gap for Rei = 700. One can
observe that J ω computed from the simulation data is virtually a constant across the
cylinder gap. This in a sense demonstrates the internal consistency of our simulation
results.

Our flow solver has been extensively validated for turbulent Taylor–Couette
flows by comparing with the experimental data in previous studies; see Dong
(2007) for comparisons in the standard Taylor–Couette setting (i.e. outer cylinder
fixed) and Dong (2008) for comparison with the counter-rotating configuration
in the fully turbulent regime. Very good agreements are observed in these
comparisons.

We next present a further comparison with an experiment for the spiral turbulence
regime. A survey of literature indicates that the experimental data for spiral
turbulence that can be used for quantitative validation of direct numerical simulations
are very scarce. Results of the majority of experiments on spiral turbulence are
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Figure 4. Comparison of turbulent fraction between simulation and experiment. The
horizontal axis, ε, represents the deviation of Rei from a threshold Reynolds number; see
the text for its definition.

qualitative. Some statistical data are available in Van Atta (1966), but the Reynolds
numbers in that set of experiments are beyond the reach of current direct
numerical simulations (see table 2). As a further validation, here we compare
our simulations with the experiment of Goharzadeh & Mutabazi (2001). This
experiment was conducted at a comparable radius ratio 0.88 and at comparable
Reynolds numbers. In figure 4, we compare the mean turbulent fraction (in mid-
gap) for spiral turbulence from the simulation and the experiment, as a function
of a dimensionless parameter ε = (Rei − Re∗

i )/Re∗
i , where Re∗

i is the threshold Rei

value at which turbulent bursts start to appear from the laminar background for
a fixed Reo. For Reo = −1375 in the current simulations, we have determined that
Re∗

i ≈ 515. The mean turbulent fraction is defined as the fraction of total duration of
turbulent phases in the total duration of the velocity history, or equivalently, the ratio
of the total area of the turbulent region to the total area of the space–time diagram.
A space–time diagram is a plot in the spatial–temporal plane of the velocity data
collected along a fixed line (parallel to cylinder axis) over time. It has often been
adopted in experiments (Litschke & Roesner 1998; Goharzadeh & Mutabazi 2001),
and can also be obtained from simulations (Dong 2009b). To distinguish the turbulent
phase from an instantaneous velocity history, we employ the sum of the normalized
r.m.s. velocity squared and velocity time-derivative squared as the criterion. If for a
time instant, this quantity is above a cutoff value, it will be marked turbulent. The
results of this procedure are verified by visual comparisons with the velocity history
to ensure that all significant features have been accounted for. The turbulent fraction
data for Reo = −1260 and −1683 are available in Goharzadeh & Mutabazi (2001). It
is evident from figure 4 that the turbulent fractions from the current simulation are
in good agreement with the experimental data.

The above convergence tests, internal consistency check and comparisons with
experimental data provide confidence in the correctness and accuracy of the current
simulation results.
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Figure 5. Contours of instantaneous azimuthal velocity in a grid surface (essentially
cylindrical) near the middle of the cylinder gap at Reynolds numbers Rei = 530 (a), 611
(b), 700 (c) and 800 (d ). In (b) and (c) the letters ‘A’ and ‘B’, respectively, point to the leading
and trailing edges of the turbulent spiral.

3. Dynamics of spiral turbulence
We have carried out long-time simulations at each Reynolds number, and monitored

the global physical parameters such as the torques on the inner and outer cylinders.
At the statistically stationary states the torques on the cylinders fluctuate in time,
but always around some constant mean level. All results presented below are for the
statistically stationary states.

Figure 5 provides an overview of the flow features at several Reynolds numbers
within the spiral turbulence regime (plots (b) and (c)) and outside the regime (plots
(a) and (d )). Plotted are contours of the instantaneous azimuthal velocity (side view)
in a grid surface, which is essentially cylindrical, near the middle of the cylinder gap.
Note that the outer-cylinder Reynolds number is fixed at Reo = −1375 in all cases.
Figure 5(a) is for Rei = 530, corresponding to the regime of turbulent bursts, also
referred to as the intermittency regime or intermittent turbulent spots in the literature.
Figures 5(b) and 5(c) are for Rei = 611 and 700, respectively, corresponding to the
spiral turbulence regime. Figure 5(d ) is for Rei = 800, corresponding to the regime
beyond spiral turbulence.

3.1. Turbulent bursts and featureless turbulence

Under current configurations, the turbulent burst regime precedes regular spiral
turbulence as Rei increases. Our simulation shows that localized turbulent patches
(bursts) appear from, and disappear into, the otherwise laminar flow background in
random locations (figure 5a).

The simulation indicates that the activeness of the turbulent bursts exhibits a
quasi-periodic nature in time. For some period of time, the turbulent patches are very
active, in the sense that they randomly emerge from, persist in, and then vanish into
the laminar flow. We will refer to these periods of time as ‘active phases’. Figure 5(a)
is a snapshot of an instant in the active phase. For other periods of time, no turbulent
patches exist at all, and the entire flow is completely laminar. We will refer to
these periods in time as ‘quiescent phases’. These two clearly identifiable phases are
demonstrated in figure 6(a) by the time histories of the torque (x and z components)
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Figure 6. Characteristics of turbulent bursts (Rei = 530): (a) time histories of torque
components on the inner cylinder wall; (b) contours of azimuthal velocity in a cylindrical
grid surface near mid-gap in the quiescent phase; (c) velocity vector map in a radial–axial
plane at the same time instant as (b).

acting on the inner cylinder at Rei = 530. The torque vector T is defined by

T =

∫
Γ

x × FdΓ, (3.1)

where x is the position vector, and F is the force (due to pressure and friction)
acting on the cylinder surface Γ . The torque that is normally referred to in the
Taylor–Couette geometry is the z-component (axial component) of T . Figure 6(a)
shows that the x-component of torque experiences high-frequency large fluctuations
at certain periods of time, and is essentially zero at other times. They correspond,
respectively, to the active and quiescent phases. The two phases alternate with each
other with a period approximately 160Ri/Ud ∼ 200Ri/Ud , considerably larger than
the rotation periods of the inner and outer cylinders, which are 15.1Ri/Ud and
6.6Ri/Ud , respectively, at Rei = 530.

Figure 6(b) shows a snapshot of the flow at an instant in the quiescent phase at
Rei = 530. Plotted are contours of the azimuthal velocity in the same grid surface as in
figure 5(a). One can observe flow structures which are elongated along the azimuthal
direction but often appear to be interrupted azimuthally. This is reminiscent of the
laminar interpenetrating spirals discussed in Andereck et al. (1986). These constitute
the main flow structures in the quiescent phase of the turbulent burst regime. Figure
6(c) shows the velocity vector patterns in a radial–axial plane at the same time
instant as figure 6(b). It suggests that the laminar interpenetrating spirals are pairs
of azimuthal vortices confined to regions near the inner cylinder, not far beyond the
linearly unstable region. These vortices appear not dissimilar to the laminar vortices
near the inner wall in wide-gap simulations of the counter-rotating Taylor–Couette
flow at low Reynolds numbers (Dong 2008).

One can compare the turbulent bursts observed here and those discussed in
Coughlin & Marcus (1996). The turbulent patches observed in current simulations
are localized in space. Once the active phase starts, they appear in random locations
of the flow, while the rest of the flow domain is laminar. In contrast, those discussed
in Coughlin & Marcus (1996) are not localized, but space-filling bursts. Once they
start, the entire flow domain becomes turbulent. On the other hand, the alternation
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Figure 7. Turbulent intensity modulation: time histories of the axial and radial velocities in
the middle of the cylinder gap at Rei = 800.

between the active and quiescent phases in time observed in the current simulations
appears similar in character to the temporal oscillation between the laminar flow and
the turbulent bursts observed in Coughlin & Marcus (1996). However, the oscillation
period between the two phases in the current simulations, about 10–13 times the
inner-cylinder rotation period, is notably larger than the temporal oscillation period
between the laminar and turbulent flows in Coughlin & Marcus (1996), which is
about twice the inner-cylinder rotation period.

For a range of moderate Rei values one can observe alternating regions of turbulent
and laminar fluids forming regular helical bands (figure 5b,c). These will be the
focus of subsequent discussions. Beyond this range of Rei , the entire flow becomes
turbulent, and the whole domain appears permeated with small-scale structures, as
shown in figure 5(d ) for Rei = 800. Examination of the velocity data indicates that
these structures are small-scale vortices. They are distributed in the entire annular
domain, unlike the laminar vortices at low Rei , which are confined to the linearly
unstable region near the inner cylinder. Because no apparent large-scale features can
be discerned, this regime has been called ‘featureless turbulence’ by Andereck et al.
(1986).

Our simulation results show that in the featureless turbulence regime there exists
a notable modulation in the turbulent intensity. This is shown in figure 7, in which
we plot the time histories of the axial and radial velocities at a point in the middle
of the cylinder gap at Rei = 800. The velocity histories are highly fluctuatory,
indicative of the turbulent nature of the flow. A modulation in the fluctuation
intensity is clearly visible from the velocity histories. The modulation can also be
discerned from the azimuthal velocity component, but not as obviously. The turbulent
intensity modulation in the featureless turbulence regime observed here is consistent
with the observations in Prigent et al. (2002, 2003). By starting from the fully
developed turbulent regime and reducing the Reynolds number, Prigent et al. observe
a continuous transition from turbulence towards a regular pattern of inclined stripes
of alternating turbulence strength (i.e. modulation). Spiral turbulence is thought to
be the ultimate stage of such a modulation in turbulent intensity. Results from the
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current simulations about the turbulent intensity modulation at Reynolds numbers
beyond the spiral turbulence regime are consistent with such a scenario.

3.2. Spiral turbulence

We next concentrate on the range of moderate Rei values at which regular turbulent
and laminar spiral patterns can be observed. Discussions below will focus on two
Reynolds numbers, Rei = 611 and 700 (with Γ = 25.1), corresponding to left-handed
and right-handed spirals, respectively (figure 5b,c). As noted in many previous studies,
the spiral pattern revolves around the cylinder gap in the same direction as the outer
cylinder, with its shape approximately unchanged. We will distinguish the two edges
of the helical band into the leading and trailing edges. In figures 5(b) and 5(c), the
leading and trailing edges of the turbulent spiral are marked by the letters ‘A’ and ‘B’,
respectively.

Figures 5(b) and 5(c) indicate that the turbulent spiral consists of a large number
of small-scale structures while the laminar spiral appears largely void of features
except for sporadic streaky regions in the domain. A close examination of the flow
field, on the other hand, shows that the laminar spiral region also teems with flow
structures, albeit only in the region near the inner cylinder wall. Figure 8(a) plots the
azimuthal velocity contours in a cylindrical grid surface near the inner cylinder (at a
distance of approximately d/6) at Rei = 700. One can clearly observe long high-speed
streaks distributed in the entire laminar spiral region. Some of these streaks have
been marked by arrows in the plot.

To understand the nature of the small-scale structures in the turbulent spiral region
and the streaks in the laminar spiral, we investigate the velocity patterns in the
cylinder gap. Figure 8(b) shows the velocity vector map in a radial–axial plane. One
can clearly distinguish the cross-sections of the turbulent and laminar spirals. Two
magnified plots of the turbulent and laminar regions are also shown in this figure.
These data clearly demonstrate that the structures observed in the turbulent spiral
region are azimuthal vortices with scales considerably smaller than the cylinder gap.
These small-scale turbulent vortices are distributed radially in the entire gap at the
core of the turbulent region. Away from the core, they tend to be distributed towards
either the inner or the outer cylinder wall. Note that there are two interfaces between
the turbulent and laminar regions. One interface is on the side of the leading edge
of the turbulent spiral, and the other is on the trailing edge side. The dark arrow in
figure 8(b) approximately marks the position of the leading edge of the turbulent
spiral. The other interface, at the trailing edge of the turbulent spiral, is not visible
in figure 8(b) due to truncation of the domain in this plot. One can observe from
this figure that, towards the laminar–turbulent interface on the leading edge side, the
turbulent vortices appear to be mostly distributed towards the outer wall or the outer
half of the cylinder gap, while the region towards the inner wall is apparently occupied
by the laminar fluid. This is a persistent feature of spiral turbulence, applicable to
both right-handed and left-handed spirals. At the laminar–turbulent interface on the
trailing edge side (not visible from figure 8b), this characteristic is reversed. Turbulent
vortices tend to be distributed towards the inner wall, while the laminar fluid occupies
the region towards the outer wall.

These distribution characteristics of turbulent vortices are intimately correlated
with the statistical features of the turbulent spiral observed based on the conditionally
averaged statistics (Dong 2009b). It is shown in Dong (2009b) that the distribution of
conditional r.m.s. velocity in the radial axial plane is characterized by two prominent
‘tails’ at the leading and trailing edges of the turbulent spiral. The one at the leading



162 S. Dong and X. Zheng

(a)

z/
d

0 0.5 1.0
6

8

10

12

14

16

18

(b) (c)

L
am

in
ar

 r
eg

io
n

T
ur

bu
le

nt
 r

eg
io

n

L
am

in
ar

 r
eg

io
n 

zo
om

-i
n

T
ur

bu
le

nt
 r

eg
io

n 
zo

om
-i

n

7

8

9

10

18

19

20

–0.2 0.58

(r–Ri)/d

Figure 8. Flow patterns (Rei = 700): (a) contours of azimuthal velocity in a grid surface
near the inner wall; arrows in the plot indicate outflow boundaries of near-wall vortices in the
laminar region. (b) Velocity field patterns in a radial–axial plane. (c) Enlargements of parts
of (b).

edge is located near the outer cylinder, and the one at the trailing edge is near
the inner cylinder. These features in conditionally averaged statistics result from the
distribution of the instantaneous turbulent vortices.

From the velocity field in figure 8(b), one can observe pairs of counter-rotating
vortices in the laminar spiral region near the inner cylinder. These laminar vortices
are confined to the linearly unstable layer, and appear much weaker than the vortices
in the turbulent region. The long streaks observed in the laminar spiral region in
figure 8(a) correspond to the outflow boundaries of these counter-rotating vortex pairs.

We next employ the method of Jeong & Hussain (1995) to explore the vortex
structures of spiral turbulence in the three-dimensional space. In figure 9, we visualize
the vortices at Rei = 611 with the iso-surface of λ2, which denotes the intermediate
eigenvalue of the tensor S · S + Ω · Ω (S and Ω are, respectively, the symmetric and
antisymmetric parts of the velocity gradient). One can observe from the perspective
view of figure 9(a) that the turbulent spiral is comprised of a large number of small-
scale azimuthally elongated vortices. These vortices align themselves and collectively
form a helical band.
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Figure 9. Vortices visualized by the iso-surface of the intermediate eigenvalue λ2 = −50.0
(Rei = 611, Reo = −1375). (a) Perspective view, (b) top view. In (b), only vortices within the
axial section 6.4 � z/d � 10.4 have been shown.

Figure 9(b) is a top view (viewing towards the −z direction) of the vortex
structures. Here we have plotted only the vortex structures located in a short
section of the domain in the axial direction, 6.4 � z/d � 10.4, to demonstrate
their azimuthal distribution. The shape of the region occupied by the vortices in
the x–y plane remarkably resembles that of the mean turbulent–laminar interface
geometry determined from the experiment by Van Atta (1966) and of the distribution
of the conditional r.m.s. velocity magnitude from Dong (2009b). The region takes the
shape of a ‘crescent moon’. At the trailing edge side, the vortices are confined to the
inner portion of the gap and are inclined from the inner wall towards the bulk of flow,
while at the leading edge they are confined to the outer portion of the cylinder gap.
The characteristics of the vortex confinement, inclination and distribution and the
examination of a time sequence of vortex visualizations suggest that these azimuthal
vortices are originated from the inner cylinder wall. The vortices grow and detach
from the inner cylinder to radially fill up the entire gap (figure 9b). Because the
rotation velocity of the outer cylinder is considerably larger than that of the inner
cylinder (|Uo| � 2 |Ui |), the vortices are subsequently convected along the azimuthal
direction (clockwise) by the strong motion of the outer cylinder. This accounts for
why the spiral pattern always rotates in the same direction as the outer cylinder.

It is suggested in Meseguer et al. (2009) that axial vortex filaments are generated
near the inner cylinder based on the axial vorticity data in a horizontal plane. Our
results and the vortex identification in the three-dimensional space indicate that the
dominant vortices in spiral turbulence are the small-scale azimuthal vortices in the
turbulent spiral region, and that no significant axial vortices seem evident. The axial
vorticity filaments observed in Meseguer et al. (2009) are probably the footprints of
the three-dimensional azimuthal vortices in the horizontal plane.

The small-scale vortices observed here in the turbulent spiral region are oriented
predominantly along the azimuthal direction, which can be considered as the
streamwise direction in the Taylor–Couette geometry. We note that the presence
of streamwise vortices is a common phenomenon in turbulent spots and in fully
developed turbulence. For example, in a flow visualization experiment on the turbulent
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Figure 10. Time histories (a) and power spectrum (b) of the azimuthal velocity in the middle
of the gap and at two points, respectively, near the inner and outer cylinders, at Rei = 611.

spots in a plane Couette flow, Hegseth (1996) observes pervasive streamwise vortices;
Dong (2007, 2008) shows in large-gap simulations (radius ratio 0.5) that the prevailing
flow structures in fully developed Taylor–Couette turbulence are the small-scale
azimuthal vortices.

We next examine the spectral characteristics of spiral turbulence. The bulk of
the flow and the near-wall regions exhibit different characteristics and intensity in
turbulent fluctuations. In figure 10(a), we show time histories of the azimuthal velocity
at three fixed radial locations at Rei = 611: a point in the middle of the cylinder gap
and two points, respectively, near the inner and outer cylinder walls (at a distance
0.05d from the wall). From the velocity histories in the mid-gap and near the outer
cylinder wall, one can clearly identify the turbulent and laminar phases. Near the
inner cylinder wall, however, the differentiation of laminar and turbulent phases is
less obvious. Small-amplitude fluctuations in the velocity signal can also be observed
in the laminar phases near the inner cylinder, unlike in the mid-gap or near the
outer cylinder. Such fluctuations are due to the laminar vortices on the inner cylinder
surface (figure 8a) in the laminar spiral region.

Figure 10(b) compares the velocity power spectra at the three radial locations of
figure 10(a). Note that the power spectral density has been averaged over the points
along the axial direction with the same radial and azimuthal coordinates. The peaks
in the power spectra correspond to the angular frequency, and its harmonics, of the
spiral pattern revolving around the cylinder gap. One can observe the broadband
feature in the spectral curves, characteristic of turbulent flows. The power spectral
density in the mid-gap is notably higher than in the near-wall regions, suggesting
that in spiral turbulence the strongest turbulent fluctuations are generally observed
towards the core of the flow rather than in near-wall regions. The high-frequency
component of the power spectrum near the outer cylinder essentially overlaps with
that of the mid-gap, indicating that the high-frequency (small-scale) fluctuations, due
to the sweep-through of the turbulent spiral, near the outer cylinder are as strong as
in the mid-gap. The power spectral density near the inner cylinder, on the other hand,
is notably lower than in the mid-gap at all frequencies. It is also lower than near the
outer cylinder at high frequencies. But at low frequencies the spectral density is higher
than near the outer cylinder, possibly owing to the fluctuations caused by the laminar
vortices in the laminar spiral region on the inner wall. The low power spectral density
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at high frequencies near the inner wall indicates that within the turbulent spiral region
the turbulent fluctuation near the inner cylinder, i.e. generally towards the trailing
edge (see figure 9b), is notably weaker than at the spiral core, and also weaker than
near the outer cylinder, i.e. towards the leading edge.

As the inner-cylinder Reynolds number increases the spiral turbulence will transition
to a turbulent state with no apparent large features (featureless turbulence). In
different regions of the flow domain, our simulation shows, this transition to featureless
turbulence does not take place simultaneously, but proceeds in succession from the
inner cylinder to the outer cylinder with increasing Rei . In figure 11, we plot time
histories of the azimuthal velocity at three radial locations, the same as those in
figure 10(a), at Rei = 700 and 800. Comparison of the plots of figure 10(a) and
figure 11 provides a sense of the sequence of transition at different radial locations
in the domain. It suggests that as Rei increases the transition to full turbulence
progresses in succession from the inner wall towards the outer wall. In the region
near the inner cylinder, as Rei increases to 700 one can hardly distinguish the laminar
and turbulent phases from the velocity history. The vicinity of the inner cylinder has
virtually become turbulent at Rei = 700. Towards the middle of the cylinder gap,
on the other hand, the turbulent and laminar states obviously co-exist and alternate
over time at Rei = 700 (figures 11a and 5c). As Rei is increased to 800, the mid-gap
region has become turbulent with an apparent modulation in the turbulent intensity
(figure 11b). For the region near the outer cylinder, on the other hand, at Rei = 800 one
can still distinguish the turbulent and ‘laminar’ phases from the velocity fluctuations
(figure 11b). However, high-frequency fluctuations can also be observed during the
‘laminar’ phases at Rei = 800, quite different from the situation at lower Reynolds
numbers. These results clearly demonstrate a successive transition to full turbulence,
from the inner cylinder to the outer cylinder, with the increase of Rei . We note that
the above-observed succession in transition to full turbulence is consistent with a
comment in Van Atta (1966), which states that as Reynolds number increases the
flow can be essentially fully turbulent near the inner cylinder and at mid-gap while
near the outer cylinder it is still intermittent with turbulent and laminar fluid.
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4. Statistics of flow and turbulent spirals
We will next investigate the statistical features of spiral turbulence. The velocity

field has been averaged over time, and for the profiles has also been averaged along
the axial and azimuthal directions. We will refer to the flow statistics obtained with
such a procedure as the ordinarily averaged statistics. Note that, because the turbulent
spiral pattern revolves around the cylinder gap, direct averaging in time has smeared
the contributions from the turbulent spirals in the ordinarily averaged flow statistics.
Ordinarily averaged statistics, therefore, reflect the overall features of spiral turbulence
over a long time. Note that this is very different from the conditionally averaged
statistics explored in Dong (2009b). In Dong (2009b), the statistical features of the
turbulent spiral have been extracted by employing conditional averaging techniques.
The idea there is to follow the spiral pattern using a rotating reference frame, in which
the pattern is essentially frozen in space so that its statistical features are exposed.
We will compare features of the ordinarily averaged and the conditionally averaged
flow statistics, and relate them to the instantaneous dynamical features observed in
§ 3.

Let us first consider the mean flow characteristics. Figure 12(a) shows the ordinarily
averaged mean velocity field in a radial–axial plane at Rei = 700, which corresponds
to a right-handed spiral (see figure 5c). For clarity only the velocity vectors at several
discrete axial locations in a section of the cylinder height have been shown. The
striking feature of the distribution is the predominant mean axial flow in the radial–
axial plane and the opposing flow directions at different radial locations. For the
right-handed spiral pattern at Rei = 700, the mean velocity field is characterized by
an axial flow in the positive z-direction in the outer portion of the cylinder gap, and an
axial flow in the negative z-direction in the inner portion of the gap. This distribution
character is reversed for a left-handed spiral pattern. Figure 12(b) compares profiles
of the mean axial velocity, averaged in time and also along the axial and azimuthal
directions, between a left-handed spiral pattern (Rei = 611) and a right-handed spiral
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pattern (Rei = 700). For the left-handed spiral, in the radial–axial plane, the mean
velocity is in the negative z-direction in the outer portion of the cylinder gap while
in the inner portion it is in the positive z-direction.

The different distribution characteristics shown above for the ordinarily averaged
mean axial velocity between a right-handed spiral and a left-handed spiral are related
via a symmetry transform. Note that the incompressible Navier–Stokes equations,
the continuity equation and the boundary conditions for the current problem are
invariant under a reflection transform in z, that is

z ↔ −z, uz ↔ −uz, (4.1)

where uz is the velocity component in the z-direction, while keeping the other
coordinates and velocity components and the pressure unchanged. Under this
transform, a solution with a left-handed spiral will be transformed to that with
a right-handed spiral, and vice versa. Correspondingly, the distribution characteristics
of the ordinarily averaged mean axial velocity of left- and right-handed spirals will
be interchanged under this transform, as is evident from figure 12(b).

The layered distribution of the ordinarily averaged mean axial velocity shown in
figure 12 is intimately related to the conditionally averaged statistical features of
turbulent spirals. To understand this layered structure, let us take a close look at
the conditionally averaged mean flow. In Dong (2009b), it is pointed out that the
conditional mean flow axially always moves away from the core of a turbulent spiral
and towards adjacent laminar spiral cores, and that this is a common feature of
both left-handed and right-handed spirals. Our further observations indicate that
the regions of positive and negative conditional mean axial flows have a skewed
distribution towards either the outer or the inner cylinder walls, depending on the
sense of handedness of the turbulent spiral.

To illustrate this point, in figure 13 we show the conditional mean axial velocity
distribution at Rei = 700, which corresponds to a right-handed spiral. Figure 13(a)
plots the iso-surfaces at two levels, 0.02 and −0.02, in three-dimensional space.
Figures 13(b) and 13(c) plot contours of the conditional mean axial velocity in a
radial–axial plane and in a horizontal x–y plane. Figure 13(b) is to be contrasted with
a similar plot in the radial–axial plane in Dong (2009b) (figure 3a), but for a left-
handed spiral. One can observe that the regions with positive and negative conditional
mean axial velocities form two intertwined helical bands in three-dimensional space,
the boundaries of which are located at the cores of the turbulent and laminar
spirals. These two regions, when viewed in the radial–axial plane, are skewed towards
either the inner or the outer wall (figure 13b). For a right-handed spiral, the region
with the positive conditional mean axial velocity is skewed towards the outer wall
(figure 13b) such that positive axial velocity tends to be observed at the outer cylinder
in all axial locations except close to the turbulent spiral core. On the other hand,
the region with negative conditional mean axial velocity is skewed towards the inner
wall, and negative axial velocity tends to be observed there. The layered distribution
of the conditional mean axial velocity in the cylinder gap is especially prominent
in the laminar spiral core (figure 13c). For a left-handed spiral, this distribution
characteristic is reversed; the region with positive conditional mean axial velocity is
skewed towards the inner cylinder wall, while the region with negative velocity is
skewed towards the outer wall; see figure 3(a) in Dong (2009b). We again note that
these different distribution characteristics for left- and right-handed spirals are related
with the reflection transform of (4.1).
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The skewed distribution of the conditional mean axial velocity indicates that, for
a right-handed spiral, positive axial flows dominate the region near the outer wall
while negative axial flows dominate the region near the inner wall. For a left-handed
spiral, the reverse is true. As the spiral pattern propagates axially in the positive or
negative directions, the long-term effect will be manifested as layered axial flows in
positive or negative directions near the walls. This results in the layered distribution
of the ordinarily averaged mean axial velocity as shown in figure 12.

It is interesting to note the differences in the time-averaged mean flow between the
spiral turbulence regime and the fully developed Taylor–Couette turbulence at high
Reynolds numbers. As discussed in Dong (2008), where a counter-rotating flow with
a wide gap has been simulated with Reynolds numbers up to Rei = −Reo = 4000,
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the mean flow in fully developed turbulence exhibit regular pairs of large-scale
Taylor vortices in the radial–axial plane, even though these vortices do not exist
in the instantaneous sense. The mean axial velocity, when averaged along the axial
direction, is therefore zero. In the spiral turbulence regime, on the other hand, the
mean flow distribution in the radial–axial plane is very different, as shown in figure
12. The presence of regular spiral patterns and their propagation along the axial
direction result in persistent axial flows of opposite directions in two separate regions
of the cylinder gap.

In figure 14, we illustrate the characteristics of the fluctuation velocities in spiral
turbulence obtained by ordinary time-averaging. Figure 14(a) compares profiles
(across the cylinder gap) of the r.m.s. azimuthal velocity u′

θ between Rei = 611
and 700. Increase in Rei leads to increased r.m.s. fluctuation velocity in the entire
cylinder gap, which is especially significant in the bulk of the flow. The r.m.s. azimuthal
fluctuation velocity in the flow core (0.2 � (r − Ri)/d � 0.8) approximately has a
constant value (with a slight dip near the mid-gap in the profile), which is much larger
than in near-wall regions. This is consistent with the observed spectral characteristics
in figure 10(b), where notably higher power spectral density has been found in the
mid-gap compared to near-wall regions.

These features are related to the conditional velocity fluctuation characteristics
investigated in Dong (2009b). Dong (2009b) has studied distributions of the
conditionally averaged r.m.s. fluctuation velocity, and showed that the strongest
turbulent intensity is associated with the core region of the turbulent spiral, with
a slight bias towards its leading edge, and that there exists a notable asymmetry
between the leading and trailing edges in terms of the turbulent intensity distribution.
The fluctuation velocity distribution in figure 14(a) reflects the long-term effect of the
turbulent spiral on the overall flow.

Figure 14(b) compares profiles of the ordinarily time-averaged Reynolds stress
〈u′

ru
′
θ〉 /U 2

d , where u′
r is the radial fluctuation velocity, between Rei = 611 and 700.

One can observe positive Reynolds stress values across the cylinder gap, which in
this sense is similar to the fully developed turbulence at higher Reynolds numbers;
see Dong (2008). As explained in Dong (2008), the positivity is due to the fact
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that small-scale azimuthal vortices tend to promote a positive correlation between
the radial and azimuthal fluctuation velocities in the Taylor–Couette geometry. The
peak Reynolds stress is located near the mid-gap but shifted towards the inner half,
approximately at 0.25 � (r − Ri)/d � 0.5. With increasing Rei the peak location
appears to shift further towards the inner portion of the cylinder gap. The peak
location approximately coincides with the upper edge of the region near the inner
wall, to which the laminar azimuthal vortices are confined in the laminar spiral (see
figure 8). As shown in § 3, the small-scale vortices in the turbulent spiral region occupy
the entire gap, thus promoting a positive Reynolds stress in the whole domain. On
the other hand, the azimuthal vortices in the laminar spiral region are confined
to the inner portion of the gap, enhancing the Reynolds stress in this region. The
combined effect of the turbulent and laminar vortices contributes to a Reynolds stress
distribution that peaks towards the inner portion of the cylinder gap.

5. Concluding remarks
In this paper, we have investigated several aspects of the dynamics and ordinarily

time-averaged statistics of spiral turbulence employing three-dimensional direct
numerical simulations. We have focused on two inner-cylinder Reynolds numbers,
Rei = 611 and 700, with a fixed outer-cylinder Reynolds number Reo = −1375, which
in the current simulations correspond to left-handed or right-handed spirals.

The spiral turbulence phenomenon was first observed in the 1960s, and its barber-
pole-like pattern was famously commented on by Feynman (Feynman 1964). A
significant amount of knowledge about spiral turbulence has been gained since then.
The phenomenon generally occurs in counter-rotating systems with a larger outer-
cylinder Reynolds number, but has also been observed with a fixed inner cylinder or
even co-rotating systems (Coles 1965). For a fixed outer-cylinder Reynolds number in
a range of moderate values, as the inner-cylinder Reynolds number increases the flow
will generally go through regimes of interpenetrating laminar spirals, turbulent bursts,
spiral turbulence and featureless turbulence (Andereck et al. 1986). Spiral patterns
may have a right or left helicity, with equal probability (Goharzadeh & Mutabazi
2001). Hysteresis has been noted with the phenomenon (Coles 1965; Andereck et al.
1986). The pitch angle of the spiral pattern may vary along the axial direction under
different endwall conditions in experiments (Hegseth et al. 1989; Goharzadeh &
Mutabazi 2008). The shape of the turbulent spiral in a horizontal plane resembles
that of a crescent moon, with an asymmetry between the leading and trailing edges in
terms of their shape, turbulent intensity distribution, and proximity to the walls (Van
Atta 1966; Dong 2009b). A large-scale mean velocity gradient has been observed to
persist along the azimuthal direction across both the turbulent and laminar spiral
regions (Dong 2009b).

The present simulation has provided several additional findings about the spiral
turbulence.

First, the turbulent spiral is comprised of numerous small-scale azimuthally
elongated vortices. These vortices align into and collectively form a spiral in three-
dimensional space. The azimuthal vortices originate from the inner cylinder wall
around the trailing edge of the turbulent spiral. They spread into the entire gap
while being convected along the azimuthal direction under the motion of the outer
cylinder, and are distributed near the outer wall towards the leading edge of the
turbulent spiral. The region occupied by these instantaneous vortices, in the horizontal
plane (figure 9b), has the same shape (‘crescent moon’) and wall proximity as the
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cross-section of the turbulent spiral determined by Van Atta (1966) from experiments
and by Dong (2009b) from simulations.

The laminar spiral region is not void of vortices. Pairs of azimuthal vortices can be
observed in the linearly unstable region near the inner cylinder surface. These laminar
vortices contribute to the peak Reynolds stress observed towards the upper edge of
this region.

Second, in spiral turbulence the turbulent fluctuations in the bulk of the flow
are more energetic than in the near-wall regions at all frequencies. The high-
frequency component of the velocity fluctuation near the outer cylinder has an
intensity comparable to that in the mid-gap. The velocity fluctuation near the inner
cylinder, on the other hand, generally lacks a significant high-frequency component
when compared to that near the outer cylinder or in the mid-gap.

Third, the ordinarily time-averaged mean flow of spiral turbulence is characterized
in the radial–axial plane by two layers of axial flows in opposite directions. The
directions of the two axial-flow layers with a left-handed spiral are opposite to those
with a right-handed spiral.

Lastly, as the inner-cylinder Reynolds number increases the transition from spiral
turbulence to featureless turbulence does not take place simultaneously in the whole
flow, but rather proceeds in succession from the inner cylinder to the mid-gap, and
to the outer cylinder.

Finally, we would like to comment on the mean flow diagrams in Coles & Van Atta
(1966) (figure 6) and in a recent study of the laminar–turbulent pattern in the plane-
Couette flow by Barkley & Tuckerman (2007) (figure 8). The results in Coles & Van
Atta (1966) suggest that the mean flow entering the turbulent region is almost normal
to the turbulent–laminar interface, whereas the mean flow out of the turbulent region
is in a direction nearly parallel to the turbulent–laminar interface. On the other hand,
the results of Barkley & Tuckerman (2007) suggest a different relative orientation of
the mean flow with respect to the turbulent–laminar interfaces, in which the mean flow
appears to enter the turbulent region more gradually while leaving the region more
abruptly. Our results with the conditionally averaged mean flow suggest a relative
orientation of the mean flow with respect to the turbulent–laminar interface that is
consistent with the result of Barkley & Tuckerman (2007). We note that Coles & Van
Atta (1966) stated that in their experiment the measured axial velocity included a
contribution from the azimuthal velocity gradient due to the particular configuration
of the probe; see Coles & Van Atta (1966, footnote on p. 1970). It is not clear how
and to what degree this factor may affect the observed relative orientation of the
mean flow with respect to the interface. Future experiments on spiral turbulence can
resolve this question concerning the relative relationship between the mean flow and
the turbulent–laminar interfaces.
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