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Abstract

We present a method for solving linear and nonlinear partial differential equations (PDE) based on the variable projection
ramework and artificial neural networks. For linear PDEs, enforcing the boundary/initial value problem on the collocation
oints gives rise to a separable nonlinear least squares problem about the network coefficients. We reformulate this problem
y the variable projection approach to eliminate the linear output-layer coefficients, leading to a reduced problem about the
idden-layer coefficients only. The reduced problem is solved first by the nonlinear least squares method to determine the
idden-layer coefficients, and then the output-layer coefficients are computed by the linear least squares method. For nonlinear
DEs, enforcing the boundary/initial value problem on the collocation points gives rise to a nonlinear least squares problem

hat is not separable, which precludes the variable projection strategy for such problems. To enable the variable projection
pproach for nonlinear PDEs, we first linearize the problem with a Newton iteration, using a particular linearization formulated
n terms of the updated approximation field. The linearized system is solved by the variable projection framework together with
rtificial neural networks. Upon convergence of the Newton iteration, the neural-network coefficients provide the representation
f the solution field to the original nonlinear problem. We present ample numerical examples to demonstrate the performance
f the method developed herein. For smooth field solutions, the errors of the current method decrease exponentially as the
umber of collocation points or the number of output-layer coefficients increases. We compare extensively the current method
ith the extreme learning machine (ELM) method from a previous work. Under identical conditions and configurations, the

urrent method exhibits an accuracy significantly superior to the ELM method.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

This work concerns the numerical approximation of partial differential equations (PDE) with artificial neural
etworks (ANN), and we exploit the variable projection (VarPro) approach [1] together with ANNs for solving
inear and nonlinear PDEs. Neural network-based PDE methods, especially those based on deep neural networks
DNN) and deep learning [2], have flourished in the past few years; see e.g. [3–17], and the recent review [18] and
he references therein. The DNN-based PDE solvers are fairly straightforward to implement, by encoding the PDEs,
he boundary and initial conditions into a cost function and then using some flavor of gradient descent (or back
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propagation) type optimization algorithms to minimize this cost. Their weakness lies in the limited accuracy and
the high computational cost (long network-training time). Improvements to the neural network training have been
considered in a number of recent studies (see e.g. [11,14,19]). Another promising type of neural network-based
methods for computational PDEs has recently appeared [20–25], which are based on a type of randomized neural
networks called extreme learning machines (ELM) [26,27]. With these methods the weight/bias coefficients in the
hidden layers are randomly assigned and fixed. Only the coefficients of the linear output layer are trainable, and they
are trained by a linear least squares method for linear PDEs and by a nonlinear least squares method for nonlinear
PDEs [21]. It has been shown in [21] that the accuracy and the computational cost (network training time) of
the ELM-based method are advantageous compared with those of the DNN-based PDE solvers. In addition, the
computational performance of the ELM-type method from [21] is observed to be comparable to or exceed that
of the classical finite element method (FEM). Further extensions and improvements to the ELM method of [21]
have been documented in [25] recently, which compares systematically the improved ELM with the classical and
high-order FEM for solving a number of problems. The improved ELM outperforms the classical second-order FEM
by a considerable margin, and it outcompetes the high-order FEM when the problem size is not very small [25].

Variable projection (VarPro) is a classical approach for solving separable nonlinear least squares (SNLLS)
roblems [1,28]. These problems are separable in the sense that the unknown parameters or variables can be
eparated into two sets: the linear parameters and the nonlinear parameters. Problems of this kind often involve a
odel function that is a linear combination of parameterized nonlinear basis functions. The basic idea of VarPro is to

reat the linear parameters as dependent on the nonlinear parameters, and then eliminate the linear parameters from
he problem by using the linear least squares method. This gives rise to a reduced, but generally more complicated,
onlinear least squares problem that involves only the nonlinear parameters [28]. One can then solve the reduced
roblem for the nonlinear parameters by a nonlinear least squares method, typically involving a Gauss–Newton type
lgorithm coupled with trust region or backtracking line search strategies [29,30]. Upon attaining the nonlinear
arameters, one then computes the linear parameters by the linear least squares method. Although the reduced
roblem is in general more complicated, the benefits of variable projection are typically very significant. These
nclude the reduced dimension of the parameter space, better conditioning, and faster convergence with the reduced
roblem [28,31,32]. In some sense the idea of variable projection to least squares problems can be analogized to
he Schur complement in linear algebra or the static condensation in computational mechanics (see e.g. [33]).

The VarPro algorithm was originally developed in [1], and has been improved and generalized by a number
f researchers and applied to many areas in the past few decades [28,31,34–44]. In [1] the authors have proved
he equivalence between the solution of the VarPro reduced formulation and that of the original problem, and
eveloped differentiation formulas for the orthogonal projectors and the Moore–Penrose pseudoinverses, which are
ritical to the computation of the Jacobian matrix in the nonlinear least squares solution of the reduced problem.
n important simplification to the VarPro algorithm is suggested in [34], which involves computing an approximate

acobian rather than the true Jacobian. This significantly reduces the per-iteration cost of VarPro, with generally
nsignificant or negligible sacrifice to the accuracy for many problems [45]. The variable projection algorithms for
roblems with constraints on the linear or nonlinear parameters are investigated in e.g. [38,46–48], among others.
he implementations of the VarPro method have been discussed in [38,49]. In [28] the original developers of VarPro
ave reviewed the developments of this method up to the early 2000s and compiled an extensive list of areas for its
ngoing and potential applications. A generalization of the variable projection approach has been considered in [31],
hich deals with two separate classes of variables without requiring one class to be linear; see also more recent

ontributions on the generalization of VarPro in e.g. [43,50–52]. We would also like to mention the simplification
f the Jacobian matrix in [53], and the algorithm of [54], which resembles the variable projection approach in some
ense; see a comparison of these algorithms with the variable projection method in [45]. An approach related to
ariable projection is the so-called block coordinate descent [55], which alternates between the minimization of two
eparate sets of variables involved in the problem [31,35,56].

The VarPro algorithm or its variants for training neural networks have been the subject of several studies in the
iterature [32,44,57–62]. The projection learning algorithm developed in [57–59] is in the same spirit as variable
rojection, and it computes the linear parameters by the linear least squares method and the nonlinear parameters
y a gradient descent scheme. In [32] the authors have proved that the reduced nonlinear functional of the variable
rojection approach, while seemingly more complicated, leads to a better-conditioned problem and always converges

aster than the original problem; see also [31]. The VarPro method together with the Levenberg–Marquardt algorithm
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is employed for the training of two-layered neural networks in [60,61] and compared with other related approaches.
In the recent works [44,62] the authors extend the variable projection approach to deal with non-quadratic objective
functions, such as the cross-entropy function in classification tasks, and also present a stochastic optimization method
(termed “slimTrain”) based on variable projection for training deep neural networks with attractive properties.

In the current work we focus on the variable projection approach for solving partial differential equations. We
umerically approximate the solution fields to linear and nonlinear PDEs by exploiting variable projection together
ith artificial neural networks. For computational PDEs, the issues one would encounter with VarPro are a little
ifferent from those for data fitting problems or function approximations, which account for the majority of VarPro
pplications in the literature so far. For PDEs, one does not have the data for the field function to be solved for,
nlike in data fitting problems. What one does have are the conditions (or constraints) the solution field needs to
atisfy, namely, the PDEs, the boundary conditions, and also the initial conditions if the problem is time-dependent.
o deal with this type of problems, the variable projection method needs to be adapted accordingly.

The general approach with VarPro and artificial neural networks for solving PDEs is as follows. We employ a
eed-forward neural network with one or more hidden layers to represent the field solution to the PDE, requiring
hat the output layer be linear (i.e. applying no activation function) and with zero bias. We enforce the PDEs on a
et of collocation points in the domain, and enforce the boundary/initial conditions on a set of collocation points on
he appropriate boundaries of the spatial (or spatial–temporal) domain. This gives rise to a set of discrete equations
bout the field function to be solved for, which depends on the weight/bias coefficients in the output/hidden layers of
he neural network. In turn, this set of equations leads to a nonlinear least squares problem about the neural-network
oefficients, providing an opportunity for the variable projection method if this nonlinear least squares problem is
eparable.

It is necessary to distinguish two types of linearities (or nonlinearities) before the variable projection can be used
o solve the above nonlinear least squares problem. The first type concerns whether the network coefficients are
inear (or nonlinear) with respect to the output field of the network. Since no activation function is applied to the
utput layer, the output-layer coefficients are linear and the hidden-layer coefficients are nonlinear with respect to
he network output. The second type concerns whether the boundary/initial value problem with the given PDE is
inear (or nonlinear) with respect to the field function to be solved for.

If the boundary/initial value problem is linear, i.e. with both linear PDE and linear boundary/initial conditions,
hen the aforementioned nonlinear least squares problem is separable. The output-layer coefficients of the neural
etwork are the linear parameters and the hidden-layer coefficients are the nonlinear parameters in this separable
onlinear least squares problem. In this case, employing VarPro for training the neural network to solve the given
oundary/initial value problem would be conceptually straightforward.

On the other hand, if the boundary/initial value problem is nonlinear, i.e. either the PDE itself or the associated
oundary/initial conditions are nonlinear, the aforementioned nonlinear least squares problem is not separable. In
his case all the network coefficients become nonlinear parameters in the aforementioned nonlinear least squares
roblem. Therefore, the variable projection cannot be directly used for solving nonlinear PDEs (or problems with
onlinear boundary/initial conditions). How to enable the variable projection method to solve nonlinear PDEs is the
ocus of the current work.

In this paper we present a Newton-variable projection method together with artificial neural networks for
olving nonlinear boundary/initial value problems (nonlinear PDEs or nonlinear boundary/initial conditions). Given
nonlinear boundary/initial value problem, we first linearize the problem for the Newton iteration, with a particular

inearized form. More specifically, the linearization is formulated in terms of the updated approximation field, not
he increment field. This linearization form is critical to the accuracy of the current Newton-VarPro method. The
inearized system (PDE and boundary/initial conditions) is linear with respect to the updated approximation field,
nd it is solved by the variable projection approach together with the neural networks. Therefore, to solve nonlinear
DEs, the current method involves an overall Newton iteration. Within each iteration, we use the VarPro method

ogether with ANNs to solve the linearized system to attain the updated field approximation. Upon convergence of
he Newton iteration, the neural-network coefficients contain the representation of the solution field to the original
onlinear problem.

The VarPro method together with ANNs for solving linear PDEs has been considered first in this paper. We
iscuss in some detail how to implement the Jacobian matrix together with neural networks, and how to introduce

erturbations in VarPro when solving the reduced problem in order to prevent the solution from being trapped to
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the local minima in the nonlinear least squares computation. We have presented several numerical examples, with
both linear and nonlinear PDEs, to test the performance of the VarPro method. We observe that, for smooth field
solutions, the VarPro errors decrease exponentially as the number of collocation points or the number of output-layer
coefficients increases, which is reminiscent of the spectral convergence of traditional high-order methods [33,63–71].
We also compare the performance of the current VarPro method with that of the ELM method from [21,25]. The
numerical results show that, under the same conditions and network configurations, VarPro is considerably more
accurate than ELM, especially when the size of the neural network is small. On the other hand, the computational
cost (i.e. network training time) of VarPro is usually much higher than that of ELM.

In the current work the VarPro method and the neural networks are implemented based on the Tensorflow (www
tensorflow.org) and Keras (keras.io) libraries in Python. The scipy and numpy libraries in Python are used for the
inear and nonlinear least squares computations. All the numerical tests are conducted on a MAC computer (Intel
ore i5 CPU 3.2 GHz, 24 GB memory) in the authors’ institution.

The main contribution of this paper lies in the Newton-VarPro method together with artificial neural networks
or solving nonlinear partial differential equations. To the best of the authors’ knowledge, this work seems also
o be the first time when the variable projection approach (with ANNs) is extended and adapted to solving linear
artial differential equations.

The rest of this paper is structured as follows. In Section 2 we first outline how to solve linear PDEs with
he variable projection approach together with ANNs. The computations for the reduced residual function and the
acobian matrix of the reduced problem, and the VarPro algorithm with perturbations are discussed in detail. Then
e introduce the Newton-VarPro method together with ANNs for solving nonlinear PDEs. In Section 3 we present

everal numerical examples with linear and nonlinear PDEs to demonstrate the accuracy of the VarPro method. The
erformance of the current VarPro method is compared extensively with that of the ELM method from [21,25].
ection 4 then concludes the presentation with some closing remarks and comments on the presented method.
n Appendix A we study the effect of random seeds in the random number generator on the VarPro accuracy.
ppendix B compares the VarPro with the physics-informed neural network (PINN) method [4]. Appendix C

ompares the VarPro with the classical finite element method (FEM).

. Variable projection with artificial neural networks for computational PDEs

We develop an algorithm combining the variable projection (VarPro) framework with artificial neural networks
ANN) for numerically approximating PDEs. For linear PDEs, the ANN representation of the solution field leads to
separable nonlinear least squares problem, which can be solved by the variable projection approach. For nonlinear
DEs, on the other hand, the ANN representation of the solution field leads to a nonlinear least squares (NLLSQ)
roblem that is not separable, preventing the use of the variable projection strategy. We overcome this issue by a
ombined Newton-variable projection method, which enables the variable projection approach in solving nonlinear
DEs. In the following subsections we first illustrate the VarPro/ANN algorithm for solving linear PDEs, and then

ntroduce the Newton-VarPro/ANN algorithm for solving nonlinear PDEs.

.1. Variable projection method for solving linear PDEs

Consider a domain Ω ⊂ Rd (d = 1 to 3) and the following linear boundary-value problem on Ω ,

Lu = f (x), (1a)

Bu = g(x), on ∂Ω . (1b)

n these equations x = (x1, . . . , xd ) denotes the coordinate, u(x) is the field solution to be solved for, L denotes a
inear differential operator, B denotes a linear algebraic or differential operator on the boundary ∂Ω representing the
oundary conditions, and f (x) and g(x) are prescribed non-homogeneous terms in the domain or on the boundary.
e assume that L may include linear differential operators with respect to the time t (e.g. ∂

∂t , ∂2

∂t2 ). In such a case,
this becomes an initial boundary-value problem, and we treat the time t in the same way as the spatial coordinates.
We designate the last coordinate xd as t , and Ω becomes a spatial–temporal domain. Accordingly, we assume that the
boundary condition (1b) in this case should include appropriate initial condition(s) with respect to t , which will be
imposed only on the portion of ∂Ω corresponding to the initial condition(s). The point here is that the Eqs. (1a)–(1b)
4
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Fig. 1. Sketch of the neural network architecture (with 3 hidden layers).

may denote a time-dependent problem, and we will not distinguish the stationary and time-dependent cases in the
following discussions. We assume that the problem (1) is well-posed.

We approximate the solution field u(x) by a feed-forward neural network [2] with (K + 1) layers, where K
is an integer satisfying K ⩾ 2; see Fig. 1 for a sktech of the network architecture with three hidden layers. The
nput layer (layer 0) of the neural network contains d nodes which represent the coordinate x, and the output layer
layer K ) contains 1 node which represents the solution u. The (K − 1) layers in between are the hidden layers.
rom layer to layer the network logic represents an affine transform followed by a node-wise function composition
ith an activation function σ (·) [2]. The coefficients of the affine transforms are referred to as the weight and bias

oefficients of the neural network. For the convenience of presentation, we use the vector [M0, M1, . . . , MK ] to
enote the architecture of the neural network, where Mi (0 ⩽ i ⩽ K ) denotes the number of nodes in layer i , with

M0 = d and MK = 1. We also use M = MK−1 to denote the number of nodes in the last hidden layer in what
ollows. The weight/bias coefficients in all the hidden layers and in the output layer are the trainable parameters of
he neural network.

In the current work, we make the assumption that the output layer contains no bias (or zero bias), and no
ctivation function (or equivalently it uses the identity activation function σ (x) = x). So the output layer of the
eural network is linear in this paper.

Let Φ j (θ , x) (1 ⩽ j ⩽ M) denote the output fields of the last hidden layer, where θ = (θ1, . . . , θNh )T denotes
he vector of weight/bias coefficients in all the hidden layers of the network, with Nh =

∑K−1
i=1 Mi (Mi−1+1). Then

e have the following expansion relation,

u(x) =
M∑

j=1

β jΦ j (θ , x) = Φ(θ , x)β (2)

here Φ(θ , x) = [Φ1(θ , x), . . . ,ΦM (θ , x)] denotes the set of output fields of the last hidden layer, and β =

β1, . . . , βM ]T is the vector of weight coefficients of the output layer. Note that (θ , β) are the trainable parameters
f the neural network. Note also that M represents the number of nodes in the last hidden layer, as well as the
umber of output-layer coefficients.

We choose a set of N (N ⩾ 1) collocation points on Ω , which can be chosen according to a certain distribution
e.g. random, uniform). Among them Nb (1 ⩽ Nb ⩽ N − 1) collocation points reside on the boundary ∂Ω , and
he rest of the points are from the interior of Ω . We use X to denote the set of all the collocation points and Xb to
enote the set of collocation points on ∂Ω . In the current paper, for simplicity we assume that Ω is a rectangular
omain, given by the interval [ai , bi ] (1 ⩽ i ⩽ d) in the i th direction. We employ a uniform set of grid points
including the boundary end points) in each direction as the collocation points for the numerical tests in Section 3.

The input training data to the neural network consist of the coordinates of the all the N collocation points on
. We use the N × d matrix X to denote the input data. Each row of X denotes the coordinates of a collocation
5
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point. Let the N × 1 matrix U (column vector) denote the output data of the neural network, which represents the
olution field u(x) evaluated on all the N collocation points. We use the N ×M matrix Ψ to denote the output data

of the last hidden layer of the neural network, which represents the output fields Φ(θ , x) of the last hidden layer
evaluated on all the N collocation points.

Inserting the expansion (2) into (1), and enforcing Eq. (1a) on all the collocation points from X and Eq. (1b) on
ll the boundary collocation points from Xb, we arrive at the following system,

M∑
j=1

[
LΦ j (θ , xp)

]
β j = f (xp), 1 ⩽ p ⩽ N , where xp ∈ X, (3a)

M∑
j=1

[
BΦ j (θ , xq )

]
β j = g(xq ), 1 ⩽ q ⩽ Nb, where xq ∈ Xb. (3b)

This is a system of (N + Nb) algebraic equations about the trainable parameters (θ , β), with (Nh + M) unknowns.
Note that for a given θ the terms LΦ j (θ , xp) and BΦ j (θ , xq ) in the above equations can be computed by forward
evaluations of the neural network and auto-differentiations.

We seek a least squares solution for (θ , β) to the system (3). This system is linear with respect to β, and
nonlinear with respect to θ . This leads to a separable nonlinear least squares problem. Therefore we adopt the
variable projection approach [1] for the least squares solution of the system (3).

To make the formulation more compact, we re-write the system (3) into a matrix form,

H(θ )β = S, where H(θ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

LΦ(θ , xp)
...
...

BΦ(θ , xq )
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+Nb)×M

, S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

f (xp)
...
...

g(xq )
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+Nb)×1

. (4)

For any given θ , the least squares solution for the linear parameters β to this system is given by

β = [H(θ )]+ S, (5)

here the superscript in H+ denotes the Moore–Penrose pseudo-inverse of H. Define the residual function of the
ystem (4) by

r(θ ) = H(θ )β − S = H(θ )H+(θ )S− S, (6)

here the linear parameter β has been eliminated by using Eq. (5). We compute the optimal nonlinear parameters
opt by minimizing the Euclidean norm of the residual function r,

θopt = arg min
θ

1
2
∥r(θ )∥2

= arg min
θ

1
2
∥H(θ )H+(θ )S− S∥2, (7)

here ∥ · ∥ denotes the Euclidean norm. After θopt is obtained, we can compute the optimal linear parameters βopt
based on Eq. (5) or by solving Eq. (4) using the linear least squares method. Outlined above is the essence of the
variable projection approach for solving the system (3) for (θ , β).

The problem represented by (7) is a nonlinear least squares problem about θ only, where the linear parameter β

has been eliminated. We solve this problem by a Gauss–Newton algorithm combined with a trust region strategy.
Specifically, in the current paper we solve this problem by employing the nonlinear least squares library routine
“scipy.optimize.least squares” from the scipy package in Python, which implements the Gauss–Newton method
together with a trust region reflective algorithm [72,73].

The scipy routine “least squares()” requires two functions as input, which are needed by the Gauss–Newton
algorithm. These are, for any given θ ,

• a function for computing the residual r(θ ), and
• a function for computing the Jacobian matrix ∂r

∂θ
.

6
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Algorithm 1: Computing the residual r(θ )
input : θ ; input data X to neural network; source data S.
output: r(θ ).

1 update the hidden-layer coefficients of the neural network by θ

2 if θ = θ s then
3 retrieve H(θ s), and set H(θ ) = H(θ s)
4 retrieve βL S(θ s), and set βL S(θ ) = βL S(θ s)
5 else
6 compute H(θ ) using the input data X
7 solve equation (4) by the linear least squares method to get βL S(θ )
8 set θ s = θ , and save H(θ ) and βL S(θ )
9 end

10 compute r(θ ) by equation (8)

The computation for r(θ ) is straightforward. For a given θ , we first solve Eq. (4) by the linear least squares method
or the minimum-norm least squares solution βL S . Then we compute the residual according to Eq. (6) as follows,

r(θ ) = H(θ )βL S
− S. (8)

ote that the Moore–Penrose inverse H+(θ ) is not explicitly computed in the implementation. In the current paper
e employ the linear least squares routine “scipy.linalg.lstsq” from scipy to solve (4) for βL S . The computation for

(θ ) is summarized in the Algorithm 1.

emark 2.1. Let us elaborate on, for a given θ and the input data X, how to compute the matrix H(θ ) on line
of Algorithm 1. As defined in (4), H (θ ) consists of the terms LΦ(θ , xp) (xp ∈ X) and BΦ(θ , xq ) (xq ∈ Xb).

These terms involve the output fields of the last hidden layer Φ(θ , x), and their derivatives up to a certain order,
evaluated on all the collocation points. All these terms can be computed by evaluating the neural network on the
input data X and by auto-differentiations. Specifically, in our implementation we have created a sub-model to the
neural network in Keras, with the neural network’s input as its input and with the output of the neural network’s
last hidden layer as the sub-model’s output. Let us refer to this sub-model as the last-hidden-layer-model. Let m
denote the order of the PDE (1a), and we assume that the hidden-layer coefficients have been updated by the given
θ . Then computing H(θ ) involves the following procedure:

(i) evaluate the last-hidden-layer-model on the input X to get Φ(θ , x) on all the collocation points;
(ii) compute the derivatives of Φ(θ , x) with respect to x, up to the order m, on all the collocation points by a

forward-mode auto-differentiation;
(iii) compute LΦ(θ , x) on all the collocation points based on the data for Φ(θ , x) and its derivatives;
(iv) extract the boundary data (i.e. on the boundary collocation points) for Φ(θ , x) and its derivatives from those

data attained from steps (i) and (ii);
(v) compute BΦ(θ , x) based on the boundary data for Φ(θ , x) and its derivatives;

(vi) assemble LΦ(θ , x) (on all the collocation points) and BΦ(θ , x) (on the boundary collocation points) to form
H(θ ) based on Eq. (4).

Note that we employ the forward-mode auto-differentiations to compute the derivatives of Φ(θ , x) in step (ii)
bove, because the number of nodes in the last hidden layer (M) is typically much larger than that in the input
ayer (d). In this case the forward-mode auto-differentiation is significantly faster than the reverse-mode auto-
ifferentiation. In our implementation we have used the “ForwardAccumulator” from the Tensorflow library for

he forward-mode auto-differentiations.

7
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For computing the Jacobian matrix ∂r
∂θ

we consider the following formula, which is due to [1],

∂r
∂θ
=

[
I−H(θ )H+(θ )

] ∂H
∂θ

H+(θ )S +
[
H+(θ )

]T ∂HT

∂θ

[
I−H(θ )H+(θ )

]
S

≈
[
I−H(θ )H+(θ )

] ∂H
∂θ

H+(θ )S,

(9)

where I denotes the identity matrix and Eq. (6) has been used. Note that here we have adopted the simplification
suggested by [34] to keep only the first term for an approximation of ∂r

∂θ
. So the Jacobian matrix is computed

only approximately. This greatly simplifies the computation, and as observed in [28,34] only slightly or moderately
increases the number of Gauss–Newton iterations.

In light of (9), we compute the approximate Jacobian matrix as follows. For any given θ , note that

J0(θ ) ≡
∂H
∂θ

H+(θ )S =
∂H
∂θ

βL S
=

∂V
∂θ

, (10)

here βL S is the least squares solution of (4), and

V = H(θ )βL S
c , with βL S

c = βL S
⏐⏐
θ
. (11)

ere βL S
c is a constant vector that equals βL S at the given θ . The vector V(θ ) of length (N + Nb) represents the

eld
[

Lu(x)
Bu(x)

]
evaluated on the collocation points (and the boundary collocation points), with θ as the hidden-layer

coefficients and βL S
c as the output-layer coefficients in the neural network. We would like to emphasize that βL S

c
s considered to be constant and does not depend on θ when computing J0(θ ) = ∂V

∂θ
. For a given θ , J0(θ ) can be

computed by an auto-differentiation of the neural network.
In light of (10) we transform (9) into

∂r
∂θ
= J0(θ )−H(θ )H+(θ )J0(θ ) = J0(θ )− J1(θ ). (12)

he term J1(θ ) = H(θ )H+(θ )J0(θ ) can be computed as follows. For any given θ , we first solve the following system
or the matrix K(θ ) by the linear least squares method,

H(θ )K(θ ) = J0(θ ). (13)

hen we compute J1(θ ) by

J1(θ ) = H(θ )K(θ ). (14)

Therefore, in order to compute the Jacobian matrix we first solve equation (4) for βL S by the linear least squares
ethod, and then use (10) to compute J0(θ ). We then compute J1(θ ) by Eqs. (13) and (14). Finally the Jacobian
atrix ∂r

∂θ
is computed by Eq. (12). These computations involve only the linear least squares method and the

auto-differentiations of the neural network. The computation for the Jacobian matrix is summarized in Algorithm
2.

Remark 2.2. Let us elaborate on how to compute the matrix J0(θ ), which has a dimension (N + Nb)× Nh (Nh

enoting the total number of hidden-layer coefficients), on the lines 10 and 11 in Algorithm 2. This is for a given
, β (β = βL S

c ), and the input data X to the neural network. Based on Eq. (11), the column vector V(θ ) consists
f the terms Lu(xp) (xp ∈ X) and Bu(xq ) (xq ∈ Xb), where u(x) is the output field of the neural network obtained
ith the given (θ , βL S

c ) as the hidden-layer coefficients and the output-layer coefficients, respectively. It should be
oted that Lu and Bu involve the derivatives of u(x) with respect to x (not θ ). Based on Eq. (10), the matrix J0(θ )
onsists of the terms ∂(Lu)

∂θ

⏐⏐⏐
(θ ,xp)

(xp ∈ X) and ∂(Bu)
∂θ

⏐⏐⏐
(θ ,xq )

(xq ∈ Xb). These terms can be computed by evaluating

the neural network on the input data X and by auto-differentiations with respect to x and θ . We assume again that
the PDE (1a) is of the mth order. Given (θ , β, X), we compute J0(θ ) specifically by the following procedure:

(i) update the hidden-layer coefficients of the neural network by θ , and update the output-layer coefficients by
β;

(ii) evaluate the neural network on the input X to obtain the output field u(x) on all the collocation points;
8
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Algorithm 2: Computing the Jacobian matrix ∂r
∂θ

input : θ ; input data X to neural network; source data S.
output: ∂r

∂θ
.

1 update the hidden-layer coefficients of the neural network by θ

2 if θ = θ s then
3 retrieve H(θ s), and set H(θ ) = H(θ s)
4 retrieve βL S(θ s), and set βL S(θ ) = βL S(θ s)
5 else
6 compute H(θ ) using the input data X
7 solve equation (4) by the linear least squares method to get βL S(θ )
8 set θ s = θ , and save H(θ ) and βL S(θ )
9 end

10 compute V(θ ) by equation (11)
11 compute J0(θ ) based on equation (10) by auto-differentiations
12 solve equation (13) for K(θ ) by the linear least squares method
13 compute J1(θ ) by equation (14)
14 compute ∂r

∂θ
by equation (12)

(iii) compute the derivatives of u(x) with respect to x, up to the order m, by a reverse-mode auto-differentiation;
(iv) compute the derivative, with respect to the hidden-layer coefficients, for u(x) and for its derivatives with

respect to x from steps (ii) and (iii), on all the collocation points by a reverse-mode auto-differentiation;
(v) compute ∂(Lu)

∂θ
on all the collocation points based on the data for u(x) and its derivatives from the previous

step;
(vi) extract the boundary data (i.e. on the boundary collocation points) for u(x) and its derivatives from the data

obtained from step (iv);
(vii) compute ∂(Bu)

∂θ
based on the boundary data for u(x) and its derivatives from the previous step;

(viii) assemble ∂(Lu)
∂θ

(on all the collocation points) and ∂(Bu)
∂θ

(on the boundary collocation points) to form J0(θ ).

When computing the derivatives of u(x) with respect to x and with respect to the hidden-layer coefficients in the
steps (iii) and (iv) above, in our implementation we have employed a vectorized map (tf.vectorized map) together
with the gradient tape (tf.GradientTape) in the Tensorflow library to vectorize the gradient computations.

Remark 2.3. In Algorithms 1 and 2, we have saved the matrix H(θ ) and the vector βL S when they are computed
or a new θ ; see the lines 2 to 9 in both algorithms. The goal of this extra storage is to save computations. During
he Gauss–Newton iterations, the Algorithm 2 is typically invoked to compute the Jacobian matrix for the same θ ,
ollowing the call to the Algorithm 1 for computing the residual r(θ ). In this case one avoids the re-computation
f the matrix H(θ ) and the vector βL S for the same θ .

To solve the system (3a)–(3b) with the variable projection approach, we first solve the reduced problem (7) for
by the nonlinear least squares method, and then we solve Eq. (4) for β by the linear least squares method. To
ake the nonlinear least squares computation for (7) more robust (from being trapped to local minima), in our

mplementation we have incorporated a perturbation to the initial guess and a sub-iteration procedure, in a way
nalogous to the NLLSQ-perturb method from [21]. The sub-iteration procedure will be triggered if the nonlinear
east squares computation fails to converge or the converged cost value is not small enough. The overall variable
rojection algorithm with perturbations for solving the system (3) is summarized in Algorithm 3. The perturbations
o the initial guess of the nonlinear least squares computation are generated on the lines 6 to 13 in Algorithm 3.

emark 2.4. In Algorithm 3, when generating the perturbation magnitude δ1, we have incorporated a preferred

erturbation magnitude δpref and a preference probability p. Here δpref keeps the last perturbation magnitude δ1 that

9
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Algorithm 3: Variable projection algorithm with perturbations
input : input data X to neural network; source data S; initial guess θ0; maximum perturbation magnitude

δ > 0; preference probability p (p ∈ [0, 1]), with default value p = 0.5.
output: θ and β.

1 call scipy.optimize.least squares routine to solve (7), using θ0 as the initial guess, with Algorithms 1 and 2
as input arguments

2 set θ ← returned solution, and c← returned cost

3 if c is above a threshold then
4 set δpref = None
5 for i ← 1 to maximum-number-of-sub-iterations do
6 generate a uniform random number ξ ∈ [0, 1]
7 if (δpref is not None) and (ξ < p) then
8 generate a uniform random number δ1 ∈ [0, min(1.1δpref, δ)]
9 else

10 generate a uniform random number δ1 ∈ [0, δ]
11 end

12 generate a uniform random vector ∆θ of the same shape as θ on the interval [−δ1, δ1]
13 set ϑ0 ← θ +∆θ

14 call scipy.optimize.least squares routine to solve (7), using ϑ0 as the initial guess, with
Algorithms 1 and 2 as input arguments

15 if the returned cost is less than c then
16 set θ ← returned solution, and c← returned cost
17 set δpref = δ1

18 end

19 if c is not above a threshold then
20 break
21 end
22 end
23 end

24 solve equation (4) for β by the linear least squares method

has resulted in a reduction in the converged cost. The lines 6 to 11 of Algorithm 3 basically means that, with a
probability p, we will generate the next perturbation magnitude δ1 based on the preferred magnitude δpref. Otherwise,

e will generate the next perturbation magnitude based on the original maximum magnitude δ. After the algorithm
its upon a favorable perturbation magnitude, the employment of δpref and the probability p tends to promote the use
f this value. When the algorithm is close to convergence, this also tends to reduce the amount of the perturbation,
hich is conducive to achieving convergence. In the current paper we employ a preference probability p = 0.5
ith the variable projection algorithm for all the numerical tests in Section 3.

emark 2.5. If the problem consisting of Eqs. (1a)–(1b) is time dependent, for longer-time or long-time simulations
e employ the block time marching scheme from [21] together with the variable projection algorithm developed
ere. The basic idea is as follows. If the domain Ω has a large dimension in time, we first divide the temporal
imension into a number of windows (referred to as time blocks), so that each time block has a moderate size in
ime. We solve the problem using the variable projection algorithm on the spatial–temporal domain of each time
lock individually and successively. After one time block is computed, the field solution (and also possibly its
erivatives) evaluated at the last time instant of this block is used as the initial condition(s) for the subsequent time

lock. We refer the reader to [21] for more detailed discussions of the block time marching scheme.

10
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Remark 2.6. We next comment on the VarPro algorithm combined with domain decomposition and local neural
etworks for solving the system (1). In the above discussions we have represented the solution field to the boundary
alue problem (1) by a single feed-forward neural network over the entire domain Ω . This can be considered as

a “global” method. Alternatively, as discussed in [21], one can decompose the domain Ω into sub-domains and
epresent the solution on each sub-domain by a local feed-forward neural network, and then impose Ck (with
n appropriate k) continuity conditions across the sub-domain boundaries. We can combine VarPro and this local
unction representation based on domain decomposition and local neural networks for solving PDEs. Note that
n [21] the hidden-layer coefficients of the local neural networks are fixed random values and are not trainable,
nd only the output-layer coefficients are trainable parameters. In the current case, unlike in [21], the trainable
arameters consist of the coefficients in both the hidden layers and the output layers of the local neural networks.
ote also that all the local neural networks are coupled due to the Ck continuity conditions. On each sub-domain
e choose a set of collocation points, with a subset of these points residing on the sub-domain boundaries. To solve

he system (1), we enforce Eq. (1a) on all the collocation points from each sub-domain, and enforce Eq. (1b) on
hose collocation points of each sub-domain that reside on the domain boundary ∂Ω . In addition, we enforce the

k continuity conditions of the solution field on those collocation points of each sub-domain that reside on the
ommon sub-domain boundaries of adjacent sub-domains. We refer the reader to [21] for detailed discussions of
he enforcement of these equations/conditions. These operations result in a system of equations about the hidden-
output-layer coefficients of the local neural networks. We seek a least squares solution to this system, leading to

separable nonlinear least squares problem. The linear parameters of this problem consist of the set of output-
ayer coefficients of all the local neural networks, and the nonlinear parameters consist of the set of hidden-layer
oefficients of all the local neural networks. The variable projection idea can be used to solve this problem. We
eformulate this problem by VarPro to eliminate the linear parameters and arrive at a reduced problem about the
onlinear parameters only. Then the method as discussed in this section can be employed to determine the nonlinear
arameters first, which in turn are used to compute the linear parameters. The procedure outlined above can be
onsidered as a “local” version of the VarPro method. The local VarPro method would be more favorable for PDE
roblems in which certain complex features (e.g. sharp gradient) may exist locally in the domain. In such a case
ne can exploit domain decomposition and the local VarPro method to better capture the local complex features of
he solution.

emark 2.7. It would be interesting to compare the current VarPro method with the extreme learning machine
ELM) method from [21,25] for solving PDEs. With ELM, the weight/bias coefficients in all the hidden layers of the
eural network are pre-set to random values and are fixed, while the output-layer coefficients are computed by the
inear least squares method for solving linear PDEs and by the nonlinear least squares method for solving nonlinear
DEs [21]. In [21,25] the hidden-layer coefficients are set and fixed to uniform random values generated on the

nterval [−Rm, Rm], where Rm is a user-provided constant (hyperparameter). The constant Rm has an influence on
he accuracy of ELM, and the optimal Rm value (denoted by Rm0 in [25]) can be computed by the method from [25]
ased on the differential evolution algorithm. It is crucial to note that in ELM all the hidden-layer coefficients are
xed (not trained) once they are set.

With the VarPro method, the output-layer coefficients are always computed by the linear least squares method,
nce the hidden-layer coefficients are determined. The weight/bias coefficients in the hidden layers are determined by
onsidering the reduced problem, which eliminates the linear output-layer coefficients. The hidden-layer coefficients
re computed by solving the reduced problem using the nonlinear least squares method. With the VarPro approach,
he hidden-layer coefficients of the neural network are trained/computed first by solving the reduced problem, and
hen the output-layer coefficients are computed by the linear least squares method afterwards. If the maximum
umber of iterations is set to zero in the nonlinear least squares solution of the reduced problem, the VarPro
lgorithm will be reduced to essentially the ELM method.

With the same neural network architecture and under the same settings, the VarPro method is in general
ignificantly more accurate than the ELM method. In particular, VarPro can produce highly accurate solutions
hen the number of nodes in the last hidden layer is not large. In contrast, the result produced by ELM in this

ase is usually much less accurate or utterly inaccurate. VarPro achieves the higher accuracy at the price of the
omputational cost. Because VarPro needs to solve the reduced problem for the hidden-layer coefficients by a

onlinear least squares computation, its computational cost is usually much higher than that of the ELM method,

11
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which only computes the output-layer coefficients by the linear least squares method (for linear PDEs). In numerical
simulations with VarPro, we initialize the hidden-layer coefficients (i.e. the initial guess θ0 in Algorithm 3) to
uniform random values generated on the interval [−Rm, Rm], with Rm = 1 in general (or with Rm set to a user-
provided value). We observe from numerical experiments that the VarPro method is less sensitive or insensitive to
the random coefficient initializations (the Rm constant) than ELM. We provide numerical experiments in Section 3
for comparisons between the VarPro and the ELM methods.

2.2. Newton-variable projection method for solving nonlinear PDEs

We next develop a method based on variable projection for solving nonlinear PDEs. The notations and settings
here follow those of Section 2.1.

Consider the following nonlinear boundary value problem on the domain Ω in d dimensions,

Lu + F(u) = f (x), (15a)

Bu + G(u) = g(x), on ∂Ω , (15b)

where F(u) and G(u) are nonlinear operators on the solution field u(x) and also possibly on its derivatives, and L ,
B, f and g have the same meanings as in the Eqs. (1a)–(1b). We assume that the highest-order term occurs in the
linear differential operator L , and that the nonlinear terms F(u) and G(u) involve only the lower-order derivatives
(if any). We again assume that the L operator may involve time derivatives. In such a case we treat the time t in
he same way as the spatial coordinate x, as discussed in Section 2.1. We assume that this problem is well-posed.

We approximate the field solution u(x) to the system (15) by a feed-forward neural network with (K +1) layers,
ollowing the same configurations and settings as discussed in Section 2.1. Substituting the expansion relation (2)
or u(x) into Eqs. (15a) and (15b), and enforcing these two equations on all the collocation points from X and on
ll the boundary collocation points from Xb respectively, we arrive at an algebraic system of (N + Nb) equations
bout the (Nh + M) unknown neural-network coefficients (θ , β). We seek a least squares solution to this system,
hus leading to a nonlinear least squares problem. This algebraic system, however, is nonlinear with respect to both

and β, because of the nonlinear terms F(u) and G(u) in (15a)–(15b). This is not a separable nonlinear least
quares problem. The variable projection approach apparently cannot be used for solving this system, at least with
he above straightforward formulation.

To circumvent the above issue and enable the use of the variable projection strategy, we consider the linearization
f the system (15a)–(15b) with the Newton’s method. Let uk denote the approximation of the solution at the kth
ewton iteration. We linearize this system as follows,

Luk+1
+ F(uk)+ F ′(uk)

(
uk+1
− uk)

= f (x), (16a)

Buk+1
+ G(uk)+ G ′(uk)

(
uk+1
− uk)

= g(x), on ∂Ω , (16b)

here F ′(u) and G ′(u) denote the derivatives with respect to u. We further re-write the linearized system into,

Luk+1
+ F ′(uk)uk+1

= f (x)− F(uk)+ F ′(uk)uk, (17a)

Buk+1
+ G ′(uk)uk+1

= g(x)− G(uk)+ G ′(uk)uk, on ∂Ω . (17b)

iven uk , this system represents a linear boundary value problem about the updated approximation field uk+1.
herefore, the VarPro/ANN algorithm developed in Section 2.1 can be used to solve this linearized system (17a)–

17b) for uk+1. Upon convergence of the Newton iteration, the solution to the original nonlinear system (15a)–(15b)
ill be obtained and represented by the neural-network coefficients.

emark 2.8. It is important to notice that the above formulation leads to a linearized system about the updated
pproximation field uk+1 directly. This linearization form is crucial to the high accuracy for solving nonlinear PDEs
ith the variable projection approach and artificial neural networks.
An alternative and perhaps more commonly-used form of linearization for the Newton’s method is often

ormulated in terms of the increment field. Let
k+1 k
u = u + v, (18)

12
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where v is the increment field at the step k. Then the increment is given by the following linearized system,

Lv + F ′(uk)v = f (x)−
[
Luk
+ F(uk)

]
, (19a)

Bv + G ′(uk)v = g(x)−
[
Buk
+ G(uk)

]
, on ∂Ω . (19b)

So the increment field v can be computed by the variable projection approach from the above system. The updated
approximation uk+1 is given by Eq. (18).

There are two issues with the form of linearization given by (19) when using variable projection and artificial
neural networks. First, with this form uk+1 can only be computed in the physical space (i.e. on the collocation
points), and it is not represented in terms of the neural network (i.e. given by the network coefficients). Note that
with the system (19) the increment field v is computed by the VarPro/ANN algorithm and is represented by the
hidden-layer and output-layer coefficients of the neural network. But uk+1 is computed by Eq. (18). This can only
be performed in the physical space, not in terms of the neural-network coefficients, due to the nonlinearity of the
network output with respect to the hidden-layer coefficients. Second, upon convergence of the Newton iteration, the
solution to the nonlinear system (i.e. the converged uk+1) is given in the physical space (on the collocation points),
not represented by the neural network. Therefore, one needs to additionally convert this solution from physical
space to the neural network representation, by solving a function approximation problem using the neural network
and variable projection. This extra step is necessary in order to evaluate the solution field on the points other than
the training collocation points in the domain.

The form of linearization given by (16), on the other hand, does not suffer from these issues. The updated
approximation field uk+1 computed by the variable projection method is directly represented by the neural-network
coefficients, as well as the solution to the original nonlinear system upon convergence. We observe that the solution
obtained based on the formulation (16) is considerably more accurate, typically by two orders of magnitude or
more, than that obtained based on the formulation (19). It should be noted that the system (19) can be transformed
into the system (16) by the substitution v = uk+1

− uk .

Within each Newton iteration we solve the linear boundary value problem (17) using the variable projection
method. In order to make the following discussions more concise, we introduce the following notation to drop the
superscripts,{

u(x) = uk+1(x), w(x) = uk(x),

fa(x) = f (x)− F(uk)+ F ′(uk)uk, ga(x) = g(x)− G(uk)+ G ′(uk)uk .
(20)

Then the system (17) is re-written into,

Lu + F ′(w)u = fa(x), (21a)

Bu + G ′(w)u = ga(x), on ∂Ω . (21b)

Let us next consider the solution of (21) with the variable projection approach. This system is similar to (1). The
solution procedure mirrors that of Section 2.1. So we only summarize the most important steps below. We use a feed-
forward neural network to represent the solution u(x) to the system (21), with the same settings and configurations
for the neural network and the collocation points as given in Section 2.1. Substituting the expansion (2) into (21),
and enforcing Eq. (21a) on all the collocation points and Eq. (21b) on all the boundary collocation points, we get
the following system in matrix form,

H(θ )β = S, where H(θ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

LΦ(θ , xp)+ F ′(w)Φ(θ , xp)
...
...

BΦ(θ , xq )+ G ′(w)Φ(θ , xq )
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+Nb)×M

, S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

fa(xp)
...
...

ga(xq )
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+Nb)×1

, (22)

here xp ∈ X and xq ∈ Xb. Following the same developments as given by Eqs. (5) and (7), we arrive at the reduced

onlinear least squares problem (7) about θ , with the understanding that the terms H(θ ) and S in all those equations

13
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Algorithm 4: Newton-variable projection algorithm for the nonlinear problem (15).
input : input data X to neural network; source data f (xp) (xp ∈ X) and g(xq ) (xq ∈ Xb); initial guess

u0(x).
output: solution u(x), represented by the coefficients of the neural network.

1 for k ← 0 to maximum-number-of-newton-iterations do
2 compute the vector R by (23)
3 if ∥R∥ is below a tolerance then
4 break
5 end

6 compute S by the equations (22) and (20)
7 call Algorithm 3, with “equation (4)” on line 24 therein replaced by “equation (22)”, to obtain (θ , β),

which are the neural-network representation of uk+1 in the system (17)

8 compute the vector ∆U by (23)
9 if ∥∆U∥ is below a tolerance then

10 break
11 end
12 end

are now defined by (22). We then invoke the Algorithm 3 to compute (θ , β), with the understanding that on line
24 of that algorithm the “Eq. (4)” is now replaced by Eq. (22) when computing β.

Remark 2.9. It should be noted that, depending on the form of the nonlinear operator F(u), the terms F ′(w)Φ in
the matrix H(θ ) may involve the derivatives of Φ. For example, with F(u) = u ∂u

∂x , we have F ′(w)Φ = ∂w
∂x Φ+w ∂Φ

∂x .

The extra terms F ′(w)Φ and G ′(w)Φ in H(θ ) do not add to the difficulty in computing the matrices H(θ ) and J0(θ ).
omputing H(θ ) and J0(θ ) follows the same procedures as outlined in Remarks 2.1 and 2.2. The only difference lies

n that in H(θ ) one needs to additionally compute the F ′(w)Φ(θ , xp) (xp ∈ X) and G ′(w)Φ(θ , xq ) (xq ∈ Xb) based
n the data for Φ(θ , x) and its derivatives on the collocation points. In J0(θ ) one needs to additionally compute the

F ′(w) ∂u
∂θ

⏐⏐
(θ ,xp) (xp ∈ X) and G ′(w) ∂u

∂θ

⏐⏐
(θ ,xq ) (xq ∈ Xb) based on the data for u(x) and its derivatives with respect to

x and θ on the collocation points.

To solve the nonlinear boundary value problem (15), we employ an overall Newton iteration. Within each iteration
we invoke the variable projection method as given by Algorithm 3 to solve the system (17) for uk+1, and the
computed uk+1 is represented by the weight/bias coefficients of the artificial neural network. Upon convergence of
the Newton iteration, the solution to the original nonlinear system (15) is given by the neural network, represented
by the neural-network coefficients. In our implementation, we have considered two stopping criteria for the Newton
iterations, based on the Euclidean norms of the residual vector R and the increment vector ∆U defined by

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

f (xp)− Luk(xp)− F(uk(xp))
...
...

g(xq )− Buk(xq )− G(uk(xq ))
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+Nb)×1

, ∆U =

⎡⎢⎢⎣
...

uk+1(xp)− uk(xp)
...

⎤⎥⎥⎦
N×1

. (23)

he overall Newton-VarPro method with ANNs for solving the nonlinear system (15) is summarized in the

lgorithm 4.
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Remark 2.10. When solving the nonlinear problem (15) using the Newton-VarPro method (Algorithm 4), one can
ften turn off the initial-guess perturbations and sub-iterations in Algorithm 3 when invoking this algorithm to solve
he system (17). This can be achieved by simply setting the “maximum-number-of-sub-iterations” to zero on line 5
f the Algorithm 3. In this case, if the converged cost from Algorithm 3 is not very small (above some threshold),
his means that the returned uk+1 solution from that Newton step may not be that accurate. This inaccuracy, however,

can be offset by the subsequent Newton iterations.

Remark 2.11. When solving nonlinear PDEs using the Newton-VarPro method, if the resolution is low (e.g. using a
small number of training collocation points), we observe from numerical experiments that the Newton iteration may
have difficulty reaching convergence within a specified maximum number of iterations. In such a case, increasing the
resolution (e.g. increasing the number of collocation points) can typically improve the convergence of the Newton
iteration. In the numerical experiments of Section 3 we typically employ a relative tolerance 1E−8 for the Newton
iterations (see the lines 3 and 9 of Algorithm 4).

3. Numerical examples

We use several numerical examples involving linear and nonlinear PDEs to illustrate the performance character-
istics of the VarPro method. These problems are in two spatial dimensions or in one spatial dimension plus time. We
also compare the simulation results of the current VarPro method and the ELM method from [21,25] to demonstrate
the superior accuracy of the current method.

As stated previously, the current VarPro method is implemented in Python, using the Tensorflow (www.te
nsorflow.org) and Keras (keras.io) libraries. For the linear least squares method we employ the scipy routine
“scipy.linalg.lstsq” in our implementation, which invokes the corresponding routine from the LAPACK library. For
the nonlinear least squares method, we employ the scipy routine “scipy.optimize.least squares” in our application
code, which implements the Gauss–Newton method together with a trust region algorithm [72]. The differential
operators acting on the output fields of the last hidden layer are computed by a forward-mode auto-differentiation
in our implementation, as discussed in Remark 2.1. The data for the Jacobian matrix are computed by a reverse-
mode auto-differentiation using a vectorized map together with the GradientTape in Tensorflow, as discussed in
Remark 2.2. We would like to mention that in our implementation of the neural network, between the input layer
and the first hidden layer, we have incorporated a lambda layer from Keras to normalize the input data X from the
rectangular domain Ω = [a1, b1]× · · · × [ad , bd ] to the standard domain [−1, 1]d .

As in our previous works [21,22,25], we employ a fixed seed value for the random number generators in the
numerical experiments in each subsection, so that the reported results here can be exactly reproducible. We use the
same seed for the random number generators from the Tensorflow library and from the numpy package. These seed
values are 1 in Sections 3.1.1 and 3.2.1, 10 in Sections 3.1.2 and 3.2.2, and 22 in Section 3.2.3.

3.1. Linear examples

3.1.1. Poisson equation
We first consider the canonical two-dimensional (2D) Poisson equation on a unit square domain, (x, y) ∈

0, 1]× [0, 1],

∂2u
∂x2 +

∂2u
∂y2 = f (x, y), (24a)

u(x, 0) = g1(x), u(x, 1) = g2(x), u(0, y) = g3(y), u(1, y) = g4(y), (24b)

here u(x, y) is the field function to be solved for, f (x, y) is a prescribed source term, and gi (1 ⩽ i ⩽ 4) denote
he boundary data. We employ the following analytic solution to this problem in the tests,

u =
[

2 cos
(

3
2
πx +

2
5
π

)
+

3
2

cos
(

3πx −
π

5

)
+

1
1+ x2

] [
2 cos

(
3
2
πy +

2
5
π

)
+

3
cos

(
3πy −

π )
+

1
2

]
, (25)
2 5 1+ y
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Fig. 2. Poisson equation: (a) Distribution of the exact solution. (b) Distribution of the absolute error of the VarPro solution. In (b), neural
etwork [2, 125, 1], “cos” activation function, Q = 15× 15 uniform training collocation points.

Table 1
Poisson equation: Main simulation parameters of the VarPro method.

Parameter Value Parameter Value

Neural network [2, M, 1] or [2, 20, M, 1] Training points Q Q1 × Q1
M Varied Q1 Varied
Activation function cos, Gaussian Testing points Q2 × Q2
Random seed 1 Q2 101
Initial guess θ0 Random values on [−Rm , Rm ] Rm 1.0
δ (Algorithm 3) 0.5, 1.0, 2.0, 5.0, or 7.0 p (Algorithm 3) 0.5
max-subiterations 5 Threshold (Algorithm 3) 1E−12

by choosing the source term f and the boundary data gi (1 ⩽ i ⩽ 4) appropriately. Fig. 2(a) shows the distribution
f this analytic solution in the xy plane.

We employ feed-forward neural networks with one or two hidden layers, with the architecture given by [2, M, 1]
r [2, 20, M, 1], where M is varied systematically or fixed at M = 100, 125 or 200. The two input nodes represent

the coordinates (x, y), and the single output node represents the solution field u(x, y). The activation function for
the hidden nodes is either the cosine function, σ (x) = cos(x), or the Gaussian function, σ (x) = e−x2

. The output
ayer is required to be linear (no activation function) and contain no bias.

We employ a uniform set of Q = Q1 × Q1 grid points on the domain as the training collocation points, where
Q1 denotes the number of uniform grid points in each direction (including the two end points) and is varied
ystematically between around 5 and 30 in the tests. After the neural network is trained by the VarPro method
n the Q1 × Q1 collocation points, the neural network is evaluated on a much larger uniform set of Q2 × Q2 grid
oints, where Q2 = 101 for this problem, to obtain the solution u(x, y). This solution is compared with the analytic
olution (25) to compute the maximum (L∞) and the root-mean-squares (rms, or L2) errors. These maximum/rms
rrors are then recorded and referred to as the errors associated with the given neural network architecture and the
raining collocation points Q = Q1 × Q1 for the VarPro method.

The main simulation parameters of the VarPro method are summarized in Table 1. The last three rows of this table
ertain to the parameters in Algorithm 3. θ0 denotes the initial guess to the hidden-layer coefficients in Algorithm
, which are set to uniform random values generated on [−Rm, Rm] with Rm = 1.0. When comparing the VarPro
ethod and the ELM method, we also employ a value Rm = Rm0 with VarPro, where Rm0 is the optimal Rm value

corresponding to ELM computed using the method from [25]. δ and p in this table are the maximum perturbation
magnitude and the preference probability in Algorithm 3, respectively. The “max-subiterations” here refers to the
maximum-number-of-sub-iterations in Algorithm 3. The “threshold” here refers to the threshold on the lines 3 and

19 in Algorithm 3.

16



S. Dong and J. Yang Computer Methods in Applied Mechanics and Engineering 398 (2022) 115284

w
δ

s

t
a
a
a

a
F
u
F
e
n
s

e
A

Fig. 3. Poisson equation: Maximum/rms errors of the VarPro solution versus the number of collocation points per direction (Q1) obtained
ith (a) the cos activation function, and (b) the Gaussian activation function. Neural network [2, 200, 1] in (a,b); Q1 is varied in (a,b);
= 7.0 in (a), and δ = 1.0 in (b).

Let us first consider the VarPro results obtained with neural networks containing a single hidden layer. Fig. 2(b)
hows the distribution of the absolute error of the VarPro solution in the xy plane. This result corresponds to the

neural network architecture [2, 125, 1], with the cos activation function, a uniform set of Q = 15 × 15 training
collocation points, and δ = 7.0 in Algorithm 3. The VarPro solution is highly accurate, with a maximum error
around 10−8 in the domain.

Fig. 3 illustrates the convergence behavior of the VarPro solution as a function of the number of training
collocation points in the domain. Here we employ a neural network [2, 200, 1], with the cos and the Gaussian
activation functions. The number of collocation points in each direction (Q1) is varied systematically. Fig. 3
shows the maximum and the rms errors of the VarPro solution in the domain as a function of Q1, obtained using
the cos activation function (plot (a)) and the Gaussian activation function (plot (b)). The VarPro errors decrease
approximately exponentially when Q1 is below around 20, and then appear to stagnate as Q1 further increases. The
VarPro errors reach a level around 10−11

∼ 10−9 with the cos activation function and a level around 10−9
∼ 10−7

with the Gaussian activation function.
Fig. 4 illustrates the convergence behavior of the VarPro accuracy with respect to the number of nodes in the

hidden layer (M) of the network. Here we consider neural networks with the architecture [2, M, 1], where M
is varied systematically, with the cos and Gaussian activation functions. A fixed uniform set of Q = 21 × 21
raining collocation points is used. Fig. 4 shows the maximum/rms errors of the VarPro solution in the domain as

function of M , obtained with the cos (plot(a)) and the Gaussian (plot (b)) activation functions. One can observe
n approximately exponential decrease in the VarPro errors with increasing M (when M is below a certain value),
nd then the errors appear to stagnate (or increase slightly) as M further increases.

Fig. 5 illustrates the VarPro solution using a neural network containing two hidden layers. Here we have employed
neural network with the architecture [2, 20, 100, 1] and the cos activation function for all the hidden nodes.

ig. 5(a) shows the distribution of the absolute error of the VarPro solution obtained with a set of Q = 18 × 18
niform collocation points in the domain. The maximum error is on the level 10−9, indicating a high accuracy.
ig. 5(b) depicts the maximum/rms errors of the VarPro solution as a function of the number of collocation points in
ach direction (Q1). One can again observe an exponential decrease in the errors (before saturation) with increasing
umber of collocation points. All these results suggest that the VarPro method produces highly accurate results for
olving the Poisson equation.

Table 2 compares the errors of the current VarPro method and the ELM method [21,25] for solving the Poisson
quation. We have considered two neural networks having the architecture [2, M, 1], with M = 100 and M = 200.

uniform set of Q = Q1×Q1 training collocation points are employed on the domain, where Q1 is varied between

Q1 = 5 and Q1 = 30. In ELM the hidden-layer coefficients are set (and fixed) to uniform random values generated

17



S. Dong and J. Yang Computer Methods in Applied Mechanics and Engineering 398 (2022) 115284

δ

f

o

Fig. 4. Poisson equation: The maximum/rms errors of the VarPro solution versus the number of nodes in the hidden layer (M), computed
using (a) the cos and (b) the Gaussian activation functions. Neural network [2, M , 1], where M is varied in (a,b); Q = 21 × 21 in (a,b);
= 7.0 in (a) and δ = 2.0 in (b).

Fig. 5. Poisson equation (2 hidden layers in neural network): (a) Error distribution of the VarPro solution. (b) The maximum/rms errors
of the VarPro solution versus the number of collocation points per direction (Q1). Neural network [2, 20, 100, 1], with the cos activation
unction. Q = 18× 18 in (a), and is varied in (b). δ = 0.5 in (a,b).

n [−Rm, Rm], and in VarPro the hidden-layer coefficients are initialized (i.e. the initial guess θ0 in Algorithm
3) to the same random values from [−Rm, Rm]. So the random hidden-layer coefficients in ELM and the initial
hidden-layer coefficients in VarPro are identical. We have considered two Rm values, Rm = 1.0 and Rm = Rm0,
where Rm0 is the optimal Rm for ELM computed using the method from [25] and in this case Rm0 = 6.0. We can
make the following observations:

• The VarPro method in general produces considerably more accurate results than ELM, under the same settings
and conditions, especially when the size of the neural network is still not quite large.
• The ELM accuracy has a fairly strong dependence on the Rm value. On the other hand, the VarPro accuracy

is less sensitive or insensitive to the Rm value.

In these tests the VarPro method has produced errors on the order 10−8
∼ 10−10 with the given neural networks.

We should point out that the ELM method can also achieve numerical errors on such levels, but it requires neural

networks with a larger number of nodes in the hidden layer.

18
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Table 2
Poisson equation: comparison of the maximum/rms errors obtained using the VarPro and ELM methods. cos activation function. In both
VarPro and ELM, the hidden-layer coefficients are initialized/set to uniform random values generated on [−Rm , Rm ], with Rm = 1.0 or with
Rm = Rm0. Rm0 is the optimal Rm for ELM computed using the method from [25], and in this case Rm0 = 6.0. δ = 5.0 in VarPro.

Neural [−Rm , Rm ] Collocation VarPro ELM

network points max-error rms-error max-error rms-error

[2, 100, 1] Rm = 1 5 × 5 6.470E+1 2.422E+1 1.247E+2 2.745E+1
10 × 10 8.388E−3 3.941E−3 1.402E+1 2.575E+0
15 × 15 6.018E−7 8.241E−8 1.475E+1 1.938E+0
20 × 20 3.693E−7 4.216E−8 1.690E+1 2.527E+0
25 × 25 5.845E−7 8.054E−8 1.777E+1 2.752E+0
30 × 30 2.688E−7 2.867E−8 1.864E+1 2.916E+0

Rm = Rm0 5 × 5 2.156E+0 6.114E−1 2.156E+0 6.114E−1
= 6 10 × 10 7.735E−4 1.497E−4 1.353E−1 2.497E−2

15 × 15 4.175E−7 4.614E−8 3.019E−1 6.004E−2
20 × 20 1.753E−7 1.974E−8 3.859E−1 7.575E−2
25 × 25 8.443E−7 1.227E−7 4.336E−1 8.489E−2
30 × 30 8.709E−8 1.088E−8 4.673E−1 9.157E−2

[2, 200, 1] Rm = 1 5 × 5 5.948E+0 2.102E+0 9.325E+1 2.024E+1
10 × 10 2.127E−2 4.398E−3 4.417E+0 7.083E−1
15 × 15 6.082E−8 1.983E−8 5.615E+0 8.019E−1
20 × 20 1.459E−9 1.203E−10 4.979E+0 7.610E−1
25 × 25 1.782E−7 7.978E−8 5.077E+0 8.565E−1
30 × 30 3.000E−9 3.420E−10 5.633E+0 8.804E−1

Rm = Rm0 5 × 5 7.292E−1 2.733E−1 7.292E−1 2.732E−1
= 6 10 × 10 1.283E−4 3.705E−5 1.283E−4 3.705E−5

15 × 15 2.315E−9 4.746E−10 9.822E−6 7.481E−7
20 × 20 3.449E−10 3.722E−11 1.245E−5 1.518E−6
25 × 25 6.379E−9 4.980E−10 1.174E−5 1.677E−6
30 × 30 4.221E−10 4.086E−11 1.242E−5 1.800E−6

3.1.2. Advection equation
As another linear example we consider the spatial–temporal domain Ω = {(x, t) | x ∈ [0, 3], t ∈ [0, t f ]} in this

est, where the temporal dimension t f is to be specified below. We consider the initial/boundary value problem with
he advection equation on Ω ,

∂u
∂t
− c

∂u
∂x
= 0, (26a)

u(0, t) = u(3, t), (26b)

u(x, 0) = sin
2π

3
(x − 2), (26c)

where u(x, t) is the field function to be solved for, and c = −2.0 is the wave speed. This problem has the following
exact solution,

u(x, t) = sin
2π

3
(x − 2t − 2). (27)

Fig. 6(a) shows the distribution of this exact solution in the spatial–temporal domain with t f = 10.
To solve this problem with the VarPro method, we employ a feed-forward neural network with one or two

idden layers, with the architecture given by [2, M, 1] or [2, 10, M, 1], where M is varied systematically in the
tests. The two input nodes represent the spatial/temporal coordinates (x, t), and the output node represents the
solution field u(x, t). We employ the Gaussian function, σ (x) = e−x2

, or the Gaussian error linear unit (GELU) [74],
(x) = 1

2 x
[
1+ erf

(
x
√

2

)]
, as the activation function for all the hidden nodes. The output layer is linear and with

ero bias.
We primarily consider a temporal dimension t f = 10 for the domain Ω . We employ the block time marching

(BTM) scheme from [21] together with the VarPro method for this problem; see Remark 2.5. We employ 10 uniform
19
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Fig. 6. Advection equation: Distributions of (a) the exact solution, and (b) the absolute error of the VarPro solution, in the spatial–temporal
plane. t f = 10. In (b), 10 time blocks, Q = 21 × 21 uniform collocation points per time block, neural network [2, 100, 1], Gaussian
ctivation function, the max sub-iterations is 2 and δ = 3.0 in VarPro.

Table 3
Advection equation: main simulation parameters of the VarPro method.

Parameter Value Parameter Value

t f 10, or 100 Number of time blocks 10, or 100
Neural network [2, M, 1], or [2, 10, M, 1] Training points Q Q1 × Q1
M Varied Q1 Varied
Activation function Gaussian, GELU Testing points Q2 × Q2
Random seed 10 Q2 101
Initial guess θ0 Random values on [−Rm , Rm ] Rm 1.0
δ (Algorithm 3) 0.0, 0.05, 1.0, or 3.0 p (Algorithm 3) 0.5
max-subiterations 0, or 2 Threshold (Algorithm 3) 1E−12

time blocks in time and in each time block employ a uniform set of Q = Q1× Q1 training collocation points with
the VarPro method, where Q1 is varied systematically. Following Section 3.1.1, we employ a much larger uniform
et of Q2 × Q2 grid points within each time block to evaluate the trained neural network for the solution field and
ompute its errors by comparing with the exact solution (27). We have also considered another spatial–temporal
omain with a much larger temporal dimension t f = 100. Correspondingly, 100 uniform time blocks are employed
n simulations of this case. The main simulation parameters for this problem are summarized in Table 3.

Let us first look into the VarPro errors obtained using neural networks with one hidden layer. Fig. 6(b) shows the
istribution of the absolute error of the VarPro result in the spatial–temporal domain. This result is for the temporal
imension t f = 10, and is obtained using a neural network [2, 100, 1] with the Gaussian activation function and a

uniform set of Q = 21× 21 training collocation points in the domain. The VarPro result is highly accurate, with a
maximum error on the order 10−8 in the overall domain.

Fig. 7 illustrates the convergence behavior of the VarPro solution with respect to the number of collocation points
per direction (Q1) in each time block. This is for the temporal dimension t f = 10 computed with a neural network
2, 100, 1] and 10 time blocks. The plot (a) shows the maximum and rms errors in the overall domain of the VarPro

olution as a function of Q1 obtained with the Gaussian activation function. The plot (b) shows the corresponding

20
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Fig. 7. Advection equation: the maximum/rms errors of the VarPro solution versus the number of collocation points per direction in each
ime block, obtained with (a) the Gaussian and (b) the GELU activation functions. In (a,b), t f = 10, 10 time blocks, neural network

[2, 100, 1], max-subiterations = 2 and δ = 1.0 in VarPro.

Fig. 8. Advection equation: the maximum/rms errors of the VarPro solution versus the number of nodes in the hidden layer (M) obtained
with (a) the Gaussian and (b) the GELU activation functions. In (a,b), t f = 10, 10 time blocks, Q = 21 × 21 uniform collocation points,

eural network [2, M, 1] with M varied, max-subiterations = 2 and δ = 1.0 in VarPro.

esult obtained with the GELU activation function. The exponential decrease in the errors with increasing number
f collocation points (before saturation) is unmistakable.

Fig. 8 illustrates the convergence behavior of the VarPro solution with respect to the number of nodes in the
idden layer (M). Here the domain corresponds to t f = 10, with 10 time blocks and a uniform set of Q = 21× 21
raining collocation points per time block in the VarPro simulation. The neural network is given by [2, M, 1], where
M is varied systematically. Fig. 8(a) and (b) shows the maximum/rms errors in the overall domain as a function of
M obtained using the Gaussian and the GELU activation functions, respectively. The exponential decrease in the
rrors with increasing M (before saturation) is evident.

Fig. 9 illustrates the VarPro results computed using a neural network containing two hidden layers. The domain
orresponds to t f = 10, and the neural network has the architecture [2, 10, 100, 1] with the Gaussian activation
unction. Fig. 9(a) shows the VarPro error distribution in the overall spatial–temporal plane, obtained with a uniform

Q = 21 × 21 training collocation points per time block. Fig. 9(b) depicts the maximum/rms VarPro errors in the
21
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Fig. 9. Advection equation (two hidden layers in NN): (a) Error distribution of the VarPro solution in the spatial–temporal plane, and (b)
the maximum/rms errors of the VarPro solution versus the number of collocation points per direction, obtained with 2 hidden layers in the
neural network. In (a,b), t f = 10, 10 uniform time blocks, neural network [2, 10, 100, 1], Gaussian activation function, max-subiterations =
2 and δ = 0.05 in VarPro. Q = 21× 21 in (a) and is varied in (b).

Table 4
Advection equation: comparison of the maximum/rms errors of the solutions obtained using the VarPro and
ELM methods. t f = 10, 10 time blocks, Neural network [2, 100, 1], Gaussian activation function. In VarPro, the
max-subiterations is 2 and δ = 1.0. In ELM/VarPro, the hidden-layer coefficients are set/initialized to uniform
random values from [−Rm , Rm ], with Rm = 1.0 or with Rm = Rm0 = 0.7.

[−Rm , Rm ] Collocation VarPro ELM

points max-error rms-error max-error rms-error

Rm = 1 5 × 5 2.505E−1 1.005E−1 2.505E−1 1.005E−1
10 × 10 3.194E−4 1.864E−4 3.758E−4 1.245E−4
15 × 15 4.254E−8 6.954E−9 4.232E−5 1.269E−5
20 × 20 2.348E−8 4.240E−9 4.618E−5 1.402E−5
25 × 25 1.493E−8 2.889E−9 5.471E−5 1.598E−5
30 × 30 1.354E−8 2.528E−9 6.419E−5 1.773E−5

Rm = Rm0 5 × 5 1.038E−1 3.252E−2 1.038E−1 3.252E−2
= 0.7 10 × 10 1.996E−4 9.437E−5 2.240E−4 6.519E−5

15 × 15 7.934E−8 9.495E−9 3.881E−5 9.642E−6
20 × 20 9.261E−8 3.253E−8 3.471E−5 1.060E−5
25 × 25 3.444E−8 4.931E−9 3.314E−5 1.117E−5
30 × 30 4.670E−8 7.428E−9 3.283E−5 1.164E−5

overall domain as a function of the collocation points per direction in each time block, demonstrating the exponential
convergence behavior.

A comparison between the current VarPro method and the ELM method [21,25] for solving the advection
quation is provided in Table 4. The maximum and rms errors of the VarPro and the ELM methods obtained
n a series of training collocation points are listed. These results are for the domain t f = 10, with 10 time blocks

in block time marching. We have employed a neural network [2, 100, 1] with the Gaussian activation function.
The random hidden-layer coefficients in ELM and the initial hidden-layer coefficients in VarPro are generated by
Rm = 1 and Rm = Rm0 = 0.7. It is evident that VarPro generally leads to significantly more accurate results than
ELM.

Figs. 10 and 11 illustrate a longer-time simulation of the advection equation using the VarPro method and the
block time marching scheme. Here the domain corresponds to t f = 100. We have employed 100 uniform time
blocks, a set of Q = 25× 25 uniform collocation points per time block, and a neural network [2, 150, 1] with the
Gaussian activation function. Fig. 10(a) and (b) show the distributions of the VarPro solution and its absolute errors
in the overall spatial–temporal plane. It can be observed that the VarPro method has produced highly accurate results,
with the maximum error on the order 10−8 in this long-time simulation. Fig. 11(a) compares the time histories of
the VarPro solution and the exact solution (27) at the mid-point of the domain (x = 1.5), and Fig. 11(b) shows the
orresponding VarPro error history at this point. These results indicate that the VarPro method together with the

lock time marching scheme can produce highly accurate results in long-time simulations.
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Fig. 10. Advection equation (long-time simulation): Distributions of (a) the VarPro solution and (b) its absolute error in the spatial–temporal
omain. Domain: (x, t) ∈ [0, 3]× [0, 100], 100 uniform time blocks, Q = 25× 25 uniform collocation points per time block, neural network

[2, 150, 1], Gaussian activation function, no subiteration (max-subiterations = 0) in VarPro.

Fig. 11. Advection equation (long-time simulation): (a) Comparison of the time histories between the VarPro solution and the exact solution
at the mid-point of the domain (x = 1.5). (b) Time history of the absolute error of the VarPro solution at the mid-point of the domain
x = 1.5). Simulation parameters and configurations here follow those of Fig. 10.

.2. Nonlinear examples

.2.1. Nonlinear Helmholtz equation
In the first nonlinear example, we consider the boundary value problem with a nonlinear Helmholtz equation on

he unit square domain [0, 1]× [0, 1],

∂2u
∂x2 +

∂2u
∂y2 − 100u + 5 cos(2u) = f (x, y), (28a)

u(x, 0) = g1(x), u(x, 1) = g2(x), u(0, y) = g3(y), u(1, y) = g4(y), (28b)

here u(x, y) is the field function to be solved for, f (x, y) is a prescribed source term, and gi (1 ⩽ i ⩽ 4) denote
he boundary data. With f and gi (1 ⩽ i ⩽ 4) chosen appropriately, this problem admits the following analytic
olution,
23
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Fig. 12. Nonlinear Helmholtz equation: Distributions of (a) the exact solution and (b) the absolute error of the VarPro solution. In (b),
neural network [2, 200, 1], “sin” activation function, Q = 21× 21 uniform collocation points, δ = 0.05 in VarPro.

Table 5
Nonlinear Helmholtz equation: main simulation parameters of the VarPro method.

Parameter Value Parameter Value

Neural network [2, M, 1], or [2, 5, M, 1] Training points Q Q1 × Q1
M Varied Q1 Varied
Activation function sin, Gaussian Testing points Q2 × Q2
Random seed 1 Q2 101
Initial guess θ0 Random values on [−Rm , Rm ] Rm 1.0
δ (Algorithm 3) 0.02, 0.05, 0.1, or 0.2 p (Algorithm 3) 0.5
max-subiterations 2 Threshold (Algorithm 3) 1E−12
max-iterations-newton 20 Tolerance-newton 1E−8

u =
[

5
2

cos
(

3
2
πx −

2
5
π

)
+

3
2

cos
(

3πx +
3π
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)
+

1
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(ex
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] [
5
2

cos
(

3
2
πy −

2
5
π

)
+

3
2

cos
(

3πy +
3π

10

)
+

1
2

(ey
− e−y)

]
. (29)

e employ this analytic solution in the following tests. Fig. 12(a) shows the distribution of this analytic solution
n the xy plane.

We employ neural networks with the architectures [2, M, 1] and [2, 5, M, 1] in the VarPro simulations, where
M is varied in the tests. The sine function, σ (x) = sin(x), or the Gaussian function, σ (x) = e−x2

, is employed as
he activation functions for the hidden nodes. A uniform set of Q = Q1 × Q1 training collocation points, where
Q1 is varied, is used to train the neural network. The VarPro solution is computed on a larger set of Q2×Q2 (with
Q2 = 101) uniform grid points by evaluating the trained neural network, and compared with the analytic solution
o compute its errors. Table 5 provides the main simulation parameters for this problem and the VarPro method.
n this table “max-iterations-newton” denotes the maximum number of Newton iterations, and “tolerance-newton”
enotes the relative tolerance for the Newton iteration (see lines 3 and 9 of Algorithm 4).

Fig. 12(b) illustrates the error distribution of a VarPro solution in the xy plane, computed using a neural network
2, 200, 1] with the sin activation function and a uniform set of Q = 21 × 21 collocation points. The result is
bserved to be highly accurate, with a maximum error on the order 10−10 in the domain.

Fig. 13 illustrates the convergence behavior of the VarPro method with respect to the number of training
ollocation points in the domain. In these tests the number of collocation points per direction (Q1) is varied
ystematically. The two plots show the maximum/rms errors in the domain of the VarPro solution as a function of
Q1, obtained using the sin (plot (a)) and the Gaussian (plot (b)) activation functions. These VarPro results are attained
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Fig. 13. Nonlinear Helmholtz equation: the maximum/rms errors of the VarPro solution versus the number of collocation points per direction,
obtained using (a) the sine and (b) the Gaussian activation functions. Neural network [2, 200, 1], δ = 0.1 in (a) and δ = 0.2 in (b) with

arPro.

Fig. 14. Nonlinear Helmholtz equation: the maximum/rms errors of the VarPro solution versus the number of nodes in the hidden layer,
btained with (a) the sine and (b) the Gaussian activation functions. Neural network [2, M, 1], where M is varied, Q = 21 × 21, δ = 0.1
n (a) and δ = 0.2 in (b) with VarPro.

sing a neural network [2, 200, 1]. We observe an exponential decrease in the VarPro errors (before saturation) with
ncreasing number of collocation points.

Fig. 14 illustrates the convergence behavior of the VarPro solution with respect to the number of nodes in the
idden layer (M) for the nonlinear Helmholtz equation. Here the neural network has an architecture [2, M, 1],
here M is varied systematically, and a uniform set of Q = 21 × 21 training collocation points is employed in

he simulation. This figure shows the maximum/rms errors in the domain as a function of M , obtained using the
in (plot (a)) and the Gaussian (plot (b)) activation functions. The errors computed with the sin activation function
ppear not quite regular as M increases. But overall all these errors appear to decrease approximately exponentially
ith increasing M .
Fig. 15 illustrates the VarPro results obtained using two hidden layers in the neural network. Here we consider

neural network with the architecture [2, 5, 200, 1], with the sin activation function. Fig. 15(a) shows the error

istribution of the VarPro solution obtained using Q = 20×20 training collocation points. In Fig. 15(b) the number
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Fig. 15. Nonlinear Helmholtz equation (two hidden layers in NN): (a) Error distribution of the VarPro solution. (b) The VarPro maximum/rms
errors versus the number of collocation points per direction (Q1). Neural network [2, 5, 200, 1], sin activation function, Q = 20× 20 in (a)
nd is varied in (b), δ = 0.02 in (a,b) with VarPro.

Table 6
Nonlinear Helmholtz equation: comparison of the maximum/rms errors of the VarPro and ELM solutions. Neural
network [2, 200, 1], sin activation function. In VarPro, δ = 0.1, and the tolerance-newton is set to 1E−8 with
Rm = 1 and to 1E−14 with Rm = 4.4.

[−Rm , Rm ] Collocation VarPro ELM

points max-error rms-error max-error rms-error

Rm = 1 5 × 5 1.297E+2 4.536E+1 4.388E+0 8.195E−1
10 × 10 1.855E−2 3.955E−3 7.701E+0 1.210E+0
15 × 15 2.868E−8 3.252E−9 3.743E−1 4.767E−2
20 × 20 3.679E−10 3.203E−11 1.280E+0 1.864E−1
25 × 25 6.014E−8 3.281E−9 1.434E+0 2.198E−1
30 × 30 5.709E−10 4.576E−11 8.365E−1 1.123E−1

Rm = Rm0 = 4.4 5 × 5 6.742E−1 2.408E−1 1.182E−1 3.589E−2
10 × 10 5.869E−3 1.169E−3 8.987E−7 1.861E−7
15 × 15 7.130E−9 1.024E−9 6.690E−9 8.655E−10
20 × 20 2.851E−9 2.364E−10 2.384E−8 2.835E−9
25 × 25 4.193E−10 5.173E−11 3.133E−8 3.611E−9
30 × 30 1.128E−9 1.029E−10 3.813E−8 4.194E−9

of collocation points per direction (Q1) is varied systematically, and the maximum/rms errors are plotted as a
function of Q1. An exponential decrease in the errors (before saturation) can be observed.

Table 6 is a comparison of the errors between the VarPro method and the ELM method for solving the nonlinear
elmholtz equation. These results are for a neural network [2, 200, 1] with the sin activation function. In ELM the

random hidden-layer coefficients are set to, and in VarPro the hidden-layer coefficients are initialized to, uniform
random values from [−Rm, Rm], where Rm = 1.0 or Rm = Rm0 = 4.4. Several sets of uniform training collocation
points are tested, ranging from Q = 5 × 5 to Q = 30 × 30. The VarPro results are in general markedly more
accurate than those of the ELM results. This is especially pronounced for those cases corresponding to Rm = 1.0.

3.2.2. Viscous Burgers’ equation
In the second nonlinear example we use the viscous Burgers’ equation to test the VarPro method. We will consider

two solutions to the Burgers’ equation: (i) a manufactured smooth solution, and (ii) an exact physical solution in

which a sharp gradient develops in the domain over time.
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Fig. 16. Burgers’ equation (with manufactured solution): Distributions of (a) the manufactured solution and (b) the absolute error of the
VarPro solution in the spatial–temporal plane. In (b), neural network [2, 150, 1], and Q = 31× 31 training collocation points.

Let us first examine the convergence behavior of VarPro using a manufactured solution. Consider the spatial–
emporal domain, Ω = {(x, t) | x ∈ [0, 1], t ∈ [0, 1]}, and the following initial/boundary value problem on Ω ,

∂u
∂t
+ u

∂u
∂x
− ν

∂2u
∂x2 = f (x, t), (30a)

u(0, t) = g1(t), u(1, t) = g2(t), (30b)

u(x, 0) = h(x). (30c)

In the above equations, u(x, t) is the field function to be solved for, ν = 0.05, f (x, t) is a prescribed source term,
g1 and g2 are the boundary conditions, and h is the initial condition. We choose f , g1, g2 and h such that this
roblem has the following manufactured analytic solution,

u(x, t) =
[

2 cos
(

πx +
2π

5

)
+

3
2

cos
(

2πx −
3π

5

)] [
2 cos

(
π t +

2π

5

)
+

3
2

cos
(

2π t −
3π

5

)]
. (31)

Fig. 16(a) shows the distribution of this manufactured solution in the spatial–temporal plane.
We employ neural networks with an architecture [2, M, 1] in the VarPro simulations, where M is varied

systematically in the tests. The two input nodes represent (x, t) and the linear output node represents the solution
field u(x, t). The Gaussian activation function, σ (x) = e−x2

, is employed in all the hidden nodes. A uniform set
of Q = Q1 × Q1 collocation points in the spatial–temporal domain is used to train the neural network with the
VarPro method, and Q1 is varied systematically in the tests. The trained neural network is evaluated on a larger set
of Q2 × Q2 uniform grid points to attain the field solution, which is then compared with the analytic solution (31)
to compute the errors. The main simulation parameters for this problem are summarized in Table 7.

Fig. 16(b) illustrates the distribution of the absolute error of a VarPro solution in the spatial–temporal plane. This
is computed using a neural network [2, 150, 1] with a uniform set of Q = 31× 31 training collocation points. The

arPro solution can be observed to be quite accurate, with a maximum error on the order 10−8 in the domain.
Fig. 17 illustrates the convergence behavior of the VarPro method for solving the Burgers’ equation. In these

ests the neural network is given by [2, M, 1], where M is either fixed at M = 100 or varied between M = 25
nd M = 250. A set of Q = Q1 × Q1 uniform training collocation points is used, where Q1 is either fixed at

Q1 = 31 or varied between Q1 = 10 and Q1 = 35. Fig. 17(a) shows the maximum/rms errors of the VarPro
olution as a function of Q1, corresponding to a fixed M = 100 for the neural network. The error behavior is not
uite regular. With a smaller Q1 (e.g. 10 or 15) the errors are at a level 1 ∼ 10, while with a larger Q1 (20 and
eyond) the errors abruptly drop to a level around 10−8

∼ 10−6. We observe that with the smaller Q1 = 10 and
5 the Newton iteration fails to converge to the prescribed tolerance within the prescribed maximum number of
27
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Table 7
Burgers’ equation: main simulation parameters of VarPro with the manufactured solution (31).

Parameter Value Parameter Value

Domain (x, t) ∈ [0, 1]× [0, 1] Block time marching None
Neural network [2, M, 1] Training points Q Q1 × Q1
M Varied Q1 Varied
Activation function Gaussian Testing points Q2 × Q2
Random seed 10 Q2 101
Initial guess θ0 Random values on [−Rm , Rm ] Rm 1.0
δ (Algorithm 3) Un-used p (Algorithm 3) Un-used
max-subiterations 0 (no subiteration) Threshold (Algorithm 3) 1E−12
max-iterations-newton 50 Tolerance-newton 1E−8

Fig. 17. Burgers’ equation (with manufactured solution): The maximum/rms errors of the VarPro solution versus (a) the number of collocation
oints in each direction (Q1), and (b) the number of nodes in the hidden layer (M) of the neural network. Neural network [2, M, 1],

Q = Q1 × Q1 uniform collocation points. M = 100 in (a) and is varied in (b). Q1 = 31 in (b) and is varied in (a).

iterations. Fig. 17(b) shows the maximum/rms errors as a function of M , corresponding to a fixed Q = 31× 31 for
the collocation points. The errors can be observed to decrease approximately exponentially with increasing M .

Table 8 provides a comparison of the solution errors obtained using the VarPro method and the ELM
method [21,25] for the Burgers’ equation. These are computed using a fixed uniform set of Q = 31×31 collocation

oints and a series of neural networks with the architecture [2, M, 1], where M is varied between M = 25 and
M = 150. The random hidden-layer coefficients in ELM are set, and the hidden-layer coefficients in VarPro are
nitialized, by using Rm = 1 and Rm = Rm0 = 0.9 in the tests. It is evident that the VarPro method produces
ignificantly more accurate results than the ELM method.

We next further test the VarPro method using an exact solution with a sharp gradient developed in the spatial–
emporal domain. We consider the spatial–temporal domain, Ωa = {(x, t) | x ∈ [−1, 1], t ∈ [0, 1.05]}, and the
ollowing problem on Ωa with the Burgers’ equation,

∂u
∂t
+ u

∂u
∂x
− ν

∂2u
∂x2 = 0, (32a)

u(−1, t) = 0, u(1, t) = 0, u(x, 0) = − sin(πx), (32b)

where ν = 1
100π

. This initial boundary value problem has an exact solution given by [75],

u(x, t) = −

∫
∞

−∞
sin π (x − ξ )F(x − ξ )e−

ξ2
4νt dξ∫

∞ −
ξ2
4νt

, with F(ξ ) = e−
cos(πξ )

2πν . (33)
−∞
F(x − ξ )e dξ
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Table 8
Burgers’ equation (with manufactured solution): comparison of the maximum/rms errors of the VarPro and ELM
solutions. Neural network [2, M, 1] with M varied; fixed Q = 31× 31 training collocation points.

[−Rm , Rm ] M VarPro ELM

max-error rms-error max-error rms-error

Rm = 1 25 3.111E−3 2.499E−4 6.382E+0 8.382E−1
50 1.538E−5 1.890E−6 6.669E−2 1.016E−2
75 2.603E−6 3.222E−7 1.216E−2 1.406E−3
100 2.406E−6 3.471E−7 4.189E−4 6.540E−5
125 5.894E−7 2.193E−8 1.088E−4 1.099E−5
150 1.131E−8 1.599E−9 4.387E−6 5.623E−7

Rm = Rm0 = 0.9 25 1.592E−3 2.150E−4 3.501E+0 6.245E−1
50 1.069E−5 1.794E−6 1.390E−1 7.607E−3
75 3.049E−6 3.576E−7 1.948E−2 1.524E−3
100 4.831E−6 3.311E−7 7.639E−4 4.780E−5
125 4.163E−7 7.029E−8 5.864E−5 6.823E−6
150 6.063E−8 7.242E−9 2.000E−6 2.877E−7

Table 9
Burgers’ equation (with exact solution): simulation parameters of the VarPro method.

Parameter Value Parameter Value

Domain (x, t) ∈ [−1, 1]× [0, 1.05] Block time marching Yes
Time blocks 7 (uniform) Sub-domains/time-block 6 (non-uniform)
Sub-domain boundaries x = 0, ±0.02, ±0.1, ±1 Random seed 10
Local Neural network [2, 250, 1] Training points/sub-domain 21 × 21
Activation function Gaussian Testing points/sub-domain 101 × 101
Initial guess θ0 Random values on [−Rm , Rm ] Rm = Rm0 Rm0 = 2.0
δ (Algorithm 3) Un-used p (Algorithm 3) Un-used
max-subiterations 0 (no subiteration) Threshold (Algorithm 3) 1E−12
max-iterations-newton 10 Tolerance-newton 1E−8
Ck continuity C1 on sub-domain boundary

Fig. 18(a) illustrates the distribution of this solution in the spatial–temporal plane, in which a sharp gradient can
be observed to develop in the domain after around t ≈ 0.35.

We solve this problem by the local VarPro method (see Remark 2.6) together with the block time marching
scheme (see Remark 2.5). We partition Ωa along the time t into 7 uniform time blocks, with a temporal dimension
0.15 for each time block, and compute the time blocks individually and successively. We decompose the spatial–
temporal domain of each time block into 6 sub-domains (non-uniform) along the x direction, with the x coordinates
of the sub-domain boundaries given by x = 0, ±0.02, ±0.1, and ±1. C1 continuity conditions for the local solution
fields are imposed along the x direction across the interior sub-domain boundaries. On each sub-domain we employ
a local neural network [2, 250, 1] with the Gaussian activation function, where the two input nodes denote the (x, t)
of the local sub-domain and the single output node denotes the solution u(x, t) restricted to this sub-domain. We
employ a uniform set of 21 × 21 collocation points on each sub-domain in the training of the overall neural
network with the VarPro method. After the network is trained, we evaluate the neural network on a uniform set of
101 × 101 grid points on each sub-domain to obtain the VarPro solution data, which is then compared with the
exact solution (33) evaluated on the same set of grid points to compute the point-wise errors of the VarPro solution
on the overall spatial–temporal domain Ωa . The main parameters for the configuration and the VarPro simulation
of this problem is listed in Table 9. For the initial guess of the hidden-layer coefficients θ0 in Algorithm 3, we have
employed the uniform random values generated on the interval [−Rm, Rm], with Rm = Rm0, where Rm0 = 2.0 is
the optimal Rm for the ELM method obtained using the method of [25] for the problem (32).

Fig. 18 summarizes the obtained VarPro solution to the problem (32). The plots (b) and (c) depict the distributions
of the VarPro solution and its point-wise absolution error in the spatial–temporal domain, respectively. Visually one
cannot discern any difference between the distributions of the VarPro solution (plot (b)) and the exact solution
(plot (a)). The error distribution indicates that the solution obtained by the VarPro method is quite accurate. On
29
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Fig. 18. Burgers’ equation (with exact solution): Distributions of (a) the exact solution, (b) the VarPro solution, and (c) the absolute error of
he VarPro solution in the spatial–temporal plane. Comparison of profiles of the VarPro and the exact solutions at (d) t = 0.3, (e) t = 0.5,

and (f) t = 1.0. Error profiles of the VarPro solution at (g) t = 0.3, (h) t = 0.5, and (i) t = 1.0. See Table 9 for the simulation parameters.

he spatial–temporal domain Ωa , the maximum error of the VarPro solution is 2.72 × 10−5 and the rms error is
4.47 × 10−6. The plots (d,e,f) compare the profiles (along x) of the VarPro solution and the exact solution given
by (33) at three time instants t = 0.3, 0.5, and 1.0, respectively. One can observe the sharp gradient of the solution
n the middle of the spatial domain at the latter two instants, which is close to a jump discontinuity. It can also be
bserved that the VarPro profiles and the exact-solution profiles overlap with each other. The plots (g,h,i) show the
orresponding error profiles of the VarPro solution at these three instants, illustrating the quite high accuracy of the
arPro result. The results of Fig. 18 suggest that, even if the solution field is not quite smooth, the VarPro method

s still capable of producing simulation results with a fairly high accuracy.

.2.3. Nonlinear Klein–Gordon equation
In the last example we use the nonlinear Klein–Gordon equation [76] to test the VarPro method. Consider the

patial–temporal domain, Ω = {(x, t) | x ∈ [0, 1], t ∈ [0, 2]}, and the initial/boundary value problem with the
nonlinear Klein–Gordon equation on Ω ,

∂2u
∂t2 −

∂2u
∂x2 + u + sin(u) = f (x, t), (34a)

u(0, t) = g (t), u(1, t) = g (t), (34b)
1 2
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Fig. 19. Nonlinear Klein–Gordon equation: Distributions of (a) the exact solution and (b) the absolute error of the VarPro solution in the
spatial–temporal plane. In (b), 4 uniform time blocks in domain, neural network [2, 200, 1], Q = 21 × 21 uniform collocation points per
time block.

u(x, 0) = h1(x),
∂u
∂t

⏐⏐⏐⏐
(x,0)
= h2(x), (34c)

where u(x, t) is the field function to be solved for, f (x, t) is a prescribed source term, g1 and g2 are the boundary
conditions, and h1 and h2 are the initial conditions. We choose the source term, the boundary and initial conditions
appropriately such that this problem has the following analytic solution,

u(x, t) =
[

2 cos
(
πx +

π

5

)
+

9
5

cos
(

2πx +
7π

20

)] [
2 cos

(
π t +

π

5

)
+

9
5

cos
(

2π t +
7π

20

)]
. (35)

e employ this analytic solution to test the accuracy of the VarPro method. Fig. 19(a) shows the distribution of
his analytic solution in the spatial–temporal plane.

We employ the block time marching scheme [21] together with the VarPro method to solve this problem. We
se 4 uniform time blocks in the domain, and on each time block employ a neural network with the architecture
2, M, 1], where M is varied in the tests. The two input nodes represent (x, t), and the linear output node represents
he field solution u(x, t). The Gaussian activation function σ (x) = e−x2

is employed for all the hidden nodes. On
ach time block a uniform set of Q = Q1 × Q1 collocation points, where Q1 is varied, is used to train the neural
etwork. The trained neural network is evaluated on a larger set of Q2× Q2 uniform grid points to obtain the field
olution u(x, t), which is compared with the exact solution (35) to compute the errors of the VarPro simulation.
able 10 summarizes the main simulation parameters for this problem.

Fig. 19(b) shows the distribution of the absolute error of a VarPro simulation in the spatial–temporal plane. In
his simulation the neural network architecture is given by [2, 200, 1], and a uniform set of Q = 21× 21 training

collocation points is used on each time block. The maximum error level is around 10−8 on the overall domain,
ndicating that the VarPro result is quite accurate.

Fig. 20 illustrates the convergence behavior of the VarPro method for solving the nonlinear Klein–Gordon
quation. Here we employ the neural network [2, M, 1], and Q = Q1 × Q1 uniform collocation points in each
ime block. In the first group of tests we fix M = 200 and vary Q1 systematically. In the second group of tests

we fix Q1 = 31 and vary M systematically. The maximum and rms errors of the VarPro solution in the overall

omain are computed for each case. Fig. 20(a) shows these errors as a function of Q1 for the first group of tests,
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Table 10
Nonlinear Klein–Gordon equation: main simulation parameters of the VarPro method.

Parameter Value Parameter Value

Domain (x, t) ∈ [0, 1]× [0, 2] Time blocks 4
Neural network [2, M, 1] Training points Q Q1 × Q1
M Varied Q1 Varied
Activation function Gaussian Testing points Q2 × Q2
Random seed 22 Q2 101
Initial guess θ0 Random values on [−Rm , Rm ] Rm 1.0
δ (Algorithm 3) Un-used p (Algorithm 3) Un-used
max-subiterations 0 (no subiteration) Threshold (Algorithm 3) 1E−12
max-iterations-newton 20 Tolerance-newton 1E−8

Fig. 20. Nonlinear Klein–Gordon equation: the maximum/rms errors of the VarPro solution in the overall domain versus (a) the number of
collocation points per direction (Q1) in each time block, and (b) the number of nodes in the hidden layer (M) of the neural network. In
(a,b), neural network [2, M, 1], with Q = Q1 × Q1 training collocation points. M = 200 in (a) and is varied in (b). Q1 = 31 in (b) and is
aried in (a).

nd Fig. 20(b) shows these errors as a function of M for the second group of tests. These results indicate that the
arPro errors decrease approximately exponentially with increasing number of collocation points or with increasing
umber of nodes in the hidden layer. We also notice some irregularity in the errors of Fig. 20(a) when the number
f collocation points is small.

. Concluding remarks

In this paper we have presented a variable projection-based method together with artificial neural networks
or solving linear and nonlinear partial differential equations. The basic idea of variable projection (VarPro) is to
istinguish the linear parameters from the nonlinear parameters, and then eliminate the linear parameters to attain
reduced formulation of the problem. One can then solve the reduced problem for the nonlinear parameters first,

nd then compute the linear parameters by the linear least squares method afterwards.
Approximating linear PDEs (with linear boundary/initial conditions) by variable projection and artificial neural

etworks is conceptually straightforward. In this case, in the resultant nonlinear least squares problem the output-
ayer coefficients are the linear parameters, and the hidden-layer coefficients are the nonlinear parameters. The
utput-layer coefficients are expressed in terms of the hidden-layer coefficients by solving a linear least squares
roblem, and they are eliminated from the problem. The reduced problem involves only the hidden-layer coefficients,
nd it is solved by a nonlinear least squares method. The main issues with the VarPro implementation lie in the

omputations of the residual function and the Jacobian matrix of the reduced problem. We have discussed in some
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Table 11
Comparison of the computational cost (network training time) between VarPro and ELM for solving the advection
equation (Section 3.1.2) and the nonlinear Helmholtz equation (Section 3.2.1). The hidden-layer coefficients in
ELM are set/fixed to, and the hidden-layer coefficients in VarPro are initialized to, uniform random values from
[−Rm , Rm ] with Rm = 1.0. The cases in this table are selected from and correspond to those cases in Tables 4
and 6. Please refer to the corresponding cases in Tables 4 and 6 for the VarPro/ELM errors.

Test problem Neural Collocation VarPro training ELM training
network Points time (s) time (s)

Advection equation [2, 100, 1] 10 × 10 7.4 0.29
15 × 15 15.4 0.31
20 × 20 78.2 0.32

Nonlinear Helmholtz [2, 200, 1] 10 × 10 1.75 2.0
equation 15 × 15 36.5 2.8

20 × 20 78.7 4.0

detail how to implement these computations with neural networks in Algorithms 1 and 2 and in Remarks 2.1 and
2.2.

For approximating nonlinear PDEs, or linear PDEs with nonlinear boundary/initial conditions, the variable
rojection approach cannot be directly used. This is because the resultant nonlinear least squares problem is not
eparable. In this case, all the weight/bias coefficients in the neural network become nonlinear parameters, even if
he output layer contains no activation function.

To overcome this issue, we have presented a Newton/variable projection (Newton-VarPro) method for approxi-
ating nonlinear PDEs, or linear PDEs with nonlinear boundary/initial conditions. We first linearize the problem,
ith a particular linearized form for the Newton iteration. The linearization is formulated in terms of the updated

pproximation field, not the increment field. This is critical to the accuracy of the current Newton-VarPro method.
he linearized system is then solved by the variable projection approach together with artificial neural networks.
herefore, for nonlinear PDEs our method involves an overall Newton iteration, and within each iteration the
ariable projection method is used to solve the linearized problem to attain the updated approximation field.
pon convergence of the Newton iteration, the solution to the nonlinear problem is represented by the weight/bias

oefficients of the neural network.
We have presented ample numerical examples to test the accuracy of the variable projection method. It is observed

hat, for smooth field solutions, the errors of the VarPro method decrease exponentially or nearly exponentially
ith increasing number of collocation points or with increasing number of output-layer coefficients. The test results
nequivocally show that the VarPro method is highly accurate. Even with a fairly small number of nodes in the
eural network, or with a fairly small set of collocation points, the VarPro method can produce very accurate
imulation results.

In particular, we have compared the current VarPro method with the extreme learning machine (ELM)
ethod [25], which is arguably the most accurate neural network-based PDE solver so far [21,25]. Under the

ame simulation conditions and settings, VarPro generally leads to significantly more accurate results than ELM,
specially in cases with a fairly small or a moderate number of nodes in the neural network.

While the VarPro method is significantly superior to ELM in terms of the accuracy, its computational cost
i.e. training time of the neural network) is generally much higher than that of the ELM method. This is because
n VarPro one needs to solve the reduced problem for the hidden-layer coefficients by a nonlinear least squares
omputation, apart from the computation for the linear output-layer coefficients. In contrast, in ELM only the linear
utput-layer coefficients are computed, while the hidden-layer coefficients are randomly assigned and fixed. Table 11
llustrates this point with a list of the network training time for VarPro and for ELM with selected cases in solving
he advection equation (Section 3.1.2) and the nonlinear Helmholtz equation (Section 3.2.1).

The variable projection method is a powerful technique for training artificial neural networks, providing a
onsiderably superior accuracy for scientific machine learning, as demonstrated by the numerical examples in the
urrent paper. The Newton-VarPro method developed herein provides an effective tool and enables the use of the
ariable projection strategy to tackle nonlinear problems in scientific machine learning. The application potential of
his technique is enormous. This and related aspects, as well as further studies and improvements, of this technique
ill be pursued in a future endeavor.
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ppendix A. Effect of seeds in random number generator on VarPro errors

As stated in the main text, we have employed fixed seed values in the random number generator (RNG) for
hose numerical experiments in Section 3, so that the reported results therein can be exactly reproducible. In this
ppendix we set the seed of the RNG to random values, and study the effect of the random seeds on the VarPro

rrors for solving the Poisson equation (Section 3.1.1).
In Section 3.1.1 we have employed a fixed seed value 1 in the RNGs of the Tensorflow library and the numpy

ackage. In the following tests, we employ the same seed value for the RNGs in Tensorflow and numpy, and this
eed is set to be a random integer generated on the interval [0, 10000) by a uniform distribution. The simulation

parameters for VarPro and the problem configuration here follow those of Section 3.1.1.
Fig. 21 illustrates the l∞ (i.e. maximum) errors and the l2 (i.e. rms) errors of the VarPro solution from 10

random runs, and their statistics, with respect to increasing collocation points in the domain, for the cosine activation
function. The numerical experiments, simulation parameters and the configuration here mirror those in Fig. 3(a).
Fig. 21(a) shows the l∞ errors as a function of the collocation points in each direction from the 10 random runs, with
he corresponding random seeds given in the legend. Fig. 21(b) shows the corresponding l2 errors from these random

runs. Fig. 21(c) shows the statistics of the l∞ error computed from the 10 random runs as shown in Fig. 21(a).
or each given number of collocation points, the maximum, the minimum, the median, and the mean (average) of

he l∞ errors among the 10 random runs are computed and depicted in Fig. 21(c). Fig. 21(d) shows the statistical
esults for the l2 error corresponding to those of Fig. 21(b). We can make the following observations from these
esults:

• The specific VarPro error values resulting from different random seeds are not the same. But their error levels
are approximately comparable. Their values are distributed in a band around some mean or median of the
errors.
• The error characteristics exhibited by different random runs are similar. The exponential convergence behavior

of the VarPro errors (before saturation) is quite evident.

Fig. 22 shows the l∞ (maximum) errors and the l2 (rms) errors from 10 random runs, together with their statistics,
s a function of the number of collocation points obtained with the Gaussian activation function in the neural
etwork. The settings and the simulation parameters here follow those of Fig. 3(b). The results of this figure are in
arallel to those of Fig. 21, but for the Gaussian activation function. Note that Fig. 21 is for the cosine activation
unction. The observations on the VarPro errors from this figure are similar to those from Fig. 21.

Fig. 23 illustrates the l∞ (maximum) errors and the l2 (rms) errors of the VarPro solution from 10 random runs,
and their statistics, as a function of the number of nodes in the hidden layer, for the cosine activation function in
the neural network. The tests, the problem settings and the simulation parameters here follow those of Fig. 4(a).
The network architecture is given by [2, M, 1], with M varied systematically. Fig. 23(a) and (b) show the l∞ and
2 errors as a function of M from these 10 random runs, respectively, with the random seeds given in the legends.

Fig. 23(c) and (d) show the statistical results of the l∞ error and the l2 error among these random runs, respectively.
The error characteristics exhibited from different random runs are similar. One can observe that the VarPro errors
generally decrease exponentially (before saturation) with increasing M in the neural network.

Fig. 24 shows the l∞ and l2 errors, and their statistics, from 10 random runs obtained with the Gaussian activation
function in the neural network. The settings and the simulation parameters here follow those of Fig. 4(b). The results
of this figure for the Gaussian activation function are in parallel to those of Fig. 23 for the cosine activation function.

The exponential convergence of the VarPro errors (before saturation) is evident.
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Fig. 21. Appendix A (Poisson equation): The l∞ (i.e. maximum) error (a) and the l2 (i.e. rms) error (b) of the VarPro solution versus
the number of collocation points per direction, obtained with 10 random seeds in the random number generator (RNG). Here the seed for
RNG is set to a random integer generated on [0, 10000), with their specific values given in the legends. The statistics (maximum, minimum,
median, and mean) of the 10 random runs for the l∞ error (c) and for the l2 error (d) versus the number of collocation points per direction.
Network architecture [2, 200, 1], cosine activation function. The settings and simulation parameters here follow those of Fig. 3(a).

Appendix B. Comparison between VarPro and PINN (physics-informed neural network)

This Appendix provides a comparison of the performance between the current VarPro method and the physics-
informed neural network (PINN) method from [4] with the Poisson equation (Section 3.1.1) and the nonlinear
Helmholtz equation (Section 3.2.1). We refer the reader to [21] for a comparison between the ELM method and
the PINN method for several PDEs.

The PINN implementation here follows those in [4,9,21], and is based on the Tensorflow and Keras libraries.
In the PINN loss function, we employ a penalty coefficient γbc ∈ (0, 1) in front of the boundary loss term and a
penalty coefficient (1 − γbc) in front of the PDE loss term. The coefficient γbc has been varied systematically for
solving the Poisson equation in Section 3.1.1 and the nonlinear Helmholtz equation in Section 3.2.1. We observe
that γbc ≈ 0.99 provides the best results for PINN. The results reported below correspond to γbc = 0.99 in the
PINN simulations. For a rectangular domain Ω in 2D, we employ a uniform set of Q = Q1× Q1 grid points (with
Q1 points in each direction, on each side of the boundary) as the collocation points in PINN, similar to that in the
VarPro simulations. We employ the Adam optimizer [77] for minimizing the loss function in PINN. The learning

rate coefficient (i.e. the parameter α in [77]) in Adam is decreased linearly from an initial value to an end value
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Fig. 22. Appendix A (Poisson equation): The l∞ (i.e. maximum) error (a) and the l2 (i.e. rms) error (b) of the VarPro solution versus
the number of collocation points per direction, obtained from 10 random runs, with the random seeds given in the legends. The statistics
(maximum, minimum, median, and mean) of the 10 random runs for the l∞ error (c) and for the l2 error (d) versus the number of collocation
points per direction. Network architecture [2, 200, 1], Gaussian activation function. The settings and simulation parameters here follow those
of Fig. 3(b).

within a prescribed number of steps (decay steps), and afterwards it is fixed at the end value. We have tried a variety
of parameter values in the learning rate schedule, and settled down on the following values for the Poisson equation
and the nonlinear Helmholtz equation: initial/end learning rate coefficients (0.01, 0.0001) with decay steps 10,000.
For each neural network architecture, we have tried a number of (typically 10) PINN runs with different random
initializations. Reported below are the best results among those runs we have obtained with PINN. Upon completion
of network training by the Adam optimizer, the PINN network is evaluated on another finer set of Qeval = Q2×Q2

(with Q2 = 101) uniform grid points on the domain to obtain the PINN solution, which is then compared with the
exact solution on the same set of points to compute the maximum/rms errors. This is similar to the procedure as
discussed in Sections 3.1.1 and 3.2.1 for the VarPro method.

Table 12 compares the maximum/rms errors and the network training time between the VarPro method and the
PINN method for solving the boundary value problem (24) with the Poisson equation of Section 3.1.1. We have
considered two network architectures given by [2, 100, 1] and [2, 200, 1], respectively, with the “cos” activation
function for all hidden nodes and a sequence of uniform collocation points ranging from Q = 5×5 to Q = 30×30

for network training. The error data for VarPro here correspond to those in Table 2 with Rm = 1. The PINN data are
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Fig. 23. Appendix A (Poisson equation): The l∞ (i.e. maximum) error (a) and the l2 (i.e. rms) error (b) of the VarPro solution versus
the number of nodes in the hidden layer (M), obtained from 10 random runs, with the random seeds given in the legends. The statistics
(maximum, minimum, median, and mean) of the 10 random runs for the l∞ error (c) and for the l2 error (d) versus M . Network architecture
[2, M, 1] (M varied), cosine activation function, Q = 21×21 uniform collocation points. The settings and simulation parameters here follow
those of Fig. 4(a).

obtained with the following parameters. The PINN network is trained for 50,000 epochs with the Adam optimizer.
As discussed above, the learning rate coefficient decreases linearly from 0.01 to 10−4 in the first 10,000 epochs,
and is then fixed at 10−4 for the remaining 40,000 epochs.

The data in Table 12 indicate that the VarPro method is considerably more accurate than PINN, with the VarPro
errors typically several orders of magnitude smaller (e.g. 10−8 versus 10−3), except for the smallest set of collocation
points. The network training time of VarPro is also significantly smaller than that of PINN. For VarPro we observe
some irregularity in the variation of the network training time with respect to the increase of the collocation points,
for example, around 98 s for the 25 × 25 collocation points versus around 15 s for the 30 × 30 collocation points
with the network [2, 200, 1]. This irregularity is caused by the irregularity in the triggering of the subiteration
procedure for the initial guess perturbation in Algorithm 3 and the difference in the actual number of subiterations
performed. The subiteration procedure is triggered in some cases, but not in others. The network training time will
increase notably once it is triggered.

Table 13 provides a comparison of the maximum/rms errors and the network training time of the VarPro and

the PINN (Adam optimizer) methods for solving the boundary value problem (28) with the nonlinear Helmholtz
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Fig. 24. Appendix A (Poisson equation): The l∞ (i.e. maximum) error (a) and the l2 (i.e. rms) error (b) of the VarPro solution versus
the number of nodes in the hidden layer (M), obtained from 10 random runs, with the random seeds given in the legends. The statistics
(maximum, minimum, median, and mean) of the 10 random runs for the l∞ error (c) and for the l2 error (d) versus M . Network architecture
[2, M, 1] (M varied), Gaussian activation function, Q = 21× 21 uniform collocation points. The settings and parameters here follow those
of Fig. 4(b).

equation in Section 3.2.1. The network architecture is given by [2, 200, 1] with the sine activation function, and
the set of uniform collocation points is varied. The error data for VarPro here correspond to those in Table 6 with
Rm = 1. In PINN the neural network is trained for 100,000 epochs by the Adam optimizer, with the learning
rate coefficient decreasing linearly from 0.01 to 10−4 during the first 10,000 epochs and then fixed at 10−4 for
the remaining iterations. One can again observe that the VarPro errors are in general considerably smaller than the
PINN errors (e.g. 10−10 versus 10−2), and that the VarPro training time is also much smaller than the PINN training
time.

Appendix C. Comparison between VarPro and finite element method

In this appendix we provide a comparison between the VarPro method herein and the classical finite element
method (FEM, second-order, linear elements) for solving the Poisson equation (Section 3.1.1) and the nonlinear
Helmholtz equation (Section 3.2.1).

The FEM implementation employed here follows those in [21,25]. It is based on Python and the FEniCS library

(https://fenicsproject.org/). In FEM simulations we employ a uniform N × N rectangular mesh, which consists of
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Table 12
Appendix B (Poisson equation): comparison of the maximum/rms errors and the network training time (in seconds) obtained using VarPro
and PINN (with Adam optimizer). “cos” activation function. The VarPro error data here correspond to those in Table 2 with Rm = 1. In
PINN, the neural network is trained for 50,000 epochs; the learning rate coefficient decreases linearly from 0.01 to 10−4 in the first 10,000
epochs, and then is fixed at 10−4 afterwards. Reported here is the best result among several PINN runs with different random initializations.

Neural Collocation VarPro PINN

network points max-error rms-error Time (s) max-error rms-error Time (s)

[2, 100, 1] 5 × 5 6.470E+1 2.422E+1 1.85E+0 7.65E−1 2.13E−1 3.14E+1
10 × 10 8.388E−3 3.941E−3 5.13E+0 1.11E−2 2.03E−3 1.12E+2
15 × 15 6.018E−7 8.241E−8 2.17E+1 1.83E−2 2.57E−3 1.43E+2
20 × 20 3.693E−7 4.216E−8 2.88E+1 1.80E−2 2.57E−3 1.81E+2
25 × 25 5.845E−7 8.054E−8 4.64E+1 2.19E−2 2.95E−3 2.46E+2
30 × 30 2.688E−7 2.867E−8 4.89E+1 1.67E−2 3.25E−3 3.31E+2

[2, 200, 1] 5 × 5 5.948E+0 2.102E+0 1.92E+0 1.27E+0 4.41E−1 3.31E+1
10 × 10 2.127E−2 4.398E−3 2.37E+0 2.22E−2 2.86E−3 1.40E+2
15 × 15 6.082E−8 1.983E−8 5.20E+0 2.32E−2 3.15E−3 1.91E+2
20 × 20 1.459E−9 1.203E−10 2.15E+1 1.13E−2 1.88E−3 2.99E+2
25 × 25 1.782E−7 7.978E−8 9.80E+1 2.16E−2 3.23E−3 4.15E+2
30 × 30 3.000E−9 3.420E−10 1.51E+1 1.32E−2 2.19E−3 5.88E+2

Table 13
Appendix B (Nonlinear Helmholtz equation): comparison of the maximum/rms errors and the network training
time (in seconds) of VarPro and PINN (with Adam optimizer). Network architecture [2, 200, 1], “sin” activation
function. The VarPro error data here correspond to those in Table 6 with Rm = 1. In PINN, the neural network is
trained for 100,000 epochs; the learning rate coefficient decreases linearly from 0.01 to 10−4 in the first 10,000
epochs, and then is fixed at 10−4 afterwards. Reported here is the best result among several PINN runs with
different random initializations.

Collocation VarPro PINN

points max-error rms-error Time (s) max-error rms-error Time (s)

5 × 5 1.297E+2 4.536E+1 3.49E+0 1.58E+0 5.92E−1 2.01E+2
10 × 10 1.855E−2 3.955E−3 1.75E+0 9.74E−2 1.59E−2 2.58E+2
15 × 15 2.868E−8 3.252E−9 3.65E+1 7.98E−2 1.73E−2 3.57E+2
20 × 20 3.679E−10 3.203E−11 7.87E+1 7.51E−2 1.59E−2 5.58E+2
25 × 25 6.014E−8 3.281E−9 4.89E+1 7.19E−2 1.34E−2 7.93E+2
30 × 30 5.709E−10 4.576E−11 1.78E+2 7.32E−2 1.22E−2 1.11E+3

Table 14
Appendix C (Poisson equation): main simulation parameters for VarPro and FEM.

Parameter Value Parameter Value

FEM Mesh N × N Elements Linear
N 10, 12, 14, . . . , 30 Degrees of freedom N 2

VarPro Neural network [2, M, 1] M N 2/4
Activation function Gaussian Random seed 1
Training points Q1 × Q1 Q1 N/2+ 1
Testing points Q2 × Q2 Q2 101
max-subiterations 1 Threshold (Algorithm 3) 1E−12
δ (Algorithm 3) 1.0 p (Algorithm 3) 0.5
Initial guess θ0 Random values on [−1, 1] Degrees of freedom 4M

2N 2 linear triangular elements (each rectangle divided along its diagonal into two triangles) with a total degrees of

freedom N 2. The number of elements in each direction, N , is varied in the tests.
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n
f
F

Table 15
Appendix C (Poisson equation): comparison of the maximum/rms errors of VarPro and FEM, and their
computational cost (VarPro network training time, FEM computation time). See Table 14 for the VarPro/FEM
simulation parameter values.

Degrees of VarPro FEM

freedom max-error rms-error Time (s) max-error rms-error Time (s)

100 3.73E−1 8.00E−2 3.3E+0 4.45E−1 1.72E−1 6.9E−3
144 1.93E−1 5.85E−2 2.9E+0 3.00E−1 1.22E−1 7.6E−3
196 1.14E−1 1.61E−2 3.1E+0 2.28E−1 9.10E−2 7.6E−3
256 2.34E−2 4.30E−3 3.7E+0 1.75E−1 7.05E−2 7.5E−3
324 2.79E−3 9.47E−4 4.1E+0 1.38E−1 5.62E−2 8.6E−3
400 3.59E−4 9.12E−5 5.2E+0 1.13E−1 4.59E−2 9.4E−3
484 5.20E−5 1.74E−5 5.9E+0 9.26E−2 3.81E−2 1.1E−2
576 1.18E−5 3.09E−6 8.4E+0 7.86E−2 3.22E−2 1.1E−2
676 6.60E−6 2.88E−6 4.0E+0 6.69E−2 2.75E−2 1.2E−2
784 1.82E−7 4.88E−8 4.2E+0 5.76E−2 2.38E−2 1.4E−2
900 1.80E−6 1.31E−7 6.7E+0 5.04E−2 2.08E−2 1.5E−2

Table 16
Appendix C (Nonlinear Helmholtz equation): main simulation parameters for VarPro and FEM.

Parameter Value Parameter Value

FEM Mesh N × N Elements Linear
N 10, 12, 14, . . . , 30 Degrees of freedom N 2

VarPro Neural network [2, M, 1] M N 2/4
Activation function Gaussian Random seed 1
Training points Q1 × Q1 Q1 N/2+ 2
Testing points Q2 × Q2 Q2 101
max-subiterations 0 Threshold (Algorithm 3) 1E−12
δ (Algorithm 3) Not used p (Algorithm 3) Not used
Initial guess θ0 Random values on [−1, 1] Degrees of freedom 4M
max-iterations-newton 15 Tolerance-newton 1E−12

In VarPro simulations we employ a neural network architecture [2, M, 1], with M = N 2/4. Since the total
umber of training parameters in the neural network is 4M , this setting results in the same total number of degrees of
reedom in the VarPro and FEM simulations. The Gaussian activation function is employed for all the hidden nodes.
or network training we employ a uniform set of Q = Q1×Q1 collocation points, where we set Q1 = N/2+1 for

the linear problem and Q1 = N/2+2 for the nonlinear problem. We vary the degrees of freedom in the VarPro/FEM
simulations by varying N systematically between 10 and 30. The maximum/rms errors of the VarPro/FEM results,
as well as the VarPro network training time and the FEM computation time, are recorded for comparisons.

In Tables 14 and 15 we summarize the VarPro/FEM results for solving the boundary value problem (24) with the
Poisson equation. Table 14 lists the parameter values in the FEM and VarPro simulations for this problem. Table 15
is a comparison of the maximum/rms errors between VarPro and FEM, and their computational cost (VarPro network
training time, FEM computation time), versus the number of degrees of freedom in the system. It can be observed
that, under the same degrees of freedom, the VarPro method is considerably more accurate than the FEM, and its
computational cost is also much higher than the latter.

Tables 16 and 17 provide a summary of the VarPro/FEM results for solving the boundary value problem (28)
with the nonlinear Helmholtz equation. Table 16 lists the parameter values in the VarPro and FEM simulations
for this problem. Table 17 is a comparison of the maximum/rms errors between VarPro and FEM, as well as their
computational cost (VarPro network training time, FEM computation time), for the nonlinear Helmholtz equation.
We arrive at the same conclusion as with the Poisson equation. The VarPro method is much more accurate than
FEM, but its computational cost is also much higher than that of FEM, under the same degrees of freedom in the
system.
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Table 17
Appendix C (Nonlinear Helmholtz equation): comparison of the maximum/rms errors of VarPro and FEM, and
their computational cost (VarPro network training time, FEM computation time). See Table 16 for the VarPro/FEM
simulation parameter values.

Degrees of VarPro FEM

freedom max-error rms-error Time (s) max-error rms-error Time (s)

100 1.61E−1 3.39E−2 5.5E+0 1.76E−1 7.41E−2 2.0E−2
144 1.07E−1 1.46E−2 6.5E+0 1.25E−1 5.19E−2 2.4E−2
196 2.06E−2 5.49E−3 8.7E+0 9.10E−2 3.85E−2 2.8E−2
256 3.73E−3 9.75E−4 1.32E+1 6.78E−2 2.97E−2 2.9E−2
324 7.31E−4 1.44E−4 1.53E+1 5.56E−2 2.36E−2 3.4E−2
400 1.26E−4 2.42E−5 2.08E+1 4.52E−2 1.92E−2 4.0E−2
484 1.40E−4 2.88E−5 1.92E+1 3.70E−2 1.60E−2 4.5E−2
576 3.84E−5 4.38E−6 2.22E+1 3.14E−2 1.35E−2 5.2E−2
676 4.82E−6 9.37E−7 2.59E+1 2.69E−2 1.15E−2 5.8E−2
784 7.56E−7 1.08E−7 2.05E+1 2.30E−2 9.95E−3 6.8E−2
900 2.25E−6 3.76E−7 2.20E+1 2.00E−2 8.69E−3 7.8E−2
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