MA26200: EXAM II

NAME: _____

- **1.** Which of the following sets are vector space?
 - W_1 = polynomials $P(t) = at^3 + bt^2 + ct + d$ satisfying a b + c = d with usual addition and scalar multiplication.
 - $-W_2$ = degree ≤ 5 polynomials P(t) satisfying P(2) = 0 with usual addition and scalar multiplication.

-
$$W_3$$
 = vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ in \mathbb{R}^3 satisfying $x + y = 0$ with usual addition and scalar multiplication.

- W_4 = all solutions of the linear system Ax = 0 for A an $m \times n$ matrix with usual addition and scalar multiplication.
- $-W_5 = 3 \times 3$ upper triangular matrices with usual addition and scalar multiplication.
- A. W_1, W_2, W_3, W_3
- B. W_1, W_2, W_4, W_5
- C. W_2, W_3, W_4, W_5
- D. W_1, W_3, W_4, W_5
- E. W_1, W_2, W_3, W_4, W_5

- **2.** Consider the the vectors $v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 3 \\ 1 \\ 7 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 5 \\ -3 \\ 9 \\ 1 \end{bmatrix}$, and $v_4 = \begin{bmatrix} -2 \\ 4 \\ 2 \\ 8 \end{bmatrix}$. The dimension of the space span $\{v_1, v_2, v_3, v_4\}$ is then equal to
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

3. The subset $S = \{A \in M_3(\mathbb{R}^3) : A^T = -A\}$ of the space of 3×3 matrices with real elements is a vector space such that

A. dim
$$S=2$$
 and a basis for S is $\left\{ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \right\}$
B. dim $S=2$ and a basis for S is $\left\{ \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \right\}$
C. dim $S=3$ and a basis for S is $\left\{ \begin{bmatrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 & 0 \\ 2 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix} \right\}$
D. dim $S=3$ and a basis for S is $\left\{ \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{bmatrix} \right\}$

E. None of the above.

- 4. Write down the general solution of the following homogeneous linear equations:
 - (a) 2y'' + 3y' 2y = 0
 - (b) y'' + 4y = 0
 - (c) y'' + 2y' + 4y = 0

5. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be defined by T(x) = Ax where $A = \begin{bmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 2 & -1 & 3 & 8 \end{bmatrix}$. Then a basis for $\operatorname{Ker}(T)$ is given by the vectors.

 $\operatorname{Ker}(T)$ is given by the vectors

A.
$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\-3\\8 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1\\-1\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\2\\5 \end{bmatrix}, \begin{bmatrix} 2\\1\\-3\\8 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1\\0\\2\\5 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\2\\5 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\2\\0\\1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 2\\1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 5\\2\\0\\1\\1 \end{bmatrix}$$

E.
$$\begin{bmatrix} -2\\-1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -5\\-2\\0\\1\\1 \end{bmatrix}$$

6. Which of the following matrices are non-defective

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}?$$

- A. A, B
- В. А, С
- C. B only
- D. C only
- E. A only

7. To find a particular solution of the inhomogeneous differential equation

$$(D-1)^2(D-2)(D^2+1)y = e^x + \cos x - 2\sin x$$

one can use the following solution

- (a) $A_0 + A_1 \cos x + A_2 \sin x$
- (b) $A_0 e^x + x(A_1 \cos x + A_2 \sin x)$
- (c) $A_0 x e^x + x (A_1 \cos x + A_2 \sin x)$
- (d) $A_0 x^2 e^x + x^2 (A_1 \cos x + A_2 \sin x)$
- (e) $A_0 x^2 e^x + x(A_1 \cos x + A_2 \sin x)$

- 8. The Wronskian of the functions $\{x, \sin x \cos x\}$ is equal to
 - A. $x(\cos x)(\sin x)$
 - B. $x(\cos^2 x \sin^2 x)$
 - C. 0
 - D. *x*
 - E. -x

- **9.** Let S be the subspace of \mathbb{R}^3 consisting of all vectors x of the form x = (r + s, r s, 2r + 2s), r, s real. A basis for S is given by
 - A. (1, 1, .2), (1, -1, 2)
 - B. (2,0,4), (2,0,2)
 - C. (1, 1, 2), (-1, 1, 2)
 - D. (2, 1, 1), (2, -1, 1)
 - E. (1, 1, 2), (2, -1, 1)

- 10. Determine all values of k such that the vectors (1, -1, 0), (1, 2, 2), (0, 3, k) are a basis for \mathbb{R}^3 .
 - A. k = 1
 - B. k = 2
 - C. $k \neq 2$
 - D. $k \neq 1$
 - E. $k \neq 3$

