$\qquad$

1. Which of the following sets are vector space?
$-W_{1}=$ polynomials $P(t)=a t^{3}+b t^{2}+c t+d$ satisfying $a-b+c=d$ with usual addition and scalar multiplication.

- $W_{2}=$ degree $\leq 5$ polynomials $P(t)$ satisfying $P(2)=0$ with usual addition and scalar multiplication.
$-W_{3}=$ vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ in $\mathbb{R}^{3}$ satisfying $x+y=0$ with usual addition and scalar multiplication.
- $W_{4}=$ all solutions of the linear system $A x=0$ for $A$ an $m \times n$ matrix with usual addition and scalar multiplication.
- $W_{5}=3 \times 3$ upper triangular matrices with usual addition and scalar multiplication.
A. $W_{1}, W_{2}, W_{3}, W_{3}$
B. $W_{1}, W_{2}, W_{4}, W_{5}$
C. $W_{2}, W_{3}, W_{4}, W_{5}$
D. $W_{1}, W_{3}, W_{4}, W_{5}$
E. $W_{1}, W_{2}, W_{3}, W_{4}, W_{5}$

2. Consider the the vectors $v_{1}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}3 \\ 1 \\ 7 \\ 3\end{array}\right], v_{3}=\left[\begin{array}{c}5 \\ -3 \\ 9 \\ 1\end{array}\right]$, and $v_{4}=\left[\begin{array}{c}-2 \\ 4 \\ 2 \\ 8\end{array}\right]$. The dimension
of the space $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is then equal to
A. 1
B. 2
C. 3
D. 4
E. 5
3. The subset $S=\left\{A \in M_{3}\left(\mathbb{R}^{3}\right): A^{T}=-A\right\}$ of the space of $3 \times 3$ matrices with real elements is a vector space such that
A. $\operatorname{dim} S=2$ and a basis for $S$ is $\left\{\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right]\right\}$
B. $\operatorname{dim} S=2$ and a basis for $S$ is $\left\{\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]\right\}$
C. $\operatorname{dim} S=3$ and a basis for $S$ is $\left\{\left[\begin{array}{ccc}0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & -1 \\ 1 & 1 & 0\end{array}\right],\left[\begin{array}{ccc}0 & -2 & 0 \\ 2 & 0 & 2 \\ 0 & -2 & 0\end{array}\right]\right\}$
D. $\operatorname{dim} S=3$ and a basis for $S$ is $\left\{\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0\end{array}\right]\right\}$
E. None of the above.
4. Write down the general solution of the following homogeneous linear equations:
(a) $2 y^{\prime \prime}+3 y^{\prime}-2 y=0$
(b) $y^{\prime \prime}+4 y=0$
(c) $y^{\prime \prime}+2 y^{\prime}+4 y=0$
5. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be defined by $T(x)=A x$ where $A=\left[\begin{array}{cccc}1 & -1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 2 & -1 & 3 & 8\end{array}\right]$. Then a basis for $\operatorname{Ker}(T)$ is given by the vectors
A. $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
B. $\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -3 \\ 8\end{array}\right]$
C. $\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right]$
D. $\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}5 \\ 2 \\ 0 \\ 1\end{array}\right]$
E. $\left[\begin{array}{c}-2 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-5 \\ -2 \\ 0 \\ 1\end{array}\right]$
6. Which of the following matrices are non-defective

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] ?
$$

A. $\mathrm{A}, \mathrm{B}$
B. $\mathrm{A}, \mathrm{C}$
C. B only
D. C only
E. A only
7. To find a particular solution of the inhomogeneous differential equation

$$
(D-1)^{2}(D-2)\left(D^{2}+1\right) y=e^{x}+\cos x-2 \sin x
$$

one can use the following solution
(a) $A_{0}+A_{1} \cos x+A_{2} \sin x$
(b) $A_{0} e^{x}+x\left(A_{1} \cos x+A_{2} \sin x\right)$
(c) $A_{0} x e^{x}+x\left(A_{1} \cos x+A_{2} \sin x\right)$
(d) $A_{0} x^{2} e^{x}+x^{2}\left(A_{1} \cos x+A_{2} \sin x\right)$
(e) $A_{0} x^{2} e^{x}+x\left(A_{1} \cos x+A_{2} \sin x\right)$
8. The Wronskian of the functions $\{x, \sin x \cos x\}$ is equal to
A. $x(\cos x)(\sin x)$
B. $x\left(\cos ^{2} x-\sin ^{2} x\right)$
C. 0
D. $x$
E. $-x$
9. Let $S$ be the subspace of $\mathbb{R}^{3}$ consisting of all vectors $x$ of the form $x=(r+s, r-s, 2 r+2 s)$, $r, s$ real. A basis for $S$ is given by
A. $(1,1,, 2),(1,-1,2)$
B. $(2,0,4),(2,0,2)$
C. $(1,1,2),(-1,1,2)$
D. $(2,1,1),(2,-1,1)$
E. $(1,1,2),(2,-1,1)$
10. Determine all values of $k$ such that the vectors $(1,-1,0),(1,2,2),(0,3, k)$ are a basis for $\mathbb{R}^{3}$.
A. $k=1$
B. $k=2$
C. $k \neq 2$
D. $k \neq 1$
E. $k \neq 3$
11. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$. What is $\left.T\left(\begin{array}{l}1 \\ 2\end{array}\right]\right)$ ?
A. $\left[\begin{array}{l}4 \\ 6 \\ 3\end{array}\right]$
B. $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
C. $\left[\begin{array}{l}2 \\ 2 \\ 8\end{array}\right]$
D. $\left[\begin{array}{l}1 \\ 5 \\ 4\end{array}\right]$
E. $\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$

