MA26200: EXAM II

1. The eigenvalues of the matrix $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 3\end{array}\right]$ are
A. 2,3
B. 3,4
C. $-2,-3$
D. $-1,6$
E. 1,4
A. 2,3

NAME: \qquad
2. Find all the eigenvalues and eigenspaces of $A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2\end{array}\right]$.
3. The subspace of \mathbb{R}^{3} spanned by $\{(1,2,3),(1,3,5),(1,5, k)\}$ has dimension 3 if
A. $k \neq 1$
B. $k \neq 9$
C. $k=0$
D. $k=1$
E. $k=9$
4. The subspace of \mathbb{P}_{3}, the space of all polynomials of degree no more than 3 , spanned by $\{1, x-$ $\left.1,(x-1)^{2},(x-1)^{3}\right\}$ has dimension
A. 0
B. 1
C. 2
D. 3
E. 4
5. Find a basis for the rowspace (A), where

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
2 & 4 & 1 & -2 \\
3 & 6 & 3 & -7
\end{array}\right]
$$

6. $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{5}$ is given by $x \mapsto A x$, where

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 1 & 3 & 1 & 2 \\
2 & 5 & 5 & 6 & 4 & 5 \\
3 & 7 & 6 & 11 & 6 & 9 \\
1 & 5 & 10 & 8 & 9 & 9 \\
2 & 6 & 8 & 11 & 9 & 12
\end{array}\right]
$$

C_{i} denotes the i-th column of A. Then a basis of $\operatorname{Rng}(T)$ consists of
A. $\left\{C_{1}, C_{2}, C_{4}\right\}$
B. $\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$
C. $\left\{C_{1}, C_{2}, C_{3}\right\}$
D. $\left\{C_{4}, C_{5}\right\}$
E. $\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\}$
7. $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ is given by $x \mapsto A x$, where

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 3 & 1 & 5 \\
2 & 3 & 8 & 4 & 13 \\
1 & 3 & 7 & 6 & 13 \\
3 & 5 & 13 & 9 & 25 \\
2 & 3 & 8 & 7 & 19
\end{array}\right]
$$

Find a basis for $\operatorname{Ker}(T)$.
8. Find the general solution to the differential equation

$$
y^{\prime \prime}+y=e^{2 x} \sin x-x
$$

9. Suppose that A is an $n \times n$ square matrix. Which of the following statements must be equivalent to the fact rowspace $(A)=\mathbb{R}^{n}$
a. A is non-defective.
b. A is invertible.
c. $A x=b$ is consistent for any b in \mathbb{R}^{n}.
d. $A x=0$ is consistent.
e. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear transformation defined by $x \mapsto A x$. Then $\operatorname{Rng}(T)=\mathbb{R}^{n}$.
A. Only b, c and e.
B. Only a, b, c and e.
C. Only a, b and c.
D. None of the above statements.
E. All of the above statements.
10. An 4×4 matrix A has eigenvalues $1,-1,2,4$. Which of the following must be true?
a. A is invertible.
b. A is non-defective.
c. A has 4 linearly independent eigenvectors.
d. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation defined by $x \mapsto A x$. Then $\operatorname{Ker}(T)=\{0\}$.
A. Only b, c and d.
B. Only b.
C. Only c.
D. None of the above statements.
E. All of the above statements.
11. Find the general solution to the differential equation

$$
\left(D^{2}+4 D+5\right)^{2}(D-1)^{3}(D+2) y=0 .
$$

