MA26200: EXAM II

NAME: _____

1. The eigenvalues of the matrix
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 3 \end{bmatrix}$$
 are

- A. 2, 3
- B. 3, 4
- C. -2, -3
- D. -1, 6
- E. 1, 4

2. Find all the eigenvalues and eigenspaces of $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$.

- **3.** The subspace of \mathbb{R}^3 spanned by $\{(1,2,3),(1,3,5),(1,5,k)\}$ has dimension 3 if
 - A. $k \neq 1$
 - B. $k \neq 9$
 - C. k = 0
 - D. k = 1
 - E. k = 9

- 4. The subspace of \mathbb{P}_3 , the space of all polynomials of degree no more than 3, spanned by $\{1, x 1, (x 1)^2, (x 1)^3\}$ has dimension
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

5. Find a basis for the rowspace(A), where

$$A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{bmatrix}.$$

6. $T: \mathbb{R}^6 \to \mathbb{R}^5$ is given by $x \mapsto Ax$, where

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 1 & 2 \\ 2 & 5 & 5 & 6 & 4 & 5 \\ 3 & 7 & 6 & 11 & 6 & 9 \\ 1 & 5 & 10 & 8 & 9 & 9 \\ 2 & 6 & 8 & 11 & 9 & 12 \end{bmatrix}.$$

 C_i denotes the i-th column of A. Then a basis of $\operatorname{Rng}(T)$ consists of

- A. $\{C_1, C_2, C_4\}$
- B. $\{C_1, C_2, C_3, C_4\}$
- C. $\{C_1, C_2, C_3\}$
- D. $\{C_4, C_5\}$
- E. $\{C_1, C_2, C_3, C_4, C_5\}$

7. $T: \mathbb{R}^5 \to \mathbb{R}^5$ is given by $x \mapsto Ax$, where

$$A = \begin{bmatrix} 1 & 1 & 3 & 1 & 5 \\ 2 & 3 & 8 & 4 & 13 \\ 1 & 3 & 7 & 6 & 13 \\ 3 & 5 & 13 & 9 & 25 \\ 2 & 3 & 8 & 7 & 19 \end{bmatrix}.$$

Find a basis for Ker(T).

8. Find the general solution to the differential equation

$$y'' + y = e^{2x} \sin x - x.$$

- 9. Suppose that A is an $n \times n$ square matrix. Which of the following statements must be equivalent to the fact rowspace $(A) = \mathbb{R}^n$
 - a. A is non-defective.
 - b. A is invertible.
 - c. Ax = b is consistent for any b in \mathbb{R}^n .
 - d. Ax = 0 is consistent.
 - e. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation defined by $x \mapsto Ax$. Then $\operatorname{Rng}(T) = \mathbb{R}^n$.
 - A. Only b, c and e.
 - $B.\quad Only\ a,\ b,\ c\ and\ e.$
 - C. Only a, b and c.
 - D. None of the above statements.
 - E. All of the above statements.

- 10. An 4×4 matrix A has eigenvalues 1, -1, 2, 4. Which of the following must be true?
 - a. A is invertible.
 - b. A is non-defective.
 - c. A has 4 linearly independent eigenvectors.
 - d. Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation defined by $x \mapsto Ax$. Then $\text{Ker}(T) = \{0\}$.
 - A. Only b, c and d.
 - B. Only b.
 - C. Only c.
 - D. None of the above statements.
 - E. All of the above statements.

11. Find the general solution to the differential equation

$$(D2 + 4D + 5)2(D - 1)3(D + 2)y = 0.$$