AN APPLICATION OF SECTIONS 1.4: COSMOLOGICAL SCIENCE

Example 2. According to one cosmological theory, there were equal amounts of the two uranium isotopes ${ }^{235} U$ and ${ }^{238} U$ at the creation of the universe in the big bang. At present there are 137.7 atoms of ${ }^{238} U$ for each atom of ${ }^{235} \mathrm{U}$. Using the half-lives 4.51×10^{9} years for ${ }^{238} \mathrm{U}$ and 7.10×10^{8} years for ${ }^{235} U$, calculate the age of the universe.

Solution. Let $N_{8}(t)$ and $N_{5}(t)$ be the numbers of ${ }^{238} U$ and ${ }^{235} U$ atoms, respectively, t billions of years after the big bang. Since both isotopes follow a radioactive decay model $x^{\prime}=k x$, whose solution was seen in class to be $x(t)=x_{0} e^{k t}$, we have

$$
N_{8}=N_{0} e^{-k t},
$$

and

$$
N_{5}=N_{0} e^{-\ell t},
$$

where N_{0} is the initial number of atoms of each isotope, which is the same for both ${ }^{238} U$ and ${ }^{235} U$ by hypothesis. Notice however that the rates of decay, k and ℓ, differ for these isotopes. Their values are given by

$$
\begin{aligned}
& N_{8}(4.51)=\frac{N_{0}}{2}=N_{0} e^{-k \times 4.51} \Rightarrow k=\frac{\ln 2}{4.51}, \\
& N_{5}(0.71)=\frac{N_{0}}{2}=N_{0} e^{-\ell \times 0.71} \Rightarrow \ell=\frac{\ln 2}{0.71} .
\end{aligned}
$$

We know that for the value of t corresponding to "now" we have $\frac{N_{8}}{N_{5}}=137.7$, hence

$$
\frac{N_{8}}{N_{5}}=\frac{N_{0} e^{-k t}}{N_{0} e^{-\ell t}}=e^{(\ell-k) t}=e^{\left(\frac{\ln 2}{0.71}-\frac{\ln 2}{4.51}\right) t}=137.7 .
$$

Solving for t gives

$$
t=\frac{\ln 137.7}{\frac{\ln 2}{0.71}-\frac{\ln 2}{4.51}} \approx 5.99
$$

According to this theory, therefore, the universe should be about 6 billion years old.

