EXAMPLES OF SECTIONS 1.8

Question 1. Find the orthogonal trajectories of $x^{2}+y^{2}-2 C x=0$.

SOLUTIONS.

1. First, we differentiate the given family of curves with respect to x on both sides. This yields

$$
\begin{equation*}
2 x+2 y \frac{d y}{d x}-2 C=0 \Longrightarrow \frac{d y}{d x}=\frac{C-x}{y} \tag{1}
\end{equation*}
$$

By $x^{2}+y^{2}-2 C x=0$, we can solve C in terms of x, y and get $C=\frac{x^{2}+y^{2}}{2 x}$. Plug this expression back into (1), we can get

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}
$$

Thus the slop of the orthogonal trajectories satisfy

$$
\frac{d y}{d x}=-\frac{2 x y}{y^{2}-x^{2}}=\frac{2 y / x}{1-(y / x)^{2}}
$$

Making the change of variables $V=y / x$, the above DE can be transformed into

$$
x V^{\prime}+V=\frac{2 V}{1-V^{2}} \Longleftrightarrow x V^{\prime}=\frac{2 V}{1-V^{2}}-V=\frac{V+V^{3}}{1-V^{2}}
$$

This is separable DE. It can be written as

$$
\int \frac{1-V^{2}}{V\left(1+V^{2}\right)} d V=\int \frac{d x}{x}+K=\ln |x|+K
$$

The LHS can be solved by partial fraction. More precisely, for two constants A, B to be determined later, the following holds

$$
\frac{1-V^{2}}{V\left(1+V^{2}\right)}=\frac{A}{V}+\frac{B+D V}{1+V^{2}}=\frac{A+A V^{2}+B V+C V^{2}}{V\left(1+V^{2}\right)}
$$

By comparing all the coefficients, it is not hard to conclude that $A=1, B=$ $0, D=-2$. Therefore, the original problem reduces to

$$
\begin{align*}
& \int \frac{d V}{V}-\int \frac{2 V}{1+V^{2}} d V=\int \frac{d x}{x}+K=\ln |x|+K \\
\Longleftrightarrow & \ln |V|-\ln \left(1+V^{2}\right)=\ln |x|+K \\
\Longleftrightarrow & \ln \left|\frac{V}{1+V^{2}}\right|=\ln |x|+K \\
\Longleftrightarrow & \left|\frac{V}{1+V^{2}}\right|=K|x| \\
\Longleftrightarrow & \frac{V}{1+V^{2}}=K x \tag{2}\\
\Longleftrightarrow & \frac{y / x}{1+(y / x)^{2}}=K x \\
\Longleftrightarrow & \frac{x y}{x^{2}+y^{2}}=K x \\
\Longleftrightarrow & \frac{y}{x^{2}+y^{2}}=K \\
\Longleftrightarrow & x^{2}+y^{2}=K x .
\end{align*}
$$

Remark 0.1. Consider why we can remove the absolutely values on the sides of the equation in (2).

