MORE EXAMPLES/COUNTEREXAMPLES OF VECTOR SPACES

Question 1. $(V, \oplus ; \mathbb{R}, \odot)$ is the set of all $n \times n$ matrices with real entries equipped with \oplus and \odot defined in the following way:

$$
A \oplus B=2 A+2 B, \quad c \odot A=c A^{T}
$$

Check whether this is a vector space.
Question 2. $(V, \oplus ; \mathbb{R}, \odot)$ is the set of all positive real numbers with \oplus and \odot defined by

$$
u \oplus v=u v, \quad c \odot u=u^{c} .
$$

Check whether this is a vector space.

SOLUTIONS.

1. The set V itself coincide with $M_{n}(\mathbb{R})$. But the operations are defined in a different way.
(a) If $A, B \in V=M_{n}(\mathbb{R})$, then $A \oplus B=2 A+2 B \in V$. Holds.
(b) If $c \in \mathbb{R}$ and $A \in V$, then $c \odot A=c A^{T} \in V$. Holds.

Similarly, (1) holds true.
(2) $A \oplus(B \oplus C)=A \oplus(2 B+2 C)=2 A+4 B+4 C$. But $(A \oplus B) \oplus C=$ $(2 A+2 B) \oplus C=4 A+4 B+2 C \neq A \oplus(B \oplus C)$. So (2) fails.
$(V, \oplus ; \mathbb{R}, \odot)$ is not a vector space.
2. (a) If $u, v \in V$, then $u \oplus v=u v>0$. So $u \oplus v \in V$. Holds.
(b) If $c \in \mathbb{R}$ and $u \in V$, then $c \odot u=u^{c}$. Holds.
(1) $u \oplus v=u v=v u=v \oplus u$. Holds.
(2) $u \oplus(v \oplus w)=u \oplus(v w)=u v w=(u v) \oplus w=(u \oplus v) \oplus w$. Holds.
(3) $1 \in V$ and $u \oplus 1=u=1 \oplus u$. Holds. $0_{V}=1$.
(4) For any $u \in V, u \oplus \frac{1}{u}=1=0_{V}$.
(5) $c \odot(u \oplus v)=c \odot(u v)=(u v)^{c}=u^{c} v^{c}=u^{c} \oplus v^{c}=(c \odot u) \oplus(c \odot v)$. Holds.
(6) $(c+d) \odot u=u^{c+d}=u^{c} u^{d}=u^{c} \oplus u^{d}=(c \odot u) \oplus(d \odot u)$. Holds.
(7) $(c d) \odot u=u^{c d}=\left(u^{d}\right)^{c}=(d \odot u)^{c}=c \odot(d \odot u)$. Holds.
(8) $1 \odot u=u^{1}=u$. Holds.

So $(V, \oplus ; \mathbb{R}, \odot)$ is a vector space.

